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4. Towards constructing Uq(slε
n)

Introduction

In this chapter we repeat the construction of Uq(slε
3) of the first chapter for sln,

for general n. In the first section we quantize the upper Borel subalgebra of sln,
and we construct a basis by using the Weyl-group action. The Weyl group is
constructed for Uq(slε

2) in section 4.2, after which we continue with constructing
the Weyl group for Uq(slε

n). We assume that ε is invertible in this chapter. We
calculate the algebra relations up to any order of ε by taking the power series
expansion of an expression.
In this chapter we assume that ε is invertible, as in the non-invertible, εk = 0 case
the construction of the quantum Weyl group breaks down. It is not possible to
construct the usual highest weight representations when εk = 0. Taking ε invert-
ible provides an isomorphism between slε

n and sln. The usual automorphisms Ti
that originate from the Weyl group are not algebra automorphisms when ε is not
invertible. When working over R(ε), the maps Ti turn out to be algebra auto-
morphisms.
In the last section we prove that one can define algebra maps T̃i from the auto-
morphisms Ti for non-invertible ε. However, the T̃i can only be applied to simple
generators times a factor of ε. This is familiar from chapter one, where we saw a
similar term εZ in the commutator.
A different set of symmetries has been found by Bar-Natan and Van der Veen
when εk = 0, or more generally for R[[ε]]. The set of symmetries for non-
invertible ε is isomorphic to the dihedral group Dn for slε

n. See [37] for details.
It remains to be seen if this means that the invariants arising are stronger, as they
might have less symmetry, or if this means there are more hidden symmetries
that arise in the invariants. This symmetries only differs for n ≥ 4, as D3 = S3.
If ε ∈ R[[ε]], it has been noted that a quotient of an affine quantum group is
obtained, see [37] and [5]. The Dynkin diagrams of affine Lie algebras have a
circular form, so there are different symmetries than in the sln case. When εk = 0
in an affine Lie algebra in some sense, these symmetries survive. See [37] and [5]
for details.

The contents of this chapter is as follows. In the first section we provide the
general slε

n Lie algebra relations and its quantization Uq(slε
n) for invertible ε. The

construction of the Uq(slε
n) is briefly covered. In the second section we cover

the finite dimensional representation theory for Uq(slε
2) for invertible ε, and an

algebra automorphism is constructed. In the third section we proceed with the
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Chapter 4. Towards constructing Uq(slε
n)

Uq(slε
n) case in the same way, following [29]. In the last section we scetch the

connection between the Hopf algebras covered in this and the first chapter.

4.1. Quantizing a Lie subalgebra of sln

Let slε
n be a Lie bialgebra over R(ε) for an indeterminate ε with generators H±i , X±i ,

i = 1 · · · n, Cartan-matrix aij and the relations (we introduce ε in the b− side mul-
tiplication, as opposed to chapter 1)

[H−i , X±j ] = ±εaijX±j , [H±i , H∓j ] = 0, [H+
i , X±j ] = ±aijX±j , (4.1)

[X+
i , X−i ] = −

1
2

δi,j(H+
i + ε−1H−i ), (adX±i

)1−aij(X±j ) = 0, (i 6= j), (4.2)

δ(X+
i ) = εX+

i ⊗ H+
i − εH+

i ⊗ X+
i , (4.3)

δ(X−i ) = X−i ⊗ H−i − H−i ⊗ X−i , (4.4)
δ(H±i ) = 0. (4.5)

In our convention, aii = 2, aij = −1 if i = j± 1 and else zero. We consider the
double of the Lie algebra of upper triangular matrices b+ ⊂ gln, so we will as-
sume that the Cartan matrix has rank n. As noted in chapter 1, the Cartan matrix
is well defined, even though the above algebra is not semisimple.
We observe furthermore that H±i generate the Cartan subalgebra h, the biggest
commutative subalgebra of g (which is the case for semisimple Lie algebra’s).
Define adX(Y) = [X, Y] as the adjoint action of g on itself. Putting ε = 1 and di-
viding out to H+

i − H−i = 0 yields the usual sln Lie bialgebra. In this chapter we
consider the generalization of the classical double quasitriangular Lie bialgebra
calculated in chapter 1, although with ε present in the b− lower Borel subalgebra
commutation relations.
The simple roots αi : h+ → R(ε) are defined as the linear maps αi(H+

j ) = aij,
and similarly for h− ⊂ h, with an additional factor of ε. Since ε is invertible, the
root space for h± are isomorphic and we may talk about the rootspace of slε

n. As
we are concerned with the quantization of b+ in this section, we will use roots on
h+.
The fundamental reflections si : h → h are defined by si(h) = h− αi(h)H+

i for
h ∈ h. The Weyl group of g is the subgroup of GL(h) generated by s1, · · · , sn−1.
The Lie algebra slε

n is finite dimensional, so there is a unique element w of max-
imal length N. Write w = si1 · · · siN . Define the positive roots as the set ∆+ =
{αi1 , si1(αi2), · · · , si1(· · · siN−1(αiN )}. Note that each element occurs exactly once.
Although slε

n is not semisimple, the Killing form is nondegenerate on the sub-
algebras h± ⊂ h generated by H±i . The reason is that the upper an lower Borel
subalgebras b± are embedded in sln. So the Cartan matrix and the root system
corresponding to the b± algebra is well defined.
For a Lie algebra g over a field, one can extend the fundamental reflections to
act on g instead of h ⊂ g, see [6], in which case we call the automorphism corre-
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4.1. Quantizing a Lie subalgebra of sln

sponding to si Ti. In the case of slε
n, we have the following definition of Ti. This

definition is equivalent to the automorphisms Ti of sln, as one can check in for
example [6], or [14].

Proposition 4.1.1. Let slε
n be the Lie algebra structure as specified above. The Ti defined

in the following way

Ti(X±i ) = −X∓i , Ti(H+
j ) = ε−1H−j − ε−1aji H−i , Ti(H−j ) = εH+

j − εaji H+
i , (4.6)

Ti(X+
j ) = (−aij)!−1(adX+

i
)−aij(X+

j ), i 6= j (4.7)

Ti(X−j ) = (−1)aij(−aij)!−1(adX−i
)−aij(X−j ), i 6= j. (4.8)

are Lie algebra automorphisms of slε
n.

Proof. The only relations that change in the presence of ε are the commutator
[H−i , X±j ] = −εaijX±j and [X+

i , X−i ] = −
1
2 (H+

i + ε−1H−i ). Applying Ti and Tj on
both sides of the first identity, we observe that T respects the relation. Here we
make use of the Jacobi-identity to calculate commutators of commutators.
For the second identity, we observe that the right-hand side is invariant (modulo
a global minus sign) under Tj if i = j and if j 6= i we gain a term −aij(H+

j +

ε−1H−j ) = H+
j + ε−1H−j , as aij = −1 if i 6= j. On the left hand side we ob-

tain the term [[X+
j , X+

i ], [X
−
i , X−j ]], which we can evaluate with applying the Ja-

cobi identity twice. Note that −aij = 1, so Tj(X−i ) = [X−i , X−j ]. We see that
[[X+

j , X+
i ], [X

−
i , X−j ]] = −[[X−j , [X−i , X+

i ]], X+
j ] − [[[X+

j , X−j ], X−i ], X+
i ]. We only

need to prove that [X+
j , [X−j , [X+

i , X−i ]]] yields a term H+
j + ε−1H−j , and similarly

for the term i↔ j. Using the commutator [X+, X−] we obtain−[[X−j , [X−i , X+
i ]], X+

j ]−
[[[X+

j , X−j ], X−i ], X+
i ] =

1
2 (−[[X

−
j , H+

i + ε−1H−i ], X+
j ] + [[H+

j + ε−1H−j , X−i ], X+
i ]).

With [H+
i , X±j ] = ±aijX±j and the relations for H−i , this yields the required result.

This proves the theorem.

These automorphisms obey the braid group relations TiTjTi = TjTiTj for all i 6= j.

Proposition 4.1.2. Let the Ti be as defined above, and let aij be the Cartan matrix cor-
responding to sln. Then TiTjTi = TjTiTj for all i 6= j.

Proof. As aij only takes nonzero values if i and j differ at most 1, we only need to
check two non-trivial identities. The case for H±i can be reduced to the sln case
by counting the factors of ε on both sides and realizing Ti is linear in ε. We note
that independently of the index i, Ti switches the sign of H±. This is in fact the
only thing that is different from sln for the Cartan subalgebra, together with ε we
need to keep track of.
The case for X±i is the same for both b±, and can be reduced to the usual case
by realizing that H+ acts in the same way as ε−1H−. We only need to count the
factors of ε that are introduced when checking the Weyl condition on X±j . This is
left as an exercise, as it follows by a straightforward calculation.

104



Chapter 4. Towards constructing Uq(slε
n)

We continue with constructing the quantization of the above slε
n Lie bialgebra.

We first quantize the upper triangular matrices Lie subalgebra b+ of slε
n. Consider

the subalgebra b+ generated by the simple root vectors X+
i and H+

i for all i =
1 · · · n− 1. remember that the cobracket on b+ is multiplied with ε:

δ(X+
i ) = εX+

i ∧ H+
i . (4.9)

The cobracket on the other positive root vectors is implicitly defined. To quan-
tize a Lie bialgebra, only the cobracket on the simple generators are needed. We
follow the usual construction of Uq(sl3) here to obtain a quantization of b+. See
chapter 6 and 8 of [6].
We are looking for a Hopf algebra with classical limit 4.9, so it is easiest to start
with quantizing the cobracket. Firstly, let us take the trivial Hopf algebra struc-
ture on the universal enveloping algebra U(b+), as introduced earlier. δ(H+

i ) = 0
yields

∆h(H+
i ) = H+

i ⊗ 1 + 1⊗ H+
i .

Continueing with X+
i , we introduce a grading deg on b+. Here deg(H+

i ) = 0 and
X+

i = 1. In order to obtain a graded algebra, we need the (co)multiplication to
preserve the grading, or at least not lowering the degree in the case of general
positive roots. To this end, let us follow [6] and guess

∆h(X+
i ) = X+

i ⊗ ehµH+
i + ehνH+

i ⊗ X+
i , (4.10)

where µ, ν ∈ R(ε)[[h]], so that ehµH+
i and ehνH+

i are grouplike, meaning ∆h(ehµH+
i ) =

ehµH+
i ⊗ ehµH+

i . Multiplying X+
i with e−hνH+

i thus yields

∆h(X+
i ) = X+

i ⊗ ehµH+
i + 1⊗ X+

i ,

so we can take ν = 0 without loss of generality. We can use that the classical limit
of ∆h(X+

i ) equals 4.9, so we can take µ = ε to obtain

∆h(X+
i ) = X+

i ⊗ ehεH+
i + 1⊗ X+

i . (4.11)

∆h extends to an algebra homomorphism on the subalgebra generated by H+
i and

X+
i , since the H+

i has trivial comultiplication. Consequently, the multiplication
(bracket) can be left unchanged. Hence we can directly write down the antipode
for H+

i and X+
i from the calculated comultiplication.

Sh(H+
i ) = −H+

i , S(X+
i ) = −X+

i e−hεH+
i . (4.12)

We extend ∆h to an algebra homomorphism on Uh(b+). Consider the classical
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4.1. Quantizing a Lie subalgebra of sln

Serre-relations for i 6= j, that hold for the Lie algebra:

(adX±i
)1−aij(X±j ) =

1−aij

∑
k=0

(−1)k
(

1− aij

k

)
(X±i )

k(X±j )(X±i )
1−aij−k = 0. (4.13)

For sln, 1− aij = 2 for all the nontrivial relations (the case i = j yields a vanish-
ing commutator for X+

i and X+
j ). Note that in the case of sl3, with the definition

[x, y] = z and X−1 = x, X−2 = y, gives [z, x] = 0.

In order for ∆h to be an algebra homomorphism, 4.13 needs to be altered. Re-
peating the calculation we did in chapter 1, the correct form of the quantum
Serre relations is obtained by replacing the binomial coefficients with quantum
binomial coefficients, with q = eεh = 1+ εh. For the calculation in the case of sln,
see chapter 6 of [6]. In the presence of ε this calculation is the same.

1−aij

∑
k=0

(−1)k
[

1− aij
k

]
e2εh

(X+
i )

k(X+
j )(X+

i )
1−aij−k = 0. (4.14)

One of the ingredients for the proof that with these relations ∆h does indeed
become an algebra homomorphism is the commutation relation

eεhH+
i X+

j e−εhH+
i = eεhaij X+

j .

Together with the trivial counit, we have constructed the Hopf algebra structure
on Uq(b+).

Theorem 4.1.1. Uh(b+) is a quantization of the Lie bialgebra b+, for invertible and
non-invertible ε. Moreover, there exists an algebra isomorphism Uq(b+) ∼= U(b+)[[h]]
in both cases.

Proof. In order to prove that we have indeed found the quantization of b+, ob-
serve that multiplication and comultiplication in Uh(b+) have b+ as classical
limit. It is also necessary to find a R(ε)[[h]]-module isomorphism between Uh(b+)
and U(b+)[[h]]. Since ε is invertible, this is equivalent to the sln case. This equiv-
alence yields an R(ε)[[h]]-module isomorphism. Even stronger, we obtain an
algebra isomorphism between Uh(b+) and U(b+)[[h]], as there exists an algebra
isomorphism between Uh(sln) and U(sln)[[h]] by the rigidity theorem. See [6],
chapter 6.1.
The case where ε is not invertible can be obtained from the first case by expand-
ing the isomorphism in terms of ε. The fact that this can be done follows because
the ε only occurs together with the h in the algebra relations on the b+ side in the
q-Serre relations. This implies that the isomorphism Uh(b+) ∼= U(b+)[[h]] is also
defined over R[[ε, h]]. Moreover, ε is only present in q and q is invertible up to
any order of εk. We note that after expansion of q there is no factor of ε−1 present
in the relations of Uh(b+).
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Chapter 4. Towards constructing Uq(slε
n)

To prove that in finite order of ε we still have isomorphisms of R[ε]/(εk)[[h]]-
modules, note that injectivity follows from comparing the terms in each order of
ε. The surjectivity follows in the same way. That we obtain an isomorphism of
algebras follows from linearity of the isomorphism over ε. So we have a quanti-
zation of the Lie bialgebra b+.

We are now in a position to construct a PBW basis for Uh(b+), while also calcu-
lating the dual of Uh(b+), the partial R-matrices and the comultiplication on the
PBW basis. These calculations are necessary in order to be able to write an algo-
ritm that can calculate the algebra relations for general n. We could start with the
dual basis to the simple roots X+

i . Using these generators and the action of the
Weyl group, we can calculate the necessary partial R-matrices. Using those (and
their inverse), we can calculate the coproduct on basis elements associated with
any positive root. Then we can find the (co)multiplication properties of the dual
basis using the Hopf algebra pairing.

The action of the braid group can be defined straightforwardly on the algebra
Uh(n+) spanned by X+

i in Uh(b+) through the Hopf algebra right-adjoint action
Ad

Adx(y) = ∑ x(1)yS(x(2))

of Uh and Ucop
h , the opposite coalgebra. Define Ti(X−j ) = Ad

(−X−i )
(−aij)(X−j ) and

Ti(X+
j ) = Adcop

−(X+
i )

(−aij)
(X+

j ). As we will see, for invertible ε it is possible to define

Ti on Uq(slε
n). This will be covered in the next sections. For now we restrict

ourselves to Uq(n+). Note that we define the Ti slightly different here than we
will do in the next section. We leave out the central factor for cosmetic reasons.
We note that this has no effect on the expression for ∆(Xβ) we state here.
This action can be used to write down explicit generators of Uq(b+) for invertible
ε. If β = si1 si2 · · · sik−1(αik) ∈ ∆+, define X±β = Ti1 · · · Tik−1(X±ik

). Assuming that
there are no redundant reflections in the notation for β, this is well defined, and
yields generators X±β for each positive root. The fact that this is well defined
follows from the Weyl property for Ti. For the proof that Ti satisfy the Weyl
property we refer to the next two sections.
Denote X±β for the generators of Uq(sln) corresponding to the root β, and denote
H±i for the generators of the quantized Cartan subalgebra of Uq(slε

3), for i =
1, · · · n. Let w be the longest root with decomposition w = si1 · · · siN . We denote
the positive roots by β1, · · · βN . Corresponding to this decomposition we have
the non-simple generators X±βi

, where i = 1, · · · , N
Monomials in X+

β and H+
β form a basis of Uq(b+). The folowing theorem is a

generalization of the theorem we saw in chapter 1, however the proof is easier
since we start with an algebra over R(ε).

Theorem 4.1.2. Let X+
β and H+

β be the generators corresponding to the positive roots
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4.1. Quantizing a Lie subalgebra of sln

β. Then the monomials
N
∏
i=1

(X+
βi
)mi

n
∏
i=1

(H+
i )pi form a basis of Uq(b+).

Proof. From the classical PBW theorem it follows that ordered monomials in X±β
constitute a linear basis of Uq(slε

n). Now we use the fact that ε is invertible, so
that we have an isomorphism between Uq(slε

n) and U(slε
n)[[h]], by the rigidity

theorem.

This finishes the construction of Uq(b+). To obtain Uq(slε
n) we need to calculate

the QUE-dual of Uq(b+), which we refer to as Uq(b−), consistent with chapter
1. Then one can form the quantum double of Uq(b±) to form Uq(slε

n). We skip
this construction and state the relations of Uq(slε

n). The proof that these relations
form a Hopf algebra can be found in many sources, since ε is invertible.
Notice that Uh(b+) is also well defined over R[[ε, h]] by expanding q. Over this
ring, it is possible to divide out to εk for some k. When we take the quantum
double of Uh(b+), we can no longer work over R[[ε]], due to the factor 1

q−q−1

present. In the last section of this chapter we cover this issue.

Theorem 4.1.3. Let ε be invertible, and let q = eεh. The following relations

[X−i , H−j ] = εaijX−i , [X+
i , H+

j ] = −aijX+
i , [X−i , H+

j ] = aijX−i , [X+
i , H−j ] = −εaijX+

i

[X−i , X+
j ] =

qH+
i − q−ε−1 H−i

q− q−1 δij,
k=1−aij

∑
k=0

(−1)k
[

1− aij
k

]
q2
(X±i )

kX±j (X±i )
1−aij−k = 0

∆(X−i ) = X−i ⊗ ehH−i /2 + e−hH−i /2 ⊗ X−i , ∆(X+
i ) = X+

i ⊗ eεhH+
i /2 + e−εhH+

i /2 ⊗ X+
i

∆(H±i ) = H±i ⊗ 1 + 1⊗ H±i , S(X+
i ) = −eεhX+

i , S(X−i ) = −e−hX−i , S(Hi) = −Hi,

define an Hopf algebra Uq(slε
n) over R(ε), which is the quantization of the Lie bialgebra

slε
n. The monomials

N

∏
i=1

(X+
βi
)mi

n

∏
i=1

(H+
i )pi

n

∏
i=1

(H−i )p′i
N

∏
i=1

(X−βi
)m′i

form a basis of Uq(slε
n).

In general, the action of the Braid group is not compatible with the coproduct
when extended to the full Hopf algebra. This means that one has to compute
the action of the braid group, before one can compute the coproduct. There is
another option. One can express the coproduct of the generators in terms of the
R-matrices corresponding to the Uq(sl2)i subalgebras of Uq(sln). We refer these
R-matrices as partial R-matrices.
Let A = aij be the Cartan matrix. Define ζi = ∑(A−1)ijH−j . For simple roots αi,
i = 1, · · · , n − 1, associated with (dual) generators X+

i , X−i and H+
i , ζi, one has
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Chapter 4. Towards constructing Uq(slε
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the following pairing (q = eεh):

〈(H+
i )o(X+

i )
t, (ζi)

o′(X−i )
t′〉 = δo,o′δt,t′h−o−to![t]q!. (4.15)

Where [s]q = qs−q−s

q−q−1 and [n]q! = [n]q[n− 1]q · · · [1]q is the quantum factorial. We

wish to calculate the pairing on general monomials in X±)i and H+
j , ζ j. To this

end, defineRh,i as

R̃h,i =
∞

∑
k=0,l=0

hk+l(X+
i )

l(H+
i )k ⊗ (ζi)

k(X−i )
l

k![l]q!
. (4.16)

By the quantum double construction, this is the R-matrix for Uh(sl2) for the i-
th simple root. Using the braid group action, one can define the R-matrix for
general positive root βr = Ti1(· · · Tir−1(αir)) as follows. We note that the algebra
automorphisms Ti can be defined on Uq(slε

n). The definition can be found in
section 4.3.

R̃h,βr = (Ti1 · · · Tir−1 ⊗ Ti1 · · · Tir−1)(R̃h,ir), (4.17)

R̃h,<βr = R̃h,βr−1 · · · R̃h,β1 . (4.18)

We have the following proposition, see section 4.3 for the proof.

Proposition 4.1.3. (Comultiplication) For any β ∈ ∆+,

∆h(X+
β ) = R̃

−1
h,<β(X+

β ⊗ eεhH−β + 1⊗ X+
β )R̃h,<β.

Note that if β = ∑i kiαi, then Hβ = ∑i diki Hi, where di = 1 are the Cartan integers,
where we restrict ourselves to sln.

So it is possible to quantize the algebra on the simple generators and know the
comultiplications on the non-simple generators. We turn the PBW basis consist-
ing of monomials in generators into a dual basis to obtain the R-matrix. To this
end, we define the following generators. Let A = aij be the Cartan matrix. Re-
member ζi = ∑(A−1)ijH−j . The following pairing for monomials in the dual
generators can be calculated by using the comultiplication.

Proposition 4.1.4.

〈
N

∏
i=1

(X+
i )

mi
n

∏
i=1

(H+
i )pi ,

n

∏
i=1

(ζi)
p′i

N

∏
i=1

(X−i )
m′i〉 = ∏ δmi ,m′i ∏ δpi ,p′i ∏ hmi+pi ∏[mi]q!.

where [n]q =
q−n−qn

q−1−q1 .

The proof makes use of proposition 8.3.7 in [6].
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4.2. Representation theory of Uq(slε
2)

Proof. Let us scetch the proof of the general case. The proof is by induction,
using proposition 8.3.7 in [6] that is proven in section 4.2.1. We apply ∆ to the
non-capital side, after which we only need to count the tensor-products that pair
non-zero. Note that our algebra has the same pairing as the Uq(b±) dual pairing
in [6], except for the factor of ε, and the correction with q− q−1.
In particular, since ζi are dual to H+

i , the basis of Uq(b−) corresponds to the
{ζi, µβi} basis in [6]. The different conventions for the comultiplication of X+

i
in [6] result in a factor of q1/2tr(tr−1) present in 8.3.7 in [6] that is absent here.
Looking at our Ri, in particular the prefactor Rni present in the sum, we get the
required result.

Now this construction is finished, we can write down the universal R-matrix
corresponding to Uq(slε

n). The hardest part is calculating the PBW basis and
the corresponding dual, and the multiplication relations between the generators.
The quantum Serre relations together with the braid group action provide the
multiplication relations between the PBW generators.

4.2. Representation theory of Uq(slε
2)

Let us proceed with calculating the comultiplication of the quantized Lie bialge-
bra Uq(slε

2). Before we are able to properly calculate the comultiplication (in such
a way that is generalizable, anyway), we need to look at the finite dimensional
representations of Uq(slε

2). In this section, we may write Uq(slε
n), Uh(slε

n) or Hn,ε
for the quantization of slε

n.
First we note that if ε2 = 0, it is impossible to define the q-Weyl group in the way
it is usually done, since the finite dimensional highest weight representations
cannot be constructed. A solution to this problem is to work over the field R(ε),
and prove afterwards that all components of the desired identity lie in R[[ε]], so
that we can divide out to (ε2). For the remainder of this section we will work
over the field R(ε)[[h]].
If ε = 1, and one divides out to H+ − H− one gets Uq(sl2). This algebra is ob-
tained by taking the quantum double of the upper triangular matrix subalgebra,
with the Hopf structure calculated earlier. For a description of the representa-
tions of the regular Uh(sl2) see for example [6]. We will take the op quantum
double construction in this section, instead of the cop construction.
We consider the algebra Uq(slε

2), also denoted as H2,ε for short, generated by
X+, X−, H+ and H− and the following relations. Note that we introduce ε in the
b+ multiplication relations. Moreover, our conventions match the conventions
used in [29]. In particular note the factor of 1

q−q−1 in the commutator between

110



Chapter 4. Towards constructing Uq(slε
n)

X±.

[X−, H−] = 2X−, [X+, H+] = −2εX+, [X−, H+] = 2εX−, [X+, H−] = −2X+

(4.19)

[X−, X+] =
qH− − q−ε−1 H+

q− q−1

Note that we scaled the generators X− by a factor of 1
(q−q−1)

with respect to the
algebra in the first chapter. Substituting H+ = 2A − B and H− = a yields the
familiar algebra structure, where B is left out when considering only the Uq(slε

2)

subalgebra. We take q = e−hε, which will be useful when constructing the uni-
versal R-matrix. This is a different from the previous section. Note that ε is
invertible.
Multiplying X− with q− q−1 yields an algebra over R[[ε]] (formally we also have
the parameter h, so it is an algebra over R[[ε, h]]). The final results of the con-
struction are valid for non-invertible ε over the ring R[[ε]], as discussed in the
last section of this chapter.
We can take H̃+ = ε−1H+ instead of H+. In this case, we have an algebra ho-
momorphism with the algebra in [29], by sending our H̃+ to Reshetikhin’s H, (as
well as sending our H− to H) and substituting q

1
2 for q. Uq(slε

2) agrees with ex-
ample 3.2.1 in [23] in the same way. The comultiplication, antipode and R-matrix
are given by the following formulas.

∆(X−) = X− ⊗ eεhH−/2 + e−εhH−/2 ⊗ X−, ∆(X+) = X+ ⊗ ehH+/2 + e−hH+/2 ⊗ X+

(4.20)

∆(H±) = H± ⊗ 1 + 1⊗ H±, S(X+) = −ehX+, S(X−) = −e−εhX−, S(H) = −H.

We also introduce the q-commutator as

[A, B]q = qAB− q−1AB. (4.21)

In constructing the representations of Uq(slε
2), we will follow [29] (see Reshetikhin’s

website for this paper). Denote the representation map by π : H2,ε → End(V),
where V is the 2-dimensional vector space generated by {e 1

2
, e− 1

2
}. We obtain

the following actions, denoted in matrix notation, where we use the order of the
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basis as indicated.

π(H+) =

[
ε 0
0 −ε

]
(4.22)

π(X+) =

[
0 1
0 0

]
π(H−) =

[
1 0
0 −1

]
π(X−) =

[
0 0
1 0

]
.

To prove this is a representation, one needs to prove that the maps given above
are indeed algebra homomorphisms. This is a straightforward exercise. Remem-
ber that we take q = e−εh. In the case of j = 1

2 we obtain the simplest case of [29],
if we identify H̃+ and H−.
Following [29], we can denote the representation in the following more general
way. For this section, we use the convention that [n]q = qn−q−n

q−q−1 . Furthermore,[
n
k

]
q
=

[n]q !
[k]q ![n−k]q ! , as usual.

For a finite dimensional module V j of dimension 2j + 1 we get, where j is a posi-
tive integer or half integer and V j is generated by the basis vectors ej

m, −j ≤ m ≤
j,

π j : Uh(slε
2)→ End(V j) (4.23)

π j(X+)(ej
m) = ([j−m]q[j + m + 1]q)1/2ej

m+1 (4.24)

π j(X−)(ej
m) = ([j + m]q[j−m + 1]q)1/2ej

m−1 (4.25)

π j(H+)(ej
m) = 2mεej

m (4.26)

π j(H−)(ej
m) = 2mej

m. (4.27)

Again, checking that this yields a representation is straightforwardly writing out
the relations 4.19. So 4.19 becomes a quasitriangular Hopf algebra with the fol-
lowing R-matrix. See [30], or [6], if you use the variables E = ehH+/2X and
F = e−εhH−/2Y, and identify ε−1H+ with H−. Note that the factor 1/2 in the
exponential comes from the pairing between H+ and H−. Ultimately this is due
to a different definition of the comultiplication, which is used in calculating the
pairing between monomials. We know that the R-matrix is defined as the uni-
versal R-matrix of the Drinfel’d double. Hence it must be of the form ∑ ea ⊗ f a,
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where e and f are dual bases. We obtain after a correction with a factor 1
2

R = exp(hH+ ⊗ H−/2)∑ Rn(h)(ehH+/2X+)n ⊗ (e−εhH−/2X−)n (4.28)

Rn(h) =
q1/2n(n−1)(1− q−2)n

[n]q!
.

An application of the Hopf algebra automorphism S⊗ S to the R-matrix shows
that we obtain (note the plus instead of the minus sign in R̃n):

R = ∑ R̃n(h)(e−hH+/2X+)n ⊗ (eεhH−/2X−)n exp(hH+ ⊗ H−/2). (4.29)

R̃n(h) =
q1/2n(n+1)(1− q−2)n

[n]q!
. (4.30)

An essential element we can construct with the R-matrix is the ribbon element,
or more importantly, the inverse of the ribbon element. See [23] for the precise
definition. In particular we can write ν = pu for the ribbon element, where
u = ∑R(2)S(R(1)), and p2 = u−1v, u−1 = ∑R(2)S2(R(1)), v = S(u). Using
these identities, we get

p−1 = e
1
2 (H++εH−).

The square root w of the inverse ribbon element is not a part of the algebra H2,ε
since it cannot be expressed in terms of X±. Writing these out in matrix notation
makes clear that π(X±) don’t generate the entire End(V j), except in the case of
j = 1

2 and j = 1, the standard representation of H2,ε. We will write out the action
of w in the representations V j later in this section, but it will be the case that w
sends a basis vector ej

m to the vector ej
−m. In matrix notation this is the element

with only non-zero entries on the ‘mirrored’ diagonal. Since this is true for any
m, π(w) cannot be written as a linear combination of (H±)b and (X±)a, a and
b positive integers, as any combination of these will yield non-zero off-diagonal
entries.
This means that we have to add w to the Hopf algebra. To prove that this makes
sense, we can use proposition 6.3.12 and example 6.3.13 of [23]. It turns out
that we obtain another Hopf algebra, called the quantum Weyl group ([6]), and
denoted by H2,ε, in some sense the completion of H2,ε[30]. Proposition 6.3.12 can
be used for Uq(slε

n) as well, but one obtains a Weyl element associated with the
longest root in sln, so this lemma will be of less use there.

Proposition 4.2.1. Define the algebra automorphism T by

T(H+) = −εH−, T(εH−) = −H+, T(X±) = −q±1X∓,

and let ν−1 be the inverse of the Ribbon element. Then these data together with the
quasitriangular structureR on H2,ε define the Hopf algebra H2,ε, which is generated by
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H2,ε and w, obeying the relations

wgw−1 = T(g), w2 = ν, ∆(w) = R−1w⊗ w, ε(w) = 1, S(w) = we
h
2 (εH−+H+).

Here g ∈ H2,ε, and ε is the counit.

Before proving the proposition, let us note that if we take ε = 1, and we identify
H+ with H−, taking the sl2 limit, the antipode agrees with [30], remembering that
we have introduced a factor of 2 in our conventions. The conventions here agree
directly with [6], however they use an asymmetric comultiplication. The expres-
sions for T can be checked in representations by explicitly taking the square root
in representations of ν−1.

Proof. We check the conditions for proposition 6.3.12 in [23].
We have T2 = id and T⊗ T(R) = R21, which is a consequence of the expression
for R given before, and can be checked by explicit calculation. This means that
ν−1 has to obey

ν−1 is central, ∆(ν−1) = ((ν−1 ⊗ ν−1)R21R), T(ν−1) = ν−1.

The first two conditions are satisfied by definition of the ribbon element. See
prop. 2.1.8 in [23]. As noted before, ν−1 = p−2u−1. Also it is useful to ob-
serve T ◦ S = S−1 ◦ T. Taking the automorphism T of this expression, we get
T(p−2)T(u−1) = p2T(R(2)S2(R(1))) = p2R(1)S−2(R2) = p2v−1 = ν−1.
We have to prove that T defines an algebra map and an anti-coalgebra map, and
we have to prove thatR is a 2-cocycle. The last condition follows by definition of
a quasitriangular structure, as usual. The fact that T is an algebra automorphism
is checked by checking the algebra relations, as is the case with a anti-coalgebra
map. This is a straightforward exercise and is left to the reader. This shows that
our map T and the ribbon element obey the relations of proposition 6.3.12 in [23].
As a result we obtain a Hopf algebra H2,ε which is generated by H2,ε and w−1,
which obeys the following relations

wgw−1 = T(g), w2 = ν, ∆(w) = R−1w⊗ w, ε(w) = 1, S(w) = wuS(w−2)

We are left with the calculation of the antipode of the Weyl element.
For the calculation of the element p2 = u−1v we used the Mathematica imple-
mentation, for which we refer to the appendix. In the program we used the cop-
convention of the double construction instead of the op. Note that the antipode
S on Uq(b+) provides an isomorhpism between the two double constructions.
Under this isomorphism, the R-matrix R12 is taken to R−1

12 , see exercise 7.1.2 in
[23]. A simple calculation using proposition 2.1.8 in [23] shows that p is invariant
under this isomorphism.
Using similar arguments together with the general expression S(w) = wuS(w−2)
from proposition 6.3.12 in [23], we can show that in general the antipode of the
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Weyl group element is given by S(w) = wp−1. Observe that the w we use here
is the inverse of the w defined in [23], by definition. This ends the proof of the
proposition.

The T defined here for sl2 is not a braid group generator. However, this is not
important in the sl2 case since there is only one simple root. It is possible to make
T a braid group generator in the sln case by performing a simple transformation
on w. For this construction we will have to do more work.
Let us now calculate the action of the inverse ribbon element on a basis-vector ej

m
of a module V j. We leave the representation-map π j out of the notation.

ν−1(ej
m) = u−1 p−1(ej

m) = ∑R(2)S2(R(1))e−
1
2 (H++εH−)(ej

m) (4.31)

= exp(hH−H+/2)·

∑ Rn(h)(e−εhH−/2X−)n((−1)2e2hεehH+/2X+)ne−
1
2 (H++εH−)(ej

m)

Observe that since X+ acts as a raising operator, only the terms with 0 ≤ n ≤
j − m act nonzero on ej

m. Hence we obtain for such an n-term in the R-matrix,
which we will sum over afterwards,

= exp(hH−H+/2)Rn(h)(e−εhH−/2X−)n((−1)2e2hehH+/2X+)neε(2m)(ej
m) (4.32)

= exp(hH−H+/2)Rn(h)(e−εhH−/2X−)n(−1)2ne2εhn(ehε(m+1+···+m+n))eε(2m)(ej
m+n)

= exp(hH−H+/2)Rn(h)(−1)2ne2εhn

ehε 1
2 ((m+n)(m+n+1)−m(m+1))(eεhH−/2X−)ne−ε(2m)ej

m+n

= exp(hH−H+/2)Rn(h)(−1)2ne2εhn·

ehε 1
2 ((m+n)(m+n+1)−m(m+1))ehε 1

2 (m(m−1)−(m+n)(m+n−1))eε(2m)ej
m

Remember that the module V j is generated by the highest weight vector ej
j. Since

the inverse of of the ribbon element is central (see [23]), it is enough to check
equality on the highest weight vector. Then only the n = 0 term contributes, and
we get the following identity

ν−1ej
m = ehε(2j(j+1))ej

m. (4.33)

By Schur’s lemma the action of ν−1 is proportional to the identity. Note in partic-
ular the contribution from p−1. The following expression is a square root of ν−1,
and as it turns out the only one that meets the requirements of proposition 4.2.1.
It can be proven by direct calculation that it satisfies wgw−1 = T(g) and w2 = ν.
We get the required result:

w−1ej
m = (−1)−j+mehε(j(j+1)−m)ej

−m.

We have the following lemma.
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Lemma 4.2.1. Let w−1 be as in proposition 4.2.1. Then the action of w−1 in the highest
weight module V j is given by

w−1ej
m = (−1)−j+mehε(j(j+1)−m)ej

−m. (4.34)

Proof. By definition, w is the non-central square root of the inverse ribbon ele-
ment ν−1. To calculate the action of w in the representation we have to know
which square-root we have to use, given that we are working with matrices, so
there are multiple options, a priori. We claim that the square root in the repre-
sentation is uniquely determined by two equations:

wgw−1 = T(g) and w2 = ν.

This is proved by looking at the action of ν in the representation, and is translated
into the following lemma, which will not be proven here, but can be proved
by looking at the Jordan decomposition of w(j), or by counting the degrees of
freedom, alternatively.

Lemma 4.2.2. Suppose w(j) is a 2j+1 by 2j+1 invertible matrix, and let xp(j) =
π(X+) and xm(j) = π(X−), the action of X± in the representation V j. Let λ be any
invertible element of the underlying ring. Then w(j) is uniquely defined by the following
two equations

w(j)2 = λId(j) (4.35)

w(j)xp(j)w(j)−1 = xm(j).

Here Id(j) is the 2j+1 times 2j+1 identity matrix.

Proof.

It is clear that the scuare root w given above satisfies

wgw−1 = T(g) and w2 = ν.

This finishes the proof.

We know the explicit action of w in any finite dimensional H2,ε module, and we
can compare it with other definitions. One can check that the given square root
of the inverse ribbon element yields the correct T, as stated in proposition 4.2.1.
Usually, w−1 is defined by its action on all finite representations V j of H2,ε, for ex-
ample in [29] and others. This is possible if H2,ε is semisimple as an algebra. An
algebra is said to be semisimple if the set of elements that act as zero in every ir-
reducible representation contains only zero. We know that H2,ε is not semisimple
however, since ε−1H+ − H− acts as zero in every representation. This element
exactly generates the ideal we need to divide out to, in order to get the Uq(sl2),
which is a semisimple algebra. The non-semisimplicity implies that w is well de-
fined up to terms H−, ε−1H+, which have the same action in any representation,
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if we would define w by its action in the representation. Of course, this is a con-
sequence of the fact that ε−1H+ − H− is central in H2,ε. This element will turn
out to be the term we gain in our final expression, with respect to the sln case.
The w defined here agrees, after the ‘semisimplification’ of H2,ε, with the quan-
tum Weyl element in [30], and is the inverse of the w defined in example 6.3.13
in [23], as mentioned before. This can be seen from the action of w in the repre-
sentation. Note that Uq(sl2) in [23] agrees with the conventions of [30].

4.3. Constructing the q-Weyl group of Uq(slε
n)

We proceed with constructing quantum Weyl group of Uq(slε
n), with Cartan ma-

trix aij of sln. We follow [30]. Note that the relations here agree with [21] and [30],
when we divide out to ε−1H+

i − H−i . Before reading this section it is advised to
study [30] in full detail, since we copy a large part of his calculations.
This algebra is non semi-simple. The Weyl group elements used in the main part
of this section come from the H2,ε case, where we defined it to be the square root
of ν−1. Later in this section we introduce wi, where wi and wi are related by a
simple transformation with q−ε−1 H+H− , like the Uq(sln) case [30]. It turns out to
be the case that the algebra automorphisms obtained this way will yield a braid
group representation.
Uq(slε

n) is generated by {X±i , H±i } and the relations

[X−i , H−j ] = aijX−i , [X+
i , H+

j ] = −aijεX+
i , [X−i , H+

j ] = aijεX−i , [X+
i , H−j ] = −aijX+

i

(4.36)

[X−i , X+
j ] =

qH−i − q−ε−1 H+
i

q− q−1 δij,
k=1−aij

∑
k=0

(−1)k
[

1− aij
k

]
q2
(X±i )

kX±j (X±i )
1−aij−k = 0

∆(X−i ) = X−i ⊗ eεhH−i /2 + e−εhH−i /2 ⊗ X−i , ∆(X+
i ) = X+

i ⊗ ehH+
i /2 + e−hH+

i /2 ⊗ X+
i

∆(H±i ) = H±i ⊗ 1 + 1⊗ H±i , S(X+
i ) = −ehX+

i , S(X−i ) = −e−εhX−i , S(Hi) = −Hi.

Where q = e−εh. Using proposition 4.2.1, we will write down the action of the
Weyl group in Uq(slε

n) for each of the H2,ε subalgebras. The quantum Weyl ele-
ments are defined via the H2,ε submodules of the representations of Uq(slε

n), for
each simple root αi, i = 1, · · · , rank(sln) = n− 1 of sln.
Uq(slε

n) is a quasitriangular Hopf algebra, as has been noted in the first section of
this chapter. In this section we denote the R-matrix asR, and its inverse asR−1.
The notation R is reserved for other purposes. The same notation will be used
for the partial R-matrices of Uq(slε

2).

In the notation of [30], let Vλ be a representation of Uq(slε
n). We know that Vλ

are highest weight representations [6]. Uq(slε
n) is generated by n − 1 copies of

the subalgebras H2,ε,i corresponding to the simple roots. In each of these copies
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we can find a corresponding Weyl element wi with proposition 4.2.1. We know
that Vλ factorizes into irreducable H2,ε-submodules V j. Checking this fact comes
down to checking relations on simple generators. This is equivalent to lemma 2
in [30], which proves that if V is an H2,ε,i module X±j (V) is still an H2,ε,i submod-
ule. In general we have, for V j irreducible H2,ε,i-submodules for the usual half
integer values for j,

Vλ =
⊕

j

(Hom(V j, Vλ)⊗V j) =
⊕

j

(Wλ
j ⊗V j).

We define Wλ
j = Homk(V j, Vλ), with k = R(ε). The isomorphism

f :
⊕

j

(Hom(V j, Vλ)⊗V j)→ Vλ

is given by (· · · , 0, φj ⊗ ej
m, 0, · · · ) 7→ φj(e

j
m), evaluation. Since the H2,ε,i modules

V j are irreducible submodules of Vλ, the homomorphisms φj ∈ Hom(V j, Vλ)

are, by Schurs lemma, the identity on V j, scaling the constant to 1 without loss
of generality.
Since Uq(slε

n) is generated by the H2,ε,i subalgebras corresponding to simple roots,
we can assume that Im(φi) is a copy of Vi in Vλ as H2,ε,i-submodule, where
i = 1, · · · n− 1. The action of H±i on an element φ⊗ ej

m is then given by H±i ◦ φ⊗
ej

m = H±i (φ(ej
m)) = −aij(ε)

(1±1)/2m(φj(e
j
m), since [H±i , X±j ] = ∓(ε)(1±1)/2aijX±j ,

so the submodules V j ⊂ Vλ are invariant under the action of H±i . In general,
the submodules V j are not invariant under the action of X±j . This action is more
complicated, and although it yields another H2,ε-submodule, it may not be the
same submodule.
Define the elements wi acting on Uq(slε

n) via representations by

wi =
⊕

j

(Iwλ
j
⊗ (wi)j),

where Iwλ
j

is the identity on Wλ
j . The (wi)j are then defined via proposition

4.2.1, where (wi)j acts on the H2,ε,i submodule V j by the action calculated in
lemma 4.2.1. Note that in the semisimple case, like in [30], this definition would
uniquely define wi. In the non-semisimple case we need to require that the Weyl
property holds for conjugation with wi. Then the wi become well-defined on the
Cartan subalgebra.
Let us calculate wi H+

j w−1
i from the definition of wi, by comparing the action on

irreducable modules. By the previous discussion we can check this for the factor-
ization of Vλ into H2,ε,i-submodules, the i corresponding to the simple roots. We
denote the vectors as en

m, omitting the φ. In this case, let ej
m ∈ Vn be any vector in

any irreducible H2,ε,j-submodule Vn ⊂ Vλ of highest weight n. Let i 6= j (in the
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case i = j we get the action from proposition 4.2.1), then Hj acts only nonzero if
i = j± 1.

wi H+
j w−1

i (en
m) = wi H+

j (e
n
−m) = aijεmwi(en

−m) = aijεmen
m = −εmen

m.

Note that aij = −1. On the other hand we have

(ε)−(−1∓1)/2(H±j − aijH±i )(en
m) = (−aji + aijaii)εmen

m = −mεen
m.

From this we can conclude that wi H+
j w−1

i acts as (ε)−(−1∓1)/2(H±j − aijH±i ) in
H2,ε,i-modules. From proposition 4.2.1 we obtain the Tj(Hj) relations. Since the
algebra is not semisimple, we can always add a term Hi := ε−1H+

i − H−i (and
idem for Hj) and get the same action in representations.
However, if we take the Tj(Hj) relations together with the requirement that TiTjTi =
TjTiTj we get the following relations. The proof is by straightforwardly checking
the Weyl-relation. We leave this to the reader. The requirement that the Weyl-
property holds could be seen as a definition of the action of wi on Hj, since it
uniquely determines this action.

Lemma 4.3.1.

Ti(H+
j ) = εH−j − εaijH−i , Ti(εH−j ) = H+

j − aijH+
i , Ti(X±i ) = −q±1X∓i . (4.37)

For sln, aij = 2 if i = j, aij = −1 if i = j± 1 and zero else. By proposition 4.2.1 we
now have

Ti(e) = wiew−1
i , ∆(wi) = R(i)−1wi ⊗ wi, (4.38)

where R(i) is the partial R-matrix on the i-th H2,ε-subalgebra defined by 4.28.
Remember that the adjoint action of Uq(slε

n) on itself is given by

ade( f ) = ∑ e(1) f S(e(2)).

We denote the adjoint action for short as ◦, in multiplicative notation. Using this
definition, we calculate wiX±j w−1

i .

Let us define two sets of generators that make the comultiplication anti-symmetric,
and correspond to the two ways to write the R-matrix in the H2,ε case. Note that
our definitions agree with the definitions of [30].

Ei = qε−1 H+
i /2X+

i , Fi = q−H−i /2X−i , K+
i = qε−1 H+

i /2, K−i = qH−i /2,

Ei = q−ε−1 H+
i /2X+

i , Fi = qH−i /2X−i .

Via the adjoint action we have an action of the q-Weyl element on these genera-
tors. We now have the following lemmas, the proof of which are equivalent to
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the proofs given in [30], except for a factor of two in the definitions of H± resp.
H in [30], after reducing the Cartan subalgebra. The reason we cannot directly
follow Reshetikhin and Kirrilov’s proof is that we have to introduce the +/- back
into the equations, so we have to check all the relations manually. It is insightful
to study this proof, and the proof of proposition 2.2.1 in chapter 4 of [21], which
are roughly the same. The proof of lemma 4.3.2 is by explicit calculation of the
adjoint action of the Weyl group element.

Lemma 4.3.2.

wi ◦ Ej = wiEj(K+
i )

aij w−1
i (4.39)

wi ◦ Fj = S(w−1
i )(K−i )

−aij FjS(wi).

Proof. We will only scetch the proof here, since this proof is exactly the same as
the proof of lemma 1 in [30], where we are keeping track of H± and the different
factors 2. Note that we start with the expression 4.29 and let R−1 = S⊗ id(R).
Then we use R = S ⊗ S(R) to rewrite the adjoint action of wi on Ej and Fj.
After using the commutation relations, the final result is obtained by using the
fact that u−1 = ∑R2S2(R1), and uhu−1 = S2(h) for any h ∈ H − 2, ε, so that
u commutes with K±i . Note that w−1 = (up)−1/2 = (up)−1w = u−1S(w). This
ends the proof.

Lemma 4.3.3. The sets Vij = {Ej, · · · , E
−aij
i ◦ Ej} and Vij = {Fj, · · · , F

−aij
i ◦ Fj} are

irreducible H2,ε,i-modules of weight −aij.

Proof. Lemma 4.3.3 can be concluded directly from the algebra relations. Since
we used the same conventions as [30], the relations are exactly the same. An
explicit isomorphism between both sets and Vaij is given by the maps

φ(Fn
i ◦ Fj) = c−ij

√
[n]q!

[−aij − n]q!
e
−aij

2
−aij

2 −n
(4.40)

ψ(En
i ◦ Ej) = c+ij

√
[−aij − n]q!

[n]q!
e
−aij

2
aij
2 +n

.

Note that because ε−1H+ − H− acts as zero in V j, we can make multiple choices
for Vij and Vij that are isomorphic to V j. We will parametrize these choices by
the two parameters c±ij in the future, where c±ij stands for a central factor.

Lemma 4.3.4.

En
i ◦ Ej = (K+

i )
−n(K+

j )
−1[X+

i , · · · [X+
i , X+

j ]qaij/2 ]qaij/2+1 · · · ]
q(aij+2n)/2−1 (4.41)

S(Fn
i ◦ Fj) = −q(−n−1)[X−i , · · · , [X−i , X−j ]qaij/2 ]qaij/2+1 · · · ]

q(aij+2n)/2−1(K−i )
n(K−j )
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Proof. The relations follow by induction to n from the algebra relations. We write
down the case for n = 1 here by using the definition of the adjoint action.

Ei ◦ Ej = EiEj − e−H+
i EjeH+

i Ei (4.42)

= EiEj − qEjEi = q1/2(K+
i )
−1(K+

j )
−1q−1/2(q−1/2X+

i X+
j − q1/2X+

j X+
i )

= (K+
i )
−1(K+

j )
−1[X+

i , X+
j ]q−1/2 .

The case for higher n follows in the same fashion. The second formula follows in
the same way, except we take the antipode on both sides afterwards. This proves
the lemma.

We can use the lemmas to calculate the algebra automorphisms associated with
the quantum Weyl group explicitly. To this end let us introduce

wi = wiq−ε−1 H+
i H−i /4.

Lemma 4.3.5.

∆(wi) = R(i)−1wi ⊗ wi, (4.43)

R(i) = qε−1(H−i ⊗H+
i −H+

i ⊗H−i )/4 ∑ Rn(h)(e−hH+
i /2X+

i )
n ⊗ (eεhH−i /2X−i )

n, (4.44)

Rn(h) =
q

1
2 n(n+1)(1− q−2)n

[n]q!
. (4.45)

Proof. This can be calculated by straightforward computation from proposition
4.2.1, where it is important to remember that q−ε−1 H+H−/4 is not group-like, but
that a correction appears when taking the coproduct.

Note from the previous section that the partial R-matrix

R(i) = qε−1(H−i ⊗H+
i −H+

i ⊗H−i )/4 ∑
(1− q−2)n

[n]q!
En

i ⊗ Fn
i .

Since the E, F have an antisymmetric coproduct, it is this form in which we will
later recognize the algebra we are using, only with X, Y and Z instead of Ei and
lowercase letters instead of Fi. Denote algebra automorphisms of Uq(slε

n) as

Ti(h) = w−1
i hwi, ∀h ∈ Uq(slε

n). (4.46)

We have the following formula, which is a direct consequence of the above lemma.
(DenoteR(i) = Ri).

∆(Ti(X±j )) = RiTi ⊗ Ti(∆(X±j ))R
−1
i .

The following theorem holds true and is proven by combining the above lem-
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mas, together with the action of wi in the irreducible modules. Note that the Ti
are denoted in the opposite way as T in proposition 4.2.1. Observe that in the
Uq(sln) case, Ti are the quantization of the classical Weyl group action [6] in the
sense that the action of Ti corresponds to the action of the simple reflections si
corresponding to the simple roots αi. Looking at the first order in h we obtain the
same fact. One can compare the Ti with the action of the simple reflections given
in the first section and convince oneself of this fact.

Theorem 4.3.1. The Ti as defined above are well-defined up to central factors cij depend-
ing on K±i,j. Moreover, the Ti are Uq(slε

n) algebra automorphisms, given by

Ti(K+
j ) = K−j (K

−
i )
−aij , Ti(K−j ) = K+

j (K
+
i )
−aij , (4.47)

Ti(X+
i ) = −X−i (K

−
i )
−1(K+

i )
−1, Ti(X−i ) = −(K

−
i )(K

+
i )X+

i ,

Ti(X+
j ) = cij(−1)aij [−aij]q!((K+

j )(K
−
j )
−1)−1((K−i )

−1(K+
i ))

aij ,

[X+
i , · · · , [X+

i , X+
j ]qaij/2 ]qaij/2+1 · · · ]q−aij/2−1((K−i )(K

+
i )
−1)aij/2, i 6= j

Ti(X−j ) = c−1
ij

1
[−aij]q!

((K+
j )
−1(K−j ))

−1((K−i )(K
+
i )
−1)aij ,

[X−i , · · · , [X−i , X−j ]qaij/2 ]qaij/2+1 · · · ]q−aij/2−1((K−i )
−1(K+

i ))
aij/2, i 6= j

and when aij = 0, Ti(X±j ) = X±j .

Proof. The main objective is to prove that conjugation with the Weyl element re-
spects the algebra structure. We will first prove that the Ti are of the form given
above. This follows directly from lemmas 4.3.3 and 4.3.2 together with the action
of wi. We can then rewrite E

−aij
i ◦ Ej with lemma 4.3.4, taking n = −aij, since wi

takes the lowest weight vector Ej in the module homomorphic to Vaij (and the

same for Fj) to the highest weight vector, which is E
−aij
i ◦ Ej, by the action of wi

in irreducible modules. This gives the desired relations for Ti applied on X± up
to a central factor depending on i and j, due to the non-semisimplicity. Making
this choice is equivalent to choosing a root of ν−1. This shows that the Ti are not
well defined, when defined from the quantum Weyl group, up to a central factor.
Once we choose a root of ν−1, we make a choice for cij. Concretely, this choice
corresponds to choosing isomorphisms φ and ψ in lemma 4.3.3.
Let us get some specific values for cij. Firstly, the relations Ti(K±j ) = (K∓j )(K

∓
i )
−aij

and Ti(X±i ) follow from proposition 4.2.1 and lemma 4.3.1. Consider Ti([X±j , X∓j ]).
Since we want Ti to be an algebra homomorphism, we get the requirement c+ij c−ij =
1 for all i and j, since cij is central (it consists of powers of ε−1H+

i − H−i ). In par-
ticular, cij must be invertible.

122



Chapter 4. Towards constructing Uq(slε
n)

Hence we have the following relations.

Ti(K+
j ) = K−j (K

−
i )
−aij , Ti(K−j ) = K+

j (K
+
i )
−aij , (4.48)

Ti(X+
i ) = −X−i (K

−
i )
−1(K+

i )
−1, Ti(X−i ) = −(K

−
i )(K

+
i )X+

i

Ti(X+
j ) = cij(−1)aij [−aij]q!((K+

j )(K
−
j )
−1)−1((K−i )

−1(K+
i ))

aij

[X+
i , · · · , [X+

i , X+
j ]qaij/2 ]qaij/2+1 · · · ]q−aij/2−1((K−i )(K

+
i )
−1)aij/2, i 6= j

Ti(X−j ) =
1

[−aij]q!
c−1

ij ((K+
j )
−1(K−j ))

−1((K−i )(K
+
i )
−1)aij

[X−i , · · · , [X−i , X−j ]qaij/2 ]qaij/2+1 · · · ]q−aij/2−1((K−i )
−1(K+

i ))
aij/2, i 6= j.

Where we will write simply cij for c+ij . Comparing Ti with [30] we can conclude
that the Ti must be algebra-automorphisms, since (K−i )(K

+
i )
−1 is a central ele-

ment for all i = 1, · · · n− 1. The proof that Ti are automorphisms coincides then
with the proof in [30]. This concludes the proof.

From the lemmas in this section together with proposition 4.2.1 we obtain the
following fact. It can be proven by direct verification, when we remember that
aij = −1 for i 6= j, since we are working with the sln Cartan matrix. To prove it
for a general Cartan matrix, it is enough to consider rank 1 and 2 cases [6], [30].

Theorem 4.3.2. The cij in theorem 4.3.1 are group-like elements in Hi and Hj, with
Hi = ε−1H+

i − H−i , i = 1, · · · n− 1.

Proof. We know that cij are invertible from the proof of the last theorem. Note
that for any invertible element c, we have ∆(c−1) = ∆(c)−1. Also, cij are central
elements, and live in the Cartan subalgebra of Uq(slε

n). As a consequence, cij

must be a power-series in the elements ε−1H+
i − H−i = Hi, since these are the

only central elements that are contained in the Cartan subalgebra. This follows
from the relations [(H+

i )k, X±j ] = (H+
i ± aij)

kX±j − (H±i )kX±j 6= X±j .
We see that ∆(cij) must also be central, since ∆(Hi) = Hi ⊗ 1 + 1 ⊗ Hi. As a
consequence of this, ∆op(cij) = R−1∆(cij)R = ∆(cij). So if we can prove that
∆(cij) = (cij ⊗ cij)Ψ for some invertible 2-cocycle Ψ, then we know that Ψ is also
a central element, with Ψ21 = Ψ that lives in the tensor product of the Cartan-
subalgebra with itself, since the tensor algebra of the Cartan part of Uq(slε

n) is
closed under taking the coproduct. That Ψ is a 2-cocycle means that 1⊗ Ψ(id⊗
∆)(Ψ) = Ψ⊗ 1(∆⊗ id)(Ψ).
Since the cij are invertible, let us write ∆(cij) = (cij ⊗ cij)Ψ. Since cij are central,
so is Ψ. Let us write Ψ = c⊗ c∆(c−1), where c = c−1

ij depends on Hi for some
i without loss of generality. The fact that Ψ is central and symmetric and only
dependent on elements of the Cartan subalgebra follows from the properties of
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cij. We prove now that Ψ is a 2-cocycle.

1⊗Ψ(id⊗ ∆)(Ψ) = 1⊗ c⊗ c(1⊗ ∆(c−1))c⊗ ∆(c)id⊗ ∆(∆(c−1))

= 1⊗ c⊗ c(c⊗ ∆(cc−1))id⊗ ∆(∆(c−1))

= c⊗ c⊗ c(∆⊗ id)(∆(c−1))

= Ψ⊗ 1(∆⊗ id)(Ψ).

The second-last equality follows from coassociativity and homomorphism prop-
erty of ∆. The last equality follows from the definition of Ψ and the fact that ∆ is
a homomorphism.
Since Ψ is central it is a power series ∑li ,ki∈N ∏i=1···n−1 fk,lH

ki
i ⊗ Hli

i , for central
elements Hi and vectors k = (k1, · · · , kn−1) and l = (l1, · · · , ln−1), where n− 1
indicates the rank of aij. However, the case where Ψ is dependend on multiple
Hi can be reduced to the case of one variable.
The reason is that Ψ factorizes into terms corresponding to the simple roots. This
fact follows from requiring that Ψ is a 2-cocycle and the fact that Hn

i are linearly
independend for different i and n. This yields fk,l = ∏i f(0,··· ,ki ,0,··· ),(0,··· ,0,li ,0,··· ,0),
by comparing different terms and using a straightforward induction argument.
Conceptually, the general argument is equivalent to the case for two variables H1
and H2. This is left to the reader.
Let us note that we may take f0,0 = 1 without loss of generality, as the invertibil-
ity of cij implies that Ψ is invertible. This is the case if and only if f0 6= 0. So it is
enough to look at the case where Ψ = ∑n fni H

ni
i ⊗ Hni

i .
Furthermore, we know that Ψ is symmetric, in the sense that when the tensor
factors of Ψ are interchanged, we obtain Ψ. This forces

Ψ = ∑
li ,ki∈N

∏
i=1···n−1

fk+l,l(Hki
i ⊗ 1 + 1⊗ Hki

i )(Hli
i ⊗ Hli

i ).

We claim that k = 0 in the above expression. To see this it is enough to consider
the case where Ψ only depends on one central variable, say Hi, by the previous
discussion. By plugging in Ψ = ∑l,k∈N fk+l,l(Hk

i ⊗ 1 + 1⊗ Hk
i )(Hl

i ⊗ Hl
i ) into the

cocycle condition (putting Hi = H for simplicity) we get

∑
i,j,k,l≥0

fi+k,k f j+l,l(Hi+k ⊗ Hk ⊗ Hl + Hk ⊗ Hi+k ⊗ Hl)

(∆(H)j+l ⊗ 1 + ∆(H)l ⊗ H j)

= ∑
i,j,k,l≥0

fi+k,k f j+l,l(Hl ⊗ Hi+k ⊗ Hk + Hl ⊗ Hk ⊗ Hi+k)

(1⊗ ∆(H)j+l + H j ⊗ ∆(H)l).

Let us look at the prefactor of the term H ⊗ 1 ⊗ 1. Since we assumed f0,0 =
1, we get 2 f1,0 = 3 f1,0, so f1,0 = 0. We use here that ∆(H) = H ⊗ 1 + 1 ⊗
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H. In general, we get as a prefactor of Hm ⊗ 1⊗ 1 the equation 2 fn,0 = 3 fn,0 +
fn−1,0 f1,0 + fn−2,0 f2,0 + · · ·+ f1,0 fn−1,0. Assuming fi,0 = 0 for i < n as induction
hypothesis, we get fn,0 = 0. This proves the claim. So Ψ can only be a power
series in Hi ⊗ Hi. Hence we can write Ψ = ∑ni ,nj

fni H
ni
i ⊗ Hni

i .
Without loss of generality we assume that Ψ depends only on Hi = H. We wish
to prove that Ψ = 1⊗ 1 if Ψ is an invertible, central, symmetric 2-cocycle that
is an element of the Cartan subalgebra. Then we are finished, since the only
elements that have a coproduct of the form ∆(c) = c⊗ c are elements c = eeH.
See for example lemma 6.4.1 in [6].
Let us now prove that Ψ = 1 ⊗ 1 if Ψ is an invertible, central, symmetric 2-
cocycle. We will do this by explicitly checking the 2-cocycle condition for Ψ =

∑n fnHn⊗Hn. From inserting the power series for Ψ into the 2-cocycle condition
we get, with a straightforward substitution of summetion variables,

p=n

∑
n,k,p=0

fn fk

(
n
p

)
Hk+p ⊗ Hk+n−p ⊗ Hn

=
p=n

∑
n,k,p=0

fk+p fn−p

(
k + p

p

)
Hk+p ⊗ Hk+n−p ⊗ Hn.

We take f0 = 1 without loss of generality. By linear independence of the gen-
erators we can compare term by term. We claim that this relation is satisfied
only if Ψ = ∑n f1

Hn⊗Hn

n! . We have to prove that the equation above holds only if

fn+1 =
f n+1
1

n+1! . We observe that a given combination of exponents of the Hs appears
only once in the equation above. The base case follows from the k = 1 and n = 1,
p = 1-term: f 2

1 = 2 f2 f0. Suppose that for some l > 0 the formula holds. Then we
look at the terms with n = l such that Hk+p ⊗ Hk+n−p ⊗ Hn = Hl+1 ⊗ H ⊗ Hl .
This implies that k = 1 and p = l. Writing down the coefficient of this term we
immediately get fl+1 = fl f1

l+1 , the desired result.
However, implementing fk = f k

i /k! into the equation we see that (again compar-
ing terms) for any pair non-negative integers n, k and 0 ≤ p ≤ n, we have

f n+k
1

n!k!

(
n
p

)
=

f k+n
1

(k + p)!(n− p)!

(
k + p

p

)
.

We quickly realize that f1 6= 0 implies (n− p)!p! = n!, which is something that
people in highschool might wish is true, but fortunately for us, it is not. So f1 = 0.
But this means that cij is group-like.

Theorem 4.3.3. (Weyl property) Let the Ti be as in theorem 4.3.1, and let aij be the sln
Cartan matrix. Denote cij = cidj. Then dj = c2

j for all j = 1, · · · n− 1 if and ony if for
all i, j = 1, · · · n− 1,

TiTjTi = TjTiTj. (4.49)

125



4.3. Constructing the q-Weyl group of Uq(slε
n)

We call this property the Weyl-property. The Weyl-property implies that we can
use the Ti for defining Hopf algebra generators. In the case of sl3 there are only
two simple roots, so for a decomposition of the longest root vector into simple
roots w0 = si1 si2 si1 , where i1, i2 = 1, 2, i1 6= i2, there is a unique way to write
down the corresponding algebra generator: X±w0

= Ti1(Ti2(X±i1 )). Hence we do
not need the Weyl property for slε

3.
In general this is not the case. In that case, for each reduced decomposition of the
longest classical Weyl group element, there exist multiple ways to write down
the corresponding root-vector in the Hopf algebra. We need the Weyl-property
in order for the construction of higher order generators to be well-defined. See
for example proposition 8.1.3 in [6] and proposition 5, chapter 4, paragraph 1.5
in [3]. In general, the quantum Weyl group construction depends on a choice of
the longest root decomposition. If the Weyl-property is not satisfied, then it is
impossible to know which order of Ti belongs to a given decomposition, so the
construction of higher order basis vectors is ill-defined. Let us prove the theorem.

Proof. First note that Tk(Tj(Xi)) is nonzero only if i = j or i = k, so we only need
to check one relation on the generators X+

i (the Weyl-relation follows for X−i from
the X+

i -relations, since the prefactors are inverted in this case). Secondly, if the
automorphisms have no central prefactor, then the proof that they obey the Weyl
property is similar to the proof in [30], by explicit verification. We leave this to the
reader, since the computations are exactly the same. It is only needed to follow
the additional central factors present in Ti as compared to the Ti with no central
pre-factor. We include the central factor ((K+

j )(K
−
j )
−1)−1((K−i )

−1(K+
i ))

aij/2 in cij

in this proof for simplicity.
First note that cij are group-like by the previous theorem. Denote this central
factor by cij = cidj, where ci = e(ε

−1 H+
i −H−i )l , for some l ∈ k, since cij is group-like.

Idem for di. We now prove

Ti(Tj(Ti(X+
i ))) = Tj(Ti(Tj(X+

i ))).

On the left hand side, no central factors are introduced: Ti(X+
i ) = X−i (K

−
i )

2.
Since i 6= j, aij = −1. So Tj(X−i ) = c−1

ji [X−j X−i ]q−1/2 . Applying Ti to this ex-

pression yields a central factor of c−1
ij Ti(c−1

ji ) = c−1
i d−1

j Ti(c−1
ji ) = c−1

i d−1
j d−1

i cicj =

d−1
j d−1

i cj.
On the right-hand side we get Tj(X+

i ) = cji[X+
j , X+

i ]q−1/2 . Applying Ti yields

Ti(cji)cij[[X+
i , X+

j ]q−1/2 , X−i ]q−1/2 ,

where Ti(cji) = Ti(cjdi) = dic−1
i c−1

j . So as a central factor we have dic−1
i c−1

j cidj =

didjc−1
j . Note that applying Tj to the commutator gives no additional central fac-

tor, since both X+
i and X−i are present. We have as a central factor Tj(didjc−1

j ) =

d−1
i d−1

j djc−1
j = d−1

i c−1
j = c−1

ji . We see that the left and right handside are equal if
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and only if dj = c2
j .

Note in particular that in 4.3.1 the central factor ((K+
j )(K

−
j )
−1)−1((K−i )

−1(K+
i ))

aij/2

obeys dj = c2
j , since for i 6= j aij = −1 or aij = 0, in which case Weyl property

is trivially satisfied. So choosing cij = 1 is admissable. One might want to make
a different choice for the constant cij where ∆(z) is of a different form, more like
that of the semisimple case. To this end consider an element w̌i with the proper-
ties

∆(w̌i) = Ř(i)−1w̌i ⊗ w̌i, (4.50)

Ř(i) = ∑ Rn(h)(e−hH+
i /2X+

i )
n ⊗ (eεhH−i /2X−i )

n,

Ťi(h) = w̌−1
i hw̌i,

such that there is no central term is present in the Ti as compared to the Ti in
[29]. This is possible if one introduces an abstract Weyl element obeying the
above properties, however it is not clear if such an element exists at all. We could
define the explicit automorphisms Ťi by requiring that under the identification
of ε−1H+ and H−, Ti = Ťi. In particular this means that

∆(Ťi(X±j )) = ŘiŤi ⊗ Ťi(∆(X+
j ))Ř

−1
i ,

for some 2-cocycle Ři. Note that Ři is an element of Uq(slε
n)⊗Uq(slε

n), so we can
always write down this formula in the algebra Uq(slε

n). Note that Ťi by construc-
tion correspond to a choice for cij, since we want Ťi to obey the Weyl-property.
We now prove the following fact.

Proposition 4.3.1. The automorphisms Ti as defined in theorem4.3.1 obey the Weyl
property and are of the form Ti(h) = w−1

i hwi, where wi are defined as in lemma ??, if
and only if cij = 1.

Proof. Under the identification of ε−1H+ and H−, in Uq(sln), we have Ti = Ťi,
so Ψ = R−1

i Ři is equal to 1⊗ 1 under this identification, by semisimplicity of
Uq(sln). We claim that Ψ is a central element.
We now use the fact that Ti(X+

j ) = cijŤi(X+
j ) for some group-like element cij if

i 6= j. From the identities ∆(Ťi(X±j )) = ŘiŤi ⊗ Ťi(∆(X+
j ))Ř

−1
i and idem for Ti it

follows that (noting that Ti and Ťi agree on H2,ε,i and on the Cartan subalgebra of
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Uq(slε
n) = Hn,ε by definition, as this action was calculated from the H2,ε action)

(cij ⊗ cij)(Ti(X+
j )⊗ Ti(e

H+
j ) + Ti(e

−H+
j )⊗ Ti(X+

j ))

= R−1
i Ři(cijTi(X+

j )⊗ Ti(e
H+

j ) + Ti(e
−H+

j )⊗ cijTi(X+
j ))Ř

−1
i Ri

= cijTi(X+
j )⊗ Ti(e

H+
j ) + Ti(e

−H+
j )⊗ cijTi(X+

j ).

But this implies Ti(X+
j ) ⊗ c−1

ij = Ti(X+
j ) ⊗ 1, by invertability of cij, and linear

independence of the terms involved. So cij = 1. It should be remarked that
We now prove the claim. Therefore look at a similar expression, ∆(Ti(X+

i )). We
know that Ťi(X±i ) = Ti(X±i ). Furthermore Ψ/ ∼= 1 ⊗ 1, and Ri and Ři are
elements of Hε,2,i. Let Hi = ε−1H+

i − H−i . Then Ψ must be a power series in
Hi ⊗ Hi, in ε−1(H+

i ⊗ H−i − H−i ⊗ H+
i ) and H+

i ⊗ H+
i − H−i ⊗ H−i . We have

eH±i ⊗H±i eH+
i ⊗ X+

i = eH+
i ⊗ X+

i eH±i ⊗1eH±i ⊗H±i .

This observation is generalizable to general power series in H± ⊗ H±, and holds
also for the opposite case. Moreover, we observe that

∆(Ťi(X+
i )) = ŘiŤi ⊗ Ťi(∆(X+

i ))Ř
−1
i

= ŘiTi ⊗ Ti(∆(X+
i ))Ř

−1
i

= RiTi ⊗ Ti(∆(X+
i ))R

−1
i .

Note that H± only introduce an aditional term when commutated with X+
i , so

the terms of ∆(X+
i ) = X+

i ⊗ eH+
i /2 + eH+

i /2⊗ X+
i do not get mixed by commutat-

ing with Ψ, so by linear independence of the two terms in the coproduct we can
compare them term by term. Since the H± commute with each other and Ψ is a
power series in tensor products of H±i , we get the following identities

ΨX−i ⊗ 1Ψ−1 = X−i ⊗ 1,

Ψ1⊗ X−i Ψ−1 = 1⊗ X−i .

This means that Ψ commutes with X−i ⊗ 1 and 1⊗ X+
i , and with the above ob-

servation this means that Ψ must be a power series in Hi ⊗ Hi. However, this
means that Ψ is central in Uq(slε

n)⊗Uq(slε
n). This ends the proof.

So there is no choice in cij if we want to have a quantum Weyl group. Such an
algebra would have the above mentioned property by construction, since ∆(wi)
is definend explicitly in the H2,ε case. Since we have an Hopf algebra we auto-
matically obtain for any generalization of H2,ε,

∆(Ťi(X±j )) = ŘiŤi ⊗ Ťi(∆(X+
j ))Ř

−1
i .
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We now have

∆(Ti(X+
j )) = ∆(w−1X+

j wi)

= RiTi ⊗ Ti(∆(X+
j ))R

−1
i ,

Ri = qε−1(H−i ⊗H+
i −H+

i ⊗H−i )/4 ∑ Rn(h)(e−hH+
i /2X+

i )
n ⊗ (eεhH−i /2X−i )

n,

Rn =
q1/2n(n−1)(1− q−2)n

[n]q!

This is the result with which we can calculate the comultiplication for Uq(slε
n)

for non-simple generators Ti(X±j ), corresponding to the roots αi + αj. Of course
this can be generalized to higher order generators for Uq(slε

n). This is something
straightforward and will not be done here. An example of the more general
construction can be found in [6].
We rewrite the automorphisms Ti to apply them to the generators Ei and Fi with
non-symmetric comultiplication. This yields the algebra we use in chapter 1,
when S ⊗ id is applied to the quantum double. We rewrite the expressions in
theorem 4.3.1, with cij = 1.

∆(Ti(Ej)) = RiTi ⊗ Ti(∆(Ej))R−1
i ,

Ri = qε−1(H−i ⊗H+
i −H+

i ⊗H−i )/4 ∑
(1− q−2)n

[n]q!
(Ei)

n ⊗ (Fi)
n,

Ti(K+
j ) = K−j (K

−
i )
−aij , Ti(K−j ) = K+

j (K
+
i )
−aij ,

Ti(Ei) = −Fi(K−i )
−1(K+

i )
−1, Ti(Fi) = −(K−i )(K

+
i )Ei,

Ti(Ej) = (−1)aij [−aij]q!((K−i )
−1(K+

i ))
−aij/2

[Ei, · · · , [Ei, Ej]qaij/2 ]qaij/2+1 · · · ]q−aij/2−1 , i 6= j,

Ti(Fj) =
1

[−aij]q!
((K−i )(K

+
i )
−1)−aij/2

[Fi, · · · , [Fi, Fj]qaij/2 ]qaij/2+1 · · · ]q−aij/2−1 , i 6= j.

In particular, this formula is also valid for non-invertible ε, when we remember
that q−εh. The terms present are elements of the ring of power-series of ε. This
allows for use in chapter 1.
To match the expressions with the algebra in chapter 1, note that we are using
a different convention for [n]q in the last two sections of this chapter, then the
factor (1− q−2)n is absorbed. The factor of q1/2n(n−1) is absorbed by the commu-
tating of the group-like factor eH−/2⊗ eH−/2, with index i and j and the R-matrix.
Furthermore, we change the definition of q to eεh, and substitute H+

1 7→ 2A− B
and H+

2 7→ 2B − A. The change in q implies that we should keep track of all
exponentials eh and change the sign to e−h and vice versa. Any factor q is substi-
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tuted.
After performing these substitutions, there is one fundamental difference be-
tween the Hopf algebra used in this chapter and the one used in chapter 1. The
Hopf algebra Uq(slε

n) as defined in this chapter cannot be expanded modulo ε, as
can be seen from the factor ε−1 present in the commutator between X±. To solve
this problem, we have to scale the X− generator. This is the subject of the next
section.
Once the conventions are correct, we are well on our way to implementing Uq(slε

n)
in the tensor formalism however. Especially when the program is more opti-
mized, this is a very interesting topic of research. Theoretically, it is also inter-
esting to be able to do calculations in Uq(slε

n) for any n, and any order of ε, even
when the program is not much faster than it is now.

4.4. Epilogue

Define glε
n as the Lie bialgebra over R(ε) with generators X±i , H±i , i = 1, · · · , n−

1 and the relations

[H−i , X±j ] = ±aijX±j , [H±i , H∓j ] = 0, [H+
i , X±j ] = ±aijX±j , (4.51)

[X+
i , X−i ] = −

1
2

δi,j(H+
i + H−i ), (adX±i

)1−aij(X±j ) = 0, (i 6= j), (4.52)

δ(X+
i ) = X+

i ⊗ H+
i − H+

i ⊗ X+
i , (4.53)

δ(X−i ) = X−i ⊗ H−i − H−i ⊗ X−i , (4.54)
δ(H±i ) = 0. (4.55)

aij is the usual sln Cartan matrix.
In glε

n, ε is an invertible indeterminate. The Lie bialgebra glε
n is a quasitriangular

Lie algebra that can be obtained through the classical double on the Lie bialge-
bras of upper and lower triangular matrices b± ⊂ glε

n, generated by {Hpm
i , X±j }

respectively. This procedure is described in many standard sources, and follows
the same procedure as described in chapter 1.
To obtain slε

n from glε
n, multiply H−i in the relations 4.51 and 4.52 with εε−1. We

define εH−i =: H̃−i , in the spirit of the Wigner contraction described in appendix
A.4. When the redundant factors of ε−1 in ε−1[H̃−i , X±j ] = ±aijX±j are transferred
by multiplying both sides with ε, one obtains the familiar Lie algebra relations,
and the slightly different cobracket

[H̃−i , X±j ] = ±εaijX±j , [H+
i , X±j ] = ±aijX±j ,

[X+
i , X−i ] = −

1
2

δi,j(H+
i + ε−1H̃−i ), (adX±i

)1−aij(X±j ) = 0, (i 6= j),

δ(X+
i ) = X+

i ⊗ H+
i − H+

i ⊗ X+
i ,

δ(X−i ) = ε−1(X−i ⊗ H̃−i − H̃−i ⊗ X−i ).
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We can multiply δ with any constant in R(ε), this will yield a cobracket on the
same Lie algebra. To this end, consider the b− Lie bialgebra where we multiply
δ with ε. We obtain

δ(X−i ) = X−i ⊗ H−i − H−i ⊗ X−i .

Let us introduce the dual Lie algebra b+ of b− with generators {X+
i , H̃+

i } by
〈X+

i , X−j 〉 = δij and 〈H̃+
i , H̃−j 〉 = aij. The algebra relations of b+ are defined

through the cobracket of b−, and so we obtain the relations (note that ε is invert-
ible, to obtain the Serre relation)

[H̃+
i , X+

j ] = +aijX+
j , (adX+

i
)1−aij(X+

j ) = 0, (i 6= j).

The cobracket is defined through the Lie algebra relations of b− and takes the
form

δ(X+
i ) = ε(X+

i ⊗ H̃+
i − H̃+

i ⊗ X+
i ).

Taking the classical double of b+ and b− we obtain the Lie bialgebra slε
n with rela-

tions 4.1. As noted in the first section of this chapter, we have a set of Lie algebra
automorphisms Ti on slε

n, which are defined with the adjoint action on slε
n.

We can do a Wigner contraction on slε
n by multiplying X−i ∈ slε

n with εε−1 and
defining X̃−i := εX−i . This has no effect on the Lie algebra relations of b± and the
cobracket of b±, as can be seen by multiplying the relations with ε on both sides.
It has an effect on the pairing between X̃+

i and X̃−i , which yields ε.
In slε

n, this changes the bracket between X̃±i to [X̃−i , X̃+
i ] =

1
2 (εH̃+

i + H̃−i ). This
relation should remind the reader of the definition of slε

n in chapter one. For now,
let us denote this algebra as s̃lε

n. In particular we observe that with these Lie bial-
gebra relations, it is possible to divide out to εk, as there are no explicit factors of
ε−1 present in the algebra relations of s̃lε

n.
However, another effect of this Wigner contraction is that the bracket [, ] no
longer defines a set of automorphisms Ti of s̃lε

n. When writing out the require-
ment that Tj is a Lie algebra map for the [X̃+

i , X̃−i ] relation, one finds that Tj is
an algebra map only when one multiplies with a factor εaij = ε−1 when Tj is
applied to X̃−i . So we have to define T̃j(X̃−i ) = ε−1Tj(X̃−i ) when i = j± 1 and
T̃j(u) = Tj(u) else.
This means that the Lie algebra automorphisms T̃i of slε

n, when defined on s̃lε
n

gain a factor ε−1 with respect to the Lie algebra automorphisms on slε
n that are

used in this chapter. We note that in the definition of non-simple generators this
yields also a power of ε−1. In particular, for s̃lε

3 this yields X̃−α1+α2
= T̃1(X̃−2 ) =

ε−1T1(X̃−2 ). Multiplying both sides wth ε now gives εX−α1+α2
= [X−1 , X−2 ], which

is the relation familiar from chapter one.
A complication from this specific Wigner contraction on slε

n is that the automor-
phisms T̃i do not obey the Weyl-property. Writing out T̃iT̃jT̃i(X±i ) = T̃jT̃iT̃j(X±i )
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gives a different factor of ε on both sides. Since the T̃i reduce to the usual auto-
morphisms on sln when ε is put to one, one can only compensate by introducing
a factor of εp in T̃i. However, one quickly sees that it is not possible to make such
a choice such that T̃i obey the Weyl property.
As has been noted before, in the case of sl3 this is not a problem, since there is a
unique way to decompose the reflection corresponding to the longest root. For
higher n > 3, one has to make a choice for a decomposition of the longest Weyl
group element and live with this. The result for different choices of decomposi-
tion yields different Lie algebras that are presumably isomorphic, although this
is not directly clear. This is an interesting subject of future study.

When one quantizes slε
n, this yields the Hopf algebra Uq(slε

n) of theorem 4.1.3.
The Hopf algebra Uq(s̃lε

3) can be obtained from Uq(slε
3) by multiplying X−i with

q− q−1 1
q−q−1 and defining X̃−i = (q− q−1)X−i . This scaling only infuenzes the re-

lations between X±i . The comultiplication, antipode and the other relations stay
the same.
Let Ti be as in equation 4.48 with cij = 1. As proved in the third section of
this chapter, Ti obey the Weyl property and are automorphisms of Uq(slε

3) when
cij = 1. Note that ε was introduced on the b+ side in the previous sections. This
does not change the properties of the Ti, since the relation between the two alge-
bras is a scaling of H±i . We have encountered this fact in the classical case, and
the quantum case follows in exactly the same way.
If we wish to define automorphisms T̃i on Uq(s̃lε

n), we have to correct in the
same way as in the Lie algebra case, by introducing an additional factor of 1

q−q−1

when Ti is applied to X̃−i . We define T̃j(X̃i
−) = 1

q−q−1 Tj(X̃−i ) for i = j ± 1 and

T̃j(u) = Tj(u) in any other case, for an elementary generator u ∈ Uq(s̃lε
n). In

exactly the same way as the classical T̃i failed to have the Weyl-property, so do
the quantum Weyl group automorphisms T̃i. This can be seen by applying T̃j to
X̃−i and counting the terms 1

q−q−1 that are introduced.

Equivalent to the classical case, when defining non-simple generators in s̃lε
n, one

has to choose a decomposition of the longest Weyl group element. Moreover,
on the Uq(b−) ⊂ Uq(s̃lε

n) side, a number of factors 1
q−q−1 are introduced in the

definition of nonsimple generators. This yields relations like (q−1 − q)X̃−α1+α2
=

T1(X−2 ) in the case of Uq(s̃lε
3). Here, αi are the simple roots of s̃lε

3. This should re-
mind the reader of the relations in chapter 1, although the b± algebras switched
place there, among some other details. For a generator corresponding to a root of
length k = 1, · · · , n− 1, we obtain k− 1 factors of q− q−1. This yields T̃αi1

(· · · (T̃αik−1
((q−

q−1)k−1X̃−αk−1
) = (q− q−1)k−1X̃−β , where β = αi1 + · · ·+ αik .

We can use the results of the previous section to obtain an expression of the co-
multiplication of nonsimple elements such as X̃−α1+α2

in Uq(s̃lε
3). In the case of

X̃−α1+α2
for example we get (q−1− q)X̃−α1+α2

= R1T1⊗ T1(∆((q− q−1)X̃−2 ))R−1
i in
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the notation of the previous section.
When we wish to consider Uq(s̃lε

n) over the ring Rεk = R[ε]/(εk+1), this implies
that we do not get a direct expression for ∆(X̃−α1+α2

) for example, but only for
∆((q− q−1)X̃−α1+α2

), since q− q−1 = 2εh+ · · · , and ε is not invertible. So to obtain
the comultiplication of X̃−α1+α2

modulo εk+1, to take a specific example, we need
to consider Uq(s̃lε

3) over the ring Rεk+1 , since over Rεk (which is working mod
εk+1), terms proportional to εk+1 vanish. So working over Rεk would only give
us ∆(X̃−α1+α2

) up to and including order εk−1, since (q− q−1)X−α1+α2
= [X−1 , X−2 ].

One sees that one can work mod εk+1 when k is even, as the ε2k term vanish in
the expansion of q− q−1.
This observation is particularly useful when attempting to construct a general
Uq(slεk

n ) knot invariant. Using formula 4.48 of the previous section, we can ob-
tain expressions for the comultiplication of the non-simple generators. We have
to work modulo εk+n−1 to obtain the comultiplication of every non-simple gen-
erator, since for an element of maximal length n− 1, there are n− 2 factors of ε
introduced, yielding a prefactor of εk+n−2 for the comultiplication of the longest
Weyl group element generator. When computing the knot invariant itself, so for
the multiplication of R-matrices, one can then work modulo εk+1 again.
A particular surprise when specializing to εk = 0, is that the T̃i are not algebra
automorphisms of Uq(s̃lε

n), due to the noninvertible factor of q− q−1 present. In
particular, we cannot apply T̃i to a non-simple generator such as X̃−3 , but only to
(q− q−1)X̃−3 .
In general, the exact properties of Ti become more complicated as more factors
of ε are introduced in the definition of the generators associated with positive
non-simple roots. For s̃lε

3 there is one non-invertible factor introduced when
working over εk = 0, but for s̃lε

n there are n − 2 factors introduced in the def-
inition of the element corresponding to the longest classical Weyl element. So if
we wish to calculate the comultiplication of this generator in the first order of ε,
say X̃−β ∈ Uq(s̃lε

n), we have to work modulo εn.

This explains why the usual symmetries Uq(s̃lε
n) for invertible ε are not symme-

tries of Uq(s̃lε
n) for εk = 0. Some symmetries of s̃lε

n for non-invertible ε were
found by Roland van der Veen and Dror Bar-Natan in [37], the classical case.
We do not know if the symmetries in [37] provide a full discription of the sym-
metries of s̃lε

n, or if there is a bigger set of hidden symmetries. This remains an
interesting topic of research. It is also interesting to find the explicit quantum
group analogue of the s̃lε

n symmetries.

Conclusion

In this chapter we constructed Uq(b−) and Uq(slnε) from b+ ⊂ sln for invertible
ε. We observed that in the algebra relations ε occured only in q = eεh, and hence
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one can take the expansion to the k-th order in ε for any k when the algebra gen-
erators are rescaled with a suitable factor of (q− q−1)m, for some positive m.
The fact that Uq(slε

n) is not semisimple does not change the symmetries of Uq(slε
n)

for invertible ε. They are equal to the symmetries of Uq(sln) for invertible epsilon.
In the last section we found that only when we specialize to εk = 0 for k > 0 we
lose most of the usual symmetries. It turns out that in this case, instead of Sn, we
obtain Dn as the group of automorphisms of Uq(slε

n). See [37].
However, important equalities to calculate the comultiplication remain true when
ε is not invertible, and even when one specializes to εk = 0. The main purpuse
of the last sections of this chapter was to prove these formula for the coproduct
in terms of partial R-matrices. We observed that after rescaling, this formula can
be expanded in terms of ε, so that it is also valid for non invertible ε.
Using this formula, we constructed a dual PBW basis of Uq(slε

n) in the first sec-
tion of this chapter and we gave the pairing between monomials. This enables
one to construct the universal R-matrix of Uq(slε

n). We observed that when one
wants to know the coproduct (and antipode) of Uq(s̃lε

n) modulo εk+1, one has to
work modulo εk+n−1.
In the previous chapter we gave an upper bound for the computational com-
plexity of the Uq(slε

n) invariant. In short, this provided the insight that for small
knots (i.e. less than say 20 crossings) the contribution of the number of crossings
is smaller than the contribution of rank of sln. It remains to be seen if this prob-
lem can be overcome. On the other hand, it is interesting to gain insight in the
symmetries of Uq(slε

n) in the case where εk = 0. This may reduce the number of
computations one might have to do. This will also give insight in the quantum
invariants that are obtained.
A concrete topic of future research is the implementation of Uq(slε

n) using the
comultiplication calculated in this chapter. As a first step, we wish to implement
these formulas for the case Uq(slε

3), to be able to match the conventions we used
earlier with the ones used by [29] and [6] and others. Especially with the last sec-
tion in mind, this should be possible in the current implementation of Uq(slε

3),
when one defines the (co)multiplication tensors for general order of ε. In the last
section we concluded that the higher n, the higher the order of ε one needs to
work over in order to obtain the full Hopf algebra structure. Once the Hopf al-
gebra structure has been found, one can restrict oneself to any (lower) order of ε
to calculate the invariant for actual knots.
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