

Universiteit
Leiden
The Netherlands

Expansions of quantum group invariants

Schaveling, S.

Citation

Schaveling, S. (2020, September 1). *Expansions of quantum group invariants*. Retrieved from <https://hdl.handle.net/1887/136272>

Version: Publisher's Version

License: [Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden](#)

Downloaded from: <https://hdl.handle.net/1887/136272>

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <http://hdl.handle.net/1887/136272> holds various files of this Leiden University dissertation.

Author: Schaveling, S.

Title: Expansions of quantum group invariants

Issue Date: 2020-09-01

Summary

The subject of this thesis is a certain set of quantum groups, and the knot invariants arising from these quantum groups. A knot is an embedding of the circle S^1 into the three-dimensional space \mathbb{R}^3 . Two knots are equivalent if they can be transformed into each other in a continuous way. Such a transformation is called an isotopy. A knot invariant is a map that maps a knot to a set S such that the image is invariant under isotopies of knots. S can be any set. In our case S will be the space of polynomials in two variables.

A quantum group is, contrary to what the name suggests, not a group. A quantum group is a Hopf algebra that originates from the functions on a Lie group. A Hopf algebra is a vector space equipped with a (co)product and a (co)unit and an antipode. In particular, a Hopf algebra is an algebra with unit. The multiplication in an algebra A can be seen as a map $\mu : A \otimes A \rightarrow A$. The dual space of an algebra is a coalgebra (ignoring infinite dimensionality issues). A coalgebra is a vector space equipped with a coproduct and a counit. The dual map of the multiplication map is a map $\mu^* : A^* \rightarrow A^* \otimes A^*$, where the tensor product is completed in the appropriate sense. This construction can be applied to the infinite dimensional case by appropriately defining the dual space of A .

A Hopf algebra is both an algebra and a coalgebra which has an antipode S . S plays the role of the inverse, but is only a convolution inverse of the coproduct. This means that when $Id \otimes S$ (or $S \otimes id$) is applied to the coproduct, and both tensor factors are multiplied, this should yield zero. Like the inverse, S is an anti-homomorphism. Some Hopf algebras can be equipped with a quasitriangular structure. These are the Hopf algebras that will be considered in this thesis. A quasitriangular Hopf algebra enables us to define a knot invariant from the Hopf algebra.

A quasitriangular structure \mathcal{R} on a Hopf algebra H is called an R-matrix. An R-matrix satisfies the Yang-Baxter equation. When we write $\mathcal{R} = \sum \mathcal{R}_1 \otimes \mathcal{R}_2$, and denote \mathcal{R}_{ij} for an element in $H^{\otimes n}$, $i, j \leq n$, $i \neq j$, where \mathcal{R}_1 is in the i -th factor and \mathcal{R}_2 is in the j -th factor. The Yang-Baxter equation is then written as

$$\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23} = \mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}.$$

A way to construct a quasitriangular Hopf algebra is given by the Drinfel'd double construction. A standard example is given by the quantum group $U_q(sl_2)$. From this example famous invariants such as the Jones polynomial and the Alexander polynomial can be constructed. This algebra originates from functions on the Lie group $SL(2)$. The $U_q(sl_2)$ Hopf algebra can be considered as the quotient of

the Drinfel'd double of a Hopf subalgebra $U_q(b^-)$ of $U_q(sl_2)$ and its dual $U_q(b^+)$. It is possible to define a variation of the $U_q(sl_2)$ quantum group by deforming the comultiplication on $U_q(b^-)$ with a parameter ϵ such that $\epsilon^2 = 0$. This deformation is equivalent to multiplying the Lie bialgebra cobracket of the Lie bialgebra b^- with ϵ , and quantizing this Lie bi algebra to obtain $U_q(b_\epsilon^-)$. A quasitriangular Hopf algebra can then be obtained by applying the Drinfel'd double construction to $U_q(b_\epsilon^-)$.

In this thesis, this construction is applied to the Lie bialgebra sl_3 to obtain the corresponding quantum group $U_q(sl_3^\epsilon)$. The knot invariant that is obtained from this quasitriangular structure is studied and calculated for a few knots. For these calculations, a new formalism is needed, and this formalism is introduced in this thesis, along with the proof of convergence. In particular it is proven that the knot invariant corresponding to $U_q(sl_3^\epsilon)$ can be calculated in polynomial time. An attempt is made to generalize this construction to sl_n .