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3. A polynomial time s/3-knot invariant

Introduction

In this chapter we explain how to turn the quasi-triangular Hopf algebra U, (sI5)
constructed in the first chapter into a knot invariant. We conclude with the proof
that the constructed knot invariant can be calculated in polynomial time using
the tensor formalism. The factorization of the knot invariant in Alexander poly-
nomials in zeroth order of epsilon is proven.

For the general form of the invariant in the sl; case we refer to [35]. For U,(sl5),
it remains an important open question if we can find a general expression for the
knot invariant. This means that one extracts the invariant part of the output of
the calculation of the knot invariant. This greatly reduces the length of the poly-
nomial for a knot K. This in turn will enable us to beter recognize the structure
of the knot invariant. Another important factor is the potential reduction of the
calculation time.

3.1. Knots diagrams and the Reidemeister theorem

We define the knot diagrams and we consider the usual embedddings of a knot
K in R®. We restrict ourselves to the class of framed knots. For an unframed
knot, one can always choose it to have writhe 0 and rotation number 0. If we use
this normalization it is possible to choose a canonical snarl diagram, as defined
in [35]. In this section we use the concept of framed knots, which enables us to
define the rotation number. A knot diagram in our convention is an rv-tangle
diagram in the language of [36]. We state the definition of (framed) knots.

Definition 3.1.1. A knot K is an equivalence class of a continuous (C*) embedding of
i: S' — R3. The equivalence class on the space of continuous embeddings is defined by
isotopies in R>.

This definition uses C*-embeddings to exclude unrealistic posibilities such as
wild knots from the space of knots. We will not go into details, see for example
[4]. A knot is usually defined to be a piecewise linear embedding of the circle.
This provides a way to formalize operations on knot diagrams on an elementary
level. We skip this step and refer to [4] for an elementary treatment of the subject.
Let I = [0,1] the unit interval. Instead of the embedding of S!, one can embed
S! x Iinto R3. Note that it is not essential to take the interval I as [0,1]. Instead,
one could also take this interval to be infinitesimally small. We wil consider I to
be infinitesimally small, say I = [0, 6], for § > 0.
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Chapter 3. A polynomial time slz-knot invariant

Definition 3.1.2. A framed knot K is an equivalence class of a continuous embedding of
i: S x I — R3. The equivalence class on the space of continuous embeddings is defined
by isotopies in IR3.

Let us define the framing of a framed knot.

Definition 3.1.3. (Framing) Let K be a framed knot with boundary components K*.
The framing of K is defined as the linking number of the curves K=.

If one considers embeddings of S! (or S! x I) with an orientation along S!, one
obtains an oriented knot. In this chapter we use framed oriented knots.

Definition 3.1.4. Let | = {1,--- ,n} be a finite discrete index set, and fix 2n distinct
points x;,y; € R>. A link is the equivalence class under isotopies of a continuous em-
bedding of the disjoint union ¢ : Wiejl; — R3 such that x; = ¢(0) € ¢((0,1];) and
yi = ¢(1) € ¢([0,1]y).

Two knots or links K and K’ are called isotopic if there exists a smooth family of
homeomorphisms /; : R® — R® for ¢ € [0, 1] such that hy is the identity on K and
hi1(K) =K'

The space of tangles will be most important in our discussion in this chapter, and
is closely related to the concept of long knots. The following definition is taken
from [25].

Definition 3.1.5. (Tangle) An (m,n)-tangle is a compact 1-manifold properly embed-
ded in R x R x I such that the boundary of the embedded 1-manifold is a set of m disinct
points in {0} x R x {0} and a set of n disinct points in {0} x R x {1}. To (m,n)-
tangles are said to be isotopic if there is an isotopy between the tangles that fixes the
boundary points. A framed tangle is a tangle with a framing on each component, idem
for an oriented tangle. A long knot is a (1,1) tangle, where we exclude closed compo-
nents.

A knot can be obtained from a long knot by closing its endpoints. Conversely, we
can obtain a long knot from a knot by cutting S! to obtain the interval I. This is
independend from the cutting point of the knot. A knot invariant is an invariant
if and only if it is an invariant of long knots, and the two invariants coincide
when the knot is cut, or the long knot is closed respectively. See [18], for the
context of classical knots, as we consider here.

More generally, it is not true that the closure of an (m,m) tangle without loops
is in one to one correspondence with the links of m components. There are n!
options to close an (n,n)-tangle. This is the reason that it is usually easier to
construct a knot invariant than a link invariant. In this chapter we construct
an invariant of framed oriented long knots. See also paragraph X.5 of [17], or
chapter 3 of [25] for more information.

Definition 3.1.6. A pre-knot diagram is defined to be a finite oriented four-valent graph
where each vertex is denoted as an over-crossing or an under crossing respectively. A
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3.1. Knots diagrams and the Reidemeister theorem

XK

(a) under- (b) over-
crossing crossing

Figure 3.1.: The possible crossings in a knot, up to rotation.
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Figure 3.2.: The Reidemeister moves for a framed knot. From left to right the
Reidemeister I, IT and III move.

labeling of a vertex as an over- and undercrossing is a labeling of the vertex with a £1
and the labeling of two opposite opposite edges ending at the vertex as the underpass.
The remaining two edges are labeled as the overpass. We refer to two edges labeled as an
over- or underpass as on the same strand, or as a strand.

See figure 3.1 for the notation of an over and under-crossing.

The space of pre-knot diagrams will be subject to an equivalence relation. Two
pre-knot diagrams are equivalent if they can be obtained from each other by
applying a finite number of Reidemeister moves. The Reidemeister moves are
depicted in figure 3.2. We are using framed knots in our theory, so the Reide-
meister I move is different from the usual Reidemeister I move, in order to keep
the rotation-number of the knot-diagram constant. We refer to the usual (un-
framed) RI move as the Reidemeister I’ move. This move is depicted in figure
3.3.

Definition 3.1.7. (knot diagrams) A knot diagram is defined as the equivalence class of
a labeled pre-knot diagram under the Reidemeister moves. With labeled we mean each
edge is IN-labeled. The number IN of an edge E is referred to as the rotation number of E.

There is a similar definition of tangle diagrams, but we consider tangles without
framing, so there is no rotation number indicated on the strands. We fix the
ending and starting points in R? as the projections of x;,y; € R3. Two distinct
vertices in tangle diagrams are required to have a distinct height. The height of a
vertex is defined through the second projection 7t : R> — R. This will be implicit
in our definition of tangle and knot diagrams. One can allways present a knot or
tangle in this way, see for example [17].

Definition 3.1.8. (tangle diagrams) A tangle diagram is defined as the equivalence class
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Chapter 3. A polynomial time slz-knot invariant

of a pre-knot diagram under the Reidemeister moves, where the Reidemeister I move is
replaced by the Reidemeister I" move.

\ /_>'<,_> /
O T

Figure 3.3.: The Reidemeister move I

Given a framed knot K, we consider its projection on R?>. We assume that the
knot is embedded in such a way that no two crossings align with respect to the
projection. The result can be presented as a knot diagram. For clarity, I is taken
to be infinitesimally small. In this case, we denote the framing of the knot as an
integer on the edges of the knot diagram of K, as the rotation number.

On the other hand, it is clear that a knot diagram F can be turned into a three
dimensional framed knot K(F). Given a knot diagram, we wish to prove two
knot diagrams are equivalent if and only if the corresponding knots are equiva-
lent. The Reidemeister theorem asserts this fact. A proof can be found in [25] for
example. As a result of this theorem, we can work with knot diagrams instead
of knots.

The same conventions hold in the case of a tangle, except that tangles do not
have a framing, and hence there is no need to label the edges.

Theorem 3.1.1. Two knot or tangle diagrams F and F’ are equivalent if and only if the
knots (or tangles) corresponding to F and F’ are equivalent under isotopies.

Let us be more clear about the about applying the Reidemeister moves to a knot
(or tangle) diagram. Any knot diagram can be obtained from elementary tan-
ngle diagrams. These elementary diagrams are shown in figure 3.4. The fifth
and sixth diagrams are refered to as caps, and the last two diagrams in figure
3.4 are referred to as cups. Since we consider finite diagrams, we can put an or-

LAY NANY Y

Figure 3.4.: The elementary tangles

dening on the nontrivial elementary tangle diagrams where a knot diagram K is
constructed from. Concretely, we draw the diagrams in a way such that the cross-
ings, cups and caps are ordered vertically. This way of drawing a knot diagram
is referred to as a sliced knot diagram. See chapter 3 of [25]. On sliced diagrams,
the Reidemeister moves take a slightly different form. These moves are referred
to as the Turaev moves for oriented sliced diagrams, and are depicted in figure
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3.1. Knots diagrams and the Reidemeister theorem

Figure 3.5.: The Turaev moves for a framed knot. The removal of trivial knots
from the diagram is excluded from the pictures, but is formally a
Turaev move. The last move is replaced by the Reidemeister I move
in case of a non-framed knot. The Turaev moves are numbered in left
to right, downward orderas T —1,---T —7.

3.5. We have the following theorem for sliced diagrams. For the proof we refer
to [25].

Theorem 3.1.2. The knots are isotopic if and only if their corresponding two oriented
sliced knot diagrams are equivalent under the Turaev moves.

We wish to label the crossings in a knot-diagram with i € {£1}. Let K be an
oriented framed long knot, so the diagram of K is oriented as a graph, where the
crossings are seen as vertices. To determine the sign of the crossing, we use the
convention of the left hand rule.

We draw a crossing as having a ninety degree angles between both strands. Place
the left hand thumb on the upper strand in the direction of the orientation, with
the palm of the hand pointed towards the paper. Align the index finger along
the lower strand of the crossing. If the index finger points in the direction of the
oriented strand, the crossing has sign 41, if it points in the opposite direction, it
has sign —1. Crossings with sign +1 are called over-crossings, —1 crossings are
refered to as under crossings. We can define the following.

Definition 3.1.9. (Writhe) We define the writhe of an oriented knot diagram of a knot
K as the difference between the number of over-crossings and the number of under-
crossings. We denote the writhe of K by writhe(K).

Lemma 3.1.1. writhe(K) is well-defined for a framed knot.

To prove this, we look at the admissable moves on knot diagrams, the Reide-
meister moves. We observe that the number of positive and negative crossings is
conserved under these moves for a framed knot.
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Chapter 3. A polynomial time slz-knot invariant

Definition 3.1.10. (mutants) Consider a knot diagram K, and consider a disc D in K
such that there are exactly four edges crossing the boundary of the disc. Let T be the tangle
in the disc D. Consider the operations S on the disc D where the four crossings (equally
spaced on the circle, w.l.o.g.) are mapped to each other. By applying these operations to
T we obtain a different tangle T'. A mutant of the knot K is a knot K" where the tangle T
is replaced by a tangle T" obtained from T by any of the operations S on D. We call K" a
mutation of K.

Of course it does not matter which definition one takes in rotating the crossing.
We are now in a position to define a knot invariant for a knot K.

Definition 3.1.11. (knot invariant) Let S be a set. Let Z(K) € S be an expression in S
corresponding to any knot K. Then Z(K) is called a knot invariant if for any two isotopic
knots Kand K, Z(K) = Z(K’).

Note that for a framed knot K, writhe(K) is a knot invariant where S = Z. Let us
now define the invariant corresponding to U, (sl3). Defining a knot invariant is
equivalent to defining how to compute it. For the following considerations, we
follow chapter 4 of [25]. For a more concise treatment of knot invariants coming
from ribbon Hopf algebras we refer to this source, although there exist many
other books that treat the subject as well.

A quasitriangular ribbon Hopf algebra A is equipped with an R-matrix R, its
inverse R 1, multiplication m, comultiplication A, unit 1 and counit . Note that
e is different from the parameter € introduced in chapter 1. As introduced in
chapter 1, we have u = ¥ S(R®)RM, and v = S(u). Since A is a ribbon Hopf
algebra we have the square root v of the element uv which is called the ribbon
element.

We introduce the graphical calculus for a ribbon Hopf algebra A. Consider a
framed oriented tangle diagram T. The graphical calculus is a way to denote
operations in A. For a rigorous introduction of the graphical calculus, see [25].
The idea is to label the strands of T expressions in A®S where each strand stands
for a tensor factor. The concatination of strands as taking the product of the
boxed quantities in the order of the orientation of the strand.

The labels of the strands are written in coupons. An (1, m)-coupon (or box) is a
rectangle with n inputs and m outputs, and corresponds to a map ALmy
A®{Lm} - Multiplication with an element w € A®S is considered as a map
A®S — A®S, and is denoted as a coupon with |S| in- and outputs. A strand with
no coupon (or box) is the unit of A.

Definition 3.1.12. An expression in the graphical calculus of A is a collection of (n, n)-
coupons, where n may be any positive integer, where the in- and outputs of the coupon
are connected by elementary oriented framed tangle diagrams. A graphical expression
with n strands is referred to as an n-ribbon graph.

Note that a ribbon graph without coupons is an oriented framed tangle diagram.
An example is depicted in figure 3.6. The graphical calculus is a way to denote
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3.1. Knots diagrams and the Reidemeister theorem

Figure 3.7.: Graphical Yang-Baxter equation.

multiplication on A®S. We denote the R-matrix of A as a crossing with sign +1
for R*! respectively. By the Reidemeister theorem, this is in fact well defined on
the equivalence classes of tangle diagrams, since R obeys the Yang-Baxter equa-
tion. For clarity, we may add a coupon containing R*!, to indicate multiplication
with the R-matrix.

The graphical language is useful to prove properties of A. One can for example
prove nicely that the Drinfel’d double is a quasi-triangular Hopf algebra. See
chapter 4.1 in [25]. We state the Yang-Baxter equation in this graphical language.
For more elaborate examples we refer to [25]. We may define operations on a
ribbon graph. We only state the most important operations. Obviously one may
multiply two n-ribbon graphs by putting the two diagrams together. To avoid
confusion, we label each of the 2n strands with a different integer, to indicate
which entries are multiplied. The multiplication of two n-ribbon graphs is re-
ferred to as the concatination of the strands.

The comultiplication in the Hopf algebra Aisamap A: A — A ® A. Its opera-
tion on an unlabeled strand, or a strand labeled with a grouplike element such as
uv~1 is doubling the strand. By the quasitriangularity axioms, when a crossing
occurs, doubling a strand results in two of the same crossings. This follows from
AR id(R) = R13Ros.

Since the antipode id ® S inverts the R-matrix, we may define the action of S on a
strand as inverting the orientation of a strand. This is also well defined when the
strands are labeled with grouplike elements in A. Later in this chapter we will
use these operations to prove some properties of the knot invariant we are about
to define. We also note that it is customary in Hopf theory to denote calculations
in a graphical way, using these oberations. See for example [10].
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Figure 3.8.: Graphical depiction of Z 4 for a ribbon Hopf algebra A.

Let us consider a ribbon Hopf algebra A and a framed sliced oriented tangle T.
We will define the tangle invariant Z 4 (K) for any ribbon Hopf algebra A. This
yields a knot invariant. This is independent from the cutting of the knot, as the
knot consists of one strand. In general, this invariant is ill defined on links, as
it depends on the cutting point on the embedding of the copies of S'. We will
not attempt to construct a link invariant, but this an interesting topic for future
research.

Let S be the set labeling the strands of T. We define

Za : {tangle diagrams} /~ — A®®

as the map that takes tangle diagrams and assigns R to a positive crossing and
R~! to a negative crossing. To a left oriented cap we assign the element C =
uv~1, and to the left oriented cup we assign multiplication with C = vu~!, the
product of the ribbon element v with the inverse of u. The right oriented cup and
cap are left as they are, as are the single strands. Multiplication now takes place
according to the graphical calculus by concatinating (or glueing) the elementary
diagrams to each other in the order as they appeared in T. In algebraic terms,
when two strands are concatinated, multiplication takes place on the same copy
of A labeled according to the label of the strand in K. For clarity we may assign
seperate labels to each side of two concatinated strands. Z,4 is depicted in figure
3.8.

When considering a map F : {tangle diagrams}/~ — {tangle diagrams} /~
of tangle diagrams in |S| strands, we introduce Z4(F) : A®S — A®S as the
corresponding map on Hopf algebras. Z4(F)(Za(T)) == Zs(F(T)). By the Rei-
demeister theorem (or Turaev’s theorem, depending on the diagrams under con-
sideration) this is well defined. We note furthermore that we may identify Z(T)
with tZ4(T) for any tangle T using the map O, since Z4(T) € A®°. In what fol-
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3.1. Knots diagrams and the Reidemeister theorem

lows, we leave the O out of the notation.

Usually, for a closed knot diagram we have to take the quotient of A®° with
the space of commutators in A. So for a framed oriented sliced knot diagram
K, Zs(K) € A/]. Here ] = {xy — yx|x,y € A} is the vector space of all com-
mutators in A. We quotient out to | since there is a choice how to map each
elementary tangle to an element in A. In other words, if Z4(K) were not com-
mutative, this construction would be ill-defined. For a proof of this fact we refer
to [25], paragraph 4.2. However, we do not close the knot so we are safe.

Theorem 3.1.3. Let K be a framed oriented sliced knot, and let A be a ribbon Hopf
algebra. Then Z4(K) € A is an isotopy invariant of the knot K. We refer to this invariant
as the universal A invariant of K, and write it as Z 5(K).

We are now in a position to define the knot invariant for the case A = U,(sl5).

Definition 3.1.13. Let K be a sliced framed oriented knot diagram. We define Z§(K) =
Zy,(si5) (K).

We now state the main theorem of this section.

Theorem 3.1.4. For any framed oriented long knot K, Z§(K) is invariant under the
isotopies of K.

Proof. To prove this theorem, it is enough to prove invariance of Z§(K) under the
Turaev moves, by the above discussion. These moves are checked explicitly in
Mathematica, and we refer to the implementation in appendix A.1.

We state the appropriate equations here for clarity. The equations are matched
to the diagrams in figure 3.5 by reading from left to right. We use the notation
introduced in earlier chapters, where R;; is the R-matrix R = }° RM ® R® acting
on the i-th and j-th tensor factor by 1® --- @ RV ®1®--- @ R@ @ ... @ 1.
Similarly we write C; for a copy of C on the i-th tensor factor (‘strand’). We

define K = ROCRW and € = RPcrRWY.
R12R13R23 = RsR13R12,
RVCRLRY =G,
R12R12 =1 =R1aRa,
C1CaR12C1Co = Ry,

CcC =1,
CC=1,
KK =1=KK.

The second equality can also be written as Eﬁ”éﬂzucﬁf) = 1® 1, which is

equal to the corresponding Turaev move by the using graphical calculus. The
fourth identity can be rewritten in the same way.

92



Chapter 3. A polynomial time slz-knot invariant

In appendix A.1 we number the Turaev movesas T —1,--- ,T — 7, as indicated
in the picture. The equations checked there are the exact same equations written
down in this proof. Since we already know that the Hopf algebra structure of
U, (sl§) is implemented in Mathematica in the program s/3invariant.nb as shown
in appendix A.1, we can directly conclude that Z§(K) is indeed invariant under
the Turaev moves. This ends the proof. O

3.2. Computing the Alexander polynomial

In this section, the Seifert surface S(K) of a knot diagram K is constructed, and
we compute its Alexander polynomial. The Alexander polynomial is computed
from the band representation of the Seifert surface. The idea is that we compute
the linking matrix of the generators of the fundamental group of S(K). For de-
tails we refer to [25] and [4]. We will follow page 17-22 of [25] and [4], page 107.
Let K be a framed oriented knot. To construct its Seifert surface, consider the
planar representation of K. In the knot diagram, we replace a crossing with two
untangled strands in the same direction. The result is a disjoint union of S. We
consider the discs in IR*> bound by these discs.

When a disc within a disc occurs, we elevate one of the two discs in the direction
perpendicular to the disc. Finally, connect the discs according to the crossings
present in the diagram of K. For a positive crossing we attach a band with a
positive half twist, and for a negative crossing in the diagram of K we attach the
discs with a negative half twist. The surface we obtain is the Seifert surface S(K)
of K.

Note that any Seifert surface can be expressed in a band form. This is called the

=28 (@ -

Figure 3.9.: The Seifert surface for the Trefoil knot.

band representation of the Seifert surface, see figure 3.10. This fact is proven by
considering one of the discs as the base of the band representation, and contract-
ing other discs to bands. Twists occuring will be denoted as curls in the band
representation. For a proof of this elementary fact, see [4], page 105.

We observe that the boundary of the Seifert surfact of a knot K is equal to K.
The boundary of the bands of the Seifert surface consists of two strands that are
linked together with linking number +1 or -1, depending on the convention cho-
sen. Moreover, the two strands always have opposite orientation, if we compare
them to the orientation of the band. This motivates the definition of the map B
in the next section.
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3.3. Multiplying R-matrices

Figure 3.10.: Band representation for the Trefoil knot.

To calculate the Alexander polynomial Ak of K, consider the fundamental group
71 (S) of S = S(K). We wish to compute the linking number of the generators of
7(S). For simplicity we chose a basebpoint p of 77'(S). Since S(K) is connected
the final result is independent of the coice of p. Let p be in the ‘base’ of S(K), i.e.
the rectengular part on which the bands are attached. Consider an orientation of
each generator a; € 71!(S). Here, i runs through the number of bands attached to
the base. For the Trefoil for example, i = 1, 2.

Considering this orientation, we define the numbers /;; and r;;. Consider two
bands B; and B; with orientation a;,4; € 7! (S), respectively. When B; over-
crosses B; from left to right, define I;; = 1, else [;; = 0. Similarly, when B; over-
crosses B; from right to left, define r;; = 1. Then define the Seifert matrix V' of
S by Vij = l;j — r;;. Finally, we define the Alexander polynomial Ak(t) in the
indeterminate t as det(t~1/2VT — t1/2V/). This normalization forces Ak (t) to be
symmetric under t — 1. See [4] for details.

We calculate the Alexander polynomial for the Trefoil knot with the loops in fig-
ure 3.10. We see that a; overcrosses a, from right to left, a; overcrosses a; (itself)
from right to left and similarly, a, overcorsses itself from right to left. We have

Vi1 = Vo = Vi = =1 and V51 = 0. Computing Alexander’s polynomial we get

_ _t_1/2 0 t1/2 t1/2
det((t 1/2VT — tl/ZV) = det( (—tl/z —tl/z) + < 0 t1/2))

=t 11+t

3.3. Multiplying R-matrices

When € = 0, we know that the invariant connected to Uj(slz) is the Alexan-
der polynomial [35]. The Uy (sl5;) algebra relations are identical to the algebra
in [35], so we can connect the Uy (sl§) invariant to the Alexander polynomial as
well. Note that for ¢ = 0, and a knot K, Zg(K) is a polynomial in the variables
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Chapter 3. A polynomial time slz-knot invariant

S, T,ST [35].

Let K be a knot, and let G be the tangle associated to the band representation
of the Seifert surface. The tangle G is obtained from the Seifert surface, discon-
necting the bands from the central disc, and labeling them with indices 1---2g,

where g is the genus of K. Let us define the operation B = H Bf‘ 'j, as the op-

eration that turns G into the knot K. We can describe this operatlon as doubling
the strands 1, - - - ,2g, reversing the orientation on one of the strands and then
connecting the strands as they fit on the Seifert-surface to match the orientation
of K. We have the following lemma.

Lemma 3.3.1. *Z§(B)¥; = 'A[" AR /15,1 /1S 0 /)y 1 1 -

Proof. The proof follows from considering the action of A, S and m on tangle
diagrams. The action of multiplication on two given strands, as we already saw,
is that of concatinating the two strands. The comultiplication doubles a given
strand without changing its orientation. The antipode reverses the orientation of
a given strand. From the definition of a quasitriangular Hopf algebra, we know
that R € U, (sl§) ® Uy(sl§) obeys the Reidemeister moves. On knot diagrams we
define the action of multiplication with the R-matrix as a crossing.

Now we easily see that the action of B is equivalent to

tAI212 s/t e t t, k
All i A5 S /M 00

in U, (sl§). This finishes the proof. O

In what follows, we denote tZ$(B)k. as tBk for short, sometimes leaving out the

ij
indices. We write down the following exphcit form of thf]-. For convenience, a*

and b* have been put to zero. We will see that they do not play a role. We used
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3.3. Multiplying R-matrices

Mathematica to calculate tBX

jjr see the appendix for more information.

—2n h h * Yk —2h h h % VK
b= 7 N n
—2h h h * Vo —2h h f * Vo
B2 (AY —BY) v Y*: | B (—Ap +BY) vt Y
+ -
h h
Ohm—h (AR B\ ok k7
A'B" (AL - BY) Xyt 2
h
BB (A - ABY) xiyZt AT (A - BY) Xy
h h
AB" (1- A}BY) 2527
h
—2hmp—2h h hph ¥ 4k 7% —2hmp —2h h hph * ok 7%
AB (- AT+ ALBL) xtiytiZ +Ak B, " (—A¥ + AIB!) x*jy*,Z i
h h
ACB (~ABL A+ BY) xyZY  AB" (14 ARBR) 212
h h ’

— kYt

zkx iyt +

_|_

— Y ATBEx 2+ Xe AB Py 2+

Note that in particular we get
Z9(K) = Z3(G) //*B.

Now we can prove the following. The proof is based on the proof in [36]. We
use the term mixing, which refers to the U, (sl5;) subalgebras of U, (sl5) that are
invariant under certain algebra maps. This translates to the tensor-formalism
by looking at specific terms in the tensors that are used. To see this, we invite
the reader to inspect the zipping-formula closely. In particular, we observe that
terms like ¢**" leave the Uy (sl3 ;) subalgebras invariant.

Theorem 3.3.1. Let K be an oriented framed long knot. The knot invariant Z3(K) is
the product of inverse of the Alexander polynomial of K in the variables S, T and ST.

Proof. Let K be a knot, and let G be the tangle associated to the band representa-
tion of S(K). We have Z§(K) = Z§(G) //*B. We first prove that the invariant fac-
torizes into sl parts by showing that the only terms that contribute to Z3(G) //*B
are the terms of the form E[0, ull, 1], where u = x,y, z, and U stands for the dual
(capital) generator.

By symmetry of the x, y, z terms occurring in 'R and *dm and the absence of mix-
ing terms like x;Y; in the non-perturbative part of the exponentials we will obtain
the factorization. Note that we connect all strands of G to one strand, since K is
a knot. Observe furthermore that we only need to consider Z{(G) // th, j» the case
where G consists of two strands. By induction to the number of strands the the-
orem will follow for general G, with the same argument.

The second part is proving that each of the sl, terms zips to the Alexander poly-
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nomial. This is done in a similar fashion, and is done explicitly in [36]. We will
not do this here explicitly, but refer to [36] for the argument.

We start with rewriting the multiplication tensor 'dm and R-matrices with (note
€ =0)s =2A —Band t = 2B — A, where we observe thatin 'R and ‘R~ =R
the s and t only occur with an a or a b in front. Note that since the antipode S
is the convolution inverse of A, and S(p) = S(p) = —p for p an element of the
Cartan subalgebra, thf f has no terms that consist only of elements of the Cartan-

subalgebra. This follows from lemma 3.3.1, since S and S are applied on the same
index of A. After multiplication the indices are changed to k, and the a and b drop
out. Observe that Z(G) only consists of products of R-matrices and trivial curls
(which are central elements).

In 'R, we see that s and ¢ only occur in combination with 2 and b respectively.
Hence we can set s, and t, for n = i, j to zero in th’]-. That is, we put s and t with

the’incoming’ indices i and j in *Bf ; to zero. This is equivalent to setting S and
T to 1, since s and t will never occur from zipping a and b. This is because the
a and b dependence in the Cartan part of the exponential *Z§=0(B)¥ ; drops out.

Since we take € = 0, we can put a* and b* to zero in Z3(G) (which follows from
the format of tdm).

Now we look at the non-square terms in the R-matrices and the multiplication
tensor 'dm. A calculation in Mathematica shows that before the zipping the only
cubic terms are (looking at tdmif, ;and R

XiYiz;, (3.1)
j
XiYize — Yexi Z7 + Xy Z; - (3.2)

3.2 arises in 'dm, and 3.1 arrises in *R~1. If we look at the last two terms 3.2, we
see that by symmetry of x and y occurring (and X and Y terms, as a result, since
these only occur together) in 'R and 'R ~! the two will cancel out. Here we use
that in the end we are left with one strand, i.e. one index. The first term of 3.2
and 3.1 are similar in the sense that after zipping, x;'y;zx — XiYjz.

From 'dm we can see that the cubic terms are unchanged by zipping with !B,
since X* only occurs with an x in 'B, and similarly for Y. The only way these
terms could contribute is after zipping of *ZJ (B)f< j (without loss of generality we
can take i’ =i and j = ).

In 'B, *R and *R 1, z* does not occur in combination with x and y. We once
again remind the reader that € = 0 for the duration of this proof, so we only
consider the non-perturbative part of the exponentials. Similarly, x; does not
occur in combination with y;. So there is no mixing of the variables. The reader
is encuraged to check this for themselves using the Mathematica implementation
in the appendix. This finishes the proof. ]

The following theorem uses a rough upper bound for the number of variables
zipped. The proof follows [35] by looking the sizes of the matrices in the zipping
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theorem. We are using the three-stage zip and the zippinng theorem on 8 gener-
ators in total, in the most optimal implementation of U, (sl§). The computational
complexity of calculating an m by m determinant is assumed to be m>. Invert-
ing the matrix is assumed to be of complexity m?>. Differentiating a monomial of
degree m times is of complexity ¢” for some constant c. So differentiating a poly-
nomial of m’ terms will take O(m’) computations. There exist faster algorithms,
but we calculate an upper-bound. It is possible to generalize this argument to
the case ek = 0, see [36] for an argument in the sl case.

Theorem 3.3.2. The calculation of Z5(K) for a knot K with n crossings has a computa-
tional complexity of at most O(n'0).

Proof. Let K be a knot with n crossings. We will assume that it has rotation-
number 0 and writhe 0. This can be done by inserting curls after the last crossing,
which does not infect the final result, apart from a normalization of the Alexan-
der polynomial. Note that conjugating an element x in the Hopf algebra U, (sl5)
with C equals S?(x). So putting the curls that occur in K after the final crossing
will only change the normalization with factors of 4. Moreover, the curls cancel
out. Note that S? multiplies the non-Cartan generators with a factor of g, so this
operation does not contribute to the upper bound. So we can assume that the
knot invariant is calculated by zipping over and under crossings and multiplica-
tion tensors.

We assume that the zipping is done at once for K, meaning there are n crossings
where each crossing has 2 indices to be concatinated. This follows from the rela-
tion between edges and vertices in any 4-valent graph. Furthermore we observe
that s and t are central, so we can take them to be coefficients, and leave them
out of the zipping. As a consequence we drop the index from ¢;,s; and s7, t7.
The first step is zipping a,a*,b*,b. Consider a tensor of the form E = ¢lQP,
where L stands for the Cartan-part, Q stands for rest of terms in the e-independent
part. As we put s and f constant, the only contribution to L comes from *dm, and
is of the form uu*. This is a diagonal matrix, so differentiating and computing
the inverse and determinant takes O(n?) operations. The contraction of the per-
turbation and differentiating takes O(n) operations, as in each monomial of P,
a,b have a degree of at most 2, and replacement of a with d,- also takes O(n)
computations.

The contraction of {X, Y, y*, x*} takes the most computations, as it has the most
generators that need to be contracted. Note that it is of the same complexity as
zipping Z,z*. Only the prefactor differs because of the number of variables and
the number of monomials in P with the corresponding variables differ. Zipping
E to the variables {X, Y, x*, y*} computes the matrix g of Q by differentiating Q
with 9y~ and taking its inverse. This takes O(n*) computations, as there are ~ n
generators in Q.

To compute the contraction of P, we count the number of monomials in P with
the variables X, Y,y and x. Observe that there are 32n variables (counting the
indices and the fact that we are always contracting two different indices) and
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the degree of each monomial is 8 at most, looking at the multiplication tensor in
the quantum double. Now we get a total of at most (32’?8) < (321 + 8)® mono-
mials. Differentiating each monomial is of a constant complexity. However, for
contracting P we first need to substitute the variables by applying the zipping
theorem. As this is a vector of length 167 at worst, this takes O(n?) operations
at worst, since the substitution could depend on ~ n variables. So we find that
zipping to {X, Y, x*,y*} takes O(n'?) operations at most.

We observe that applying the zipping theorem multiple times is more efficient
than performing the zip for all variables at once (in the absence of cubic terms of
course). In particular since this reduces the size of the matrices we work with. In
this case we have 3 implementations of the zipping theorem, the contribution of
each we can add together. This finishes the proof. O

Although in theory our computation is very efficient in terms of the number of
crossings, the biggest problem occurs when scaling the sl3 invariant to an sly
invariant. The number of variables m per strand (currently 8) will increase with
m = (N —1)(N + 1), if we count the number of generators in sly, compensat-
ing for the central elements in the algebra, of which there are N — 1. Since we
have to compute the inverse of a matrix of size m times m by differentiating, this
takes ~ m* operations. Adding in the substitution in the zipping theorem which
takes m? operations we get a complexity of O(m!?) = O(N?) for an sly invari-
ant where all the variables are zipped in one implementation (in the assumed
absence of troublesome terms), and O(N??) if the zips are splitted into N dif-
ferent zips (one zip for each group of generators associated to a root-vector of a
particular length < N). So in terms of the number of crossings, the sl invariant
is less efficient as say the sl, invariant, although not much less. But the problem
arises from the constant prefactor.

In the case of sl3 the prefactor arising from the number of generators in the
{X,Y,y*, x*}-zip can be estimated to be approximately ~ 8(2-16)'°. The fac-
tor of 4 arises from the number of operations it takes to differentiate each term
(with a degree of at most 2 in each generator). The factor 2 - 16 counts the num-
ber of generators. If we start with {X, Y, y, x} and the dual variables, we should
add in a factor of 4 since we are always contracting 2 indices, and each crossing
has two strands. For a small number of crossings we see that the contribution
from the number of generators per crossing is very big in comparison to the con-
tribution of 1! from the number of crossings. In total, we see that for sl,, this
prefactor will be roughly ~ 41%m!°. In particular the factor of 4 contributes a lot
when m is small.

In conclusion, although the sl3 invariant computes as n1 where n is the number
of crossings, in practice, for n = 6, the prefactor will contribute a term n'3, mak-
ing the effective complexity roughly O(1n%?) for small knots up to 6 crossings. For
knots up to 10 crossings this reduces to O(10%Y). For bigger knots, the contribu-
tion will be smaller still. Only for knots of ~ 40 crossings, n'? ~ 8(32)1.

We see that for the knots we are interested in the contribution of the number of
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generators and the size of 'dm is more important than the number of crossings
in the knots. This makes the computations very slow. It is therefore necessary
to look at a way to reduce the number of monomials in the perturbation P by
for example introducing a second parameter v* = 0 on the b~ side, to make the
algebra nilpotent. 7y is equivalent to ¢, it is only present on the “other side” of the
algerba U, (sl5).

The effect will be that we compute terms of the expansion of Z2 in terms of v,
which are finite type invariants, which are less powerfull than the Z§ invari-
ant. It may be expected however, that when computed to a sufficient order of
7, these invariants will give enough information to for example prove that Z§
distinguishes mutants.

Conclusion

Starting with the definition of knots, knots diagrams and the Alexander polyno-
mial we have proven that the invariant Z} factorizes into Alexander polynomials.
We used the Seifert surface to prove this fact. An algebraic implementation of the
Seifert surface was used to compute the knot invariant. This was used, together
with the action of the (co)multiplication and antipode on knot diagrams.

The main result of this chapter is the theorem that we can compute Zf in polyno-
mial time, and in fact in O(nlo) computations, where n is the number of crossings
in a given knot. The proof of this theorem was by considering the explicit zip-
ping of R-matrices corresponding to a knot diagram of a knot K. We concluded
wiith the observation that although this might seem a small cost, in practice this
cost is much larger. This is mainly because of the number of generators of s/3.
For a general sl, invariant this complexity will increase with O(n!%), where 1 is
the rank of the algebra U, (sl,).

More research is needed to bring this cost down. In particular the zipping of
R-matrices could possibly be improved upon, to bring down the O(n!°) even
further. It seems unlikely that the cost of the number of generators can be re-
duced significantly, but this is the most important contribution to the complexity
of computing Z5. In comparison, for a knot of 6 crossings, this factor contributs
roughly as O(n?"). This is much larger than the O(n!?) contribution of the zip-
ping of the R-matrices. One way to reduce this cost greatly is by cutting off the
multiplication in the quantum double. This can be done by introducing a second
parameter dual to y for example. Although in practice this reduces the strength
of the knot invariant greatly, this seems to be the best bet to compute Zj, for big-
ger knots.

Another possibility would be to reduce the number of variables involved in the
zipping of the R-matrices. One way to do this, is to isolate the actual s/3 invariant
from the knot-polynomial Z§(K) of a knot K. For example, in the sl, case ane can
isolate this part from a long expression in a central element. It is concievable that
we can drop some zips by smartly zipping the R-matrices of a knot diagram and
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still obtain the ‘new part’ of the s/3 invariant. To obtain an idea of the general
form of Z§(K) we need more data of course, but we can also look at the invari-
ance of parts of Z§(K) under the q-Weyl group.

Another way to improve the computation speed would be to implement the com-
putation of the determinants involved in the zipping of knots in C++ for exam-
ple, or another efficient computer language. Since Mathematica is Python-based
it may not be as efficient in computing and handling large expressions. Imple-
menting the computation in C++ would also enable one to use larger computers
for the computation of the knot diagrams.
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