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A. Appendices

A.1. Mathematica

In this section we present the implementation of the zipping formalism used
to do calculations with the Hopf algebra Uq(slε

3), and to calculate the quantum
double explicitly. The proof of the zipping theorem can be found in chapter 2.
The program labeled sl3invariant.nb is an implementation of this theorem. The
program sl3invariant.nb is based on the program sl2invariant.nb developed by
Bar-Natan and Van der Veen. This program can be found on

http : //drorbn.net/AcademicPensieve/Projects/SL2Invariant/index.html.

In sl2invariant.nb one can find an implementation of the invariant based on the
quantum group Uq(slε

2). The knot invariant presented in this thesis is based on
the Uq(slε

2) construction by Bar-Natan and Van der Veen.
The difference between sl2invariant.nb and sl3invariant.nb is the use of the three-
stage zip. This is an essential difference, since it provides a convergent imple-
mentation of the zipping theorem for the Uq(slε

3) Hopf algebra. The proof that
this implementation is convergent can be found in chapter 2.
In this program we implement the quantum group Uq(sl3) constructed in chap-
ter 1. We check (co)associativity, if ∆ is a homomorphism, the pairing axioms,
the antipode axioms, associativity and the Turaev moves. The knot invariant is
computed for the Trefoil, the mirror Trefoil, the figure eight and the 6-3 knot in
the Rolfson knot table.
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The double multiplication tensor

For the sake of completeness, we give the explicit formula for tdmk
ij. We denote

by a = exp[−a∗], and similarly for b. As we did before, A = exp[−A], and the
same convention holds for B.

tdmk
ij = E

[
aka∗i + aka∗ j + Ak A∗i + Ak A∗ j + bkb∗i + bkb∗ j + BkB∗i + BkB∗ j,

xka2
j x∗i

bj
+ xkx∗ j + XkX∗i +

Xka2
i X∗ j

bi
+

A−2h̄
k

(
A2h̄

k −Bh̄
k

)
x∗iX∗ j

h̄
+

ykb2
j y∗i

aj
+

yky∗ j +
zka2

j x∗iy∗ j

bj
+ YkY∗i +

Ykb2
i Y∗ j

ai
+

B−2h̄
k

(
−Ah̄

k + B2h̄
k

)
y∗iY∗ j

h̄
+ zkajbjz∗i+

zkz∗ j + ZkZ∗i + ZkaibiZ∗ j −
Ykb2

i A−2h̄
k Bh̄

k x∗iZ∗ j

ai
+

Xka2
i y∗iZ∗ j

bi
+

A−2h̄
k B−h̄

k

(
Ah̄

k −B2h̄
k

)
x∗iy∗iZ∗ j

h̄
+

A−h̄
k B−h̄

k

(
−1 + Ah̄

kBh̄
k

)
z∗iZ∗ j

h̄
,

1+(
−

xka2
j A∗ jx∗i

bj
−

Xka2
i A∗iX∗ j

bi
−

2h̄xkXka2
i a2

j x∗iX∗ j

bibj
+ akA−2h̄

k Bh̄
k x∗iX∗ j+

xkA−2h̄
k

(
−a2

j A2h̄
k + 3a2

j Bh̄
k

)
(x∗)2

i X∗ j

bj
+

XkA−2h̄
k

(
−a2

i A2h̄
k + 3a2

i Bh̄
k

)
x∗i (X∗)2

j

bi
+

A−4h̄
k

(
−A4h̄

k + 4A2h̄
k Bh̄

k − 3B2h̄
k

)
(x∗)2

i (X∗)2
j

2h̄
−

ykb2
j B∗ jy∗i

aj
+

h̄Xkyka2
i b2

j X∗ jy∗i

ajbi
−

2ykb2
j A−2h̄

k Bh̄
k x∗iX∗ jy∗i

aj
−

h̄xkyka2
j x∗iy∗ j

bj
−

zka2
j A∗ jx∗iy∗ j

bj
−

2h̄Xkzka2
i a2

j x∗iX∗ jy∗ j

bibj
+

zkA−2h̄
k

(
−a2

j A2h̄
k + 3a2

j Bh̄
k

)
(x∗)2

i X∗ jy∗ j

bj
−

h̄ykzkajbjx∗iy∗iy∗ j −
h̄ykzka2

j x∗i (y∗)
2
j

bj
+

h̄XkYka2
i X∗ jY∗i

bi
−

Ykb2
i B∗iY∗ j

ai
+

h̄xkYka2
j b2

i x∗iY∗ j

aibj
+

2Zkb2
i X∗iY∗ j

ai
−

2h̄ykYkb2
i b2

j y∗iY∗ j

aiaj
+

bkAh̄
kB−2h̄

k y∗iY∗ j +
xkB−2h̄

k

(
−a2

j Ah̄
k + a2

j B2h̄
k

)
x∗iy∗iY∗ j

bj
+

XkB−2h̄
k

(
−a2

i Ah̄
k − a2

i B2h̄
k

)
X∗ jy∗iY∗ j

bi
+

ykB−2h̄
k

(
3b2

j Ah̄
k − b2

j B2h̄
k

)
(y∗)2

i Y∗ j

aj
+
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h̄Ykzka2
j b2

i x∗iy∗ jY∗ j

aibj
+

zkB−2h̄
k

(
−a2

j Ah̄
k + a2

j B2h̄
k

)
x∗iy∗iy∗ jY∗ j

bj
+

YkB−2h̄
k

(
3b2

i Ah̄
k − b2

i B2h̄
k

)
y∗i (Y∗)

2
j

ai
+

B−4h̄
k

(
−3A2h̄

k + 4Ah̄
kB2h̄

k −B4h̄
k

)
(y∗)2

i (Y
∗)2

j

2h̄
−

zkajbj A∗ jz∗i − zkajbjB∗ jz∗i −
h̄Xkzka2

i ajbjX∗ jz∗i

bi
+

2ykb2
j X∗ jz∗i

aj
+

2zkajbjA
−2h̄
k Bh̄

k x∗iX∗ jz∗i −
h̄Ykzkajb2

i bjY∗ jz∗i

ai
−

2xka2
j Ah̄

kB−2h̄
k Y∗ jz∗i

bj
+

A−h̄
k B−2h̄

k

(
−2A2h̄

k + 2Bh̄
k

)
X∗ jY∗ jz∗i

h̄
−

2zka2
j Ah̄

kB−2h̄
k y∗ jY∗ jz∗i

bj
+

h̄xkzka2
j x∗iz∗ j

bj
−

h̄ykzkb2
j y∗iz∗ j

aj
+

h̄z2
ka2

j x∗iy∗ jz∗ j

bj
−

h̄XkZka2
i X∗ jZ∗i

bi
+

h̄YkZkb2
i Y∗ jZ∗i

ai
− Zkaibi A∗iZ∗ j − ZkaibiB∗iZ∗ j −

h̄xkZkaia2
j bix∗iZ∗ j

bj
−

h̄Ykb2
i A−2h̄

k Bh̄
k x∗iZ∗ j

ai
+

h̄akYkb2
i A−2h̄

k Bh̄
k x∗iZ∗ j

ai
+

Ykb2
i A−2h̄

k Bh̄
k B∗ix∗iZ∗ j

ai
+

2h̄xkYka2
j b2

i A−2h̄
k Bh̄

k (x∗)2
i Z∗ j

aibj
−

2Zkb2
i A−2h̄

k Bh̄
k x∗iX∗iZ∗ j

ai
+

2h̄XkYkaibiA
−2h̄
k Bh̄

k x∗iX∗ jZ∗ j +
YkA−4h̄

k

(
b2

i A2h̄
k Bh̄

k − b2
i B2h̄

k

)
(x∗)2

i X∗ jZ∗ j

ai
−

h̄ykZkaibib2
j y∗iZ∗ j

aj
−

Xka2
i A∗iy∗iZ∗ j

bi
−

h̄xkXka2
i a2

j x∗iy∗iZ∗ j

bibj
−

bkA−h̄
k B−h̄

k x∗iy∗iZ∗ j + A−2h̄
k B−h̄

k

(
Ah̄

k −B2h̄
k

)
x∗iy∗iZ∗ j+

akA−2h̄
k B−h̄

k

(
−Ah̄

k + B2h̄
k

)
x∗iy∗iZ∗ j +

xkA−2h̄
k B−h̄

k

(
−2a2

j Ah̄
k + 2a2

j B2h̄
k

)
(x∗)2

i y∗iZ∗ j

bj
+

h̄X2
k a4

i X∗ jy∗iZ∗ j

b2
i

+
XkA−2h̄

k B−h̄
k

(
−a2

i Ah̄
k + 3a2

i B2h̄
k

)
x∗iX∗ jy∗iZ∗ j

bi
+

156



Appendix A. Appendices

A−4h̄
k B−h̄

k

(
−A3h̄

k + Ah̄
kBh̄

k + A2h̄
k B2h̄

k −B3h̄
k

)
(x∗)2

i X∗ jy∗iZ∗ j

h̄
+

ykA−2h̄
k B−h̄

k

(
−b2

j Ah̄
k − b2

j B2h̄
k

)
x∗i (y∗)

2
i Z∗ j

aj
−

h̄zkZkaia2
j bix∗iy∗ jZ∗ j

bj
+

2h̄Ykzka2
j b2

i A−2h̄
k Bh̄

k (x∗)2
i y∗ jZ∗ j

aibj
−

h̄Xkzka2
i a2

j x∗iy∗iy∗ jZ∗ j

bibj
+

zkA−2h̄
k B−h̄

k

(
−2a2

j Ah̄
k + 2a2

j B2h̄
k

)
(x∗)2

i y∗iy∗ jZ∗ j

bj
+

h̄XkYka2
i y∗iY∗iZ∗ j

bi
−

h̄Y2
k b4

i A−2h̄
k Bh̄

k x∗iY∗ jZ∗ j

a2
i

− h̄XkYkaibiy∗iY∗ jZ∗ j + 2ZkaibiA
h̄
kB−2h̄

k y∗iY∗ jZ∗ j−

4Ykb2
i A−h̄

k B−h̄
k x∗iy∗iY∗ jZ∗ j

ai
+

XkB−2h̄
k

(
a2

i Ah̄
k − a2

i B2h̄
k

)
(y∗)2

i Y∗ jZ∗ j

bi
+

A−h̄
k B−3h̄

k

(
2Ah̄

k − 2B2h̄
k

)
x∗i (y∗)

2
i Y∗ jZ∗ j

h̄
− 2h̄zkZkaiajbibjz∗iZ∗ j+

akA−h̄
k B−h̄

k z∗iZ∗ j + bkA−h̄
k B−h̄

k z∗iZ∗ j +
3h̄Ykzkajb2

i bjA
−2h̄
k Bh̄

k x∗iz∗iZ∗ j

ai
+

xkA−h̄
k B−h̄

k

(
3a2

j − a2
j Ah̄

kBh̄
k

)
x∗iz∗iZ∗ j

bj
+

XkA−h̄
k B−h̄

k

(
a2

i + a2
i Ah̄

kBh̄
k

)
X∗ jz∗iZ∗ j

bi
+

A−3h̄
k B−h̄

k

(
2A2h̄

k − 2Bh̄
k

)
x∗iX∗ jz∗iZ∗ j

h̄
−

h̄Xkzka2
i ajbjy∗iz∗iZ∗ j

bi
+

ykA−h̄
k B−h̄

k

(
b2

j + b2
j Ah̄

kBh̄
k

)
y∗iz∗iZ∗ j

aj
+

zkA−2h̄
k B−h̄

k

(
−2ajbjA

h̄
k + 2ajbjB

2h̄
k

)
x∗iy∗iz∗iZ∗ j+

zkA−h̄
k B−h̄

k

(
3a2

j − a2
j Ah̄

kBh̄
k

)
x∗iy∗ jz∗iZ∗ j

bj
+

YkA−h̄
k B−h̄

k

(
3b2

i − b2
i Ah̄

kBh̄
k

)
Y∗ jz∗iZ∗ j

ai
+

A−h̄
k B−3h̄

k

(
−2Ah̄

k + 2B2h̄
k

)
y∗iY∗ jz∗iZ∗ j

h̄
+ zkA−h̄

k B−h̄
k

(
3ajbj − ajbjA

h̄
kBh̄

k

)
(z∗)2

i Z∗ j−

h̄YkZkb2
i A−2h̄

k Bh̄
k x∗iZ∗iZ∗ j

ai
−

h̄XkZka2
i y∗iZ∗iZ∗ j

bi
+ h̄YkZkb3

i A−2h̄
k Bh̄

k x∗i (Z∗)2
j −

h̄XkZka3
i y∗i (Z∗)2

j + 2h̄XkYkaibiA
−2h̄
k Bh̄

k x∗iy∗i (Z∗)2
j +

ZkA−2h̄
k B−h̄

k

(
−3aibiA

h̄
k + aibiB

2h̄
k

)
x∗iy∗i (Z∗)2

j +
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YkA−4h̄
k

(
3b2

i Ah̄
k − b2

i B2h̄
k

)
(x∗)2

i y∗i (Z∗)2
j

ai
+

XkA−2h̄
k B−h̄

k

(
−2a2

i Ah̄
k + 2a2

i B2h̄
k

)
x∗i (y∗)

2
i (Z∗)2

j

bi
+

A−4h̄
k B−2h̄

k

(
−3A2h̄

k + 4Ah̄
kB2h̄

k −B4h̄
k

)
(x∗)2

i (y
∗)2

i (Z∗)2
j

2h̄
+

ZkA−h̄
k B−h̄

k

(
3aibi − aibiA

h̄
kBh̄

k

)
z∗i (Z∗)2

j +

YkA−3h̄
k

(
−4b2

i + 2b2
i Ah̄

kBh̄
k

)
x∗iz∗i (Z∗)2

j

ai
+

2Xka2
i A−h̄

k B−h̄
k y∗iz∗i (Z∗)2

j

bi
+

1
h̄

A−3h̄
k B−2h̄

k

(
3Ah̄

k −A2h̄
k Bh̄

k − 3B2h̄
k + Ah̄

kB3h̄
k

)
x∗iy∗iz∗i (Z∗)2

j +

A−2h̄
k B−2h̄

k

(
−3 + 4Ah̄

kBh̄
k −A2h̄

k B2h̄
k

)
(z∗)2

i (Z∗)2
j

2h̄

)
ε + O[ε]2

]

A.2. Poisson-Lie groups

In this section we will describe the connection between Poisson-Lie groups and
Lie-bi algebras. A large part of this appendix is taken from the masterthesis “The
two dimensional Ising Model” by the author. In this appendix we will introduce
the notion of a Lie group, followed by the definition of a Poisson Lie group. We
follow the construction of Lee [22] and [6]. A general knowledge about smooth
manifolds is required.

Definition A.2.1. A Lie group is a smooth manifold G without boundary that is a group
with a smooth multiplication map m : G×G → G and a smooth inversion map i : G →
G. Let g, h ∈ G, then i(g) = g−1 is called the inverse of g and m(g,h)=gh. Denote with
Lg(h) = gh left translation and with Rg(h) = hg right translation.

Definition A.2.2. Let G and H be Lie groups, then a Lie group homomorphism F from
G to H is a map F : G → H that is a group homomorphism. It is called a Lie group
isomorphism if it is a diffeomorphism.

Definition A.2.3. Let M be a smooth manifold, and let TM be the tangent bundle of
M. A vectorfield X on M is a section of the map π : TM → M. THat is, X is a map
X : M→ TM, such that π ◦ X = IdM.

One can add vector fields pointwise. If (U, xi) is a chart of M, and p ∈ M, then
p→ ∂

∂xi |p is a vector field on U, which we will call the i-th coördinate vector field,
and it will be denoted by ∂/∂xi. A vector field X can be written out on chart as
a linear combination of coördinate vector fields, and this will be denoted with
X = Xi ∂

∂xi , where the summation symbol over i is omitted.
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Definition A.2.4. Let X and Y be smooth vector fields on a smooth manifold M. Let
f : M→ R be a smooth function. Then the Lie bracket of X and Y is given by [Y, X] f =
XY f −YX f .

Given a smooth function f : M → R, it is possible to apply X and Y to f to
obtain new smooth vector fields f X and f Y respectively. On the other hand, by
differentiation, a vector field can act on a function. To show that the Lie bracket is
well defined, one has to show that [X, Y] is again a vectorfield. This is equivalent
to showing that it obeys the product rule, which will be omitted here.
From now on we will mean with M a smooth manifold with Lie bracket [·, ·],
and with X, Y, Z smooth vectorfields on M. The space of smooth vector fields
on M is denoted by X (M) and the space of smooth functions on M is denoted
by C∞(M).

Proposition A.2.1. The Lie bracket satisfies the following identities:

(a) (linearity) Let a, b ∈ R. Then

[aX + bY, Z] = a[X, Z] + b[Y, Z]. (A.1)

(b) (anti-symmetry)

[X, Y] = −[Y, X] (A.2)

(c) (Jacobi identity)

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (A.3)

(d) Let f , g ∈ C∞(M), then

[ f X, gY] = f g[X, Y] + ( f Xg)Y− (gY f )X. (A.4)

Definition A.2.5. Let V be a finite dimensional vector space, and denote with GL(V)
the group of invertible linear transformations on V, which is isomorphic to a Lie Group
GLn for some n. If G is a Lie group, then a finite dimensional representation of G is a Lie
group homomorphism from G to GL(V) seen as Lie group for some V. if a representation
ρ : G → GL(V) is injective, then the representation is said to be faithful.

Definition A.2.6. Let G be a Lie group. The Lie algebra of G is the set of all smooth
left-invariant vector fields, and it is denoted by Lie(G).

The Lie algebra of G is well defined because the Lie bracket of two left invariant
vector fields (invariant under Lg for all g) is again left invariant. It turns out that
Lie(G) is finite dimensional and that the dimension of Lie(G) is equal to dim(G).
[22] The representation of a Lie group yields a representation of the correspond-
ing Lie algebra by taking the tangent map. We proceed with the definition of a
Poisson manifold.
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Definition A.2.7. (Poisson Structure) Let M be a smooth manifold of finite dimension
m, and denote with C(M) the algebra of smooth real valued functions on M. A Poisson
structure on M is an R bilinear map {, } : C(M) × C(M) → C(M) (the Poisson
bracket) satisfying for all f1, f2, f3 ∈ C(M):

1. { f1, f2} = −{ f2, f1}

2. { f1, { f2, f3}}+ { f3, { f1, f2}}+ { f2, { f3, f1}} = 0

3. { f1 f2, f3} = { f1, f3} f2 + f1{ f2, f3}

One needs to consider maps between Poisson structures as well.

Definition A.2.8. (Poisson Maps) A smooth map F : M → N between Poisson mani-
folds is a Poisson map if it preserves the Poisson brackets of M and N: { f1, f2}M ◦ F =
{ f1 ◦ F, f2 ◦ F}N .
(Product Poisson structure) The Product Poisson structure is given by

{ f1(x, y), f2}M×N(x, y) = { f1(., y), f2(., y)}M(x) + { f1(x, .), f2(x, .)}N(y),

where f1, f2 ∈ C(M× N).

Finally we are able to define Poisson-Lie groups.

Definition A.2.9. A Poisson-Lie group G is a Lie group which also has a Poisson struc-
ture that is compatible with the Lie structure, i.e. the multiplication map µ : G×G → G
is a Poisson map. A homomorphism of Poisson Lie groups is a homomorphism of Lie
groups that is also a Poisson map.

Now let us go into the relation between Poisson-Lie groups and Lie bialgebras.

Theorem A.2.1. Define on a Poisson-Lie group G Ad(x)(y) = xyx−1 for all x, y ∈ G.
Then the tangent space at the unit element e of G is a Liealgebra g with Lie bracket
[X, Y] = Te Ad(X)(Y). Define the cobracket δ by the relation

〈X, d{ f1, f2}e〉 = 〈δ(X), (d f1)1 ⊗ (d f2)e〉.

Then (TeG, [, ], δ) is a Lie bialgebra.

The proof consists of checking the definitions. (See [6], page 25.) Note that if a
Lie algebra corresponding to a Lie group G (not necessarily a Poisson-Lie group)
is quasitriangular, i.e. if δ is a coboundary, then one can use the classical r-matrix
to define the Poisson bracket on G. See proposition 2.2.2 on page 61 of [6]. On
the other hand one can define from a classical r-matrix r ∈ g× g a corresponding
R-matrix R : G × G → G × G which is a solution of the quantum Yang Baxter
equation: R12R13R23 = R23R13R12. See page 67 of [6] for more details. Confus-
ingly,R is called a classical R-matrix in [6].
The dual of the universal enveloping algebra of a semisimple Lie algebra cor-
responds to the function algebra on its corresponding Poisson-Lie group. See

160



Appendix A. Appendices

chapter 7 of [6]. This is not the case for Uq(slε
3), since this algebra is not semisim-

ple. Suppose this were the case, then the space of functions on the quantum
group Uq(slε

3) would be spanned by the representation-matrices of finite dimen-
sional representations, and each function would be fully determined by its action
on finite dimensional representations. We know that this is not the case by look-
ing at central elements in Uq(slε

3), so the dual of Uq(slε
3) cannot correspond to the

function algebra of a Poisson-Lie group.
It would be interesting to consider the corresponding construction of F (G) with
a non-invertible term epsilon, and quantize it. This might give insight in Uq(slε

3).
When we consider ε in the ring R[[ε]] it turns out to be equivalent to the quan-
tization of a quotient of an affine Lie algebra where the central extension is quo-
tiented out, see [37] and [5]. This suggests that a geometric interpretation of the
dual of Uq(slε

3) over the ring R[[ε]] is possible.

A.3. Lie algebras and root systems

In this section we will give the definitions of a root system corresponding to a
Lie algebra. This appendix is taken from the master thesis “The two dimensional
Ising Model” by the author. It is not our aim to introduce the reader to Lie theory,
so we will only state a few definitions and results. For a good introduction in Lie
algebras and finite dimensional representation of Lie algebras, see for example
[14].

Definition A.3.1. (Lie algebra) Let L be a vector space over a commutative ring R, with
a bracket operation [·, ·] : L× L→ L with the following properties:

(L1) The bracket operation is bilinear.

(L2) [xx]=0 for all x ∈ L.

(L3) The Jacobi identity is satisfied: [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0.

Then L is called a Lie algebra.

From now on, when we write L, we will always mean a Lie algebra L.

Definition A.3.2. A derivation of L is a linear map δ : L → L satisfying the product
rule: δ(ab) = aδ(b) + δ(a)b, for all a, b ∈ L. The collection of all derivation on L is
denoted by Der(L).

Since Der(L) ⊂ End(L), we can define a representation on L by sending an ele-
ment x ∈ L to its derivation ad(x) = [x, ·]. This representation (a representation
of a Lie algebra L is a linear map tp gl(L) respecting the bracket operation) is
called the adjoint representation, and plays an important role. Using this repre-
sentation, we can define a symmetric, bilinear form on L.

Definition A.3.3. (Killing Form) For x, y ∈ L, define the Killing form κ(x, y) =
Tr(ad(x)ad(y)), where Tr denotes the trace.
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A special class of Lie algebras are the so called semisimple Lie algebras. This
class has certain nice properties, which we will need.

Definition A.3.4. Let L(i) be the sequence obtained by L(0) = L and L(i+1) = [L(i), L(i)].
We call L sovable if L(n) = 0 for some n.

The unique maximal solvable ideal of L is called the radical of L and is denoted
by Rad(L). Its existence follows from the property that if I and J are solvable
ideals, then so is I + J.

Definition A.3.5. (semisimple Lie algebra) Let L be a Lie algebra such that rad(L)=0.
Then L is called semisimple.

For semisimple Lie algebras, the Killing form is nondegenerate (i.e. the adjoint
representation is faithful, i.e. 1 to 1). This is also true for a general faithful rep-
resentation φ of L. Define a symmetric, bilinear form β(x, y) = Tr(φ(x)φ(y)). If
φ is faithful and L is semisimple, then β is nondegenerate and associative. For a
proof of this, see [14].
It can be checked, by using the Jacobi identity, that the Killing form is invariant
under the adjoint action of L on itself, defined by ad : L× L→ L : (x, y) 7→ [x, y].
So the Killing form satisfies: κ(adx(y), adx(z)) = κ(y, z), for all x, y, z in L. It is
interesting to look at a general adjoint action invariant, bilinear form β. One can
define the Casimir element associated to this form the following way.

Definition A.3.6. (Casimir element) Let L be semisimple, with basis (x1, x2, · · · , xn).
Let β be an adjoint invariant bilinear form on L, and let (y1, · · · , yn) be the dual basis
with respect to this two form: δij = β(xi, yj). Then define the Casimir element associated
with β as follows:

cβ =
n

∑
i=1

yi ⊗ xi ∈ U(L), (A.5)

where U(L) is the universal enveloping algebra of L.

The construction of the Casimir element can be generalized, at least in theory, for
any semisimple Lie algebra to higher degree Casimir elements. This might be
trivial in some cases, whereas in other cases it might not be.

Definition A.3.7. (generalized Casimir element) Let L be semisimple, and let (xα1), · · · , (xαn)
be bases of L. Define the multilinear form β(x1, · · · , xn) = Tr(ad(x1) · · · ad(xn)). Then
define the generalized casimir element cβ by

cβ = ∑
α1,···αn

xα1 ⊗ · · · ⊗ xαn

β(xα1 , · · · , xαn)
. (A.6)

The degrees for which these generalized Casimir elements exist minus one are
called the exponents of the Lie algebra. The next concept we want to define is
the Coxeter number. In order to define this concept, we need to introduce roots
and the Weyl group.
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Definition A.3.8. Let L be semisimple, and let κ be the killing form on L. Let H be the
maximal subalgebra of L consisting of elements x for which ad(x) is diagonalizable (such
an element x is called semisimple, and and algebra consisting of such elements is called
Toral). Let α, β ∈ H∗, such that Lα = {x ∈ L|[hx] = α(h)x for all h ∈ H} 6= 0 (such α
are called roots, the set of roots is denoted by Φ). Denote by Pα = {β ∈ H∗|(β, α) = 0}
the reflecting hyperplane of α (here (·, ·) denotes the Killing form transferred from H to
H∗, which we may do since the killing form is nondegenerate on H, see [14]), and define
σα(β) = β− 2(β,α)

(α,α) .

As it turns out, the set Φ of all roots of L obeys the axioms of a root system.

Definition A.3.9. (Root system) A subset Φ of an euclidean space E is called a root
system in E if the following axioms are satisfied:

R1 Φ is finite, spans E and does not contain 0.

R2 If α ∈ Φ, then the only multiples of α contained in Φ are ±α.

R3 If α ∈ Φ, then σα leaves Φ invariant.

R4 If α, β ∈ Φ, then 2(β,α)
(α,α) = 〈α, β〉 ∈ Z.

Here, σα is defined similarly as the case in which E = H∗, since any Euclidian
space is equipped with a nondegenerate, positive definite symmetric, bilinear
form. Let us now define the notion of a coroot α∨ for a root α as follows

α∨ =
2α

|α|2 . (A.7)

We need the definition of simple roots.

Definition A.3.10. Let ∆ be a subset of a root system Φ of a Euclidian space E such
that

B1 ∆ is a basis of E,

B2 Each root can be written as a linear combination of elements of ∆, such that the
coefficients are all nonnegative or all nonpositive.

Then ∆ is called a base, and its elements are called simple roots.

Fix a base {α1, · · · , αr} for the roots of L, and let θ be the highest root of L, in
the sense that the sum of the coefficients ai, when θ is written out as a linear
combination of simple roots is maximized. The coeffients ai are called marks.
The coefficients a∨i , when θ is decomposed in terms of α∨i are called comarks.
With a base fixed for L, we can define the Cartan matrix as Ai j = κ(αi, α∨j ), where
i and j run between 1 and r. Now let us define the Weyl group.

Definition A.3.11. (Weyl group) Let Φ be a root system, and letW be the group gen-
erated the reflections σα, for α ∈ Φ. We callW the Weyl group of Φ.
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From the definition of a root system, it is clear that W permutes the roots, and
hence can be seen as a subgroup of the symmetric group on Φ. To define the
Coxeter element and the Coxeter number, we need a few more definitions.

Definition A.3.12. (Base) A subset ∆ ⊂ Φ is called a base if ∆ is a basis of Φ and if
each root β can be written as β = ∑ kαα with the integral coefficients kα all nonnegative
or nonpositive. The roots in ∆ are called simple roots. The reflections corresponding to
these roots are called simple reflections.

Now we can define the Coxeter element.

Definition A.3.13. (Coxeter element) Let Φ be a root system of a semisimple Lie algebra
L with a fixed base ∆ = (α1, · · · , αn). Then w = σα1 · · · σαn is called a Coxeter element
of L. The order of w is called the Coxeter number.

Note that one can define several Coxeter elements in given group, so it is im-
portant to prove that these elements have the same order. This will not be done
here, but the proof that all Coxeter elements are conjugate to each other can for
example be found in for example [14].

A.4. Wigner group contraction

In this appendix we describe the process of Wigner group contraction. In 1953
Wigner et al. came up with this method to transform Lie groups and their corre-
sponding Lie algebras into different Lie groups. This is accomplished by a con-
tinuous transformation with a function t(ε) on the generators of which the limit
ε→ 0 is taken. Wigner proved that this limit exists under certain conditions. We
follow [12]. We will use Wigner group contraction for the construction of the Lie
algebra slε=0

2 . This gives some inspiration for the origin of the parameter ε.
Let ε ∈ [0, 1], and let g, f be Lie algebras. Let tε : g→ f be a one to one Lie algebra
map for all ε 6= 0 such that t1 = id and det(t0) = 0. Let a, b, c ∈ g. Then we have

t−1
ε [tε(a), tε(b)] = c.

We may now take the limit ε → 0. If this limit exists, this results in a Lie algebra
g′ for any ε ∈ [0, 1]. For ε = 0 the result is nonisomorphic to g, with bracket
[a, b] = limε→0et−1

ε [tε(a), tε(b)]. In this case we call g′ the contraction of g, and
we say that g is contracted with respect to tε. Suppose we have a basis ai of g.
When the contraction of g exists, define the basis a′i of g′ as a′i = tε(ai).
The following theorem is taken from [12], we will not prove it here.

Theorem A.4.1. Let g = h⊕ h′ be a Lie algebra and tε a transformation as specified
above such that

t0(h) = h,
t0(h

′) = 0.
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Then g can be contracted with respect to h if and only if h is a Lie subalgebra of g.
Moreover, in this case h is a subalgebra of the contraction g′ of g, and h′ is a commutative
subalgebra of g′. In particular g′ is not semisimple.

We will now treat the example relevant for us, the case where g = gl2.

Example A.4.1. Define gl2 as the Lie algebra with generators {X, A, a, x} and the rela-
tions

[A, X] = X, [x, a] = x,
[a, X] = X, [x, A] = x,

[X, x] = A + a, [a, A] = 0.

Define the Lie algebra map tε as tε(a) = a, tε(x) = x on the subalgebra h, and as
tε(X) = εX, tε(A) = εA. We define the elements A′ = εA, X′ = εX, x′ = x, a′ = a.
Then we find the following relations for {X′, A′, a′, x′}:

[x′, a′] = [x, a] = x (A.8)
[x′, A′] = [x, εA] = εx′ (A.9)
[X′, A′] = [εX, εA] = −εX′ (A.10)
[X′, a′] = [εX, a] = X′ (A.11)
[X′, x′] = [εX, x] = ε(A + a) = A′ + εa′. (A.12)

In these relations we already recognize a subalgebra of the Lie algebra constructed in sec-
tion 1.1 of chapter 1, in the case where ε2 6= 0. This is also the slε

2 algebra as constructed
in [35]. Since the elements {X, A} generate a subalgebra of gl2, by theorem A.4.1 we
can take the limit of ε→ 0. The result is the Lie algebra slε=0

2 .

It is possible to do the same thing for the sln case, covered in chapter 4. In this
case, one could start with the algebra of section 4.4.2 in [10] to obtain the quasi-
triangular Lie bialgebra covered in chapter 1, which one would need to quantize
in the manner of chapter 4. This is a straightforward exercise for the reader.

A.5. Rings

In this appendix we follow [19]. By a ring R we always mean a commutative
ring with identity 1 and of characteristic zero. The characteristic of a ring is the
smallest number such that 1n = 1 + 1 + · · ·+ 1 = 0.
An element r ∈ R is called a zero devisor of R if there exists a nonzero element
x ∈ R such that rx = 0. An element of R is called regular if it is not a zero devisor.
We define an integral domain as a ring without zero devisors.
An ideal I ⊂ R of R is a set I containing 0 such that I is closed under addition,
and such that if i ∈ I and r ∈ R, ir ∈ I. m is the maximal ideal m of a ring R if
m 6= R and if for any ideal I ⊂ R such that m ⊂ I, either I = m or I = R.
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Definition A.5.1. An ideal I ⊂ R is called a prime ideal if for any a, b ∈ R such that
ab ∈ I, a ∈ I or b ∈ I, and if I 6= R. Define the spectrum Spec(R) of R as the set of
prime ideals of R.

Denote by R[x1, · · · , xn] the ring of polynomials in n indeterminates with coeffi-
cients in R.

Definition A.5.2. Let k be a field, let S ⊂ k[x1, · · · , xn]. Define the affine variety
of S as Vkn(S) := {(ξ1, · · · , ξn) ∈ kn| f (ξ1, · · · , ξn) = 0 ∀ f ∈ S}. For X ∈ kn,
define the ideal of X as I(X) = Ik[x1,···xn](X) := { f ∈ k[x1, · · · xn]| f (ξ1, · · · , ξn) =
0 for all (ξ1, · · · , ξn) ∈ X}.

We can now define the coordinate ring of a set X ⊂ kn.

Definition A.5.3. Let X ⊂ kn be an affine variety. Define the coordinate ring of X as
k[X] := K[x1, · · · , xn]/I(X).

We define a module over a ring R as one defines a vector space over a field k.

Definition A.5.4. Let R be a ring. A (left-)module M over R is an abelian group (M,+)
together with an operation· : R×M→ M such that for r, s ∈ R and x, y ∈ M,

• r · (x + y) = r · x + r · y

• (r + s) · x = r · x + s · x

• (rs) · x = r · (s · x)

• 1R · x = x.

A module over R is called free if it has an R-basis. An R-basis of a module
M is a generating set of M that is linearly independent over R. Denote for a
subset S ⊂ M of an R-module M, (S) for the submodule of M generated by
S. By definition this is equal to the set of all linear combinations of S. If S =
{m1, cdotsmn}, we may write (S) = (m1, · · ·mn). In the same way we may define
an ideal (m1, · · ·mn) ⊂ R generated by the set {m1, · · ·mn} ⊂ R.
Define the formal power series ring in the variable x over a ring R as R[[x]] :=

{
∞
∑

i=0
aixi|ai ∈ R}, and similarly for any finite number of indeterminates xi, i ∈ I.

Definition A.5.5. A ring R is called local if it has precisely one maximal ideal. R is
called Noetherian if for every strictly ascending chain of subideals Ii ⊂ M such that
Ii ⊂ Ii+1 there exists an integer n such that Ii = In for all i ≥ n.

If R is a local Noetherian ring with maximal ideal m, we can define the residual
class field K := R/m. Furthermore ifM is a set of sets, we define a chain inM
as a subset C ⊂ M that is totally ordered by inclusion. The length of a chain C is
defined as length(C) := |C| − 1 ∈N0 ∪ {−1, ∞}. We then define

length(M) := sup{length(C)|C is a chain inM}.
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Define the dimension of R as dim(R) = length(Spec(R)).
It turns out that dimK(m/m2) ≥ dim(R).

Definition A.5.6. A local ring R is called regular if dimK(m/m2) = dim(R).

For a ring R, we define an R-algebra A to be a ring A with a homomorphism
α : R→ A. So an R-algebra is a commutative, associative algebra with unit. For a
field k, an affine k-algebra is a finitely generated k-algebra. A k-algebra is finitely
generated if it is isomorphic to the ring k[x1, · · · , xn]/I, where I ⊂ k[x1, · · · , xn]
is an ideal. It is clear that Rε = R[ε]/(ε2) is an affine R-algebra.

Definition A.5.7. Let A be an algebra over a field k. Define the transcendence degree of
A as sup{|T||T ⊂ A is finite and algebraically independent}.

For a k-algebra A, we define a set a = {a1, · · · , an} to be algebraically indepen-
dent if for all f ∈ k[x1, · · · , xn], f (a) 6= 0. An example is the ring Rε. We see
that Rε has transcendence degree 0 over R, as ε2 = 0. Moreover, Rε is local, with
unique maximal ideal (ε) (observe that any regular element is invertible).
For affine k-algebras, dim(A) = trdeg(A). The proof can be found in e.g. [19],
chapter 5. So dim(Rε) = 0. However, in Rε, (ε) is the maximal ideal. Since
(ε)2 = 0, dimR((ε)/(ε)2) = dimR((ε)) = 1. So we see that Rε is not regular.

Definition A.5.8. Let M be an R-module and let m ∈ M. m is called a torsion element
of M if there exists a regular r ∈ R such that rm = 0. M is called torsion-free if 0 is the
only torsion element of M.

In the ring Rε, the set of regular elements is given by {r = a + εb ∈ Rε|a 6= 0}.
Let R be any ring, and let M be a free R-module. It is clear from the definition of
linear independence that M is torsion-free. Let M be a free R-module. Define the
dual M∗ of M as M∗ = HomR(M, R). Observe that M∗ has a natural R-module
structure. Let φ ∈ M∗ and r ∈ R, m ∈ M, then rφ(m) = φ(rm). Let r be a regular
element of R, rφ = 0 implies that φ(rm) = 0 for all m ∈ M. However, since r is
regular and M is torsion free, rm 6= 0 if m 6= 0. It is easy to show (by induction,
for example) that if R = K[X]/(Xn) for a field K and an integer n > 0, and if r is
regular, {rm|m ∈ M} = M. This implies that φ = 0. So M∗ is torsion free.
We continue with the discription of freeness and flatness of a module M over the
ring Rε.

Definition A.5.9. Let R be a ring, and let M1, M2, M be R-modules. Let fi : M1 →
M2 be an injective map. Define the map φ f : M1 ⊗ M → M2 ⊗ M : x ⊗ m 7→
f (x)⊗m. We call M flat if for any injective map f, φ f is injective.

A consequence of this definition is that if M1 → M2 → M3 is an exact sequence,
then M1 ⊗ M → M2 ⊗ M → M3 ⊗ M is also an exact sequence. We will now
prove that over Rε, the notions of flatness and freeness coincide.

Proposition A.5.1. Let M be an Rε-module. Then M is flat if and only if M is free.
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Before proving the proposition, observe that for modules over any ring it is true
that free modules are also flat. The converse is not always the case. When M is
finitely generated, the conditions of flatness and freeness are identical. We will
not prove these facts here. See for example [8], chapter 6. We will prove these
facts for the ring Rε here.

Proof. We first prove freeness =⇒ flatness for an Rε-module M. This is a well
known fact, but it is proven here nonetheless. Suppose that M has an Rε-basis
{mi}i∈I . Let K and L be two Rε-modules, let φ : K → L be an injective map, and
let k, k′ ∈ K, m ∈ M, and m 6= 0, k 6= 0. Let l ∈ L. Tensor products are over Rε.
We wish to prove that φ′ : K ⊗ M → L ⊗ M, k ⊗ m 7→ φ(k) ⊗ m is an injec-
tive map. Assume φ(k)⊗m = 0. We want to prove that φ(k) = 0. Let us write
m = ∑i cimi, to obtain φ(k)⊗m = 0 if and only if ∑i ciφ(k)⊗mi = 0. Since the mi
form a basis of M, we can define π−1 : L⊗M → L×M on elements of the form
l⊗mi by sending l⊗mi 7→ (l, mi) ∈ L×M. Now we define ψ : L×M→ K⊗M :
ψ(l, mi) = k′ ⊗mi, where k′ is chosen such that φ(k′) = φ(k). Since φ is injective,
k = k′, so this map is well-defined. We extend the map ψ ◦π−1 : L⊗M→ K⊗M,
which is only defined on the set {l⊗mi|l ∈ φ(K), i ∈ I} ⊂ L⊗M as a linear map.
By construction ψ ◦ π−1(φ(k) ⊗ m) = k ⊗ m, and φ′ ◦ ψ ◦ π−1(l ⊗ m) = l ⊗ m,
where l ⊗m ∈ φ′(K⊗M). This implies that φ′ is injective.
For the other implication, we assume that M is flat. We use the fact that any
module over a field (i.e. a vector space) is free. This can be proven by using the
maximal principle on a chain of linealry independent sets to construct a maxi-
mal linearly independent subset. Taking the union of all the sets in this chain
provides a maximal element in this chain. Its elements are linearly independent,
and it must span the vector space by maximality. We refer to other sources for
the extended proof.
Proceding with a flat Rε-module M, we observe that M/εM is an R-module.
Concretely, if (ε) ⊂ Rε is the ideal generated by ε, we observe that R = Rε

(ε)
. Tak-

ing the tensor product with M yields M/εM as an R-module.
Consider the short exact sequence

0→ ε ·R
f

↪−→ Rε

g
−� R =

Rε

(ε)
→ 0.

g is given by a + εb 7→ a, and f is the inclusion. All spaces are considered as
Rε-modules. Since M is flat we can take the tensor product with ⊗Rε M to obtain

0→ ε ·M ↪−→ M
π
−� M

εM
→ 0.

We can form another exact sequence Rε
·ε−→ Rε → Rε/(ε). This implies M ·ε−→

M → M/εM is exact, since M is flat. So εM = ker(M ε·−→ M), so we obtain an

injective map M/εM
h
↪−→ εM ⊂ M, that is also surjective. So M/εM ∼= εM.
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Suppose that {m̄i}i∈I is an R-basis of M/εM. Choose a set {mi}i∈I ⊂ M such that
π(mi) = m̄i for all i ∈ I. We claim that {mi}i∈I is an Rε-basis of M. To see that
{mi}i∈I spans M, we consider an element m ∈ M, then π(m) = ∑ cim̄i, where
ci ∈ R. Then we know that m = ∑ cimi + εn, for some εn ∈ ker(M ·ε−→ M) = εM.
Because there is an isomorphism M/εM ∼= εM, we can express n as a linear
combination n = ∑ εc̄imi, for c̄i ∈ R. This proves that {mi}i∈I spans M.
To prove linear independence of {mi}i∈I , we proceed in a similar fashion. Sup-
pose ∑

i∈I′
cimi = for ci ∈ Rε, where i runs over a finite set I′. We wish to prove that

ci = 0 for all i. We know that g(ci) = 0 for all i, as π(mi) is an R-basis of M/εM.
We interpret π(cimi) = π(ci ⊗ mi) = g(ci)⊗ mi. This implies that ci ∈ εM, so
ci = εdi for some di ∈ R. Denote m̄i = π(mi). Since εM ∼= M/εM through
multiplication with ε, we know that εm̄i form an R-basis of εM as an R-module.
Hence di = 0 for all i, and we have proven linear independence. This finishes the
proof.

As a concrete application we wish to extend an R-basis of M/εM to an Rε-basis
of M. We will use this construction in the thesis, for example in chapter 1.

Corollary A.5.1. Let M be a free (and flat) Rε-module. Let {m̃i}i∈I be an R-basis of
M/εM. Let {mi}i∈I be such that under the projection π : M→ M/εM, π(mi) = m̃i,
for all i ∈ I. Then {mi}i∈I is an Rε-basis of M.

This finishes the discussion of the ring Rε.
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