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A. Appendices

A.1. Mathematica

In this section we present the implementation of the zipping formalism used
to do calculations with the Hopf algebra U, (sl5), and to calculate the quantum
double explicitly. The proof of the zipping theorem can be found in chapter 2.
The program labeled s/3invariant.nb is an implementation of this theorem. The
program sl3invariant.nb is based on the program sl2invariant.nb developed by
Bar-Natan and Van der Veen. This program can be found on

http : / /drorbn.net/ AcademicPensieve/ Projects /SL2Invariant /index.html.

In sl2invariant.nb one can find an implementation of the invariant based on the
quantum group Uy (sl5). The knot invariant presented in this thesis is based on
the U, (sl§) construction by Bar-Natan and Van der Veen.

The difference between sl2invariant.nb and sl3invariant.nb is the use of the three-
stage zip. This is an essential difference, since it provides a convergent imple-
mentation of the zipping theorem for the U, (sl5) Hopf algebra. The proof that
this implementation is convergent can be found in chapter 2.

In this program we implement the quantum group Uy (sl3) constructed in chap-
ter 1. We check (co)associativity, if A is a homomorphism, the pairing axioms,
the antipode axioms, associativity and the Turaev moves. The knot invariant is
computed for the Trefoil, the mirror Trefoil, the figure eight and the 6-3 knot in
the Rolfson knot table.
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A.1. Mathematica

In[3]:=

The full $sI_3$ invariant using the Drinfel'd double. For compatibility reasons, we use XX instead of
the generator X. This program continues sl2invariant.nb by Dror Bar-Natan and Roland van der
Veen.

Profiling

(*BeginProfile[];*)

External Uctilities

HL[E ] := Style[&, Background - Yellow];

Program

Program

Program

In[5):=

Program

Program

In[9):=

Program

Program

In[10]:=

Internal Utilities

MaxBy[list , fun_, n_] := list[[Ordering[fun/@list, -n]]];

Canonical Form:

CCF[&_] := PPCCF@ExpandDenominator@ExpandNumerator@PPTogether@Together[PPEXP[
Expand[&] //. e*~ Y- 'Y /. e* > e°CF[¥] ] ] ;
CF[& List] := CF/@§;
CF[sd_SeriesData] := MapAt[CF, sd, 3];
CF[&_] := PPcr@Module|
{vs=cases[s, (XX|Y |2 |A|B|b|s|t|a|x]|y]|z]|XX|Y|2"]
A" |B'|s* |t b |a*|x" |y |2") , »]U{XX, ¥, 2, A, B, b,
s, t,a, x,vy, z, XX*, Y*, 2*, A*, B*, s*, t*, b*, a*, x*, y*, z*}},
Total [CoefficientRules[Expand[&], vs] /.
(ps_ > c_) = CCF[c] (Times @@ vsP®)]
l:

The Kronecker ¢:
K6 /: K6; 5 :=1I1f[i===3,1,0];
Equality, multiplication, and degree-adjustment of perturbed Gaussians; E[L, Q, P] stands for ¢-*@ P
E/:E[Ll_,Ql ,Pl ]=E[L2 ,Q2 ,P2 ] :=
CF[L1 = L2] ACF[Ql = Q2] A CF[Normal [Pl - P2] = 0] ;

E/:E[Ll ,Ql ,Pl ]E[L2 ,Q2 ,P2 ] :=E[Ll+L2, Q1 +0Q2, P1«P2];
E[L ,Q , P lg :=E[L, Q, Series[NormaleP, {e, 0, $k}]];
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Appendix A. Appendices

Program
nie= E3@Esy [w_, L_, Q_, P_] :=Module]|

{NP = Normal [P]},

Ep[L, 0'Q, (w'NP /. e>w™e)+0[e]®™?] // CF
K

E4@Es, [L_,Q ,P_] := Module[

{NP = Normal [P], w},

w= (NP /. e-»0)71;

]Esp[w, L,wQ, (NP /. e-uw'e) +O[e]$k"1] // CF

]:
Program

Zip and Bind

Program

Variables and their duals:

Program

In[15]:= (u_l )* = (u¥);;
((u)7)" s=ws
(C)Ms )" = us;
((u_)*)* :=u;
Program
Finite Zips:
Program
niel= collect[sd SeriesData, [ ] := MapAt[collect[#, ] &, sd, 3];
collect[& , § ] := PPcoirlect@Collect[E, L]
Zipy[P_] :=P; Zip s ,[P_] := PPyip |

(collect[P // Zip(esy, E] /. £_.E% » e qyf) /. £ > 0]
Program

QZip implements the “Q-level zips” on E(L, Q, P) = P9, Such zips regard the L variables as
scalars. E[L, Q, P] means Q) P, where L is linear in the a,b’s, Q is a combination of x; X;

(possibly starred and/or mixed with other variables), and P is a perturbation polynomial. It should be
interpreted via O[E[ ...], {X1, Y4, Z4, Ay, By, by, a1, 21, Y1, X1}i, ...], with an assumed standard
ordering on the generators for an interpretation of the tensor as an expression in Uq(slf).

Program
QZip§s_List@]E[L_’ Q ,P] := PPQZip@Module[{g, z, zs, ¢, ys, ns, qt, zrule, grule},

zs = Table[8*, {&, &s}];

c=CF[Q /. Alternatives@@ (£sJzs) » 0] ;

ys = CF@Table[d, (Q /. Alternativese@e@zs -» 0), {§, &s}];

ns = CF@Table[d, (Q /. Alternatives@@fs » 0), {z, zs}];

gt = CF@Inverse@Table[KS, o -08,,Q, {8, s}, {z, zs}];

zrule = Thread[zs » CF[qt. (zs+ys)]];

frule = Thread[€s -» s +ns.qgt] ;

CF /@ E [L, c+ns.qt.ys, Det[qt] Zip, [P /. (zrule{Lrule) ]] ] ;
Program

Upper to lower and lower to Upper:
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A.1. Mathematica

Program
In23}= U21 = {]bf:' - @ PP P 5 PP, axf:' > eP3 gP 5 eP?,
Ti— > ePt, TP 5 ePF, S 5 eP%, SP 5 @P®, af— 5 P, aP 5 P,
inJ:' - @PPi, pP_- 5 PP, ]Bl-::‘ > @PB BP_- , ePB, Ali::' > e Ph
AP > e PR, mf:' > @PRi gP_- 5 PR, BI;:' > ePPy, gP 5 ePP);
12U = {ec_. bivd ., e ed, @0 P 5 pCed, e . 5 g ed, @ At 15 g C @d,
@ it TS ed, e B 1 TCed, e it s 8T ed, e St 1 sCed,
@t divd . ag ed’ @S- a+d_. .4 gC ed, @S- Pravd . . bg ed, @%b +d_. .y pe ed,
e Bt proed, e B pCed, e Mt pCed, o Ay pC d
@ Alivd_. A ed, @S AT o, gt ed, @ B +d_. B ed, e B 1 g0 el
ea_ > eli::q::ami@&} ;
Program
LZip implements the “L-level zips” on [E(L, Q, P) = Pet*Q. Such zips regard all of PeQasa single’P’.
Here the Z’s are A, B and a*, b* and the {'s are A*, B* and a, b. s and t are not regarded as scalars
for zip-technicalities. DB and STB are variations of B with a different choice for /s in LZip, to speed
up the zipping of tensors with s and t instead of A and B.
Program
LZipgs 156t @E[L_, Q_, P_] :=
PPLZip@Module[{§, z,zs,c,ys, ns, 1t, zrule, Zrule, frule, Q1, EEQ, EQ},
zs = Table[£*, {&, £s}];
c=L/. Alternativese@e (sUzs) » 0;
ys = Table[0¢ (L /. Alternatives@®@zs » 0), {§, §s}];
ns = Table[8, (L /. Alternatives@@{fs » 0), {z, zs}];
1t = Inverse@Table[KS, ¢ -0, ¢L, {§, &s}, {z, zs}];
zrule = Thread[zs » 1t. (zs+ys)];
frule = Thread[€s » s +ns.1lt];
Ql=Q/.U21 /. (zrule{Jgrule);
EEQ[ps___] :=
EEQ[ps] = PPuggon@ (CF [e'Ql D [te , Sequence @@ Thread[{zs, {ps}}] ] ] /.
Alternatives@@zs -» 0 //. l2U) ;
CF /@ ((+CF/ex)E|
c+ns.lt.ys, Q1 /. Alternatives@@zs » 0,
Det[1lt] (Zipgs [(EQeezs) (P /. U21 /. (zrulel&rule))] /.
Derivative[ps__ ][EQ][__ ] =» EEQ[ps] /. _EQ=- 1)
]77. 12v)
]:
Program

n2el= Bey[L_, R_] :=LR;
Bis [L E, R E] := PPBind@Module[{n},
Times|[
L/. Table[(v:XX|Y|Z|A|A|B|B|s|t|S|T|
b| (xb|*)a(*x|ax*) | x|y | 2);i > Vres, {1, {is}}],
R/. Table[ (v :XX" | Y* | Z2* | A" (x| Ax) | B* | (*B]| *)b* | s”|
t*|a*|a|b|x* |y |2*)i > Vnei, {1, {is8}}]
1 // LZiPriattenerablel(A%ms Bres, (5")ness (£ nossBrossanes}, (1, (s3] /7
QZiPr)atteneTable {XXuet , Y*uet s Voot , X nes} s (1, (i511] /7 QZiPmatten@Table[{z*,,@,,z,m},(i,{is}}]] ;
Bis [L_, R_] :=Bpgl[

R];
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Appendix A. Appendices

DBy [L_, R ] :=LR;
DB(is 3[L E, R E] := PPDBind@Module[{n},
Times [
L/.Table[(v:XX|Y|Z|s|t|b|b|a|a|x|yY]|2z)i= Ve, {i, {is}}]1,
R/.
Table[ (v :XX" | Y* | 2" |s*|t* | b*|a*|a|b|x" |y |2");i > Vnei, {1, {is}}]
1 // LZiPgiattenerable[{(s*)es, (t*) nos baessanes}, (i, (is}}] 7/
QZ1iPr1atteneTable [ {XXue: )Y aet ) Voot s X nes} s (i, (is}}] /7 QZipFlatten@Table[(Z’n@i,zn@,),(i,{is)}]] ;

DBis_[L_, R ] :=DByiq [L, R];

In29)= STBgy [L_, R_] :=LR;
STB(is }[L_E, R E] := PPsrpina@Module[{n},
Times [
L/. Table[(v:XX|Y|Z|b|b|a|a|x|y]|2z)i> Ve, {1, {is}}],
R/. Table[(v:XX" | Y | 2" | b* |a* |a|b|x* |y | 2")i > Vnes, {1, {is}}]
1 // LZiPpiattenerable[{bues,ame:}, (i, (is1}] /7

QZAPr attaneTablel (Kuss, T ses Yoot X'nes) (1, (181}] // QZLPr1atteneTablel (2, 200}, (4, (18731 ] 7
STBis_ [L_, R_] := STByis [L, R];

Program

[E morphisms with domain and range.

Program
2= Big nist[Ear or [L1_, Q1_, P1_1, Egz 42 [L2_, Q2_, P2_]] :=
E (q1Jcomplement[d2,is])- (r2JComplement[rl,is]) @@Bis [E[L1, Q1, P1], E[L2, Q2, P2]];
STBig rist[Ear or1 [L1_, Q1 _, P1_], Eqp 42 [L2_, Q2 , P2_]] :=
E (g1 complement[d2,is]) - (r2cComplement[rl,is]) @@ STB;s [E[L1, Q1, P1], E[L2, Q2, P2]];
Eg; o1 [L1_, Q1 , Pl ]//Eg 52 [L2_, 02 , P2 ]
Brinaz [Eq1,-1[L1, Q1, P1], Eg4z,.2[L2, Q2, P2]];
Eqi o1 [L1_, Q1_, P1_] = Eqp opp [L2_, Q2_, P2_] ~:=
(dl = d2) A (r1 = r2) A (E[L1, 01, P1] = E[L2, Q2, P2]) ;
Eqi o1 [L1_, Q1 , P1_] Eg L. [L2_, Q2 , P2_] *:=
E (1)a2)» (e10e2) @@ (E[L1, Q1, P1] E[L2, 02, P2]) ;
Eq 5r [L_,Q , P_lsx :=Egr@E[L, Q, Plg;
E [6___1[i_]1 :={&8}Y[il~

Program
“Define” code

Program

Define[lhs =rhs, ...] defines the Ihs to be rhs, except that rhs is computed only once for each value
of $k. Fancy Mathematica not for the faint of heart. Most readers should ignore.
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A.1. Mathematica

Program
In39l= SetAttributes[Define, HoldAll];
(Define[def]; Define[defs];);

Define[def , defs_ ]
Define[op_is = 8_] 1=
Module[{SD, ii, jj, kk, isp, nis, nisp, sis}, Block[{i, 3, k},

ReleaseHold[Hold[
SD [OPpip, sk_tntegers PPoot@Block[{i, 3, k}, OPigy,ex = &/ OPnis,sx] | 7
SD [°Pispr op(is},Sk]; SD[opsis_l °P(sis}]r'
] /. {SD - SetDelayed,
ispo>{is} /. {i-»i_,3->3_,k-k_},
nis -» {is} /. {i-»1ii, j > jj, k » kk},
nisp- {is} /. {i-»>ii_, 3> 3j_, k->kk }

1] 1]

Program

Booting Up

Program
Sk =1;
The multiplication tensors on both halves of the double are defined here. $k indicates the degree

€+1 = 0 we are working over. The am and bm tensors given here only work for $k=1 and $k=0.

In[43]:= Define[ami,j_,k =
E(i, 3k} [ (a*s+a*s) a+ (b*s+b*s) by, (®57@)s 2% 4 2%+ @ ®372 @05 1%y (y*) ) zpe +
(e—(a‘),+2 (b*) 4 v, "'Y*j) Vi + (e—(b”)j+2 (a*) 4 x"i+x*j) Xi,
l+e (h (z*) 5 (x*); @ ®3*2 @5 g 3 4+ B (2%) 5 (x*); (¥*) 5 e P52 @05 2, 7y -

B (z*); (v):@® 5 @s 2y - B (v7), (x%); (¥9) ;@@ @z - b (x%)
@ 5% 2 (@05 (y*) 5 (Y5 Zryr - B (x*); @ P52 @05 (g yy xk) +O[E]2]$k,

bm; 5k = E(i,5})-k) [Ak A*; + Ay A*j + B B*; + By BYy, XX XX*; + XXy XX*5 + Y Y*; +
Yo Y*5 4 2y 2% + 2y 2%, 1+ (-xxk (A%); (XX*) 5+ B XX Y (XX*) 5 (Y*); -
Yy (B*); (Y%)5+2 2y (XX*); (Y¥%) 5 - BXK 2y (XX*) 5 (27);+
B Yy Zi (Y')5 (2%)5 -2k (A%); (2%)5-2Zx (BY): (2%)5) e+0[e]?], ]

’

The R-matrix is defined with the Faddeev-Quesne formula.
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Program

Define[Ri,j =

(e—25ﬁ_1)k (hXXixj)k

$k+
E{}Q{i,j}[ﬁAia“hBibj, AXX; x5 +hY;y;+hZ;z5, @ Z

2 k (1_e-2keh)
kel (e2¢2-1)" (nYy;)t o1 (@22 -1)" (nz; zy)"
e” e? ] ,
by 1 (l_e—2leh) = m (l_e—2meh) Sk

Ri,;=E(sq,35) [-hasAi-Aby By, ~Ax; XX A" B + B XX, ¥; z5 Al Bf -
hzyz; A'BE-ny; Y, A;RB2?, 1+If[$k =0, 0, (Ris,3},8%-1) s [3] -
(((i(i,j},O)Sle,z (E{3,4),$k-1)$k) // (bmi,hi amj,z»j) // (bmi,Bai amj,4—>j)) [3]]],
1 1
P; s =E ; [—A*-a*-+—B*- (b*) 4
, {1,31-{} ’
1,3 i,3 PR 3
1 1 1
_xxixj"‘;Yin*‘EZ 2%y, 1+If[$k =0, 0, (P(i,j),$k-1)$k[3]_

h
(R1,2 // ( (P(l,j),o)sk (P{i,Z),Sk—l)sk) ) [3] ] ] ]
Program
ni#s)= Define[aS; = Ry, 3~Bi~Pi ;,
aS; = E(i}o14) [-a'i a; -b*; by, —e ®im(@i g%, 7, 4 e BN @D g (x%); 25 -
@2 ®)+ (@) Y*i vi- e(Pi-2(a"); X* %, 1+ If[$k =0, 0, (E{i),Sk—l)sk[3] -
((@8(13,0) sk ~Bi~aS:i ~Bi ~ (a8 sx1) sx) [31]]]
Program
nis)= Define[bS; = Ry 1 ~By~aS; ~By~P; 1,
bS; =R;,;~B;~a8;~B;~P; 1,
alh;i,;,x = (Rl,j Rz,k) //bmy 5,3// P3;,
bAiLy,x = (Rj,l Rk,2) //amy 5,3 /7 Pi,3]
Program
7= Define [dm; 5o = (Es,3)-02,9) [ (A%) 5 As+ (B*); By +b*5 by + a*;ay,
Y'Yy Xy Ry o+ 25 Zg o+ (XXN) XK+ (Y1) Yo +2%5 25, 1] (2Bus1,2 // @Bayp,3 // 383)
(bAj—>—1,—2 // bA-z-»-z,-a)) // (P-1,3 P_3,; amp 5, bmi,—z—»k) ’
ds; = Egiyaq1,2) [ (A%) 1 Ay + (B¥); By +b*; by + a%; ay,
Vi Vo X5 Xp + 2%5 2o # (XX*) 3 XXy + (Y*); ¥Yp 425 25, 1] // (El asz) //dmy 15,
dAiLs x = (bAjL3,1@l0;5,,4) // (d-m3,4—>k d'm'1,2—>j) '
dS: = E(i)o01,2) [ (A%) 1 A + (B*); B +b*s by, + a*; ay,

Vi Vo X% Xp + 2% 2o # (XXY); XXp + (Y)Y +2%5 29, 1] // (bsl 52) /7 d.mz,l_,i]

Program
1 h (aj +bi) €
né)- Define[Ci = Egasy [0, 0, - +olel?]
Al B! Al B2 sk
Ci=Eq,u[0, 0, (B}B]+ (ha; A} B} +2b; Al BE) €) +O[e]2]$k,
Kink; = (R1,362) //dmy 5,y // dmy 3.,
Kink; = (§1,3 Cz) //dmy 5, /7 d'ml,3—)i]
Program

Note: s=2A-B+ea, t=2B-A+eb. This substitution is implemented in the following tensors.
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A.1. Mathematica

Program

2

Si

2 t;
In[49]:= Define[ABZsti = E(i}o(i} [b";‘L b; + a*;a; + (A%); (; (si + ;l)] + (B*); [g (ti + ;)] ’

(XX"); XX + (Y*); Y5 + 2% Z5 +Y"; Vi + X" x5 +2%5 23,

1 1
1—e(A*)i—(2ai+bi)—e(B*)i—(2bi+ai)+0[e]2] ,
3 3 $k

St2AB; = Egs),q [b*sbs + a%sa;+ (s*); (2R3 -B;) + (t%); (2B -Ay), (XX'); XX, +

(Y):Yi+2% 2 +y*; va+x"sxs+2% 25, 1+€ (s¥) as+e€ (t*)ibi+0[€]2]$k]

The following definitions are used for a slightly faster implementation of the quantum-double that
leaves out the s and the t from the zip. Since s and t are central, this is well defined and yields the
same result. These tensors should be zipped using the STB and DB zip function. As such, we also
check the axioms for these tensors.

niso)= Define[stRy,; = (Ri,3~Bi,s) ~ (AB2st; AB2st;)) // Simplify,

StRi,j = (Ri,5~Byi,y) ~ (AB2st; AB2st;)) // Simplify,
StC; = (Ci~Bpy ~ (AB2st;)) // Simplify,
stC; = (Ci~Byiy~ (AB2st;)) // Simplify,
StKink; = (Kink;~By)~ (AB2st;)) // Simplify,
stKink; = (Kink;~B;)~ (AB2st;)) // Simplify,
stdm; s = ((st2AB; st2AB;) ~B; 5 ~dm;, j,x ~Bx ~AB2sty) ,
stdA;,;,x = (St2AB; // das,y,x // (AB2st; AB2sty) ),
stdS; = (st2AB; // dS; // AB2st;),
stP; 5 = ((st2AB; st2aB;) // Ps 5),
ddA;,;,x = (St2AB; // dAs,y,x // (AB2st; AB2sty)) /.
{Sj|k 8, T5~>T, tyx=>t, sjx=>s, (s); 20, (t*);~» 0},
dds; = (st2AB; // dS; // AB2st;) /. {S; »S, Ts » T,
s;i»s, ti»>t, (s*); >0, (t*); »0},
PP; ; = ((st2aB; st2AB;) // P; 5) /. {(s*)in 50, ()33~ o},
RR; j = (Ri,j // (AB25tiABZStj)) /. {ti|j >t s3> s},
RR; ;= (Ri,5 // (AB2st; AB2st;)) /. {ti|s > £, 855> s, Si5 S, Ty|5 > T},
CC; = (Ci~Byiy~ (AB2st;)) /. {Sij3 > S, Taj3 - T} // Simplify,
CC; = (Ci~Bysy~ (AB2st;)) /. {Sij3> S, Ty|5 > T} // Simplify,
KRink; =
(mi~B(i}~ (ABZsti)) /. {ti|j > t,si3>s,8;;28, Ty~ T} // Simplify,
KKink; = (Kink;~B;)~ (AB2st;)) /. {tiy > t, sij3>s, Sij3>8, Ta;5 > T} //
Simplify,
ddm; 5. = ((St2AB; st2AB;) // dm, j.x // AB2sty) /.
{Sk 58, Ty > T, ty>t, sy > s, (s*)i|j -0, (t*)i|:-I - 0}] ;

Define[BBi, jok = ((dAi—>1,r1 dAj—»Z,rZ) /7 dSyy /7 A8y // Amyy poy // Ay 1y /7 dmk,z-»k)]
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Testing

Block[{$k =1}, {
am - am; 45, bm > bm; j,, dm > dm; 55, R->R; 5, R- Ei,j, P-P; 4y, aS-~»aS;,
aS-»aS;, bS>bS;, bS»bS;, dS > dS;, aA > aA;,4,x, bA >bA; 55, dA > dA; L5k,
C->C;, C>C;, Kink » Kink; , Kink -» Kink;, AB2st -» AB2st;, st2AB » st2AB;

} 77

Column

Check that on the generators this agrees with our conventions in the handout:

Timing@{{"[x,a]" -
((Egyo01,23[0, 0, @z x1] // amy 5,1) [3] - (Ey,01,23[0, 0, a1 x2] // amy 5,1) [3]),
"[A,X]" > ((Egaq,2y [0, 0, XX A1] // bmy 5,1) [3] -
(E(yq1,23[0, 0, XXy Ap] // bmy 5,1) [3]), "[x,¥y]" >
((Eqysq1,2y [0, 0, y2x1] // amy 5,1) [3] - (E(y501,23[0, 0, y1 %x2] // amy 5,3) [3]),
"[Y,X]" > ((Egyaq1,23[0, 0, XX Y3] // bmy 5,1) [3] -
(E(3o¢1,2y[0, 0, XX Yp] // bmy 5,1)[3]1)} /. z_; » z,
{"A[X]" > Last[E ., [0, 0, XX,] ~B; ~bA,,; 21,
"A[A]" > Last[]E()_,(l) [0, 0, A;]~By~bA;,; 5],
"Ala]" -» Last[E(,(13[0, 0, a;] ~By~alA;,; 5],
"A[z]" » Last[E(;,(1;[0, 0, z;] ~By~alA;,; 2],
"A[x]" »> Last[E(,(13[0, 0, x;] ~By1~alA;,; 5],
"A[Z]" > Last[IE{}_,(l} [0, 0, Z;]~B;~bA1,;,21},

"S(a)" » ((E{y,¢1,[0, 0, a;]1 ~B;~aS;) [3]),

"S(z)" » ((Egy,13[0, 0, z;] ~B;~aS;) [3]),

"S(x)" » ((E(,1y[0, 0, x;] ~B;~a8;) [3]),

"S(A)" » ((E(,(1;[0, 0, A;]~B; ~bS;) [3]),

"S(X)" » ((E{y¢1y [0, 0, XX;] ~B; ~bS;) [3]),

"S(2)" » ((E{y,1[0, 0, 2;] ~B;~bS;) [3])
Y/.oz_, > z}

{1.265625, {{[x,a] »2x+0[e]?, [BA,X] > -XXe+0[e]?,
[x,y] »z-xyhe+0[e]?, [Y,X] » (-22+XXYh) e +0[e]’},

> -a+0[e]?, S(z) »-z+ (2xyh+2zh-azh-bzh)e+0[e]?,
-x-axhe+0[e]?, S(A) »-A+0[€]?, S(X) > -XXA?"B"+0[e]?,

2

]
]
1> (x1+%) ~ha; x,e+0[e]?, A[Z] > (2, + Z; BBy + h XX ¥, A; " BE) +0[el?},
)
X) >
Z) > (-ZR"B"+XXYR"B"h) + (22RA"B"h-XXYR"B"h?) e+0[e]’}}}

Hopf algebra axioms on both sides separately.
Associativity of am and bm:
Timing@Block[{$k = 1},

HL /@
{(amy 5,1 // amy 3,1) = (amy 3,5 // amy 5,1), (bmy o, //bmy 3,;) = (bmy 5,5 // bmy 5,,)}

1
{0.437500, {True, True}}
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R and P are inverses:
Timing@
Block[{$k =1}, {HL[ (Ri,j /7 Pi,k) = E(x}o(3} [aj a* +by b*, x5 X + Y5 Y + 235 2%, 1] ] }]

{0.031250, {True}}

as and aS are inverses, bs and bS are inverses:

Timing[HL /@ { (El // aSl) = Eqy,013[@1@% +by by, %9 x5 +y1 ¥*; +21 2%, 1],
(bS1 7/ 81) = Eq1yo1) [Ag A% + By BYy, XXy XX*y + ¥y ¥*3 + 25 2%, 11}]

{0.406250, {True, True}}

(co)-associativity on both sides

Timing[HL /@
{(al1,1,2 /7 @albsys,3) = (Bl151,3 /7 @l1,1,2) , (bPA1,1,2 // bAs,s,3) = (bA1,1,3 // bAL:5),
(amy 5,1 // amy 3,1) = (amp, 3,2 // amy 5,1), (bmy o,y // bmy 3,;) = (bmy 3, // bmy 5,1) )]

{1.078125, {True, True, True, True}}

A is an algebra morphism
Timing [HL /@ {(amy 5,1 // @ali,1,2) = ((2l1,1,3@85,5,4) // (Aam3 4,0 @My 5,1)),
(bmy 2,1 // bA1,1,2) = ((bA1,1,3b8s,5,4) // (bmg 4,2bmy 5,1))}]

{1.312500, {True, True}}

S is convolution inverse of id

Timing [HL[# = E1y,1,[0, 0, 1]] & /@ {
(al1,1,2~B1~a8;) ~By 2~amy 2,1, (a8l1,1,2~By~aS;) ~By a~am 2,1,
(bA1,1,2~B1~bS;) ~By 2~bmy 5,1, (bAj,;,2~By~bS;) ~By o~bmy 5,1}]

{1.015625, {True, True, True, True}}

S is an algebra anti-(co)morphism

Timing[HL /@
{am; ,,; ~B;~aS; = (aS; aS;) ~By ,~amy 1,;, bmy ,;~B;~bS; = (bS; bS;) ~B; ,~bm; 1,,,

aS; ~B; ~al;,; > = al;,5,1~By 2~ (aS; aSy) , bS; ~B; ~bA;,; 5 =bA;,5 1~By 2~ (bS; bS;) }]

{2.500000, {True, True, True, True}}

R-matrix and antipode

Ry ~Bi~ (bS;) =Ry,

True

Pairing axioms
Timing[HL /@ { (bmy 5,1 E(3;,(3)[b*3bs + a"32a3, y'3y3+x"3x3+2%323, 1]) ~B;y 3~P; 3=
(Eyoqy [(A") 1 A+ (BY) 1 By, (XX") XXq + (Y*) 1 Yy +2%; 2, 1]
Eoy,p23 [(A%) 2B+ (BY) By, (XX"), XX + (Y¥), Y + 2%, 25, 1] al3,,5) ~By 4~
P1,4~B2,5~Py,5, (bA1,1,2 E(3),3[b*3b3 + a*3a3, y'3 y3+x"3x3+2%3 23, 1]
E(a),4ay [P*aba + @a%sa4, Y  Va+ X4 %4 +2%4 24, 1]) ~By 3~P; 3~By 4~Py 4 =
(Ef1ysqy [(A%) 1 Ay + (B*) 1 By, (XX*) XXy + (Y")1 Yy +2% 23, 1] amg 4,3) ~By 3~Py,3}]

{0.34375, {True, True}}
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Timing[HL /@ { ((bS; E(z),(2) [D*2 b2 + @*2 32, Y, Yo + X*2 X2+ 2*2 22, 11) // Py 5) =
((Eq1ysy [(A") 1 Ap + (B") 1 By, (XX") XXy + (Y"), Yy +2% 21, 1] aS,) // P12),
(b_sl E )23 [b'2by + %3, ¥, ¥2 + %" x5 + 2% 25, 1]) ~By ,~Py 5 =
(Eu)-»u) [(A*)1 Ay + (B*)1 By, (XX*)1 XXy + (Y*), Yy +2% 2, 1] E2) ”Bl,z"Pl,z}]

{0.28125, {True, True}}

Tests for the double.

Check the double formulas on the generators agree with SL2Portfolio.pdf:

{
"[a,y]1" > ((E{,¢1,23[0, 0, y221] ~By,2~dmy »,1) [3] -
(E(y5(1,2; [0, 0, y1 @5] ~By >~dmy »,1) [3]),
"[b,x]" > ((E{,1,23[0, 0, xpb;] ~By 5~dm; 5,) [3] -
(E(yo01,23[0, 0, %3 by] ~By p~dmy 5,5) [3]),
"[b,y]" > ((E{5¢1,23[0, 0, y2b;] ~By p~dmy 5,1) [3] -
(E(}01,23[0, 0, y1 b2] ~By p~dmy 5,3) [3]),
"[a,x]" > ((E{,,23[0, 0, xpa;] ~By 2~dmy 5,1) [3] -
(E(ys¢1,2y [0, 0, %3 23] ~By p~dm 5,1) [3]),
"[a,z]" » ((E{,(1,23[0, 0, za;] ~By ,~dmy »,,) [3] -
(E{y»¢1,2y[0, 0, 21 @3] ~B;y,2~dm; 5,1) [3]),
"[b,z]" » ((E{,1,2)[0, 0, 22b1] ~By 2~dmy 2,1) [3] -
(E(}»1,23[0, 0, 21 b3] ~By o~dm; 5,1) [3]),
"[x,z]1" > ((Egaq,2y[0, 0, 22 %3] ~By,2~dmy 5,1) [3] -
(E(yoq1,23[0, 0, 21 X5] ~B;y 5~dm; 5,31) [3]),
"[y,z]" > ((Eg,0,23[0, 0, 22 y1] ~By,2~dmy 2,1) [3] -
(E(ysq1,23[0, 0, 21 ¥2] ~By p~dmy 5,3) [3]),
"[x,v]1" > ((E{sq1,23[0, 0, y2 %] ~By p~dmy 5,1) [3] -
(E(ys1,23[0, 0, y1 x2] ~By 2~dmy 5,1) [3]) ,
"[Y,v]1" > ((Egs,23[0, 0, y2Y1] ~By o~dmy 5,1) [3] -
(Efyo¢1,23[0, 0, ¥1 Y21 ~By ,~dmy ,,;) [3]) // Expand // Simplify,
"[Y,x]" > ((E(,01,23[0, 0, x5 ¥1] ~By 5 ~dmy »,,) [3] -
(Efyoq1,23 [0, 0, %3 Y5] ~By p~dmy 5,1) [3]) // Expand // Simplify,
"[X,v]" > ((Egsqa,23[0, 0, y2 XX;] ~By o ~dmy 5,7) [3] -
(E(y5(1,23[0, 0, y1 XX5] ~By,5~dmy 5,1) [3]) // Expand // Simplify,
"[XX,x]" > ((Egaq,2)[0, 0, x3 XX;] ~By 5~dmy 2,1) [3] -
(Efyoq1,23 [0, 0, % XX,] ~By 5 ~dmy 5,;,) [3]) // Expand // Simplify,
"[Z2,2z]" > ((E{,0,23[0, 0, 23 2] ~By p~dmy 5,1) [3] -
(E{y5¢1,23[0, 0, 29 2,1 ~By,,~dmy ,,;) [3]) // Expand // Simplify,
"[Z2,y]1" > ((Eg,¢1,23[0, 0, y221] ~By,2~dmy »,1) [3] -
(E(35{1,23[0, 0, ¥1 Z2] ~By p~dmy 5,,) [3]) // Expand // Simplify,
"[Z2,x]" » ((E(,01,23[0, 0, x32,] ~By 2~dmy 5,1) [3] -
(Eyo¢1,23 [0, 0, %3 2] ~By,,~dmy »,;) [3]) // Expand // Simplify,
"[XX,z]" > ((E(ysq1,23[0, 0, 25 XX;] ~By p~dmy 5,1) [3] -
(E¢ysq1,23[0, 0, 23 XX] ~By, 2 ~dm; »,1) [3]) // Expand // Simplify,
"[Y,z]" > ((E(ys1,23[0, 0, 2, ¥1] ~By ,~dm; »,,) [3] -
(E(y5¢1,2;[0, 0, 21 Y5] ~By p~dmy »,;) [3]) // Expand // Simplify,
"[a,2]" » ((E{sq,2y[0, 0, 22a;] ~By p~dmy 2,1) [3] -
(E(}»1,23[0, 0, Z2; @3] ~By,2~dm; 5,31) [3]),
"[a,XX]" » ((E(,q1,23[0, 0, XX3 a1] ~By 2 ~dmy »,1) [3] -
(E{ysq1,23[0, 0, XX; @3] ~By 2 ~dmy 5,1) [31)
"[a,Y]" » ((E{,q1,23[0, 0, Y22;] ~By p~dmy »,1) [3] -
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(E(ys(1,23[0, 0, ¥y @3] ~By p~dmy 5,5) [31),

"[b,2]1" » ((E{y,¢1,23[0, 0, 2, b1] ~By p~dmy 5,,) [3] -
(E(ys01,23[0, 0, 23 by] ~By 2 ~dmy 5,5) [3]),

"[b,XX]" > ((E{jsq1,2)[0, 0, XX; b;] ~By 5~dmy »,3) [3] -
(E(yo1,23[0, 0, XX; by] ~By 2 ~dm; 5,1) [3]) ,

"[b,Y]" > ((E(,01,23[0, 0, Y2b1] ~By 2~dmy »,1) [3] -
(E(y5¢1,23[0, 0, ¥Y; b] ~By 5 ~dmy »,,) [3]),

"[A,Z]" > ((Egsq1,23[0, 0, 23 A9] ~By 2 ~dmy 2,;) [3] -
(E(ysq1,23[0, 0, Z3 23] ~By 5 ~dmy »,3) [3]),

"[A,XX]" > ((Eaq,23[0, 0, XX Ay] ~By 2 ~dmy 5,1) [3] -
(E(y(1,23[0, 0, XXy Ap] ~By 5 ~dmy »,3) [3]),

"[AY]" > ((Egysq1,23[0, 0, Y5 A1] ~By p~dmy 5,7) [3] -
(E(ysq1,23[0, 0, Y3 23] ~By 5~dmy »,3) [3]),

"[B,2]" » ((E{y,(1,2y[0, 0, 22 B1] ~By 2~dmy 2,1) [3] -
(E(ys01,23[0, 0, 23 Bo] ~By p~dmy 5,5) [3]),

"[B,XX]" > ((E(js(1,2)[0, 0, XX, B;] ~By 5~dmy »,3) [3] -
(E(yo1,23[0, 0, XX; By] ~B;y o ~dm; 5,1) [3]),

"[B,Y]" » ((E(,(1,23[0, 0, Y2 B3] ~By,2~dmy »,1) [3] -
(E(y»1,2y[0, 0, Y1 B5] ~B; 2 ~dm; 5,1) [3]),

"[XX,Y]" > ((Egaq1,2)[0, 0, Y2 XX;] ~By p~dmy »,3) [3] -
(E(ysq1,23[0, 0, ¥3 XXp] ~By 2 ~dmy 5,1) [31)

"[Z2,Y]" » ((E(,0,23[0, 0, Y2 2,] ~By,2~dmy »,1) [3] -
(E(yoq1,23[0, 0, ¥3 Z5] ~By p~dmy 5,5) [3]),

"[Z,XX]" > ((E{y5(1,23[0, 0, XX, Z;] ~By o ~dmy 5,1) [3] -
(E(yoq1,23[0, 0, XXy 25] ~By 2 ~dmy 5,1) [31),

"[A,x]" > ((Egsq1,23[0, 0, x5 A1] ~By p~dmy 5,7) [3] -
(E(ys¢1,23 [0, 0, %3 A] ~By p~dmy 5,3) [3]),

"[A,Y]" > ((Egoqi,2y [0, 0, y2 A1l ~By p~dmy 5,9) [3] -
(E(yo1,23[0, 0, y1 A2] ~By 2 ~dmy »,1) [3])

Y /. {v_l - v} // Expand // Factor

"A(a)" = ((E(,2y53[0, 0, 2] ~By~dAy,3,2) [31) ,

"A(x)" = ((E(1,2)5(3 [0, 0, %3] ~By~dAy,q,5) [31),

"A(b)" » ((E(1,235¢3[0, 0, by] ~B; ~dAy,;,,) [31),

"A(Y)" = ((E(1,2353[0, 0, y1]1 ~By~dAy,;,2) [31),

"A(z)" > ((E(1,2y5(3[0, 0, 21] ~By~dAy,;,2) [31) ,

"A(XX)" > ((E(1,2)53[0, 0, XX;3] ~By ~dA1,3,2) [31) ,

"A(Y)" - ((E(1,235¢3[0, 0, ¥Y3] ~B; ~dAy,;,5) [31),

"A(Z)" > ((E(1,2y53[0, 0, 2] ~By~dA1,3,2) [31) ,

"A(A)" > ((E(,2y5¢ [0, 0, A;] ~By~dAy,; ) [3]) ,

"A(B)" > ((E(1,2),(3[0, 0, By] ~By~dAy,3,2) [3])} // Simplify

{
"S(a)" » ((E{1}-¢13[0, 0, a;] ~B; ~dS;) [31) ,
"S(x)" > ((E1).¢1;[0, 0, x,] ~B;~dS;) [3]),
"S(b)" » ((E(1)5¢1)[0, 0, by] ~B; ~dS;) [3]) ,
"S(y)" = ((E(1y5¢13[0, 0, y1]1 ~B;~dS;) [31),
"S(z)" » ((E(1y.¢13[0, 0, z;] ~B; ~dS;) [3]) ,

"S(XX)" » ((E(1y513[0, 0, XX;] ~B; ~dS;) [3])
"S(Y)" » ((E{1y-¢13[0, 0, Y;] ~B;~dS;) [31) ,
"S(Z)" » ((E{1}5(13[0, 0, Z2;] ~B; ~dS;) [3]) ,
"S(A)" » ((E(1y,¢13[0, 0, A;] ~B; ~dS;) [31),
"S(B)" » ((E(1)5¢1)[0, 0, By] ~B; ~dS;) [3])
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{[a,Y] > y+0[el?, [b,x] »x+0[e]?, [b,y] »-2y+0[€]’

[a,x] *)72X+O[€12, [a,z] a—z+0[€}2, [b,z] %7Z+O[€]2,

[x,2] *)XZhE‘FO[E}Z, [v,z] %—yzh€+0[€}2, [%,v] ez—xyh€+0[e}2,

-1+mahp2t
[Y,y] > ———————+ (-bA"B?"+2yYh) e+0[e]?, [Y,x] >-xYhe+0[e]’
h
-1+A2RpBE ,
[X,y] > -XXyhe+0[e]?, [XX,x] > ——— + (—aA’Zh]Bh+2xXXh> e+0[el?,
h
-1+mABBH o ,
(Z,2] > ———— + A 2B <—a—b+22ZAh]th)€+O[€]2,
h

[Z,y] > -XX+yZhe+0[e]?, [Z,x] >YR "B +R?" (x2R?"- (-1+a) YB") he+0[e]”
[XX,z] > (-2 y+XXzh)e+0[e]?, [Y,z] > (2xA"B?"+Yzh)e+0le]?,

[a,2] >Z2+0[€]?, [a,XX] »2XX+0[e]?, [a,Y] >-Y+0[€]?, [b,Z] >Z+0[e]?

[b XX] » -XX+0[e]?, [b,Y] 52Y+0[e]?, [A, 2] >-Z€+0[e]?

[A,XX] > -XXe+0[e]?, [A,Y] >0[€]?, [B,Z] »-Ze+0[e]?, [B XX] > 0[e]?

[B,Y] >-Ye+0[e]?, [XX,Y] > (2Z-XXYh)e+0[e]?, [2,Y] >YZhe+0[e]?

[2,%X] 5 -XXzhe+0[e]?, [A,x] > xe+0[e]?, [A,y] »0[e]?]

- (a; +ay) +O[e]2, A(xX) » (%1 +%y) —hay X2€+O[€]2,
by +by) +0[€]?, A(y) » (y1+Yy2) ~hbyy,€+0[€]?

(a) = (
(b) = (
(z) > (z1+2;) +h (2 %1y, - (a1 +01) z,) €+0[€]?, A(XX) > (XXy + XX, A" B}) +0[e]?,
(Y) > (
(B) = (

I\

Y+ Y, AYBTPP) +0[€]?, A(2) > (21+ 2, A" BI" + h XX, Y, AP BY) +0[€]?
A +Ay) +0[e]?, A(B) > (By+By) +0[e]”}

3

) »-a+0[€]?, S(x) »-x-axhe+0[€]?, S(b) »-b+0[e]?

)y 5 -y-byhe+0[e]?, S(z) »-z+ (2xy-(-2+a+b) z) he+0[e]?
X) 5> -XX BB -2 (xx A?"B h) e +0[e]?,

) > -YATB -2 (YAT"B?"h) e+0le]?,

) > A"BY (-2 +XXYh) +A"BPhA (-22+3XXYh)e+0[e]?,

A) > -A+0[e]?, S(B) > -B+0[e]?}

(co)-associativity

Timing[HL /@
{(dA1,1,2 // dBz,2,3) = (dAy,y,3 // dBAyLy,2) , (dmy o4 // dmg 3,1) = (dmg 3,5 // dmy 5_51) }]
{14.218750, {True, True}}

Timing[HL /@ { (stdA;,;,, // stdAy,5,3) = (stdAj,y,3 // stdAy,y,),
(stdmy 5,3 // stdm; 3,;) = (stdmy 3,5 // stdmy 5_,1)}]

{7.531250, {True, True})}

Timing[HL /@ { (ddmy 5, ~STB; ~ddm; 3,;) = (ddmy 3,,~STBy~ddmy 5_,1)}]
(2.125000, {True}}

A is an algebra morphism

Timing@HL[dm; ,,3 ~By~dA;,;, 5 = (dAg,;,3dAs,5,4) ~By,2,3,4~ (dmz 4,5, dmy 5,3) ]
{7.296875, True}

S, inverts R, but not Sy:
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= Timing@{HL[R; »~B,~dS; = Ry 2]}
oufesl= {0.796875, {True}}
S is convolution inverse of id
Timing [HL[# = E;,,(1,[0, 0, 1]] & /@
{(dA1,1,2~By~dS;) ~By p,~dmy 5,1, (dA1,;,,~By~dSy) // dmy 5,,}]
{4.703125, {True, True}}
S is a (co)-algebra anti-morphism

Timing[HL /@ Expand /@
{dm; 5,3 ~B;~dS; = (dS; dSy) ~By 5 ~dmy, 1,1, dS;~By~dAy,;,5 =dA;,5 1 ~By »~ (dS; dSy) }]

{22.718750, {True, True}}

Quasi-triangular axiom 1:

Timing@HL[R; »~B;~dA;_,1 3 = (R4 R3,2) ~Bz g4~dmy 4,5]
{0.375000, True}

Quasi-triangular axiom 2:

Timing@HL[
((dA; 51,2 R3,4) ~B1,2,3,4~ (dmy 3,3 dmy 4,2)) = ((dA1,2,1 R3,4) ~By,2,3,4~ (dmz 1,1 dmy 2,5)) ]
(2.359375, True}

The Drinfel'd element inverse property, (U4 Uz)~ B 2~dmq 2,4 =E[O, O, 1]:

Timing@

HL[((R1,2~B1"'dsl~Bl,2~dm2,1—>i) (Rl,z"'BZ"'dsz"BZ"dSZ"Bl,Z"dmZ,l—»j)) ~Bj, y~dm; j,55 =
E(-¢ [0, 0, 1]]

{2.453125, True}

The ribbon element v satisfies v2 = S(u) u. The spinner C=uv™". It is convenient to compute
z = S(u) u~" which is something easy. Taking the square root of z and multiplying it with S(u) yields

the ribbon element v.

Timing@Block[{$k = 1},
(((Rl,z"Bl"dsl“‘Bl,Z"dI“Z,l-»i) ~B; ~dS;) (Rl,z"'BZ"‘dSZ’“BZ"’dSZ"‘Bl,2"'dm2,1->j)) ~
B, 3 ~dm; 5.5

{8.062500, E(y,(1,[0, 0, B?"Bi"+ (2ha; RI"Bi"+2hb; A" BI") e +0[e]?]}

Turaev moves are checked here.

T-4:

Timing@Block[{$k = 1},
HL /@ {(C1 C2 R34 Cs Cg) ~By,3~dmy 3,1 ~By s~dmy 5,1 ~By 4 ~dmp 4,2 ~Bp g~dmz 6,2 = Ry,2} |

{3.796875, {True}}

T-5, T-6
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Inf63]:= Timing@Block[{Sk =1},
HL /@ {(Ci Cs) ~Bi,y~dm; 5.5 = E(yu(s3 [0, 0, 11, (CiCy) ~Bs 5~dmy, 5. = EqyLy [0, 0, 1],
(Ei Ej) ~B;j y~dm; j,; = (((R1,2"Bl"dsl"Bl,Z"d-‘nz,l-»i) ~B; ~dS;)
(R1,2”Bz”dsz“‘Bz"dsz”Bl,z“‘dmz,l»j)) ”‘Bi,j”dmi,jﬂi}]

outes= {16.296875, {True, True, True}}

Reidemeister 2 or T-3:
Timing [HL[# = E(;,(1,2,[0, 0, 1]] & /@

{(R1,2R3,a) ~B1,2,3,4~ (dmy, 3,1 dmp 452) , (Re,2 R3,a) ~B1,2,3,4~ (dmy, 3,1 dmp 452) }]

{2.500000, {True, True}}

Timing[HL[ﬂ: = E(y,(1,23[0, 0, 1]] &/@ { ( ( (ﬁl,Z RR3,4)) ~Bjy,2,3,4~ ((ddmy 3,; ddm; 4,5) )) ’
((RR1,2 RR3,4) ~STBy,2,3,4~ (ddmy, 3,1 ddm214_,2))}]

{2.718750, {True, True}}

Cyclic Reidemeister 2 or T-2:

Timing@HL[ (R1,4 Rs,2 E:«1) ~Bp,g~dmy 4,2 ~By,3~dmy, 3,1 ~By s~dmy 5,1 = Cp By, [0, 0, 1] ]

{7.765625, True}

Reidemeister 3 or T-1:

Timing@HL[ ((Ry,2 Rg,3Rs5,6) ~By,4~dmy 4,3 ~By 5~dmy 5,5~B3 ¢~dm3 6,3 ) =
((R1,6 R2,3R4,5) ~By g~dmy 4,1 ~By 5~dmy 5,,~B3 g~dmz ¢,3) ]

{5.343750, True}

Timing@HL[ ( (RR;,» RRy, 3 RR5 ) ~STB; 4 ~ddm; 4,3 ~STB; 5~ddmy 5,5, ~STB3 g~ddm; g,3) =
((RRy,g RRy 3 RRy,5) ~STB; 4 ~ddm; 4,3 ~STB; 5~ddm;, 5,5 ~STB;3 g~ddms ¢,3) ]
{1.656250, True}

Relations between the four kinks or T-7

4= Timing [HL /@ {Kink; = (Rs,1 C2) ~By,2~dmy 2,1 ~By, 3~dmy 3.,
Kink; = (Rs,1 C2) ~By,2~dmy 2,1 ~By,3~dmy 3,5, (Kink; Kink;)~B; j~dm; j,; =
Eg,qy [0, 0, 1], (Kink; Kink;) ~Bj 5~dms i, = Eqy,uy[0, 0, 11}]

oufe4= {9.187500, {True, True, True, True}}

The Trefoil

Timing@Block[{sk =1}, ZZ = RR; s RRg , RR3 7 CcC, KKinkg KKinkg KKink;j;
Do[2Z = (2Z /. {€ » 0}) ~By,;~(ddmy ,; /. {€ »0}), {r, 2, 10}];
{Simplify /e (22 /. {€ » 0})}]

s2 T2

{1.250000, {E;Hm{o, 0, ) ]}}

(1—S+52) (1—T+T2) (1-sT+s%72

Timing@Block[{$k = 1},
2Z = (RRy,s RRg, 2 RR3,7 CC4 KKinkg KKinkg KKink;) ;
Do[Print["Doing ", r]; ZZ = (2ZZ2) ~By, o~ (ddmy .,;), {r, 2, 10}];
{Simplifyezz}]
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A.1. Mathematica

{28.890625,

g2 2

{Emm[o, 0, (28717 (s-28%+387-28"+ T
(1-s+8?) (1-T+T?) (1-5T+8%T1?)

25T+8%T+28°T-58'T+68°T-2T2+5T?-5°T?-435*T72+538°T2-1138°T%+

373 +28T3-82 T3 +48° T +68'T2-5°T3+7s8°mP+108" TP-2T4-557T¢-

45T +65 T -248 Tt +108 T4 -128°T 115" T -63°T*+65 T+

582 T°-83T°+108T°+128°T°-8°T°+108" T°+13s8 T -1182T6+733 10~

128*T6-9°76-165°T¢+118"T¢-2035%T6+10s8T"-118*T'+108°T" +

118°T77-148"T7+1538° 7" -65*T8+133°7%-205°T8+1557 T8 -83% T8+

(1-5+57) (l—T+T2)2 (-2+45+38T+28°T*+8°T? (34T) -8°T% (3+7) -
SPT(1+3T) +8°T (-1+7%)) a1+ (1-5+8%)° (1-T+T°) (-2+T+3ST-
S(1+38) T°+8 (-1+8%) T?+8% (3+8) T"-8> (3+8) T°+28*T°) by +

2%y XXq +2 8% % XX; -5 T %y XXy -2 ST xy XXq —38%Tx XXq -2 8% T %y XXq -

5 8% T xy XX; + 9T? %y XXq + 58 T? xq XXq + 9 82 T? x4 XXq + 9 8% T? x4 XX4 +

58% T? x; XXy + 9 8% T? xy XXy -7 T x; XX; - 12 S T° xy XXy — 12 S% T° x4 XX -

14 8% T %y XXy =12 8% T2 xq XX; - 12 8° T% % XX, -7 8% T° xy XX; + 4 T xq XX; +

10 S TH x; XX, + 18 82 T# x; XXy + 14 S T# x; XX, + 14 8* T* x; XX, + 18 8° T# x; XX; +

1088 T4 x; XXq +4 8" T4 %y XX =7 S T° %y XXq - 12 8% T %1 XX; - 12 8% T° x; XX, -

14 8* T° x; XX, - 12 8° T° x1 XX; - 12 S° T° x; XX, -7 87 T° x; XXy + 9 82 T® x; XX +

598° TOx; XXy +9 8% TO xq XX; +9 8% TO % XX; +58° T0 % XXq + 987 TO x; XX; -

583 T %y XXy -2 8% 77 xq XX; =38 T x; XXy -2 8% T7 xy XXy =587 T7 xy XX, +

2S4T8X1XX1+2S7TBx1XX1+2y1Y1—5Sy1Y1+9SZy1Y1—7S3y1Y1+

48"y Y1 -28S Ty, ¥1+58° Ty, Y1 -128> Ty, ¥7+108 Ty, Y1 -78 Ty, ¥y -

3ST?y; Y- +98°T?y; ¥, -12S° T2y, Y, +188* T? vy, ¥, 128> T y; Y +

98 T2y Y1 +2 Ty Y1 -2S T3y, Y, +98° T3y Y3 -14S° T2y, Yy +

148 Ty, Y1 -128° Ty, Y1 +58° T2y, Y1 -58 Ty, Y1 =58 T4y ¥y +

582 Ty Y1 -128° Ty Y1 +14 8 Ty Y1 - 14 8° Ty Y, + 988 T yy vy -

28 Ty Y, +28 Ty ¥+ 982 Ty ¥, 1287 TP vy Y, #1884 T2 vy Yy —

128° Ty, Y1 +98° Ty, Y1 =38 Ty, ¥ -783T8 vy Y1 +108* TC vy Y4 -

128° 0y, Y, +58° 10y, v, -28" T0 vy, ¥y +48* T vy Yy -78° Ty, ¥y +

98°T v, Y, =587 Ty, Y, +28° T/ vy, Yy -2 XX, Yy 29 +7 SXX Yy 2 -

98?2 XX, Y, 2, +7 S KX, Y12, -28XX; Y12, -5STXKX; Y, 21 -58* TXX, Y, 21 +

12ST? XX, Y. 2, -98° T2 XXy ¥y 2, +21 S T2 XXy Yy 2z, - 9 8% T? XX, Y 2, +

128° T? XX Y, 2, -2 T° XX, Y, 2, -5 ST XX, Yy 2, - 98° TP XX, Y, 29 —

78 T XX, Yy 2, -7 8 TP%XX, ¥, 2, -98° T? XXy Yy 2z, -5 S TP XX, Yy 24 -

28T T2XXy Yy 21 +7 ST XXy Yq 29 +21 8% T4 XXy Yy 27 -7 S* T XXq Yq 24 +

21 8° T XXy Yy 27 +7 87 TP XXy Yy 27 -9 8% T° XXy Yy 2z, - 9 8% TP XXy Yy 2z -

98° T XX, ¥y 27 -987 T° XX, Yy 2, +7 8> T XX, Y; 27 -5 84 TO XX, Yy 21 +

12 8% TO XXy Yy 21 -5 S0 TO XXy Yy 2, +7 87 T XXy Yy 21 -2 8% TV XXy Yy 2z -

28" T/ XXy Y1 29 +4 2121 -7S21 21 +98% 2725872727 +28% 27 2, =TT zq % +

10STz,2,-128°T2,2,+58°T2,2,-28"T2,2,+9T%2,2,-12ST? 2, %, +

1852 T%2,2,-128°T?2,2,+958*T% 2,2, -38°T% 2,2, -5T> 2, 21 +

58T32,2,-128°T2,2,+145°T° 2,2, -148*T°2,2,+98°T° 2, 2; -

2873 2,2,+28" 72,2, +2T%2,2,-28T“2,2,+98°T2,2,-148°T% 2, 2, +

148*T%2,2,-128°T* 2,2, +58°T* 2,2, -58" T2, 2, -38°T° 2,2, +

98°T%2,2,-128*T7°2,2,+188°T°2,2,-128°T°2,2,+987 T° 2, 2y -

28°T92,2,+58T%2,2,-128°T%2,2,+108°T% 2,2, -787 T2, 2, +

28377 2,2, -58° T 2,2,+98°T 2,2, 7577 2,2, +48" 17 2, zl) e //
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((1—s+sz)3 (1-17+1%)° (1-sT+8%12)°

coter]})

The Figure Eight knot

Timing@Block[{$k = 1},
zZ = (RRg,1 RR;,6 RRs,9 RRyg,3 CC7 CCy) ;
Do[Print["Doing ", r];
2Z = (22 /. {€ > 0}) ~STB; .~ (ddm; ,,; /. {€ > 0}), {r, 2, 10}];
{Simplify@zz}]

52 T?
{2.125000, {]E{H{l)[o, 0, - H}
(1-3s5+8?) (1-3T+T?) (1-38T+5%1?)

Timing@Block[{Sk =1},
ZZ = (ﬁa,l RR; s RRs, g RR;g,3 CCy CC4) i
Do[Print["Doing ", r]; 22 = (22) ~STBy,, ~ (ddmy .,;), {r, 2, 10}];
{Simplifye@zz}]
{532.593750,
s? 12

E;,,]0, 0, - - (2 (s*T? (4-98+28°-9T
{” m[ (1-38+8?) (1-3T+T?) (1-38T+8%T1%) 2 | . '

12ST+6S°T+2T?+6ST°-658°T°-28T°-65°T°-1238°T3+98% T’ -
287 T +987 T -4 Th 4 (1-3T+T?) (-2+28 T?+38 (1+T)-38 T (1+7T))
ap+ (1-38+8%) (-2+3(1+8) T-38 (1+8) T°+28°T%) by +

2% XX, +2 8% XX -9 Tx; XX -3STx XXq -98°Tx, XX, +4 T? x; XX +

16 S T? % XXq + 16 S? T? x; XX, + 4 S T? x; XX, - 9 S T° x; XX; - 3 8% T3 x; XX; -
98 T  x XX +2 82 T4 % XX, +28° T4 % XX +2y1 Y1 -9Sy, Y1 +4 8%y, Yp +
2Ty Y1 -3STy, Y1 +168°Ty; ¥, -9S°Ty, Y1 -9ST?y; Y, +16S>T?y; Yy -
383 T2y Y1 +28 T2y Y1 +48° T3y, ¥, -98° T2y, Y, +28 T3y, vy -

2XX1 Y, 2, +11SXX, Y2, -29% XX, Y12, -2TXX; Y, 21 -8STXXy Yq 2 -

8 S TXX; Y12, -2S8 TXXy Yy 2, +11ST? XXy Y, 27 -88? T2 XXy Yy 2, +11 87 T?
XXy Y, 2, -28° TPXXy Y, 2, -28° T3 XX, Yy 2, +42, 2, -982, 2, +28% 2, 2 -
9Tz, 2,+16ST2,2,-3S°T2,2,+28 Tz, 2,+2T? 2,2, -3ST? 2,2+

16SZT221Z1—9S3T2zlZ1+2ST321Z1—9SZT32121+4S3T3zlzl))e)/

((1—3S+SZ>2 (1-3T+1%)° <1—BST+SZT2)2)+O[€]2H}

The 6-3 knot

Timing@Block[{Sk =1},
Zz = (ﬁs,lz RR; 0,14 RR13,7 RRy,5 RRg, 2 RR3, 5 CCy cc11) ;
Do[Print["Doing ", r]; ZZ = (ZZ) ~STB; .~ (ddmy .,;), {xr, 2, 14}];
{Simplifye@zz}]

{337.828125, {Ewm[o, 0, (s*T4) /((1-35+58°-35%+s)
(1-3T+5T?-3T°+T%) (1-38T+58°T?-38°T°+5*T")) +
(287 (8-218+3087-1587+48*-21T+36ST-308T-245"T+188*T-
6S°T+30T?°-30ST?+1238°T?2+455°T2+65'T2-65°T2-15T7°-245T%+
458° T2 -488°T°-2438T3+63°T°+68" T°+4T'+185 T +65°T! -
248374 +243° T -635°T4-1887 T4 -43° T* - 6ST°-632T°+248°T°+
48 3°T°-458°T°+24387 T°+155°T°+635° T0 - 659 70 -455°T%-123°T° +
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3087 76-308%T0+65°T'-188°T"+2438°T7+308°T'-368"T"+218°%T7-
48T 4+158°T°-308° T 4+218" 1°-88" 10+ (1-3T+572-317+71%)
(444818498 (1+7)-98"T° (1+T)-28% (5+9T+57%) +
28°T7 (549T+5T?) +38% (1+5T+5T7+T%) -38°T (L+5T+5T*+T%)) a;+
(1-38+587-38%+8") (-4+9(1+8)T-2(5+98+58%) 77+
3(1+55+55°+8%) T7-35 (1+55+55°+87) T°+25° (5+95+58%) T°-
987 (1+8) T/ +4 8 T%) by + 4 % XXy -2 S x; XXy - 2 87 x3 XXy + 4 8% x; XXy -
15T xy XX, +3STx; XXy —38°Txy XXy +38°Txy XXy -158% T x; XXy +
30 T? x; XXq + 6 S T? %7 XXy + 12 87 T? x; XX; + 12 S T? x; XXy + 6 8% T? x; XX +
30 8% T? x; XX; =21 T2 %y X¥X; - 51 S T° %y XX; - 6 8% T7 % XX; - 30 8° T? x; XX, -
6 5% T3 x; XXy =51 8° T% x XX, - 21 S° T3 x; XXy + 8 T* x; XX; +44 S T* x; XX, +
56 8% T x; XX; +8 8% T% %y XX, + 8 8* T% x; XX, + 56 S° T* x; XX, + 44 S° T* x; XXy +
887 T4 x; XX; =21 ST® x; XX; - 51 S% T% x; XX, - 6 S° T° x; XX; - 30 8% T° x; XX, -
6 8% T° x; XXy — 51 8° T° x; XX, - 21 87 T° x; XXy + 30 8% T® x; XX; + 6 S° T® x; XX, +
12 8% T x; XXq +12 S° TO %y XX; + 6 S° T® x; XX, + 30 S7 T® x; XX; - 15 8% T7 x; XX +
384T x; XXy -38° T/ x; XX, +38°T7 %y XX, -1587 T7 x; XXy + 4 8% T% x; XX, -
28 T8 x; XX -2 8°T0 x; XX +4 S T8 %, XXy +4 vy, Y1 -15Sy; ¥, +308% vy Yy -
2183y, Y1 +88  y1 Y1 -2 Ty Y1 +3STy; Y1 +68° Ty, Y1 -518° Ty, Yy +
448 Ty, Y- =218 Ty, Y1 -2T?y; Y1 -3ST?y; Y, +12 8% T% yq Yq -
6S°T?y; Y1 +568 T2y Y1 -51S° T2y Y1 +30S° T2 yy Yy +4 T3 yq Yy +
38Ty Y1 +128° T2y Y1 -30S Ty, Y1 +8S8 TPy ¥, -6S° T2y, Yy +
65°T3y, ¥ -158" T2y, Y1 -15S Ty, Y1 +6S° T4y, Y1 -6S° Ty, Yy +
88 T4y, Y -308° T4y, ¥, +128° T4y, ¥, +38 T4y, Y, +48° T4y, ¥y +
308° Ty, Y1 =518 T2y, Y1 +56S8* Ty, Y, -6S° T  y; Y, +128°T° v, ¥y —
38" Ty, Y, -28° T2y, Y, -218° Ty, Yy +448* Ty, ¥, -518° Ty, ¥, +
65°TCy Y +387 TCy, Y -28% T8y, ¥y +884 Ty, Y1 -218°T vy, ¥y +
308°T v, ¥, -1587 Ty, Y1 +4 8% T vy Yy -4 XX, Yy 27 +19S XX, Yy 21 —
3282 XX, Yy 27 +1983 XX, ¥y 27 -4 S XXy Yy 21 +2 TXXq Yy 21 —22 ST XX Yy 29 +
16S° TXX; Y. 2, +16S° TXX, Y12, -228 TXX, Yy 2, +2S° TXXy Yy 21 +
2 T? XX, Yy 27 + 35 S T? XX; Y; 21 - 28 S% T? XX; Y; z1 + 34 8% T? XX Yy zq -
28 S* T? XX, Y1 21 + 35 S° T2 XX; ¥y 27 +2 SO T? XX, Yy 27 - 4 T3 XX Yy 27 -
22 S T3 XXy Y1 27 -28 8% T2 XXy Yy 27 -4 SP TP XXy Yy 21 -4 8 T2 XXy Y; 21 -
28 S° TP XX, Yy 2; -22 S8 TP XX, ¥y 27 -4 87 TP XX, Yy z; +19 S T! XX, Yq 21 +
16 S22 T4 XXy Yq 21 +34 S T4 XXy Yq 21 -4 S* T4 XXy Yq 21 + 34 S° T4 XXy Yy 2z +
16 S° T4 XXy Yy 27 +1987 T4 XXy ¥y 2, -32S° T° XXy Yy 2z, +16 S° T° XXy Yy 2, -
28 S* T® XX, Yy 27 - 28 S° T2 XX, Yy 21 + 16 S T2 XX, Yy 27 - 32 87 T° XXy Yy 29 +
198° TOXXy Yy 27 -22S* TOXX, ¥y 2, +35S8° TO XXy Yy 2, -22 S® TO XXy Yy zq +
1987 TOXX, Y, 2 -4 8 T/ XX; Yy 21 +28° T/ XX, Yy 21 +2 S8 T XX, Y, 21 -
487 T XX Yy 21 +821 21 -21S21 27 +305% 2,27 -158%2; 2, +48%2; 2, -
21Tz, 2,+448T 2,2, -518°T2,2,+68 Tz, 2, +38°Tz,2,-28"Tz; 7, +
30T? 2,2, -518T%2,2,+568°T? 2,2, -6S5>T? 2,2, +128°T? 2, 2, -
38°T?2,2,-28°T%2,2,-15T° 2,2, +6ST°2,2,-68°T>2,2,+88° T2, 7, -
3084T° 212, +128° T2 2,2, +38°T32,2,+48 T2, 2,+4T" 2,2+
35T 2, 2-+128°T%2,2,-308>T" 2,2, +88* T2, 2, -68°T" 2, 2, +
65°T%2,2,-158"T%2,2,-25T%2,2,-3S°T°2;2,+128>T%2; 2, -
65" T° 2,2, +568°T% 2, %, -515°T%2,2,+308 " T°2,2,-28>T%2, 2, +
38°T% 2,2, +68°T% 2,2, -518°T%2,2,+448°T%2,2,-2187T%2, 2, +

4SST721Z1—15S4T721Z1+3OS5T721Z1—2156T721Z1+857T72121)E)/
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((1-3S+552-3s3+s4)2 (1-37+512-31%+14)°

coter”] )

(1-38T+58272-3837°+5'1¢)°

Mirror Trefoil

Timing@Block[{$k = 1},
22 = (RRy,s RRg,2 RR3,7 CC4 KKinkg KKinkg KKinkyo) ;
Do[Print["Doing ", r];
2% = (2Z /. {€ » 0}) ~STB,; .~ (ddm; .,; /. {€ » 0}), {r, 2, 10}];
{Simplifyezz}]
s? T

(1-5+8%) (1-T+T12) (1—ST+82T2)H}

{3.562500, {E(1L 5[0, 0,

Timing@Block[{$k = 1},
2Z = (RRy,s RRe,» RR3,7 CC4 KKinkg KKinkg KKinkyo) ;
Do[Print["Doing ", r]; 22 = (22) ~STB; .~ (ddm, .,;), {r, 2, 10}];
{Simplifyezz}]

{49.390625,

s? 12
[Egam o o, "

28212 (8—155+2082—1BS3+

(1-s+8?) (1-T+T?) (1-5T+5%T1?)

65 -15T+14ST-118°T-108>T+118*T-10S°T+20T?-11ST?+16S%T?+

S3T2 4128 T?-78°T2+118°T?-13T°-10ST°+s?T°-128°T°-108* 7%+

ST TP 58T 68 TP +6T +115T +128%T4-108°T*+2438* 7' -63°T%+

48T 4+58' T +288 T4 -10ST°-782T°+5°T°-65*T°-458°T°+3°T°-

287 T5-338%T°+118°T°-533T0+435%T04+38°T0-5"T¢+235% 7063317+

54T 28T -sf 1" +28" 77 -8 1" +25' TP -38° T8+ 258 B ST T8,

(1-5+¢7) (1—T+T2)2 (-2+8+38T+28°T"+8°T% (3+7T) -8°T° (3+7T) -
SPT(1+43T) +8°T (-1+7%)) ar+ (1-5+82)° (1-T+T?) (-2+T+3ST-
S(1+38)T°+8 (-1+8%) T7+8% (3+8) T'-8% (3+8) T°+28"T1°) by +

2% XX, +2 87 %, XX -5 T xy XX -2 ST xy XXy -38% Txy XXy -2 87T x; XXq -

58% T xy XX +9T? x; XX+ 58 T? %y XXq + 987 T? x; XXq + 987 T? x; XX; +

554 T2 % XXq + 9 8% T? xq XX; = 7 T2 %1 XX; - 12 S T2 xq XX; - 12 8% T2 x; X¥; -

14 8% TP %y XX, - 12 8% T %1 XX - 12 8° T% xy XX, - 7 S° T° x; XXq + 4 T x; XX; +

10 S T? x; XX, + 18 87 T% xy XXy + 14 S T4 x; XX, + 14 8% T% %y XXy + 18 8% T* x; XX, +

10 8% T% %y XXy +4 8 T¥ %y XX, -7 S T° %y XXy - 12 82 T° x; XX, - 12 87 T° x; XX, -

14 8% 7% %y XX; - 12 8% T% %9 XXq - 12 8% 1% %y XX; -7 87 T° x; XXq + 9 87 T® x; X¥4 +

587 T8 x; XXy + 9 8% T8 %y XXy +98° T8 x; XXy +58° T8 xy XXy + 987 TO xy XX, -

583T %, XXy -2 8 T/ x; XX -3 8° T %y XX; -2 8°T7 %y XX; -587 T/ %y XX +

28 T % XX +2 S  T¥ % XXq +2y1 Y1 =58y, Y1 +98%y, Y1 =783y, Yy +

48"y, Y1 -28S Ty, ¥1+58° Ty, Y1 -128 Ty, ¥, +108 Ty, Y1 -78 Ty, Yy -

3ST?y; Y1 +98% T2y, ¥ -128° T2y, Y, +18S T2 yq Y3 -12S° T2y, Yy +

9S85 T2y Y1 +2 T y1 Y1 -2S TPy Y1 +98% T2y, v, —14 8 T3 yy vy +

148 Ty, Y, -128° Ty, ¥, +58° Ty, ¥, -58" T2y, Y, -5S Ty, Yy +

587 Ty, Y, -128° T4y, Y1 +148* T4y, ¥, -145° Ty, Y, +9S° T4y, ¥, -

28 T4y Y 4288 Ty Y1+ 982 T2y ¥ -128° T vy Y, + 1884 T yq Yq -

128° Ty, Y1 +98° Ty, ¥, -38" Ty, ¥, -78 T8y, ¥, +108* TC vy ¥, -

128°T0y, Y1 +58° Ty, v, =28  T0 vy, Yy +484 T vy Yy =78° Ty, Yy +
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98°T v, Y, -58" Ty, ¥, +28° T/ yy Yy -2 XXy ¥y 27 +7 SXXq Yy 27 —
987 XX, Y, 2, +7 S XX, Y12, -28%XX; Y120 -58STXX; Y, 21 -58* TXX, Y, 27 +
12 S T? XXy Y; 27 - 9 S T2 XX1 Y; 27 +21 S3 T? XXy Yy 27 - 98 T? XX; Yq 21 +
12 S° T? XXy Yy 21 -2 T2 XXy Yq 2 -5 S T? XX; Y; 27 - 9 8% T° XX; Yq 2 —
783 T3 XXy Yy 23 -7 8* TP XXy Yy 27 -98% T2 XXy Yy 2z, -5 8° T2 XX, Yy 24 -
28T TIXXy Yy 29 +7 ST XXy Yy 21 +21 S¥ T4 XXy Yq 29 -7 S* T4 XXy Yy 21 +
21 8% T XXy Y1 21+ 787 T4 XXq Y1 27 - 9S82 T° XXy Yq 21 - 984 T2 XXq Yy 2 -
9S85 T XXy Yy 21 - 987 T° XXy Yq 2, +7 S T8 XXy Y; 21 -5 8% TO XXy Yy 21 +
12 8% TO XXy Yq 29 -5 S8 TOXXy Yy 29 +7 87 TO XXy Yq 27 -2 S T/ XX Y 24 -
28" T' XX Y, 27 +42,2,-7S2,2,+98°2,2,-58"2,2,+28%2,2,-7Tz, 21+
10STz12,-128°T212,+58°T2,2,-28"T2z12,+9T%2, 2%, -12ST? 2z, 21 +
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The double multiplication tensor

For the sake of completeness, we give the explicit formula for tdmfj. We denote

by a = exp[—a*|, and similarly for b. As we did before, A = exp[—A], and the
same convention holds for B.
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A.2. Poisson-Lie groups

In this section we will describe the connection between Poisson-Lie groups and
Lie-bi algebras. A large part of this appendix is taken from the masterthesis “The
two dimensional Ising Model” by the author. In this appendix we will introduce
the notion of a Lie group, followed by the definition of a Poisson Lie group. We
follow the construction of Lee [22] and [6]. A general knowledge about smooth
manifolds is required.

Definition A.2.1. A Lie group is a smooth manifold G without boundary that is a group
with a smooth multiplication map m : G X G — G and a smooth inversion map i : G —
G. Let g,h € G, theni(g) = g~ is called the inverse of g and m(g,h)=gh. Denote with
Lg(h) = gh left translation and with R¢(h) = hg right translation.

Definition A.2.2. Let G and H be Lie groups, then a Lie group homomorphism F from
GtoHisamap F : G — H that is a group homomorphism. It is called a Lie group
isomorphism if it is a diffeomorphism.

Definition A.2.3. Let M be a smooth manifold, and let TM be the tangent bundle of
M. A vectorfield X on M is a section of the map 7w : TM — M. THat is, X is a map
X: M — TM, such that wo X = Id,.

One can add vector fields pointwise. If (U, x') is a chart of M, and p € M, then
p— % | p is a vector field on U, which we will call the i-th codrdinate vector field,
and it will be denoted by 9/9x'. A vector field X can be written out on chart as
a linear combination of coordinate vector fields, and this will be denoted with

X = Xi%, where the summation symbol over i is omitted.
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Definition A.2.4. Let X and Y be smooth vector fields on a smooth manifold M. Let
f : M — R be a smooth function. Then the Lie bracket of X and Y is given by [Y, X|f =
XYf—-YXf.

Given a smooth function f : M — R, it is possible to apply X and Y to f to
obtain new smooth vector fields fX and fY respectively. On the other hand, by
differentiation, a vector field can act on a function. To show that the Lie bracket is
well defined, one has to show that [X, Y] is again a vectorfield. This is equivalent
to showing that it obeys the product rule, which will be omitted here.

From now on we will mean with M a smooth manifold with Lie bracket [-, -],
and with X, Y, Z smooth vectorfields on M. The space of smooth vector fields
on M is denoted by X' (M) and the space of smooth functions on M is denoted
by C®(M).

Proposition A.2.1. The Lie bracket satisfies the following identities:
(a) (linearity) Let a,b € R. Then

[aX +bY, Z] = a[X, Z] + b[Y, Z]. (A1)

(b) (anti-symmetry)
[X,Y] = —[Y, X] (A2)

(c) (Jacobi identity)
(X, [Y, Z]] + [Y,[Z, X]] + [Z,[X,Y]] = 0 (A.3)

(d) Let f,g € C*(M), then
[fX,8Y] = felX, Y] + (fXg)Y — (&Y f)X. (A4)

Definition A.2.5. Let V be a finite dimensional vector space, and denote with GL(V)
the group of invertible linear transformations on V, which is isomorphic to a Lie Group
GL,, for some n. If G is a Lie group, then a finite dimensional representation of G is a Lie
group homomorphism from G to GL(V) seen as Lie group for some V. if a representation
p : G — GL(V) is injective, then the representation is said to be faithful.

Definition A.2.6. Let G be a Lie group. The Lie algebra of G is the set of all smooth
left-invariant vector fields, and it is denoted by Lie(G).

The Lie algebra of G is well defined because the Lie bracket of two left invariant
vector fields (invariant under L, for all g) is again left invariant. It turns out that
Lie(G) is finite dimensional and that the dimension of Lie(G) is equal to dim(G).
[22] The representation of a Lie group yields a representation of the correspond-
ing Lie algebra by taking the tangent map. We proceed with the definition of a
Poisson manifold.
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Definition A.2.7. (Poisson Structure) Let M be a smooth manifold of finite dimension
m, and denote with C(M) the algebra of smooth real valued functions on M. A Poisson
structure on M is an R bilinear map {,} : C(M) x C(M) — C(M) (the Poisson
bracket) satisfying for all f1, f>, f3 € C(M):

1. {fi, o} = —{fo fi}
2. {A AL st t{fs{f 23} +{fo {f5 i}} =0
3. {fife. f3} = {fi, fs} fo + il f2, f5}

One needs to consider maps between Poisson structures as well.

Definition A.2.8. (Poisson Maps) A smooth map F : M — N between Poisson mani-
folds is a Poisson map if it preserves the Poisson brackets of M and N: {f1, f2}mo F =
{fioF, faoF}n.

(Product Poisson structure) The Product Poisson structure is given by

Ur(y), faimsn(xy) = LA y), 200 1) m(x) + {filx), fa(x, ) in(y),
where f1, f» € C(M x N).
Finally we are able to define Poisson-Lie groups.

Definition A.2.9. A Poisson-Lie group G is a Lie group which also has a Poisson struc-
ture that is compatible with the Lie structure, i.e. the multiplicationmapy : G x G — G
is a Poisson map. A homomorphism of Poisson Lie groups is a homomorphism of Lie
groups that is also a Poisson map.

Now let us go into the relation between Poisson-Lie groups and Lie bialgebras.

Theorem A.2.1. Define on a Poisson-Lie group G Ad(x)(y) = xyx~! forall x,y € G.
Then the tangent space at the unit element e of G is a Liealgebra g with Lie bracket
[X,Y] = T.Ad(X)(Y). Define the cobracket & by the relation

(X, d{f1, f2}e) = (6(X), (df1)1 ® (df2)e)-
Then (T,G, |[,],0) is a Lie bialgebra.

The proof consists of checking the definitions. (See [6], page 25.) Note that if a
Lie algebra corresponding to a Lie group G (not necessarily a Poisson-Lie group)
is quasitriangular, i.e. if § is a coboundary, then one can use the classical r-matrix
to define the Poisson bracket on G. See proposition 2.2.2 on page 61 of [6]. On
the other hand one can define from a classical r-matrix r € g X g a corresponding
R-matrix R : G x G — G x G which is a solution of the quantum Yang Baxter
equation: R12R13R23 = R23R13R12. See page 67 of [6] for more details. Confus-
ingly, R is called a classical R-matrix in [6].

The dual of the universal enveloping algebra of a semisimple Lie algebra cor-
responds to the function algebra on its corresponding Poisson-Lie group. See
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chapter 7 of [6]. This is not the case for U, (sIf), since this algebra is not semisim-
ple. Suppose this were the case, then the space of functions on the quantum
group U, (sl§) would be spanned by the representation-matrices of finite dimen-
sional representations, and each function would be fully determined by its action
on finite dimensional representations. We know that this is not the case by look-
ing at central elements in U, (sl5), so the dual of U, (sl§) cannot correspond to the
function algebra of a Poisson-Lie group.

It would be interesting to consider the corresponding construction of F(G) with
a non-invertible term epsilon, and quantize it. This might give insight in U, (sl§).
When we consider € in the ring R[[¢]] it turns out to be equivalent to the quan-
tization of a quotient of an affine Lie algebra where the central extension is quo-
tiented out, see [37] and [5]. This suggests that a geometric interpretation of the
dual of U,(sl§) over the ring R[[¢]] is possible.

A.3. Lie algebras and root systems

In this section we will give the definitions of a root system corresponding to a
Lie algebra. This appendix is taken from the master thesis “The two dimensional
Ising Model” by the author. It is not our aim to introduce the reader to Lie theory,
so we will only state a few definitions and results. For a good introduction in Lie
algebras and finite dimensional representation of Lie algebras, see for example
[14].

Definition A.3.1. (Lie algebra) Let L be a vector space over a commutative ring R, with
a bracket operation [-,-] : L x L — L with the following properties:

(L1) The bracket operation is bilinear.

(L2) [xx]=0forall x € L.

(L3) The Jacobi identity is satisfied: [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0.
Then L is called a Lie algebra.

From now on, when we write L, we will always mean a Lie algebra L.

Definition A.3.2. A derivation of L is a linear map 6 : L — L satisfying the product
rule: 6(ab) = ad(b) + (a)b, for all a,b € L. The collection of all derivation on L is
denoted by Der(L).

Since Der(L) C End(L), we can define a representation on L by sending an ele-
ment x € L to its derivation ad(x) = [x,-]. This representation (a representation
of a Lie algebra L is a linear map tp gl(L) respecting the bracket operation) is
called the adjoint representation, and plays an important role. Using this repre-
sentation, we can define a symmetric, bilinear form on L.

Definition A.3.3. (Killing Form) For x,y € L, define the Killing form x(x,y) =
Tr(ad(x)ad(y)), where Tr denotes the trace.
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A special class of Lie algebras are the so called semisimple Lie algebras. This
class has certain nice properties, which we will need.

Definition A.3.4. Let L") be the sequence obtained by L(*) = Land LU+1) = [L(), L()],
We call L sovable if L") = 0 for some n.

The unique maximal solvable ideal of L is called the radical of L and is denoted
by Rad(L). Its existence follows from the property that if I and | are solvable
ideals, then sois I + .

Definition A.3.5. (semisimple Lie algebra) Let L be a Lie algebra such that rad(L)=0.
Then L is called semisimple.

For semisimple Lie algebras, the Killing form is nondegenerate (i.e. the adjoint
representation is faithful, i.e. 1 to 1). This is also true for a general faithful rep-
resentation ¢ of L. Define a symmetric, bilinear form B(x,y) = Tr(¢(x)¢p(y)). If
¢ is faithful and L is semisimple, then p is nondegenerate and associative. For a
proof of this, see [14].

It can be checked, by using the Jacobi identity, that the Killing form is invariant
under the adjoint action of L on itself, defined by ad : L x L — L : (x,y) — [x,y].
So the Killing form satisfies: «(ady(y),ad.(z)) = x(y,z), for all x,y,z in L. Itis
interesting to look at a general adjoint action invariant, bilinear form . One can
define the Casimir element associated to this form the following way.

Definition A.3.6. (Casimir element) Let L be semisimple, with basis (x1,X2, - , Xy ).
Let B be an adjoint invariant bilinear form on L, and let (y1,-- - ,yn) be the dual basis
with respect to this two form: 6;; = B(x;,y;). Then define the Casimir element associated
with B as follows:

n
cpg =) yi®x; € U(L), (A.5)
i=1

where (L) is the universal enveloping algebra of L.

The construction of the Casimir element can be generalized, at least in theory, for
any semisimple Lie algebra to higher degree Casimir elements. This might be
trivial in some cases, whereas in other cases it might not be.

Definition A.3.7. (generalized Casimir element) Let L be semisimple, and let (Xy,), - -+ , (Xa,)
be bases of L. Define the multilinear form B(x1,- - - ,x,) = Tr(ad(x1) - - - ad(xy)). Then
define the generalized casimir element cg by

xal ® P ® xan
cp= Yy Mo T 0 (A.6)
IB N1,y ﬁ(xal, e ’x“n)

The degrees for which these generalized Casimir elements exist minus one are
called the exponents of the Lie algebra. The next concept we want to define is
the Coxeter number. In order to define this concept, we need to introduce roots
and the Weyl group.
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Definition A.3.8. Let L be semisimple, and let x be the killing form on L. Let H be the
maximal subalgebra of L consisting of elements x for which ad(x) is diagonalizable (such
an element x is called semisimple, and and algebra consisting of such elements is called
Toral). Let o, p € H*, such that Ly = {x € L|[hx] = a(h)x forallh € H} # 0 (such
are called roots, the set of roots is denoted by ®). Denote by P, = {p € H*|(B,a) = 0}
the reflecting hyperplane of w (here (-, -) denotes the Killing form transferred from H to
H*, which we may do since the killing form is nondegenerate on H, see [14]), and define

ou(B) = p— T2,

As it turns out, the set @ of all roots of L obeys the axioms of a root system.

Definition A.3.9. (Root system) A subset ® of an euclidean space E is called a root
system in E if the following axioms are satisfied:

R1 ® is finite, spans E and does not contain 0.
R2 If x € ®, then the only multiples of a contained in ® are +a.

R3 If a € D, then o, leaves P invariant.

R4 Ifa,p € @, then 2B = (4, B) € Z.

()
Here, 0, is defined similarly as the case in which E = H*, since any Euclidian

space is equipped with a nondegenerate, positive definite symmetric, bilinear
form. Let us now define the notion of a coroot a¥ for a root « as follows

v 2«

b4 :W

(A7)

We need the definition of simple roots.

Definition A.3.10. Let A be a subset of a root system @ of a Euclidian space E such
that

B1 Aisabasis of E,

B2 Each root can be written as a linear combination of elements of A, such that the
coefficients are all nonnegative or all nonpositive.

Then A is called a base, and its elements are called simple roots.

Fix a base {ay,-- - ,a,} for the roots of L, and let 6 be the highest root of L, in
the sense that the sum of the coefficients 4;, when 6 is written out as a linear
combination of simple roots is maximized. The coeffients a; are called marks.
The coefficients a, when 6 is decomposed in terms of a are called comarks.

With a base fixed for L, we can define the Cartan matrix as A;j = x(«;, ocV), where

]
i and j run between 1 and r. Now let us define the Weyl group.

Definition A.3.11. (Weyl group) Let ® be a root system, and let VV be the group gen-
erated the reflections oy, for & € ®. We call W the Weyl group of .

163



A.4. Wigner group contraction

From the definition of a root system, it is clear that VWV permutes the roots, and
hence can be seen as a subgroup of the symmetric group on ®. To define the
Coxeter element and the Coxeter number, we need a few more definitions.

Definition A.3.12. (Base) A subset A C ® is called a base if A is a basis of ® and if
each root B can be written as B = Y_ ko with the integral coefficients k, all nonnegative
or nonpositive. The roots in A are called simple roots. The reflections corresponding to
these roots are called simple reflections.

Now we can define the Coxeter element.

Definition A.3.13. (Coxeter element) Let ® be a root system of a semisimple Lie algebra
L with a fixed base A = (a1, - -+ ,&n). Then w = 0y, - - - 0y, is called a Coxeter element
of L. The order of w is called the Coxeter number.

Note that one can define several Coxeter elements in given group, so it is im-
portant to prove that these elements have the same order. This will not be done
here, but the proof that all Coxeter elements are conjugate to each other can for
example be found in for example [14].

A.4. Wigner group contraction

In this appendix we describe the process of Wigner group contraction. In 1953
Wigner et al. came up with this method to transform Lie groups and their corre-
sponding Lie algebras into different Lie groups. This is accomplished by a con-
tinuous transformation with a function t(e) on the generators of which the limit
€ — 0is taken. Wigner proved that this limit exists under certain conditions. We
follow [12]. We will use Wigner group contraction for the construction of the Lie
algebra sI§=0. This gives some inspiration for the origin of the parameter e.

Lete € [0,1], and let g, f be Lie algebras. Let t. : g — fbe a one to one Lie algebra
map for all € # 0 such that t; = id and det(ty) = 0. Leta,b, ¢ € g. Then we have

t-te(a), te(b)] = c.

We may now take the limit € — 0. If this limit exists, this results in a Lie algebra
g’ for any € € [0,1]. For ¢ = 0 the result is nonisomorphic to g, with bracket
[a,b] = lim_et; [te(a), te(b)]. In this case we call ¢’ the contraction of g, and
we say that g is contracted with respect to f.. Suppose we have a basis a; of g.
When the contraction of g exists, define the basis a; of g’ as a; = tc(a;).

The following theorem is taken from [12], we will not prove it here.

Theorem A.4.1. Let g = h @ b be a Lie algebra and t. a transformation as specified
above such that

to(b) = b,
to(h") = 0.
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Then g can be contracted with respect to Y if and only if b is a Lie subalgebra of g.
Moreover, in this case b is a subalgebra of the contraction g of g, and b is a commutative
subalgebra of g'. In particular ¢’ is not semisimple.

We will now treat the example relevant for us, the case where g = gl,.

Example A.4.1. Define gl, as the Lie algebra with generators {X, A, a, x} and the rela-
tions

[A, X] =X, [x,a] = x,
[a,X] = X, [x,A] = x,
[X,x] =A+a,la Al =0.
Define the Lie algebra map t¢ as te(a) = a,te(x) = x on the subalgebra b, and as

te(X) = €X,te(A) = €A. We define the elements A’ = €A, X' = eX,x' = x,a’ = a.
Then we find the following relations for {X', A’,a’, x'}:

[x,d'] = [x,a] = x (A.8)
X/, A'] = [x,eA] = ex (A9)
(X', Al = [eX,eA] = —eX’ (A.10)
(X',d] = [eX,a] = X' (A.11)
(X', x| =[eX,x] =e(A+a)=A"+ed (A.12)

In these relations we already recognize a subalgebra of the Lie algebra constructed in sec-
tion 1.1 of chapter 1, in the case where € # 0. This is also the sIS algebra as constructed
in [35]. Since the elements {X, A} generate a subalgebra of gl,, by theorem A.4.1 we
can take the limit of € — 0. The result is the Lie algebra sIS=.

It is possible to do the same thing for the sl,, case, covered in chapter 4. In this
case, one could start with the algebra of section 4.4.2 in [10] to obtain the quasi-
triangular Lie bialgebra covered in chapter 1, which one would need to quantize
in the manner of chapter 4. This is a straightforward exercise for the reader.

A.5. Rings

In this appendix we follow [19]. By a ring R we always mean a commutative
ring with identity 1 and of characteristic zero. The characteristic of a ring is the
smallest number such that 1" =1+1+4+---+1=0.

An element v € R is called a zero devisor of R if there exists a nonzero element
x € Rsuch thatrx = 0. An element of R is called regular if it is not a zero devisor.
We define an integral domain as a ring without zero devisors.

Anideal I C R of R is a set I containing 0 such that I is closed under addition,
and such thatif i € I and r € R, ir € I. m is the maximal ideal m of a ring R if
m # R and if for any ideal I C R such thatm C I, either ] = mor I = R.
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Definition A.5.1. An ideal I C R is called a prime ideal if for any a,b € R such that
ab € I,a € Iorb e I, andif I # R. Define the spectrum Spec(R) of R as the set of
prime ideals of R.

Denote by R[x1,- -+ ,xy,] the ring of polynomials in n indeterminates with coeffi-
cients in R.

Definition A.5.2. Let k be a field, let S C k[x1,---,x,|. Define the affine variety
of S as Vin(S) := {(&1,---,&n) € K"|f(E1,-+-,8n) = OVf € S}. For X € k",
define the ideal of X as T(X) = Ty, ..x,)(X) := {f € kl[x1, -+ - xu]|f (1, ,Cn) =
0 forall (&1,---,&y) € X}.

We can now define the coordinate ring of a set X C k".

Definition A.5.3. Let X C k" be an affine variety. Define the coordinate ring of X as
k[X] :=K[x1,- -+, xu] /T(X).

We define a module over a ring R as one defines a vector space over a field k.

Definition A.5.4. Let R bearing. A (left-)module M over R is an abelian group (M, +)
together with an operation- : R x M — M such that for r,s € Rand x,y € M,

er-(x+y)=r-x+r-y
e (r+s)-x=r-x+s-x
* (rs)-x=r-(s-x)

® Jp-x=x.

A module over R is called free if it has an R-basis. An R-basis of a module
M is a generating set of M that is linearly independent over R. Denote for a
subset S C M of an R-module M, (S) for the submodule of M generated by
S. By definition this is equal to the set of all linear combinations of S. If 5 =
{my, cdotsm, }, we may write (S) = (my, - - - my). In the same way we may define
an ideal (my,- - - my,) C R generated by the set {my,---m,} C R.

Define the formal power series ring in the variable x over a ring R as R[[x]] :=

{ ¥ a;x'|a; € R}, and similarly for any finite number of indeterminates x;, i € I.
i=0

Definition A.5.5. A ring R is called local if it has precisely one maximal ideal. R is

called Noetherian if for every strictly ascending chain of subideals I; C M such that

I; C 1i4q there exists an integer n such that I; = I, for all i > n.

If R is a local Noetherian ring with maximal ideal m, we can define the residual
class field K := R/m. Furthermore if M is a set of sets, we define a chain in M
as a subset C C M that is totally ordered by inclusion. The length of a chain C is
defined as length(C) := |C| —1 € No U {—1,00}. We then define

length(M) := sup{length(C)|C is a chain in M }.
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Define the dimension of R as dim(R) = length(Spec(R)).
It turns out that dimy (m/m?) > dim(R).

Definition A.5.6. A local ring R is called reqular if dimy(m/m?) = dim(R).

For a ring R, we define an R-algebra A to be a ring A with a homomorphism
a : R — A. So an R-algebra is a commutative, associative algebra with unit. For a
tield k, an affine k-algebra is a finitely generated k-algebra. A k-algebra is finitely
generated if it is isomorphic to the ring k[x1,- - -, x,]/I, where I C k[x1,- -, x4]
is an ideal. It is clear that R, = R[e]/(€?) is an affine R-algebra.

Definition A.5.7. Let A be an algebra over a field k. Define the transcendence degree of
Aas sup{|T||T C Ais finite and algebraically independent}.

For a k-algebra A, we define a seta = {ay,--- ,a,} to be algebraically indepen-
dent if for all f € k[x1,---,x4], f(a) # 0. An example is the ring R.. We see
that R¢ has transcendence degree 0 over R, as €2 = 0. Moreover, R, is local, with
unique maximal ideal (€) (observe that any regular element is invertible).

For affine k-algebras, dim(A) = trdeg(A). The proof can be found in e.g. [19],
chapter 5. So dim(R.) = 0. However, in R, (€) is the maximal ideal. Since
(€)2 =0,dimgr((€)/(€)?) = dimg((€)) = 1. So we see that R, is not regular.

Definition A.5.8. Let M be an R-module and let m € M. m is called a torsion element
of M if there exists a reqular v € R such that rm = 0. M is called torsion-free if 0 is the
only torsion element of M.

In the ring R, the set of regular elements is given by {r = a + €b € R¢|a # 0}.
Let R be any ring, and let M be a free R-module. It is clear from the definition of
linear independence that M is torsion-free. Let M be a free R-module. Define the
dual M* of M as M* = Hompg(M, R). Observe that M* has a natural R-module
structure. Let ¢ € M* and r € R,m € M, then r¢(m) = ¢(rm). Let r be a regular
element of R, r¢ = 0 implies that ¢(rm) = 0 for all m € M. However, since r is
regular and M is torsion free, rm # 0 if m # 0. It is easy to show (by induction,
for example) that if R = K[X]/(X") for a field K and an integer n > 0, and if r is
regular, {rm|m € M} = M. This implies that ¢ = 0. So M* is torsion free.

We continue with the discription of freeness and flatness of a module M over the
ring Re.

Definition A.5.9. Let R be a ring, and let My, M2, M be R-modules. Let f; : My —
M, be an injective map. Define the map ¢r : M1 @M — Mp @M : x@m
f(x) ® m. We call M flat if for any injective map f, ¢ is injective.

A consequence of this definition is that if M; — M; — M3 is an exact sequence,
then M1 ® M — My ® M — M3 ® M is also an exact sequence. We will now
prove that over R, the notions of flatness and freeness coincide.

Proposition A.5.1. Let M be an Re-module. Then M is flat if and only if M is free.
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Before proving the proposition, observe that for modules over any ring it is true
that free modules are also flat. The converse is not always the case. When M is
finitely generated, the conditions of flatness and freeness are identical. We will
not prove these facts here. See for example [8], chapter 6. We will prove these
facts for the ring R, here.

Proof. We first prove freeness = flatness for an R.-module M. This is a well
known fact, but it is proven here nonetheless. Suppose that M has an R.-basis
{m;}ic;. Let K and L be two Re-modules, let ¢ : K — L be an injective map, and
letk, k' € K,m € M,and m # 0,k # 0. Let I € L. Tensor products are over Re.
We wish to prove that ¢' : K@M — L® M,k®@m — ¢(k) ® m is an injec-
tive map. Assume ¢(k) ® m = 0. We want to prove that ¢(k) = 0. Let us write
m =Y _; cjm;, to obtain ¢(k) ® m = 0if and only if }; c;j¢p(k) @ m; = 0. Since the m;
form a basis of M, we can define 771 : L ® M — L x M on elements of the form
I @ m; by sending | @ m; — (I,m;) € L x M. Now wedefinep : Lx M — KQ M :
(1, m;) = k' @ m;, where k' is chosen such that ¢ (k') = ¢(k). Since ¢ is injective,
k = k', so this map is well-defined. We extend themap ot ' : Lo M — K@ M,
which is only defined on the set {I @ m;|l € $(K),i € I} C L ® M as a linear map.
By construction o 7 (¢p(k) @ m) = k@m, and ¢’ opor 1 (l@m) = [ ®@m,
where | @ m € ¢/(K® M). This implies that ¢ is injective.

For the other implication, we assume that M is flat. We use the fact that any
module over a field (i.e. a vector space) is free. This can be proven by using the
maximal principle on a chain of linealry independent sets to construct a maxi-
mal linearly independent subset. Taking the union of all the sets in this chain
provides a maximal element in this chain. Its elements are linearly independent,
and it must span the vector space by maximality. We refer to other sources for
the extended proof.

Proceding with a flat Rc-module M, we observe that M/eM is an R-module.
Concretely, if (€) C Re is the ideal generated by €, we observe that R = (% Tak-
ing the tensor product with M yields M/eM as an IR-module.

Consider the short exact sequence

R
0—>e-1Ri>Rei]R:€€)—>o.
g is given by a + €b +— a, and f is the inclusion. All spaces are considered as
Re-modules. Since M is flat we can take the tensor product with ®g_M to obtain

—

T M
0—-eM—M-—— —0.
eM

We can form another exact sequence R, % Re = Re/ (€). This implies M N
M — M/eM is exact, since M is flat. So eM = ker(M <3 M), so we obtain an

H
injective map M/eM < €M C M, that is also surjective. So M/eM = eM.

168



Appendix A. Appendices

Suppose that {1, } i< is an R-basis of M /e M. Choose a set {m; };c; C M such that
7t(m;) = m; for all i € I. We claim that {m;},c is an R.-basis of M. To see that
{m;}ic; spans M, we consider an element m € M, then 7t(m) = Y c;7i1;, where
¢; € R. Then we know that m = Y ¢;m; + en, for some en € ker(M N M) = eM.
Because there is an isomorphism M/eM = €M, we can express n as a linear
combination n = Y ec;m;, for ¢; € R. This proves that {m; },c; spans M.

To prove linear independence of {m;};c;, we proceed in a similar fashion. Sup-
pose Y ¢;m; = for ¢; € R, where i runs over a finite set I’. We wish to prove that

iel

¢; = 0 for all i. We know that g(c;) = 0 for all 7, as 71(m;) is an R-basis of M/eM.
We interpret 7t(c;m;) = 7t(c; ® m;) = g(c;) ® m;. This implies that ¢; € €M, so
c; = ed; for some d; € R. Denote 1m; = mt(m;). Since eM = M/eM through
multiplication with €, we know that er#7; form an IR-basis of eM as an R-module.
Hence d; = 0 for all i, and we have proven linear independence. This finishes the
proof. O

As a concrete application we wish to extend an IR-basis of M/eM to an R¢-basis
of M. We will use this construction in the thesis, for example in chapter 1.

Corollary A.5.1. Let M be a free (and flat) Re-module. Let {i;}ic; be an R-basis of
M/eM. Let {m;};c be such that under the projection 7 : M — M/eM, t(m;) = i,
foralli € I. Then {m;};c; is an Re-basis of M.

This finishes the discussion of the ring Re.
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