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1. An expansion of the Uq(sl3) quantum
group

Introduction

Hopf algebras are used to produce knot invariants such as the Jones polynomial
and the Alexander polynomial. In this chapter we will construct a quasitriangu-
lar Hopf algebra that is in some sense a deformed version of the quantum group
Uq(sl3). The knot invariant associated with this Hopf algebra is stronger than the
Alexander polynomial, and is computable in polynomial time. These facts will
be proven in a later chapter.
In order to arrive at the correct quasitriangular Hopf algebra, we first cover its
classical limit, the deformed sl3 Lie bialgebra. We proceed with quantizing these
Lie bialgebras. Finally we cover the quantum or Drinfel’d double construction
to obtain the deformed version of Uq(sl3).
We aim to quantize the algebras over the ring Rε = R[ε]/(ε2). Usually the quan-
tization and Drinfel’d double construction is done over a field. Most theorems
also hold for coordinate rings. The subject of this chapter, besides obtaining the
Uq(slε

3) algebra, is the question ‘What is ε?’. There is no definite answer to this
question. One may choose between the possible perspectives we provide in this
thesis. Some perspectives do provide more information than others, however.
Most of the constructions presented here are covered in sources like [23] and [6].
It is advisable to consult these sources on the subject. The deformed Hopf al-
gebra presented here is based on the research by Van der Veen and Bar-Natan
in [35]. While [35] covers the Uq(slε

2)-quantum group invariant, we cover the
Uq(slε

3) quantum invariant. The construction is the same in essence. However,
we hope to gain insight in the problems arising in the quantization of sln.

1.1. Lie bialgebras

In this section we treat quasi-triangular Lie bialgebras. From a general Lie bialge-
bra it is possible to construct a quasitriangular Lie bialgebra through the classical
double construction. Using this construction, we turn the deformed lower Borel
sub Lie bialgebra of sl3 into a quasi-triangular Lie bialgebra. It is possible to
obtain the same Lie algebra relations through Wigner group contraction on the
upper Borel Lie subalgebra of gln. See appendix A.4 for more information.
By a vector space over a ring we mean a free module over a ring. In the case of
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Chapter 1. An expansion of the Uq(sl3) quantum group

the Lie algebras considered here, the modules are finitely generated. When we
say a Lie algebra or Lie bialgebra, we will mean a Lie (bi)algebra over a ring R.
R will be specified when necessary. A ring is always commutative with unit in
this thesis.
We will often work over the ring Rε = R[ε]/(ε2). A specific problem that arises
is the non-degeneracy of a bilinear pairing 〈, 〉 : M∗ ⊗ M → Rε, where M is a
free Rε module. In this and the next chapter, whenever we say that a pairing
is nondegenerate, we will mean that it is nondegenerate over R = Rε/εRε. In
other words, the map 〈, 〉 : M∗/εM∗ ⊗M/εM→ R is nondegenerate.
Since ε2 = 0, we can only pair in M∗ with expressions in M as an element in
M∗/εM and M/εM. In practice, this is what we will use the pairings in this
chapter for. As noted in the prelimenaries, we can extend an R-basis of a module
M/εM to an Rε-basis of M, where M is an Rε-module. The same is true for the
dual basis, since we consider finite dimensional modules in this section.

Definition 1.1.1. (Lie bialgebra) A Lie bialgebra (g, [, ], δ) is a vector space g over a
ring R together with a bilinear map [, ] : g ⊗ g → g (the bracket) and a linear map
δ : g→ g⊗ g (the cobracket) satisfying the following axioms:

1. [X, X] = 0 ∀X ∈ g,

2. [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 for all X, Y, Z ∈ g,

3. τ ◦ δ(X) = −δ(X) ∀X ∈ g, where τ(A⊗ B) = (B⊗ A),

4. δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗,

5. δ([X, Y]) = X.δ(Y)−Y.δ(X) for all X, Y ∈ g.

X.δ(Y) = (adX ⊗ 1 + 1⊗ adX)(δ(Y)), and adX(Y) = [X, Y] is the (left-)action of
the Lie algebra on itself, for all X, Y ∈ g. We introduce the Sweedler notation
δ(a) = ∑ a1 ⊗ a2 = a1 ⊗ a2, where we leave out the summation symbol, but
only indicate the entry in the tensor product. Let us define the Lie bialgebra
cohomology.

Definition 1.1.2. (Chevalley-Eilenburg complex) Let M be a g-module, where g is a Lie
algebra over a ring R. Set

Cn(g, M) := HomR(
n∧
g, M), n > 0,

and C0(g, M) := M, where
∧n g is the n-th exterior power of g. This is the Chevalley-

Eilenberg cochain complex.
The differential d on c ∈ Cn(g, M) is defined as

dc(x1, · · · , xn+1) =
n+1

∑
i=1

(−1)i+1xi.c(x1, · · · , x̂i, · · · , xn)+

∑
1≤i<j≤n+1

(−1)i+jc([xi, xj], x1, · · · , x̂i, · · · , x̂j, · · · , xn+1), (1.1)
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1.1. Lie bialgebras

where x1, · · · , xn+1 ∈ g, and x.d is the module action of g on d ∈ M.

With this complex one can now define the cocycles and coboundaries.

Definition 1.1.3. (Lie bi algebra cohomology) Define the space of cocycles

Zp(g, M) := {c ∈ Cp(g, M)|dc = 0},

and the space of coboundaries

Bp(g, M) := {c ∈ Cp(g, M)|∃c′ ∈ Cp−1(g, M) s.t. dc′ = c}.

Then define the Lie algebra cohomology as Hp(g, M) := Zp(g, M)/Bp(g, M).

The condition δ([X, Y]) = X.δ(Y) − Y.δ(X) in the definition of a Lie bialgebra
states that δ is a 1-cocycle in the Lie algebra complex C∗(g, g⊗ g), with the adjoint
action of g on the tensor product module g⊗ g.
According to the definition, δ is a 1-cocycle, so we can look at the cases when δ is
a coboundary: δ(X) = X.r for some r ∈ g⊗ g and for all X ∈ g. A Lie bialgebra
where δ is a coboundary is called a coboundary Lie bialgebra. g is coboundary if
and only if r obeys (let r = ∑ r12 = ∑ r[1] ⊗ r[2]):

1. 2r+ = r12 + r21 is a invariant under the action of g.

2. [r12, r13] + [r12, r23] + [r13, r23] = 0.

Here [r12, s13] = ∑[r[1], s[1]]⊗ r[2] ⊗ s[2]. See proposition 8.1.3 in [23] for the proof
that (g, [, ], r) defines a coboundary Lie bialgebra if and only if the above con-
ditions hold. Conditon 2 is called the classical Yang-Baxter equation, and r is
called the classical r-matrix. If the Lie bialgebra structure arises from a classical
r-matrix, then we call the Lie bialgebra quasitriangular. The condition that 2r+ is
ad-invariant is usually not included in the definition of an r-matrix, but for sim-
plicity we will do so. Usually the following definition is taken for a triangular
Lie algebra. See for example [23], chapter 8.

Definition 1.1.4. Let g be a Lie algebra. Define the classical r-matrix as an element
r ∈ g⊗ g which obeys (r = ∑ r12 = ∑ r[1] ⊗ r[2]):

1. r12 + r21 is a invariant under the action of g.

2. [r12, r13] + [r12, r23] + [r13, r23] = 0.

Note that [r12, s13] = ∑[r[1], s[1]]⊗ r[2]⊗ s[3] and similarly when other indices over-
lap. Let us now proceed with the construction of quasitriangular Lie bialgebras
through the classical double construction. We remind the reader that a Lie al-
gebra in this thesis is always finite dimensional. When this is the case, the dual
space is well defined and is again a Lie bialgebra.
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Chapter 1. An expansion of the Uq(sl3) quantum group

Definition 1.1.5. The dual of a Lie bialgebra g over a ring R is the dual vector space
g∗ with bracket and cobracket and a R-linear pairing 〈, 〉 : g∗ ⊕ g → R satisfying the
axioms

〈[a, b], c〉 := 〈a⊗ b, δc〉 (1.2)
〈δa, c⊗ d〉 := 〈a, [c, d]〉, (1.3)

where a, b ∈ g∗, and c, d ∈ g. We extend the bracket to the tensor-product g∗ ⊗ g∗ ⊕
g⊗ g by 〈a⊗ b, c⊗ d〉 = 〈a, c〉〈b, d〉.
It is interesting to turn a dual pairing into an inner product (, ) : (g⊕ g∗)⊕ (g⊕
g∗) → R by defining (X, η) = 〈X, η〉 and (X, X) = (η, η) = 0 for X ∈ g and
η ∈ g∗. We record the following fact, see lemma 1.3.5 of [6].

Lemma 1.1.1. Let g, g∗ be Lie algebras with inner product (, ) on the space g ⊕ g∗.
Then g ⊕ g∗ has a Lie algebra structure with g and g∗ as Lie subalgebras, where the
inner product (, ) is invariant under the adjoint action of g and g∗ if and only if g is a
Lie bialgebra. Moreover, the Lie algebra structure is unique.

There is a natural candidate for this Lie bialgebra structure when g is a Lie bial-
gebra: the classical double. Before defining the quantum double, we cover some
examples. The following examples are the classical versions of the Uq(slε

3) lower
and upper Borel subalgebras, as will become clear in the next section.

Example 1.1.1. Consider the Lie bialgebra (b−, [, ], δ) over the ring Rε = R[ε]/(ε2)
generated by the elements {b, a, z, y, x} as a Rε-module and the relations

[a, x] = −2x, [a, y] = y, [a, z] = −z (1.4)
[b, x] = x, [b, y] = −2y, [b, z] = −z (1.5)
[x, y] = z (1.6)
δ(x) = ε(x⊗ a− a⊗ x) (1.7)
δ(y) = ε(y⊗ b− b⊗ y) (1.8)
δ(z) = ε(z⊗ (a + b)− (a + b)⊗ z + 2x⊗ y− 2y⊗ x), (1.9)

and all other identies on generators zero. Concretely, we define the Lie algebra b− as the
Rε-module generated by b, a, z, y, x, divided out to the ideal generated by the algebra rela-
tions stated above. The algebra-relations are equal to the relations in the lower triangular
subalgebra of the Lie algebra sl3(R). The cobracket is the usual cobracket multiplied by
ε. Hence it satisfies the Lie bialgebra axioms.

The b− Lie bialgebra is a central object in this chapter. We might denote the
generators {b, a, z, y, x} of b− as the more general

{H−1 , H−2 , X−1 , X−2 , X−3 },

with H−3 = H−1 + H−2 . Although b− is not semisimple, as can be seen from
calculating the Killing form, where the diagonal block-matrix corresponding to
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1.1. Lie bialgebras

(z, y, x) (using the order (b, a, z, y, x)) vanishes, the Killing form κ restricted to the
maximal toral subalgebra H of b− is nondegenerate over R. See appendix A.3 for
the definition of the Killing form.
The Killing form is not nondegenerate over Rε since the Killing form is bilinear
in ε. Formally, as remarked in the preliminaries, we can extend an R-basis to an
Rε-basis. So we can consider {b, a, z, y, x} as elements in b−/εb−. In this sense is
the Killing form nondegenerate. Note that the construction of the Killing form is
independent of ε.
In fact κ(a, a) = κ(b, b) = 6 and κ(a, b) = κ(b, a) = −3. This is due to the fact
that b− is derived from a semisimple Lie algebra. The following lemma holds.
Again, the remark is that the R-basis can be extended to an Rε-basis.

Lemma 1.1.2. Let φ ∈ H∗ and κ be the Killing form on H, the maximal toral subalgebra
of b−. Then there exists a unique tφ ∈ H such that φ(h) = κ(tφ, h).

This lemma allows us to identify H with H∗, and also enables us to define a
nondegenerate form on H∗ by transferring the Killing form. Since the set of
roots Φ ∈ H∗ consists of 3 roots α, β, α + β corresponding to the root-spaces
generated by x, y and z, respectively (the root-spaces corresponding to these
roots are nonzero), the set of roots Φ of b− is the same as the set of sl3. Moreover,
the Cartan matrix is the same as the Cartan matrix for sl3, which reads 2 −1 0

−1 2 −1
0 −1 2

 . (1.10)

Another example of a Lie bialgebra is the lower Borel subalgebra of sl2.

Example 1.1.2. Let g be the algebra over R generated by A and X and the relations

[X, A] = X, [X, X] = 0, [A, A] = 0, (1.11)
δ(X) = X⊗ A− A⊗ X, (1.12)

δ(A) = 0. (1.13)

Let us check the axioms explicitly for this example. Clearly the first two Lie bialgebra
axioms are satisfied, as there are only two generators. By definition, the third axioms is
satisfied. If we use the formula for δ, the last axiom is equivalent to

δ([A, X]) = [A, X]⊗ A− A⊗ [A, X] = X⊗ A− A⊗ X.

Let us now calculate the dual of g, the generators of which are denoted by a and x and
are dual to A and X respectively. Using the properties of the dual pairing (g being finite
dimensional) we get

〈[a, x], X〉 = 〈a⊗ x, δ(X)〉 = 〈a⊗ x, X⊗ A− A⊗ X〉 (1.14)
= 〈a⊗ x,−A⊗ X〉 = −1. (1.15)
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Chapter 1. An expansion of the Uq(sl3) quantum group

Hence the algebra is generated by [a, x] = −x, and the other relations zero. In the same
way we get δ(x) = x⊗ a− a⊗ x. Checking the Jacobi identity, we see that δ∗ is indeed
a bracket on g∗, and hence g is a Lie-bi algebra. This last exercise is left to the reader.

Let us construct the dual (b−)∗ of b−. (b−)∗ is needed for the classical double
construction.

Example 1.1.3. The dual of b−, which we will call b+ suggestively, can be defined by
using a pairing 〈, 〉 : (b−)∗ ⊕ b− → k. If we extend the dual basis over R obtained
through this pairing Rε-linearly, we obtain the dual (b−)∗ that is generated by the dual
basis {X, Y, Z, A, B} ⊂ b+. Since b− is finite dimensional, so is its dual.

〈X, x〉 = 1, 〈Y, y〉 = 1, 〈Z, z〉 = 1, 〈A, a〉 = 1, 〈B, b〉 = 1, (1.16)

and relations between other generators zero. The generators of b+ satisfy the following
relations

[X, Y] = 2εZ, (1.17)
[X, A] = εX, [X, B] = 0, (1.18)
[Y, A] = 0, [Y, B] = εY, (1.19)
[Z, A] = εZ, [Z, B] = εZ, (1.20)
δ(A) = δ(B) = 0 (1.21)
δ(X) = X⊗ (2A− B)− (2A− B)⊗ X (1.22)
δ(Y) = Y⊗ (2B− A)− (2B− A)⊗Y (1.23)
δ(Z) = Z⊗ (A + B)− (A + B)⊗ Z + X⊗Y−Y⊗ X. (1.24)

The relations between generators that are not mentioned here are zero. It can be checked
that these relations indeed satisfy the pairing axioms in a similar fashion as the previous
example (in fact, there is only one relation that is different from the previous example,
namely [X, Y] = 2εZ). It follows that b+ is a Lie bialgebra. Note that b+ is constructed
in such a way that the generators are dual with respect to the pairing 〈, 〉. It is interesting
to see that this algebra is solvable.

Let us now define the classical double construction. For a proof that this structure
indeed defines a quasitriangular Lie bialgebra in the sense of definition 1.1.4 and
definition 1.1.1 see 8.2.1 in [23].

Definition 1.1.6. (classical double) Let g be a finite dimensional Lie bialgebra over a
ring R with Lie-dual g∗ (i.e. there exists a dual pairing obeying 1.16). The classical
dual D(g) is the vector space g∗ ⊕ g together with Lie bracket, cobracket and classical
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1.1. Lie bialgebras

r-matrix

[a⊕ b, c⊕ d]D = ([c, a] + ∑ c1〈c2, b〉 − a1〈a2, d〉)⊕ ([b, d] + ∑ b1〈c, b2〉 − d1〈a, d2〉)

(1.25)

δD(a⊕ b) = ∑(a1 ⊕ 0)⊗ (a2 ⊕ 0) + ∑(0⊕ b1)⊗ (0⊕ b2), (1.26)

rD = ∑
a
( f a ⊕ 0)⊗ (0⊕ ea). (1.27)

Here, a, c ∈ g∗ and b, d ∈ g. The elements f a ∈ g∗ form a basis dual to the basis
ea ∈ g. We use the Sweedler notation for δ(a) = ∑ a1 ⊗ a2, where we often forget the
summation symbol.

Note that g and (g∗)op are included in D(g) as sub Lie bialgebras. See Lemma
1.4.2 of [6] and lemma 1.1.1 for the connection between the classical double and
b− and (b−)∗.

Example 1.1.4. Let us construct the classical double of the upper Borel of sl2 from the
previous example. From the definition we get

[x⊕ 1, 1⊕ X] = a⊕ A (1.28)
[x⊕ 1, 1⊕ A] = −x (1.29)
[a⊕ 1, 1⊕ X] = −X, (1.30)

r = x⊕ X + a⊕ A. (1.31)

The r-matrix follows from the definition of the dual generators. The algebra relations
follow by direct calculation.

The classical double D(g) is a quasitriangular Lie bialgebra built on the vector
space (g)∗⊕ g with bracket, cobracket and r-matrix. Note that g∗ has the negated
(opposite) bracket in D(g). This specific Lie bialgebra structure is related to the
invariance of the inner product on g∗ ⊕ g under the adjoint action. See [23] chap-
ter 8.2 for example. Let us briefly describe what we mean.
Let 2r+ be the symmetric part of r ∈ D(g)⊗ D(g) as defined before. Since g is
finite dimensional, 2r+ can be interpreted as a map 2r+ : D(g)∗ → D(g). This
map is given by 2r+(ξ ⊕ φ) = 〈ξ ⊕ φ, r[1]〉r[2] + 〈ξ ⊕ φ, r[2]〉r[1]. Note that since
ea and f a are dual basis with respect to 〈, 〉 we get 2r+(ξ ⊕ φ) = φ⊕ ξ, so 2r+ is
an linear isomorphism (over R) with an inverse 2r−1

+ : D(g) → D(g)∗ which is
invariant under the adjoint action because r is an r-matrix, so 2r+ = r12 + r21 is
invariant under the adjoint action of g. This implies that 2r+ gives rise to a Lie
algebra isomorphism between D(g) and D(g)∗.
Because we are not working over a field but over the ring Rε, the definition of
2r−1

+ does not follow automaticaly from 2r+. However, as noted in the prelime-
naries, we can extend an R-basis to an Rε-basis. In this way we can define 2r−1

+

to be the inverse of 2r+ as a map of R-modules and extend it to an Rε map. This
map is injective. We could also construct 2r−1

+ by introducing ε as an invertible
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Chapter 1. An expansion of the Uq(sl3) quantum group

parameter. Since this changes nothing in the algebra-relations on generators, we
can take ε2 = 0 after defining 2r+.
This means that we can write 2r−1

+ (φ⊕ ξ) = K(φ⊕ ξ, ·) for an adjoint-invariant
element K ∈ D(g)∗ ⊗ D(g)∗. Since K is a bilinear map this will define a bilinear
form. So in short, if r is quasitriangular, we can define a bilinear symmetric form
on D(g)⊗ D(g)∗ that is invariant under the adjoint action.
The question arises when is r quasitriangular. In particular, when is 2r+ ad-
invariant. It turns out that this is the case if we use the opposite multiplication
on g∗. Let φ ∈ g∗ and ξ ∈ g. We identify φ⊕ 0 = φ and 0⊕ ξ = ξ in the notation.
For the moment we denote δ(x) = x[1] ⊗ x[2].

adφ(r) = [φ, f a]D(g) ⊗ ea + f a ⊗ [φ, ea]D(g)

= [ f a, φ]⊗ ea − f a ⊗ φ[1]〈φ[2], ea〉 − f a ⊗ ea[1]〈φ, ea[2]〉
= f a ⊗ ea[1]〈φ, ea[2]〉 − f a ⊗ φ[1]〈φ[2], ea〉 − f a ⊗ ea[1]〈φ, ea[2]〉
= − f a ⊗ φ[1]〈φ[2], ea〉
= −φ[2] ⊗ φ[1] = δ(φ).

We used the properties of a Lie bialgebra pairing 1.1.5. The same result holds
for δ(ξ), only the minus signs change in + signs, since the product on g is the
multiplication on the double. However, this is exactly the right order to obtain
adξ(r) = δ(ξ). Since δ is anti-symmetric we see that adφ(2r+) = adξ(2r+) = 0.
It follows that the opposite multiplication is essential to obtain a coboundary Lie
bialgebra.
We denote this sub-Lie algebra with g∗op. One can take the dual of D(g), the dou-
ble construction this results in is called the co-double. The resulting Lie algebras
are equivalent in the sense that there exists an explicit Lie algebra isomorphism
relating the two.

Definition 1.1.7. Let g and g∗ be finite dimensional dual Lie algebras over a ring R.
Let a, d ∈ g∗ and b, c ∈ g. Define the Lie algebra pairing 〈, 〉D : D(g)× D(g)∗ → R :
〈a⊕ b, d⊕ c〉D = 〈a, c〉+ 〈d, b〉.

With this pairing it is possible to calculate the dual of a classical double D(g). To
this end we state the following lemma, which simplifies this task.

Lemma 1.1.3. Let a, d ∈ g∗ and b, c ∈ g. Then

〈[a, b]D, c〉D = 〈a, [b, c]〉, 〈a, [d, c]D∗〉D = 〈[d, a], c〉.

The bracket [,] denotes the bracket in g and g∗.

Proof. The proof is by direct verification, and can be found in [23] for example.
We use the fact that 〈, 〉 is a Lie bialgebra pairing, and the definition of [, ]D.

We proceed to use the classical double construction on b− and its dual. We are
using the co-double construction, which is the dual of the classical double. Let
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1.1. Lie bialgebras

us first give the classical double D(b−), by combining examples 1.1.1 and 1.1.3,
where we put the opposite bracket on the b+ = (b−)∗ side. Only the trivial
relations and the relations of b− and b−∗ are left out. Remember that (b−)∗ has
the opposite bracket in D(b−). The bracket on b− is the usual bracket.

[X, b] = X, [X, a] = −2X, [X, z] = 2εy, [X, x] = 2A− B + εa, (1.32)
[Y, b] = −2Y, [Y, a] = Y, [Y, z] = −2εx, [Y, y] = 2B− A + εb, (1.33)
[Z, b] = −Z, [Z, a] = −Z, [Z, z] = A + B + εa + εb, [Z, y] = −X, [Z, x] = Y

(1.34)

[A, z] = −εz, [A, x] = −εx, [B, z] = −εz, [B, y] = −εy, (1.35)
rD = A⊗ a + B⊗ b + X⊗ x + Y⊗ y + Z⊗ z, (1.36)

Lemma 1.1.4. D(b−) is a quasitriangular Lie bialgebra, and is the classical double of
the Lie bialgebras b− and (b−)∗.

Proof. g = D(b−) is a quasitriangular Lie bialgebra by construction. The bracket-
relations follow by direct calculation from the definition, and can be checked
manually. Observe that the relations follow from group contraction on the stan-
dard gln structure. See for example 4.4.1 in [10]. See appendix A.4 for an example
of Wigner group contraction.
The axioms for the cobracket are satisfied by examples 1.1.1 and 1.1.3, together
with the definition of the cobracket on the classical double. The r-matrix follows
from the definition of the algebra relations of the classical double. The fact that
D(b−) is the double of b− and (b−)∗ can be seen from the uniqueness of the clas-
sical double (see lemma 1.1.1) and the fact that D(b−) contains b− and (b−)∗ as
Lie subalgebras. This finishes the proof.

The relations of the algebra D(b−)∗ are given by

[X, b] = X, [X, a] = −2X, [X, z] = −2εy, [X, x] = −2A + B− εa, (1.37)
[Y, b] = −2Y, [Y, a] = Y, [Y, z] = 2εx, [Y, y] = −2B + A− εb, (1.38)
[Z, b] = −Z, [Z, a] = −Z, [Z, z] = −A− B− εa− εb, [Z, y] = −X, [Z, x] = Y

(1.39)

[A, z] = εz, [A, x] = εx, [B, z] = εz, [B, y] = εy, (1.40)
rD = A⊗ a + B⊗ b + X⊗ x + Y⊗ y + Z⊗ z, (1.41)

and the bracket as defined above on the Lie subalgebras b±. In particular, b+ does
not have the opposite bracket in D(g)∗. The cobracket δ is negated on (b−)∗ ⊂
D(g)∗ (as Lie algebras), and stays the same on b−. The cobracket in general is
very complicated, and can be calculated by using the dual pairing. We will not
describe the cobracket of D(g)∗ explicitly.

Theorem 1.1.1. The algebra D(b−)∗ constructed above is a quasitriangular Lie bialge-
bra, and is the dual of D(b−). We refer to this Lie bialgebra as slε

3.
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Proof. The bracket of b± ⊂ D(g)∗ is calculated from the cobracket of D(g). By
construction of b+ = (b−)∗, it follows that the bracket on b± is the usual (non-
opposite) bracket. The other relations follow by using the ad-invariance of 〈, 〉 :
D(g)∗ × D(g) → Rε. This enables us to directly calculate the bracket of D(g)∗.
The fact that D(b−)∗ is dual to D(b−) follows from this calculation. We will do
one example with the generators X and z. In the classical double [X, z] = 2εy.
y pairs dually with Y, hence it follows by ad-invariance of the inner product 〈, 〉
that

〈X⊕ 1, [z⊕ 1, 1⊕Y]D∗〉D = 〈[z, X], Y〉
= 〈−2εy, Y〉
= −2ε.

So we can conclude that [Y, z] at least contains a term 2εx, since x is the only
generator that pairs nonzero with X. Since there are no generators in D(b−) that
commute with z to yield y except X, we can conclude that [Y, z] = 2εx. The
other relations follow in a similar fashion. On generators, the cobracket of D(g)∗

is negated on (b−)∗ ⊂ D(g)∗. From the pairing we can define the cobracket on
mixed terms. This will not be done explicitly, but it is also not necessary. We
conclude that D(g)∗ is a Lie bialgebra.
To obtain a quasitriangular Lie bialgebra we need to check that δ(u) = u · r for
all u ∈ D(g)∗, and moreover that 2r+ = r12 + r21 is a invariant under the ac-
tion of g, and [r12, r13] + [r12, r23] + [r13, r23] = 0. Define a = g∗cop, where g∗cop

refers to g∗ with the negated cobracket, then a∗op = g. This follows from the Lie
bialgebra pairing axioms. One can do the usual double construction on the Lie
bialgebra a to obtain a quasitriangular Lie bialgebra structure on g⊕ g∗cop with
classical r-matrix rD. By lemma 1.1.1 this Lie algebra structure is unique and co-
incides with the Lie algebra D(g)∗. The adjoint action on rD coincides in both
algebras. Moreover the cobracket of a∗op agrees with the cobracket on g by defi-
nition (and similarly for the dual), and hence the cobracket of D(g)∗ is identical
to the cobracket on D(a). So we see that D(g)∗ is indeed quasitriangular.

For completeness we also mention the definition of the universal enveloping al-
gebra of a Lie bialgebra. The universal enveloping algebra U(g) is the noncom-
mutative algebra generated by 1 and the elements of g. Formally, we have the
following definition. One can also define U(g) by a universal property, see for
example page 90 of [14]. The concept of a Hopf algebra will be defined in the
next section. In this definition we only define the relevant maps without proving
that they in fact define a Hopf algebra.

Definition 1.1.8. Let g be a finite dimensional Lie algebra over a ring R. Let Sn(g) =
n⊗

i=1
the n-th tensor space, and define the tensor algebra T(g) = lim

n→∞

n⊕
i=0

Si(g) (with

tensor products over R). Define the universal enveloping algebra U(g) as T(g) modulo
the relations [a, b] = a ⊗ b − b ⊗ a for all a, b ∈ g. Let a ∈ U(g). The coproduct
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∆ : U(g) → U(g)⊗U(g), counit ε : U(g) → R and antipode S : U(g) → U(g) are
given by

∆a = a⊗ 1 + 1⊗ a, εa = 0, Sa = −a,

where ∆, ε are extended as algebra maps, and S as an antialgebra map.

Note that this bialgebra is cocommutative, so we can take the R-matrix to be
trivial to make U(g) a quasitriangular Hopf-algebra, as we will see in the next
section. On a seperate note, observe that U(g⊕ h) = U(g)⊗U(h). This gives a
nice insight in the relation between the classical double and the Drinfel’d double,
which uses the tensor product instead of the sum. We have extended the bracket
of a Lie bialgebra g to U(g), and we have equipped U(g) with a Hopf algebra
structure, but we have not yet extended δ to U(g).

Definition 1.1.9. (Co-Poisson Hopf algebras) A co-Poisson Hopf algebra over a ring R
is a cocommutative Hopf algebra H with a skew symmetric R-module map δ : H →
H ⊗ H (the Poisson cobracket) satisfying

1. σ ◦ δ⊗ id ◦ δ = 0, where σ means summing over cyclic permutations of the tensor
product.

2. (∆⊗ id)δ = (id⊗ δ)∆ + σ23(δ⊗ id)∆, where σ23 means switching the second
and third factor.

3. For all a, b ∈ H, δ(ab) = δ(a)∆(b) + ∆(a)δ(b).

This definition is natural, as follows from the following proposition. This propo-
sition can be found as proposition 6.2.3 in [6]. Although we state the proposition
for a specific Lie algebra over the ring Rε, it is expected to hold for a general ring
of characteristic zero and a general Lie algebra, with a proof similar to the proof
in [6]. Of course we have the same proposition for the Lie bialgebras constructed
in example 1.1.2. The proof is identical, and we will not state this proposition
here, as it is only a formality.

Proposition 1.1.1. Let g = b± be the Lie bialgebra over the ring Rε as defined above.
Then the Lie cobracket extends uniquely to a Poisson cobracket δ on U(g), making U(g)
a co-Poisson Hopf algebra.
Conversely, if U(g) has a Poisson cobracket δ, then δ|g is a Lie cobracket on g.

Proof. First consider b+/εb+ as a Lie bialgebra. According to proposition 6.2.3
in [6] the cobracket extends uniquely to a Poisson bracket on U(b+/εb+). The
cobracket on b+/εb+ is also a cobracket when extended to b+. We obtain the
proposition for the ring Rε by considering the universal enveloping algebra of
the Lie algebra g = b+ over Rε. One can check that this yields the correct co-
bracket on the Lie algebra generators, trivially. The co-Poisson bracket obeys
the first axiom, as δ is antisymmetric. Since δ(1) = 0, the second axiom follows
straightforwardly. The last axiom follows from the fact that δ is 1-cocycle.
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Chapter 1. An expansion of the Uq(sl3) quantum group

Secondly, consider the Lie bialgebra b ⊂ sl3 of lower triangular matrices over
R. This extends uniquely to a co-Poisson Hopf algebra by proposition 6.2.3 in
[6]. Consider the map φ : b− → b by taking the cobracket δ on b− and for-
getting about ε. This map extends to the co-Poisson Hopf algebra U(b−), since
δ(ab) = δ(a)∆(b) + ∆(a)δ(b), and ∆ is trivial in U(b−). Suppose that δb− can-
not be extended uniquely to U(b−). The difference between the two extensions
is proportional to ε. Taking its image under φ, we get a contradiction with the
uniqueness of the cobracket on U(b). This proves the proposition.

In the following theorem and in later chapters we will use the language of roots
and root systems. In particular it is important to know that a Lie bialgebra is
characterised by its Cartan matrix (aij). The Cartan matrix has integer coeffi-
cients. For more information on this subject see for example [14]. The most
important notions are collected in appendix A.3. Remember that to each sim-
ple root one can associate a simple generator, as we showed before. Non-simple
roots are sums of simple roots, and to non simple roots one can associate non-
simple generators. We will denote the two roots of the Lie algebra sl3 with greek
letters α and β. More generally, we may write βi or αi for the roots of the Lie
algebra .
Root systems are interesting for the classification of semisimple Lie algebras.
They also provide a way of ordering the generators of a Lie algebra. We present a
general way in which these generators form a basis for the universal enveloping
algebra of a Lie algebra .

Theorem 1.1.2. Let g = b+ ⊕ b− be a Lie bialgebra over Rε with simple generators
X±i , H±i , i = 1, · · · , n, where n is the rank of b±. g is defined as the classical double of the
Lie bialgebras b±. b− is defined as the lower Borel subalgebra of sln, where the cobracket is
multiplied by ε, and b+ is defined as its dual. Then U(g) is spanned as a vector space by
the monomials (X+

1 )i1 · · ·X(+n )
in(H+

1 )l1 · · · (H+
n )ln(H−1 )j1 · · · (H−n )jn(X−1 )k1 · · · (X+)kn

n .
This basis is called the PBW basis.

Proof. We first observe that U(g) = U(b+)⊗U(b−), so it is enough to prove that
the monomials in X± and H± span U(b±) respectively. Let us denote g as slε

n.
First consider U(b−). The universal enveloping algebra of a semisimple Lie alge-
bra g has a countable basis called the Poincare-Birkhoff-Witt or PBW basis. This
theorem is proved in for example [14] in the case where g is a semisimple Lie
algebra over a field. slε

n contains the lower triangular matrices b− ⊂ sln as a Lie
subalgebra over R. Since the commutation relations in b− do not contain ε, we
can use the theorem for semisimple Lie algebras by dividing out to εg. We con-
clude that U(b−) ⊂ U(slε

3) has a PBW basis as well, and thereby also its dual has
a PBW basis.
Consider U(b+). One can easily see that U(b+) is spanned by commutative
monomials, since any expression can be rewritten using the Lie algebra relations
in b+. So U(b+) is free. The pairing is nondegenerate over R, and we can extend
the dual basis over R to an Rε-basis, since U(b+) is free. The dual basis is given
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by monomials in the generators dual to the generators of U(b−), which can be
checked on generators. We conclude that the dual basis of b+ forms a basis over
Rε that is identical to the monomials stated in the theorem.

For completeness we mention the Chevalley basis of a general Lie algebra over a
field k. A semisimple Lie algebra g over a field k with Cartan matrix aij generated
by a Chevalley basis Xi, Hi has the following relations.

[X−i , Hj] = aijX−i , [X+
i , Hj] = −aijX+

i , (1.42)

[X−i , X+
j ] = Hiδij,

k=1−aij

∑
k=0

(−1)k
(

1− aij
k

)
(X±i )

kX±j (X±i )
1−aij−k = 0.

The last relations are called the Serre relations. The Serre relations yield the com-
mutation relations for non-simple generators. It can be rewritten as ad

−aij+1
X±i

(X±j ) =
0, for i 6= j.
The non-simple generators can be defined in a nice way using the Weyl group.
The Weyl group is the space of reflections of the root-space and can be used to
define a set automorphisms denoted by Ti. For a semisimple Lie algebra, the
Ti are given by the adjoint action on non-Cartan elements and as the reflections
on Cartan subalgebra elements. The Ti are Lie algebra automorphisms and are
given by the following expressions.

Ti(X±i ) = −X±i , Ti(Hj) = Hj − aijHi, (1.43)

Ti(X±j ) =
(±1)aij

(−aij)!
(adX±i

)−aij(X±j ), i 6= j. (1.44)

This yields a braid group action on g [6]. These relations also define a set of
generators Xα for every root α with the property that [Xα, Xβ] = Xα+β.
We will later attempt to quantize this braid group action in the setting of slε

3.
However, the described Ti fail to be algebra automorphisms when εk = 0. Non-
simple generators can still be defined using the Ti, but we have to be careful
when using the Ti further. See chapter 4 for a solution to this problem.

1.2. Hopf algebras

We proceed with the construction of a quasitriangular Hopf algebra based on
the Lie bialgebra constructed in the previous section. Let U(b−) be the universal
enveloping algebra of b− as a Hopf algebra. This turns U(b−) into a Hopf algebra
over Rε. The goal is to find a quantization of the universal enveloping algebra
of b−, such that the Lie bialgebra structure is incorperated in the Hopf algebra
structure. After the quantization we apply the Drinfel’d double construction to
find a new solution to the Yang-Baxter equation.
The definitions below are usually given over a field, but since we work over the
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Chapter 1. An expansion of the Uq(sl3) quantum group

ring Rε in this chapter (except when stated otherwise), we state the definitions
over a ring. We observe that the usual definitions hold over a ring as well [23]. As
remarked in the prelimenaries, when considering a free module M over the ring
Rε, we can extend any R-basis of M/εM to an Rε-basis of M. See [23], chapter
7, for the explicit proof of propositions 1.2.2 and 2.3.1. For the definition of the
Hopf cohomology, see [6]. We remind the reader of the fact that we refer to a
module over a ring R as a vector space over R. A ring is always commutative
with unit in this thesis. When we say Hopf algebra, we mean a Hopf algebra
over a ring R. Often, R will be implicit.

Definition 1.2.1. ((co)algebra) An algebra (H, m, 1) over a ring R is a vector space
(H,+, R) with a compatible multiplication m (also denoted as · or as the concatination
of two elements) and unit map 1 with the following properties. Let i, a ∈ R.

1. the multiplication m : H⊗H → H is an associative, bilinear map which preserves
the unit,

2. the unit map 1 : R→ H is a linear map with property · ◦ 1⊗ id(i⊗ a) = 1(i · a),
and · ◦ id⊗ 1(a⊗ i) = 1(i · a) for all a ∈ H, i ∈ k (or 1(1) = 1H).

A coalgebra (H, ∆, ε) over R is a vector space (H,+, R) with a compatible comultiplica-
tion ∆ and counit ε with the following properties. Let h ∈ H.

1. the comultiplication ∆ : H → H⊗ H is a linear, coassociative map, where coasso-
ciativity means ∆⊗ id ◦ ∆ = id⊗ ∆ ◦ ∆ and ∆(1H) = 1H ⊗ 1H,

2. the counit ε : H → R has property (id⊗ ε) ◦ ∆(h) = (ε⊗ id) ◦ ∆(h) = h (so
ε(1H) = 1).

We define a Hopf algebra as follows.

Definition 1.2.2. A Hopf algebra (H,+, m, 1, ∆, ε, S, R) over R is a vector space (H,+, R)
which is both an algebra (H, m, 1) and a coalgebra (H, ∆, ε), and is equipped with a lin-
ear antipode map S : H → H (which is an anti-homomorphism) obeying

1. ∆(gh) = ∆(g)∆(h),

2. ε(gh) = ε(g)ε(h),

3. m(S⊗ id) ◦ ∆ = m(id⊗ S) ◦ ∆ = 1 ◦ ε.

To construct a parallel between Lie bialgebras and Hopf algebras, let us define
the Hopf algebra cohomology using the following cochain complex.

Definition 1.2.3. (see p. 173 in [6]) Let H be a Hopf algebra. For i, j ≥ 1, define
Ci,j := HomR(H⊗i, H⊗j), and define d′i,j : Ci,j → Ci+1,j and d′′i,j : Ci,j → Ci,j+1 as
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follows (let γ ∈ Ci,j):

(d′γ)(a1 ⊗ · · · ⊗ ai+1) := ∆(j)(a1) · γ(a2 ⊗ · · · ⊗ ai+1)+

i

∑
r=1

(−1)rγ(a1 ⊗ · · · ⊗ ar−1ar+1 ⊗ ar+2 ⊗ · · · ⊗ ai+1)

+ (−1)i+1γ(a1 ⊗ · · · ⊗ ai).∆(j)(ai+1),
(d′′γ)(a1 ⊗ · · · ⊗ ai) :=

(m(i) ⊗ γ)(∆1,i+1(a1)∆2,i+2(a2) · · ·∆i,2i(ai))

+
j

∑
r=1

(−1)r(id⊗r−1 ⊗ ∆⊗ id⊗j−r)(γ(a1 ⊗ · · · ⊗ ai))

+ (−1)j+1(γ⊗m(i))(∆1,i+1(a1)∆2,i+2(a2) · · ·∆i,2i(ai)).

in this definition, m(i) and ∆(j) are defined as follows

m(i)(a1 ⊗ · · · ⊗ ai) = a1 · · · · ai

∆(j)(a) = (id⊗ · · · ⊗ id⊗ ∆) · · · (id⊗ ∆)(∆(a)).
(apply the comultiplication j times).

The ∆i,j means sending the coproduct to the i-th and the j-th coordinate. The next
proposition follows by direct computation and can be found on p. 175 in [6].

Theorem 1.2.1. Let d′ and d′’ be as in the definition, then, d′ ◦ d′ = d′′ ◦ d′′ = d′ ◦
d′′ + d′′ ◦ d′ = 0.

Finally we can define the Hopf algebra cochain complex. The previous theorem
implies that the cohomologies are well defined.

Definition 1.2.4. Let H be a Hopf algebra, and let d′ and d′′ be as defined previously,
and set d = d′ij + (−1)id′′ij and Cn = ⊕i+j=n+1Cij. Then d : Cn → Cn+1 and (C, d) is
a cochain complex with cohomology groups H∗(H, H).
Define H∗alg(H, H) as the cohomology of the complex (C·1, d′), and similarly define
H∗coalg(H, H) as the cohomology of the complex (C1,·, d′′).

This cohomology will become important once we start studying deformations of
Hopf algebras, for example of the universal enveloping algebra of a Lie bialgebra
g. We can write down the cocycle conditions for this cochain complex. See ex-
ample 2.3.1 in [23]. [23] uses a simpler definition of the cochain complex, which
is equivalent, but is not well defined for n > 2.

Proposition 1.2.1. Let H be an Hopf algebra. Then a 1-cocycle is an invertible element
χ ∈ H such that

χ⊗ χ = ∆(χ).
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A 2-cocycle is an invertible element χ ∈ H ⊗ H such that

(1⊗ χ)(id⊗ ∆)χ = (χ⊗ 1)(∆⊗ id)χ.

Some Hopf algebras can be equipped with an R-matrix.

Definition 1.2.5. (Quasitriangular Hopf algebras) A Quasitriangular Hopf Algebra is
a pair (H,R), where H is a Hopf algebra andR ∈ H ⊗ H is invertible and obeys

1. (∆⊗ id)(R) = R12R23 and (id⊗ ∆)(R) = R13R12

2. τ ◦ ∆(h) = R∆(h)R−1, for all h ∈ H.

R = ∑R(1) ⊗R(2), andRij = ∑ 1⊗ · · · ⊗R(1) ⊗ 1 · · · ⊗R(2) ⊗ · · · ⊗ 1, withR(1)

andR(2) on the i-th, resp. j-th entry.

We see that the first condition of quasitriangularity is equivalent to the 2-cocycle
condition together with the requirement that for a cocycle χ (1⊗ χ)(id⊗ ∆)χ =
χ13.
A Hopf algebra is a bialgebra in particular, so it makes sense to look at both com-
mutativity and cocommutativity, since algebra and coalgebra structures are dual
to each other. An R-matrix measures the non cocommutativity of the comultipli-
cation.

Definition 1.2.6. ((Co-)commutative) A Hopf algebra is said to be commutative if it is
commutative as an algebra, and cocommutative if the coproduct ∆ obeys τ ◦ ∆ = ∆.

The R-matrix is used to solve the Yang-Baxter equation. The Yang-Baxter equata-
tion follows from the axioms for quasitriangularity. See chapter 2 of [23] for more
information.

Proposition 1.2.2. Let (H,R) be a quasitriangular Hopf algebra, then R solves the
equation: R12R13R23 = R23R13R12, called the (quantum) Yang-Baxter equation.

In order to use a Hopf algebra for constructing knot invariants, one needs to
have a ribbon element. This will be explained in chapter 3. Let us write R =

∑R(1) ⊗R(2). Then define u = ∑(SR(2))R(1) ∈ H, and v = Su = ∑R(1)SR(2).
The following proposition is proven in chapter 2 of [23].

Proposition 1.2.3. Let (H,R) be a quasitriangular Hopf algebra with antipode S. Then
S is invertible and S2(h) = uhu−1 for all h ∈ H, and S−2(h) = vhv−1.

We can now define the ribbon element.

Definition 1.2.7. (Ribbon element) A quasitriangular Hopf algebra is called a ribbon
Hopf algebra if the element uv has a central square root ν, called the ribbon element, such
that ν2 = vu, Sν = ν, εν = 1 and ∆ν = Q−1(ν⊗ ν), where Q = R21R.

Let us construct the main example Uq(slε
3) in the next section.
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1.3. Quantizing a Lie bialgebra

In this example we follow the basic example in paragraph 6.4 in [6]. After quan-
tizing the b− subalgebra of sl3 (which technically is quantizing the Hopf algebra
structure on the enveloping algebra of b−), we construct an explicit set of gener-
ators.
In order to construct Uq(sl3), one usually quantizes b+ (or b−), and takes the
Drinfel’d double of this Hopf algebra and its dual with the opposite multiplica-
tion or comultiplication. After this procedure, the generators associated to the
simple roots on both sides are identified to construct Uq(sl3). With the introduc-
tion of ε, this identification is not possible.
Formally, when quantizing U(g), we introduce an indeterminate h (or h̄ in some
sections) to obtain Uh(g), which is isomorphic as an h-module to U(g)[[h]]. How-
ever, it is possible to leave h more implicit, and introduce q = eh, or in our case
q = e−εh. The Hopf algebra is denoted as Uq(g) in this case. The two notations
will mean the same thing in this thesis. This implies that it is always possible to
expand q in terms of h and ε.
Throughout this chapter we work over the ring Rε = R[ε]/(ε2). Since we are
considering free modules over Rε, we can use most of the results that hold for
Hopf and Lie bialgebras over a field. For future reference, the Drinfel’d double
construction yields a quasitriangular Hopf algebra for any commutative ring. [6]
Note that it is possible to do the quantization of slε

3 for ε in R(ε), and afterwards
take the expansion in terms of ε. In this case, one has to prove that taking this
expansion is possible. The reason to take ε to be invertible is that this provides
an Hopf algebra isomorphism between Uq(slε

n) and Uq(sln). See chapter 4 for
this approach.
Let us start with defining the h-adic topology for an indeterminate h. In this
section we consider Hopf algebras over a general ring R.

Definition 1.3.1. Let h be an indeterminate, and let H be an R[[h]]-module. Define the
basis of the neighbourhoods of 0 ∈ H as the sets Cn = {hnH|n ≥ 0}. Define the h-adic
topology to be the topology such that translations are continuous. In other words, the
sets {a + Cn}a∈H form a basis for the topology.

All Hopf algebra maps are continuous, meaning they are h-linear maps, by def-
inition. The following examples are equipped with the h-adic topology. Some
caution is advisable in this subject. In particular when taking the dual of an in-
finite dimensional Hopf algebra we will have to pay attention to the topology.
This will be addressed later in this section. Tensor products are assumed to be
completed in the h-adic topology.
Let us define what a quantized universal enveloping algebra is.

Definition 1.3.2. A deformation of a Hopf algebra (H, 1, m, ε, ∆, S) over a ring R is
a topological Hopf algebra (Hh, 1h, mh, εh, ∆h, Sh) over the ring R[[h]] of formal power
series in h over R, such that
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Chapter 1. An expansion of the Uq(sl3) quantum group

1. Hh is isomorphic to H[[h]] as a R[[h]] module.

2. mh = m mod h, ∆h = ∆ mod h.

Two Hopf algebra deformations are said to be equivalent if there is an isomorphism fh of
Hopf algebras over R[[h]] which is the identity (mod h).

Let us write ah = a + a1h + a2h2 + · · · for an element of Hh, where a = 0 mod h,
ai = 0 mod h. Here we use the isomorphism Hh→̃H[[h]]. Because mh and ∆h are
R[[h]]-module maps, they are determined by their values on elements of Hh for
which a1 = a2 = · · · = 0, ai ∈ H. Write

mh(a⊗ a′) = m(a⊗ a′) + m1(a⊗ a′)h + m2(a⊗ a′)h2 + · · · (1.45)

∆h(a) = ∆(a) + ∆1(a)h + ∆2(a)h2 + · · · (1.46)

The (co)associativity and algebra homomorphism conditions of the Hopf algebra
deformation are

mh(mh(a1 ⊗ a2)⊗ a3) = mh(a1 ⊗mh(a2 ⊗ a3))

(∆h ⊗ id)∆h(a) = (id⊗ ∆h)∆h(a)

∆h(mh(a1 ⊗ a2)) = (mh ⊗mh)∆13
h (a1)∆24

h (a2).

Modulo h2, this translates to the following proposition.

Proposition 1.3.1. A pair of R-module map (m1, ∆1) is a deformation mod h2 of a Hopf
algebra H if it satisfies

m1(a1a2 ⊗ a3) + m1(a1 ⊗ a2)a3 = a1m1(a2 ⊗ a3)

+ m1(a1 ⊗ a2a3)

(∆⊗ id)∆1(a) + (∆1 ⊗ id)∆(a) =
(id⊗ ∆)∆1(a) + (id⊗ ∆1)∆(a)

∆(m1(a1 ⊗ a2)) + ∆1(a1a2) = (m⊗m1 + m1 ⊗m)∆13(a1)∆24(a2)

+ ∆1(a1)∆(a2) + ∆(a1)∆1(a2).

More generally, a deformation mod hn+1 is a 2n-tuple (m1, · · · , mn, ∆1, · · · , ∆n)
which satisfies the (co)associativity and algebra homomorphism conditions (mod
hn+1). We now have the following classification of Hopf algebra deformations.

Theorem 1.3.1. Let H be a Hopf algebra. The following relations between Hopf algebra
cohomology and Hopf algebra relations hold:

1. there is a natural bijection between H2(H, H) and the set of equivalence classes of
deformation (mod h2) of H,

2. If H2(H, H) = 0, every deformation of H is trivial and
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1.3. Quantizing a Lie bialgebra

3. If H3(H, H) = 0, every deformation (mod h2) of H extends to a genuine deforma-
tion of H.

Using this theorem we can state an important result in Hopf algebra deforma-
tion theory called the rigidity theorem. The theorem is formulated in terms of
reductive Lie algebras in [6]. Semisimple Lie algebras are reductive, see [14], and
we will skip the definition alltogether. For an Rε-module M, an R-basis of the
module M/εM can be extended to an Rε-basis of M. Using this basis we can
generalize the following theorem to a Hopf algebra over the ring Rε.

Theorem 1.3.2. Let g be a semisimple Lie algebra over a field of characteristic zero. Then
H∗2alg(U(g), U(g)) = 0. So every deformation of U(g) is isomorphic to U(g)[[h]] as an
algebra.

The example we work with is not semisimple, so we have to come up with a
workaround to use the rigidity theorem. The idea is to only look at the half of the
deformed slε

3 which has a Lie algebra structure that agrees with sl3. Since we are
looking for an algebra isomorphism (or even an Isomorphism of Rε-modules) be-
tween Uh(b−) and U(b−)[[h]] (not an Hopf algebra isomorphism), we can simply
restrict the isomorphism between Uh(sl3) and U(sl3)[[h]] to Uh(b−). Of course
we will have to pay attention to Rε too.

Definition 1.3.3. (Quantized universal enveloping algebra (QUE)) A Hopf algebra de-
formation of the universal enveloping algebra U(g) of a Lie algebra g is called a quantized
universal enveloping algebra, or QUE algebra.

The isomorphism in the definition of a deformation of a Hopf algebra is an iso-
morphism of Rε[[h]]-modules, meaning that the isomorphism does not necessar-
ily respect the Hopf structure. In certain cases one can prove that (if g is semisim-
ple and is associated to a reductive algebraic group) every deformation of U(g) is
isomorphic to U(g)[[h]] as an algebra. This isomorphism is not an Hopf algebra
isomorphism. See Proposition 6.3.1 in [6].
Finally, the quantization of a Hopf algebra can be defined.

Definition 1.3.4. (Quantization of Hopf algebra) Let A be a cocommutative co-Poisson-
Hopf algebra over a ring R of characteristic zero, and let δ be its Poisson cobracket. A
Quantization of A is a Hopf algebra deformation Ah of A such that

δ(x) =
∆h(a)− ∆op

h (a)
h

(mod h),

where x ∈ A and a ∈ Ah such that x = a (mod h), and ∆op = τ ◦ ∆ is the opposite
cobracket.
A quantization of a Lie bialgebra (g, δ) is a quantization Uh(g) of its universal envelop-
ing algebra U(g) equipped with the co-Poisson-Hopf structure. Conversely, (g, δ) is
called the classical limit of the QUE algebra Uh(g).
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For more details see e.g. [23] and [6]. We will use both the notation Uq(g) with
q = ehε and Uh(g) in our examples. The difference is subtle and is pointed out
in for example [6]. The main difference is topological, as we pointed out before.
The Uh-notation has an explicit h-adic topology, while in the Uq notation this
topology is hidden. One concrete application of hiding the parameter h in q is
that one can specify q to a root of unity, for example. Since we are not concerned
with these properties, and always work with h explicitly present (and ε), we
will use both notations. For the main example we will use the notation Hε,n or
Uq(slε

3), taking the notation from [36].
Before doing the main example, we will briefly state the usual quantization of
the lower Borel subalgebra of sl3. This example can be found in many sources,
for example [6]. In this example we introduce an invertible parameter γ.

Example 1.3.1. Let b− be the Lie bialgebra as in example 1.1.1, with an invertible inde-
terminate γ instead of ε. The following relations define the Hopf algebra Uh(b−). More-
over, it is the quantization of the Lie bialgebra b−. We use the generators {b, a, z, y, x},
and take the free noncommutative module over R(γ) in these generators. Define the
quantum commutator as [u, v]q = uv− qvu, and let q = e−γh for the duration of this
example. The algebra Uh(b−) is defined as the module of noncommutative polynomials
in {b, a, z, y, x} divided out to the iddeal generated by the following relations

[a, x] = −2x, [a, y] = y, [a, z] = −z (1.47)
[b, x] = x, [b, y] = −2y, [b, z] = −z (1.48)
[x, y]q = z, [x, z]q−1 = 0, [y, z]q = 0. (1.49)

This is the standard example with a parameter introduced, so it is obvious from litera-
ture that this algebra has a basis consisting of the ordered monomials in the generators.
This proves that the quotient is not empty, and that the multiplication defined here is
associative. The Hopf algebra structure is defined by the following identities

∆(b) = b⊗ 1 + 1⊗ b, ∆(a) = a⊗ 1 + 1⊗ a, (1.50)

∆(z) = z⊗ 1 + qa+b ⊗ z + (q−1 − q)qbx⊗ y,

∆(y) = y⊗ 1 + qb ⊗ y,
∆(x) = x⊗ 1 + qa ⊗ x,
S(a) = −a, S(b) = −b,

S(z) = −q2q−a−bz + q2(q−1 − q)q−a−byx,

S(y) = −q−by,
S(x) = −q−ax.

Let us check that ∆ is an algebra homomorphism. In fact, the only non-trivial relations
to check are [x, y]q, [x, z]q−1 and [y, z]q, as it is easy to see that [∆(x), ∆(a)] = [x, a]⊗
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1.3. Quantizing a Lie bialgebra

1 + qa ⊗ [x, a] = ∆([x, a]), and similarly for the other relations.

[∆(x), ∆(y)]q = xy⊗ 1 + xqb ⊗ y + qay⊗ x + qa+b ⊗ xy

− qyx⊗ 1− qyqa ⊗ x− qqbx⊗ y− qqa+b ⊗ yx

= xy⊗ 1− qyx⊗ 1 + (q−1 − q)qbx⊗ y + qa+b ⊗ xy− qqa+b ⊗ yx

= z⊗ 1 + qa+b ⊗ z + (q−1 − q)qbx⊗ y.

Let us check [∆(x), ∆(z)]q−1 = 0, and leave [∆(y), ∆(z)]q = 0 to the reader, as this
follows in the same way.

[∆(x), ∆(z)]q−1 = [x, z]q−1 ⊗ 1 + q2a+b ⊗ [x, z]q−1 + qqa+bx⊗ z− qq−2qa+bx⊗ z

+ (q−1 − q−1)zqa ⊗ x + (q−1 − q)qa+bx⊗ xy− q(q−1 − q)qa+bx⊗ yx

= (q− q−1)qa+bx⊗ z + (q−1 − q)qa+bx⊗ z
= 0.

Let us show that ∆ is coassociative. Coassociativity on a and b is trivial. For coassocia-
tivity of ∆ on x and y, observe that qa is grouplike, so ∆(qa) = qa ⊗ qa. Let us explicitly
perform the calculation

Id⊗ ∆(∆(z)) = Id⊗ ∆(z⊗ 1 + qa+b ⊗ z + (q−1 − q)qbx⊗ y)

= z⊗ 1⊗ 1 + qa+b ⊗ z⊗ 1 + qa+b ⊗ qa+b ⊗ z

+ (q−1 − q)qa+b ⊗ qbx⊗ y + (q−1 − q)(qbx⊗ y⊗ 1 + qbx⊗ qb ⊗ y).

Performing a similar calculation for ∆ ⊗ Id(∆(z)), we see that coassociativity holds.
Note that qb is grouplike (similarly for qa+b). Plugging in ∆(z) and ∆(x), and using the
fact that ∆ is an algebra homomorphism, we obtain the desired result.
We check if the antipode is the involution inverse of the comultiplication. Denote the
multiplication as m1,2(u⊗ v) = uv. The indices 1 and 2 stand for the first and second
tensor entry. We will use the more general version later. We only check this explicitly for
z, the axiom is obvious for a and b, and is left to the reader in the case of x and y.

m1,2(S⊗ id(∆(z))) = m1,2(−q2q−a−bz⊗ 1 + q2(q−1 − q)q−a−byx⊗ 1 + q−a−b ⊗ z

− (1− q2)q−a−bx⊗ y)

= −q2q−a−bz + (q− q3)q−a−byx + q−a−bz

− (q− q3)q−a−byx− (1− q2)q−a−bz
= 0.

The antipode is continued as an anti-algebra homomorphism. This is by definition. The
counit axioms are also satisfied, as one can check for oneself. We can conclude that we
have a Hopf algebra.
We are quick to notice that this Hopf algebra does indeed have the right classical limit,

30



Chapter 1. An expansion of the Uq(sl3) quantum group

and since this algebra is imbedded in Uq(sl3) there exists an isomorphism Uh(b−) →
U(b−)[[h]], by the rigidity theorem [6]. Hence we have obtained a quantization of the
Lie bialgebra b−. This finishes the example.

Quantizing a sub Lie bialgebra sl3

We now treat the quantization of the Lie bialgebra b− defined in example 1.1.1
for non-invertible ε. We follow the basic example 6.4 in [6]. The results of this
section are summarized in theorem 1.3.3.
Quantizing the b− subalgebra of the sl3 Lie algebra starts with constructing the
comultiplication ∆h which has the b− cobracket as classical limit. For a and b,
which have δ(a) = δ(b) = 0, the choice is ∆h(a) = a⊗ 1 + 1⊗ a, and the same
for b. This is the trivial Hopf algebra structure on U(b−). Note that U(b−) is a
graded algebra with deg(a, b) = 0 and deg(x, y) = 1. Hence deg(z) = 2. The
multiplication and comultiplication have to preserve the grading. We define a
grading on the tensor product by adding the grading of the factors. We can guess
∆h(x) = x⊗ f + g⊗ x.
Let ∆ denote the trivial comultiplication on U(b−). Since ∆h ≡ ∆(mod h), we get
f ∼= g ≡ 1 (mod h). We want ∆h to be an algebra homomorphism that is coas-
sociative. Working out the condition for coassociativity forces ∆h( f ) = f ⊗ f ,
and the same relation for g. Hence f and g have to be group-like (by defini-
tion). Note that ∆h : U(b−)[[h]] → U(b−)[[h]] ⊗ U(b−)[[h]], where the tensor
product is completed in the h-adic topology. This yields (U(b−) ⊗ U(b−))[[h]]
as the image of ∆h. It is a simple computation to show that all group like ele-
ments are of the form ehµH, where H ∈ h, an element of the Cartan subalgebra,
and µ ∈ R[[h]] [6]. Hence ∆h(x) = x ⊗ eνha + eµha ⊗ x. Since ∆h is an algebra
homomorphism, we may multiply x with a grouplike element to simplify the
expression to ∆h(x) = x ⊗ 1 + eµha ⊗ x. The definition of the quantization of a
Hopf algebra then gives ∆h(x) = x⊗ 1 + e−εha ⊗ x.
The definition of a Hopf algebra can be used to obtain the antipode of x. In the
same way the comultiplication of y can be deformed. Since the cobracket for a
and b is trivial we can easily quantize this cobracket with the trivial comultipli-
cation. As a result, the multiplication relations between a, b and x and a, b and
y equal the classical relations. We obtain the comultiplication and antipode re-
lations for x, y, a and b displayed in 1.57. The multiplication between x and y
needs to be altered in order for ∆h to be an algebra homomorphism.
Let us consider the Serre relations of the Lie bialgebra b−. In our case they need
to be slightly altered in order for ∆h to be an algebra homomorphism. The so
called quantum Serre relations are obtained, and we use these to calculate the
products between the non-simple algebra generators.
The classical Serre relations in the case of b− are given by [x, x, y] = 0 and
[y, y, x] = 0. This can be rewritten as X−i (X−j )

2 − 2X−i X−j X−i + XiX2
j = 0, where

i 6= j, i, j ∈ {1, 2}, or (X−i )
2X−j + X−j (X−i )

2 = 2X−i X−j X−i . Applying the comulti-
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plication

∆(y) = y⊗ 1 + e−εh(b) ⊗ y, (1.51)

∆(x) = x⊗ 1 + e−εh(a) ⊗ x (1.52)

to the left hand side, we get for b− (defining q = 1− ε = e−ε):

∆h(x2y + yx2) = ∆h(x)2∆h(y) + ∆h(y)∆h(x)2 (1.53)

= x2y⊗ 1 + (1 + q2)e−εhaxy⊗ x + e−2εhay⊗ x2 + q2e−εhbx2 ⊗ y

+ (1 + q2)qe−εh(a+b)x⊗ xy + e−εh(2a+b) ⊗ x2y + e−εh(2a+b) ⊗ yx2

+ yx2 ⊗ 1 + (1 + q2)qe−εhayx⊗ x + q2e−2εhay⊗ x2

+ e−εhbx2 ⊗ y + (1 + q2)e−εh(b+a)x⊗ yx.

Now we will use the classical Serre relation as ansatz. We assume x2y + yx2 =
Cxyx. We will compute C by applying ∆ on both sides. We apply ∆h to the right
handside now:

∆h(x)∆h(y)∆h(x) = xyx⊗ 1 + qe−εhbx2 ⊗ y + e−hεayx⊗ x + e−εh(a+b)x⊗ xy
(1.54)

+ q−1e−ahεxy⊗ x + q−1e−εh(a+b)x⊗ yx

+ q−1e−2εh(a)y⊗ x2 + e−εh(2a+b) ⊗ xyx.

We simplify by taking the exponentials up front. We do not know what C is,
but we assumed that x2y + yx2 = Cxyx holds for some C. This simplifies the
equation between 1.53 and 1.54. The terms involving triple products of x and y
on one side of the tensor product cancel out. We can compare the terms term by
term. Doing this, we note that C = q + q−1, and the following relation should
hold

x2y + yx2 = (q + q−1)xyx. (1.55)

This relation is called the quantum Serre relation, and is also derived in [6]. We
will use the convention [n]q =

1−q−2n

1−q−2 in this chapter, where we differ from [6] in a

factor qn, making future notations easier. Observe that 1−q−2n

1−q−2 = (1 + q−2 + · · ·+
q−2n+2), the geometric series. So the expansion in ε of [n]q is well defined, as the

singularity is removable. Using this convention, q + q−1 = q( 1−q−4

1−q−2 ) = q[2]q. In
fact, this is generalizable, as we will see in chapter 4. For now we remember that
ε2 = 0, so the quantum Serre relation for us is equal to the classical Serre relation.
To obtain a complete set of generators corresponding to the elements of the root
system of b−, the Weyl group action is needed. In this case, the generators cor-
responding to the non-simple roots can be calculated by using the Weyl group
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action on Uh(g) (sometimes refered to as the quantum Weyl group). This action
respects the algebra structure, but not the co algebra structure and the antipode,
in the sense that the braid group acts via algebra automorphisms that are not
coalgebra maps, and hence the comultiplication on the non-simple generators
needs to be calculated differently. [6] is followed in this case (in particular chap-
ter 8.1 and 8.2). This procedure is described in the last chapter for the b+ subal-
gebra of sln for general n > 0 with Cartan-matrix aij.
Let us continue with defining the generator corresponding to the commutator of
x and y. This is the only generator of Uh(b−) corresponding to a non-simple root.
The fact that we can talk about root spaces and elements corresponding to roots
is a consequence of the fact that b− is a subalgebra of the semisimple Lie algebra
sl3, so we can use the sl3 root space and basis for the Borel subalgebra b−. This
was discussed in the first section of this chapter.
Let us define the following map on Uh(b−), for i 6= j X−1 = x and X−2 = y. This
map can be defined on Uq(slε

n) as

Ti(X−j ) = ad−(X−i )
−aij (X−j ).

Here, ad is the adjoint action of the Hopf algebra on itself, see [23].
When εk = 0, Ti cannot be extended to yield a set of global automorphisms, see
chapter 4. For the non-Cartan elements X−i of Uq(b−), Ti are automorphisms
over R[[ε]], however. So we can use the Ti to define non-simple generators.
We define the generator

z = Tα(y) = adx(y) = x(1)yS(x(2)),

using the Sweedler notation. The automorphisms Ti differ from the automor-
phisms defined in chapter 4 by a central factor. This factor is essential for the
Weyl property. We absorb this factor into z, as the Weyl property is trivial for sl3.
Note that we need the antipode of x to do this calculation, which can be com-
puted from ∆h(x). We obtain

z = xy− e−hεayehεax = xy− (1− ε)yx.

We used the multiplication relations between y and a and the antipode and co-
multiplication of x. Using the above calculated quantum Serre relation, together
with the definition of z, we get the following commutation relations.

[z, y] = hεzy, [z, x] = −hεzx.
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We can also calculate the comultiplication of z

∆h(z) =∆h(x)∆h(y)− (1− ε)∆h(y)∆h(x) (1.56)

=(x⊗ 1 + e−εh(a) ⊗ x)(y⊗ 1 + e−εh(b) ⊗ y)

− (1− ε)(y⊗ 1 + e−εh(b) ⊗ y)(x⊗ 1 + e−εh(a) ⊗ x)

=(xy− (1− ε)yx)⊗ 1 + e−ε(a+b) ⊗ (xy− (1− ε)yx)

+ eεe−εbx⊗ y + e−εay⊗ x− (1− ε)(eεe−εay⊗ x + e−εbx⊗ y)

=z⊗ 1 + e−ε(a+b) ⊗ z + 2εe−εbx⊗ y.

This ends the construction of Uq(b−) as a quantization of the Lie bialgebra b−.
Let us summarize the construction. Consider the Rε[[h]]-module M of noncom-
mutative polynomials in the generators {b, a, z, y, x}. Let I be the ideal of M
generated by the following relations, where [, ] stands for the commutator.

[b, z] = −z, [b, y] = −2y, [b, x] = x,
[a, z] = −z, [a, y] = y, [a, x] = −2x,
[z, y] = hεzy, [z, x] = −hεzx, [y, x] = −z + hεyx.

We consider the closure Ī of I in the h-adic topology on M. Define the algebra
Uh(b−) (also denoted as Uq(b−)) as M/ Ī. Furthermore, there are Rε[[h]]-algebra
homomorphisms ∆h : Uh(b−) → Uh(b−) ⊗ Uh(b−), ε : Uh(b−) → Rε[[h]] and
algebra anti-homomorphism S : Uh(b−) → Uh(b−) that define a Hopf algebra
structure on Uh(b−). These maps are defined by the following relations.

∆h(b) = b⊗ 1 + 1⊗ b, ∆h(a) = a⊗ 1 + 1⊗ a,

∆h(z) = z⊗ 1 + e−εh(a+b) ⊗ z + 2εhx⊗ y,

∆h(y) = y⊗ 1 + e−εh(b) ⊗ y,

∆h(x) = x⊗ 1 + e−εh(a) ⊗ x,
S(a) = −a, S(b) = −b,

S(z) = −(1− 2εh)ehε(a+b)z + 2εhyx,

S(y) = −ehε(b)y,

S(x) = −ehεax,
ε(u) = 0 if u 6= 1Uh(b−), ε(1Uh(b−)) = 1.

Theorem 1.3.3. The Hopf algebra Uq(b−) is a quantized universal enveloping algebra
with classical limit the Lie bialgebra b−.

Proof. By construction Uq(b−) we have the correct classical limits of the multipli-
cation and comultiplication. Furthermore, the (co)multiplication obeys the Hopf
algebra axioms by construction. The antipode can be easily computed from the
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(co)multiplication. By theorem 1.4.2, which will be proven separately, Uq(b−)
has a PBW basis. By sending monomials to monomials in U(b−)[[h]] we obtain
an Rε[[h]]-module isomorphism between Uq(b−) and U(b−)[[h]]. This finishes
the proof.

For clarification, we provide another proof of theorem 1.3.3. This proof relies on
example 1.3.1, and looks at a quotient of this algebra.

Proof. Observe that the relations presented here are exactly the same as the rela-
tions in example 1.3.1 with γ → ε and ε2 = 0. In particular, this yields a basis of
monomials of Uq(b−), which we will refer to as a PBW basis.
To prove that Uh(b−) ∼= U(b−)[[h]] as Rε[[h]]-modules, consider b− ⊂ sl3 as a
Lie algebra, ignoring the comultiplication. Observe that ε occurs only together
with h in Uh(b−) in the quantum Serre relations. Furthermore, we know that the
isomorphism between Uh(sl3) ∼= U(sl3)[[h]] is an isomorphism between R[[h]]-
modules. So we know that this isomorphism must be an isomorphism when we
replace h with h′ = hε and putting ε2 = 0, given that epsilon only occurs in
q = 1− εh mod ε2, which is invertible modulo ε2. In particular we know that the
constructed isomorphism must be the identity modulo h, so it sends monomials
of generators to monomials of generators of the Lie algebra b−. This finishes the
proof.

We wish to do the double construction with this algebra and write down the
universal R-matrix. We will do this in section 1.4.

1.4. The Uq(slε
3) relations

In the previous section we obtained an Hopf algebra Uh(b−) or Uq(b−) that is a
quantization of U(b−). The explicit check of the Hopf algebra axioms is a lengthy
exercise. For this reason we present a Wolfram Mathematica implementation of
the Hopf algebra in the next chapter, and set up the required formalism. The
program can be found in the appendix A.1. The algebra relations are easier to
implement, these can be found in a seperate program in A.1. The interesting ax-
ioms to check manually are (co)associativity, that ∆ is an algebra homomorphism
and that the antipode is an anti-algebra homomorphism.
We work over the ring Rε[[h]] of formal power series of an indeterminate h. We
repeat theorem 1.3.3 for completeness.

Theorem 1.4.1. The following relations define a Hopf algebra Uq(b−) over Rε[[h]].
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Moreover, Uq(b−) is the quantization of the Lie bialgebra b−.

[b, z] = −z, [b, y] = −2y, [b, x] = x, (1.57)
[a, z] = −z, [a, y] = y, [a, x] = −2x,
[z, y] = hεzy, [z, x] = −hεzx, [y, x] = −z + hεyx
∆(b) = b⊗ 1 + 1⊗ b, ∆(a) = a⊗ 1 + 1⊗ a,

∆(z) = z⊗ 1 + e−εh(a+b) ⊗ z + 2εhx⊗ y,

∆(y) = y⊗ 1 + e−εh(b) ⊗ y,

∆(x) = x⊗ 1 + e−εh(a) ⊗ x,
S(a) = −a, S(b) = −b,

S(z) = −(1− 2εh)ehε(a+b)z + 2εhyx,

S(y) = −ehε(b)y,

S(x) = −ehεax

To obtain a deformation we need an algebra isomorphism between Uq(b−) and
U(b−)[[h]] as Rε[[h]]-modules, as stated in the proof of theorem 1.3.3. This iso-
morphism can be found by means of the rigidity theorems if ε is invertible. If ε is
not invertible, it is possible to construct a basis of monomials which can be send
to the classical PBW basis of U(b−)[[h]]. The algebra U(b−)[[h]] has the multipli-
cation of the universal enveloping algebra of U(b−), h-linearly extended. On the
other hand, if one has such an isomorphism, it is possible to directly construct
the q-PBW basis of Uq(slε

3) by looking at the image of the classical PPBW basis.
This is how [6] proves the existence. We will provide a direct proof.

Theorem 1.4.2. The monomials bn1 an2 zn3 yn4 xn5 , ni ∈N form a basis of Uh(b−) as an
Rε[[h]]-module.

Proof. The proof is similar to the proof in [31], and it uses a Q-degree on Uh(b−).
It is enough to prove that bn1 an2 zn3 yn4 xn5 , ni ∈N form a basis of Uh(b−)/εUh(b−)
as an R[[h]]-module. We can then extend the monomials to a basis of Uh(b−) as
an Rε[[h]] module.
Let h be the Cartan subalgebra of b−. Via quantization we can associate to each
element in h an element in Uh(b−). Let us call this subalgebra H for the duration
of this proof. Firstly, define the elements Kλ = eεHλ , where λ ∈ Φ is a root of b−,
and Hλ the element in H corresponding to λ via lemma 1.1.2. Following [20], we
define an action of Kλ on Uq(b−) by conjugating:

Kλ pK−1
λ = q(λ,ρ)p. (1.58)

The root ρ is called the Q-degree of p. The Q-degree of p is well-defined since
(·, ·) is nondegenerate on H∗, so if p has Q-degree σ and ρ, then q(λ,ρ) = q(λ,σ) for
all λ ∈ H∗, and so σ = λ. Now the proof consists of two parts: (a) proving that
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the monomials span the vector space, and (b) proving linear independence. Part
(a) is proven by choosing a normal ordering, in our case (b, a, z, y, x), on Uh(b−).
It is always possible to write an expression in a normal ordered way in finitely
many steps. This is left to the reader. It can be proven by induction, see for ex-
ample [31] for the explicit calculations.
Part (b) is proven in 2 parts. Firstly, one can prove that a, b are linearly indepen-
dent in the same way lemma 12 is proven in chapter 6.1 of [20]. Let us scetch the
proof. The details can be found in [20]. As a first step we prove that xnx yny znz 6= 0
for n = (nx, ny, nz) ∈ N3. This is done by constructing an algebra homomor-
phism between Uq(slε

2) to the ring of power series Rε[[h]][e, l, f , f−1], and map-
ping x and y to a copy of Uq(slε

2) in which they are nonzero. See proposition 3.1
in [20]. The factor of 1

q−q−1 is only cosmetic in [20].
Suppose now ∑γ aγKγ = 0. We apply the adjoint action ad(∑γ aγKγ) to a mono-
mial znz yny xnx , ni ∈ N. We obtain ∑γ aγ + aγε(γ, ∑ niρi) = 0 for any ∑ niρi, as
znz yny xnx 6= 0. Since ρi span the root space of sl3, as noted earlier in this chapter,
we obtain that aγ = 0 for all γ ∈ Φ. Since ε2 = 0, this implies that monomials in
a and b are also linearly independent for different exponents of a and b.
The independence of x, y and z is proven by following [31], with induction to the
Q-degree. We know that monomials in a, b, x, y, z are nonzero. Assume that we
have a relation between monomials in x, y, z. By applying ∆, which conserves
Q-degree by construction, and using the linear independence of monomials in
a and b, we see that the terms in the relation have the same Q-degree. The case
where the Q-degree is equal to one of the simple roots is equivalent to the Uq(slε

2)
case, for which we refer to the proof of proposition 6.4.7 in [6].
For the case where the Q-degree is a sum of roots αi, we can look at the Q-degree
in both factors after applying ∆. Consider the biggest i such that Eαi+··· (taking
the convention that x = Eα1 , y = Eα2 , z = Eα1+α2) occurs with a nonzero expo-
nent. Let n be the biggest common exponent of Eαi+···. After applying ∆, consider
the terms with Q-degree nαi left of ⊗. The relation obtained on the right of ⊗ in
this way is a (nonzero) multiple of the original relation, as is clear by a calculation
similar to the one in [31], and is of a strictly lower degree, hence the coefficients
of these terms are zero by the induction hypothesis. So ordered monomials in
x, y, z are linearly independent.
Finally, the linear independence of ordered monomials in b, a, z, y, x is proven by
following the proof of lemma 13 in chapter 6.1 of [20]. This is a similar argument
as before, by applying ∆ and combining the linear independence of monomials
in a, b and monomials in x, y, z. For the explicit proof of this lemma we refer to
[20].

Duality

In order to apply the Drinfel’d double construction we need the dual of Uh(b−).
To obtain the correct dual of Uh(b−), one has to take the dual of a smaller sub-
algebra called a quantized formal series Hopf algebra (QFSH-algebra for short).
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[6] The dual of a quantum formal series Hopf algebra is a quantized universal
enveloping algebra (QUE-algebra). Notice that it is also possible to define the
QUE-dual of a QUE algebra the other way around, by taking the QUE-algebra
corresponding to the Hopf algebra-dual of a QUE-algebra, which is a QFSH al-
gebra [7].
Before we introduce the notion of a quantized formal series Hopf algebra, let us
consider the dual of the universal enveloping algebra U(g) for a Lie algebra g.
The following can be found as example 4.1.16 in [6].
Let g be a Lie algebra over a ring R. Concretely, we have the ring Rε in mind.
We need R to have certain nice properties, such that R is obtained by extending
R with a finite number of algebraic elements. In this way, we can extend any
R-basis of a quotient module to an R-basis of the entire module, as is discussed
for Rε in the appendix A.5. We do not go into details here, as we will only be
concerned with Hopf algebras over a field or Hopf algebras over the ring Rε.
The Lie algebra g has a basis {x1, · · · xd}, so U(g) has a PBW basis consisting
of ordered monomials in xi. We number this basis by λ = (λ1, · · · , λd) ∈ Nd,

and denote xλ =
xλ1

1 ···x
λd
d

λ1!···λd ! . The universal enveloping algebra U(g) of g has the
structure of a Hopf algebra if we take the trivial coproduct, and in this case we
obtain

∆(xλ) = ∑
µ,ν

δµ+ν,λxµ ⊗ xν.

Consider ξλ ∈ U(g)∗ defined by ξλ(xµ) = δλµ, then the multiplication m :
U(g)∗ ⊗U(g)∗ → U(g)∗ is defined by m(ξµ ⊗ ξν)(xλ) := ξµ ⊗ ξν(∆(xλ)). From
the definition we obtain the relation ξµξν = ξµ+ν (apply both sides to xλ ∈ U(g)).
Let Rε[[ξ1, · · · , ξd]] be the algebra of formal power series in indeterminates ξi. By
sending ξλ → ξλ1

1 · · · ξ
λd
d we obtain an isomorphism between U(g)∗ → R[[ξ1, · · · , ξd]].

With the dual of U(g) in mind we state the following definition. We follow para-
graph 7 of [7]. The condition of a field, as is used in [7], is not essential. It is
essential that the ring R has the property that any R-basis can be extended to an
R-basis, together with other properties discussed in appendix A.5. We are con-
cerned with the ring Rε[[h]] mainly in this paragraph. For this reason, we do not
state the precise conditions on the ring R.

Definition 1.4.1. (QFSH-algebra) A quantum formal series Hopf algebra is a topolog-
ical Hopf algebra Bh over the ring R[[h]], where R is a ring, such that Bh is isomorphic
as a R[[h]]-module to R[[h]]I (equipped with the product topology) for some set I, and
Bh/hBh=̃R[[ξ1, ξ2, · · · ]] as a topological algebra.

The dual of the universal enveloping algebra is equipped with the weak topol-
ogy. An isomorphism of topological algebras should be continuous and have
a continuous inverse. To illustrate this definition, let us consider the following
example.

Example 1.4.1. We start with the lower Borel subalgebra Ah of Uq(sl2) over R, gen-
erated by {x, a} and the relations [a, x] = −2x, ∆(a) = a ⊗ 1 + 1 ⊗ a, ∆(x) =
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x ⊗ 1 + e−ha ⊗ x. If we define ã = ha and x̃ = hx, we obtain the algebra Bh with
relations [ã, x̃] = −2hx̃, ∆(ã) = ã⊗ 1 + 1⊗ ã, ∆(x̃) = x̃⊗ 1 + e−ã ⊗ x̃.
As a R[[h]]-module, Bh is isomorphic to R[[h]]I = Map(I, R[[h]]), where I = N×
N = N enumerates the PBW basis of Bh. The PBW basis of Bh is given by ordered
monomials in ã and x̃. Concretely, we send x̃n1 ãn2 7→ φ(n1,n2), where φn,m(xn′am′) =
δnn′δmm′hn+m. Furthermore, Bh/hBh is commutative as an algebra, and hence Bh/hBh
is isomorphic to R[[x̃, ã]], as required. So Bh is a QFSH-algebra. See also [7] for this
example.

Generalizing the previous example, one can define a QFSH algebra inside any
QUE algebra [6].

Definition 1.4.2. Let Ah be any QUE algebra with cobracket ∆h. Define ∆n(a) :
Ah → A⊗n

h as ∆n(a) = (id − µE)⊗n∆(n)
h (a). Here ∆(n) = · · · (∆ ⊗ 1 ⊗ 1)(∆ ⊗

1) · · · is the iterated cobracket with n-1 ∆s. Then define Bh = {a ∈ Ah|∆n(a) =
0 ( Mod hn ) for all n ≥ 1}.

The statement is that Bh is a QFSH subalgebra of Ah. For a proof, see proposition
8.3.3 in [6]. To prove the proposition, one proves that an element is in Bh if and
only if a monomial of total degree n has a prefactor that is divisable by hn. As we
have seen from the previous example, this proves that Bh is a QFSH-algebra.

Proposition 1.4.1. Let Bh ∈ Ah be as defined above, and let Ah be a QUE Hopf-algebra.
Then Bh is a QFSH-subalgebra of Ah.

We can prove the following proposition (see chapter 10 of [9] for the proof). It is
essentially a generalization from the classical case, where we could calculate the
dual of U(g) explicitly.

Proposition 1.4.2. Let H be a quantized universal enveloping algebra over a ring R.
Then the dual H∗ = HomR(H, R) of H is a QFSH algebra. Conversely, the dual of a
QFSH algebra is a QUE algebra.

With the dual of any QUE algebra H, we will mean the dual of the QFSH subalge-
bra Bh ⊂ H as definied in 1.4.2, which is a QUE algebra, and we will denote this
in the usual way, as H∗. We refer to this space as the QUE-dual of H. Sometimes
literature uses the reduced dual, or the Hopf dual H◦ of any finite or infinite di-
mensional Hopf algebra, meaning they take the subset of the dual for which the
comultiplication lands in the usual tensor product. Since this does not always
happen in the infinite dimensial case, this is a useful definition. We will not use
this definition here. We use the completed tensor product.
Let us describe the QFSH subalgebra of Uh(b−), in terms of its basis.

Proposition 1.4.3. Let a,b,x,y,z be the generators of Uh(b−) with relations 1.57. Then
the QFSH subalgebra of Uh(b−) as defined in 1.4.2 is topologically generated by ha, hb,
hx, hy and hz.
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Proof. The proof is a straightforward repetition of the proof of proposition 8.3.3
in [6].

We calculate the dual of the QFSH subalgebra of Uh(b−) by introducing X, Y, Z, A, B
as the linear functionals equal to one on hx = x̃, hy = ỹ, hz = z̃, ha = ã, hb = b̃
respectively, and zero on all other monomials of the form x̃n1 ỹn2 z̃n3 ãn4 b̃n5 . We
denote this evaluation as follows:

〈X, x̃〉 = 1, 〈Y, ỹ〉 = 1, 〈Z, z̃〉 = 1, 〈A, ã〉 = 1, 〈B, b̃〉 = 1. (1.59)

The pairing is extended as a Hopf algebra pairing, according to the following
definition. This defines a Hopf algebra structure on Uh(b−)∗. We will later show
that if Uh(b−) has an Rε, then so does Uh(b−)∗. This basis is given by noncom-
mutative monomials in {X, Y, Z, A, B}.

Definition 1.4.3. Let (H, ·, ∆, ε, 1) be a QUE Hopf algebra over the ring Rε with dual
(H∗, ·, ∆, ε, µ). Let a, b ∈ H∗ and c, d ∈ H. Denote by 〈, 〉 a bilinear map 〈, 〉 :
H∗ ⊗ H → Rε. The map 〈, 〉 is called a Hopf algebra pairing if it obeys

〈ab, c〉 = 〈a⊗ b, ∆c〉 (1.60)
〈∆a, c⊗ d〉 = 〈a, cd〉

〈1, c〉 = ε(c)
〈a, 1〉 = ε(a)
〈Sa, c〉 = 〈a, Sc〉.

We will refer to 〈, 〉 as nondegenerate if it is nondegenerate over R, interpreted as a
pairing on H∗/εH∗ ⊗ H/εH → R.

The space we use as the dual of Uh(b−) is the QUE-dual of Uh(b−). We use the
notation Uh(b−)∗. We write 1

h , but this is informal notation for the topology on
the dual module. For example, if ξ is the dual basis element of x̃, then we may
write ξ

h as the dual element of x, informally. For this reason it is important to
keep track of the factors of h.
Only when applying the pairing to H∗ ⊗ H one has to be careful with the fac-
tors of 1

h , since the pairing is only defined on the subspace H∗ ⊗ Bh ⊂ H∗⊗̂H.
We defined the QUE-dual of Uq(b−) (which is Uq(b+)) to be the dual of the
QFSH-subalgebra of Uq(b−). So for an element that is not part of the QFSH-
subalgebra of Uq(b−) the pairing will not be defined. This problem is resolved
in the Drinfel’d double by applying the antipode to one side of the pairing, can-
celling the 1

h term in the final expression for the product of the Drinfel’d double.
Constructing the Drinfel’d double will be the only application of the pairing on
Uh(b−)∗ ⊗Uh(b−).
Another point of care arises when applying the pairing on elements in Uh(b−)∗⊗̂Uh(b−).
The R-matrix we will construct later for example, can be written as an element in
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the completed tensor product of these algebras, when considered as Rε-modules.
Applying the pairing to the R-matrix diverges, as we will see later. Furthermore
define 〈a⊗ b, c⊗ d〉 := 〈a, c〉〈b, d〉.
Lemma 1.4.1. The following relations define a Hopf algebra Uh(b+) that is dual to the
Hopf algebra 1.57. Moreover, it is the quantization of the Lie bialgebra b+.

[Y, X] = −2εZ + εhXY, [Z, X] = −εhXZ, [A, X] = −εX, [B, X] = 0 (1.61)
[Z, Y] = εhYZ, [Y, A] = 0, [B, Y] = −εY,
[A, Z] = −εZ, [B, Z] = −εZ,

∆(X) = X⊗ eh(2A−B) + 1⊗ X,

∆(Y) = Y⊗ eh(2B−A) + 1⊗Y,

∆(Z) = Z⊗ eh(A+B) + 1⊗ Z + h(X⊗Yeh(2A−B))

∆(A) = A⊗ 1 + 1⊗ A, ∆(B) = B⊗ 1 + 1⊗ B,

S(X) = −Xe−h(2A−B), S(Y) = −Ye−h(2B−A),

S(Z) = −(1− 2hε)(Z− XYh)e−h(A+B), S(A) = −A, S(B) = −B.

Proof. By theorem 1.4.3, the module of noncommutative polynomials divided
out by the algebra relations has a basis of ordered polynomials, so the quotient
is nontrivial. To prove coassociativity, one repeats the calculation in the case of
Uq(b−). It is obvious that coassociativity holds. It also follows straightforwardly
that ∆ is an homomorphism. In this case we only need to check three relations,
effectively. The antipode and (co)unit axioms are straightforward to check on
generators. We leave this to the reader.
To prove duality, let u, u′ ∈ Uq(b+). We have to check that for all v, w ∈ Uq(b−),
〈∆(u), v ⊗ w〉 = 〈u, vw〉. We assume normal ordering {b, a, z, y, x} on Uq(b−).
Let n ≥ 0 be an integer.

〈X, xan〉 = 〈X, (a + 2)nx〉

= 〈X, 2nx〉 = 2n

h
.

Similarly, 〈X, bnx〉 = (−1)n

h . By duality, we observe that these expressions are the
only terms that pair nonzero with X. On the other hand we have

〈∆(X), x⊗ an〉 = 〈X⊗ eh(2A−B), x⊗ an〉

= 〈X⊗ (2hA)n

n!
, x⊗ an〉

=
2n

h
.

We obtain 〈∆(X), x⊗ bman〉 = 〈X, xbman〉 for all positive m and n. As observed
before, these are the only monomials that pair nonzero with ∆(X), so we obtain
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〈∆(X), v⊗w〉 = 〈X, vw〉 for all v, w. By the same argument we obtain 〈∆(Y), v⊗
w〉 = 〈Y, vw〉. The argument for Z is a little bit more involved, as we have to
check the monomials containing x and y too. However, we observe

〈Z, xy〉 = 〈Z, z− (ε− 1)xy〉 = 1
h

= 〈hX⊗Y, x⊗ y〉 = 〈∆(Z), x⊗ y〉.

We have to prove that the same axiom holds for the comultiplication on Uq(b−).
This can be checked on generators in a similar way. We leave this to the reader,
as well as the counit and antipode pairing axioms. This proves that Uq(b+) is the
Hopf algebra dual of Uq(b−).
The fact that Uq(b+) is the quantization of b+ follows in the same way as 1.3.3,
by checking the classical limit of Uh(b+). By duality we have a PBW basis of
Uq(b+) (we will prove this explicitly in the next theorem), and hence we have an
isomorphism between Uq(b+) and U(b+)[[h]]. This proves the lemma.

The Hopf algebra obtained is the quantization of b+ (the dual of b− in the Lie
bialgebraic sense), which is why we call it Uh(b+). To proof the existence of an
algebra isomorphism between Uh(b+) and U(b+)[[h]] is difficult to do explicitly.
A proof for the case where ε is invertible that evades this problem can be seen in
prop. 4.8 to 4.11 in [9], however one should beware of the different conventions
used when computing the double. Roughly speaking, [9] first takes the dual and
then makes the space smaller, while we do the opposite. This is the same in the
end [7].
As we noted before, the usual finite dimensional highest weight representations
of Uq(slε

n) do not exist if ε is not invertible. So the usual geometrical interpreta-
tion of the Hopf-dual of Uq(slε

n) does not apply here. The geometrical interpreta-
tion as functions on a Poisson Lie group is probably lost. See [7] for a discussion
on this subject. Some definitions can be found in appendix A.2.
On Uh(b+) we choose the order {X, Y, Z, A, B}. By the definition of the pairing,
it is nondegenerate over R, so we have a PBW basis of monomials of generators.

Theorem 1.4.3. Let X, Y, Z, A, B be the elements of Uh(b−)∗ dual to the generators b,
a, z, y, x of Uh(b−). Then the monomials Xn1Yn2 Zn3 An4 Bn5 form a basis of Uh(b−)∗.

Proof. The fact that they span the space is easy, since we can rewrite any ex-
pression in a normal ordered way. This implies that Uq(b+) is free as a Rε[[h]]-
module. The pairing is nondegenerate over R, proving that the monomials are
linearly independent over R. As we prove in the appendix A.5, we can extend a
basis over R to a basis over Rε if the module is free, and hence we obtain an Rε

basis of Uq(b−)∗.

For future reference, let us calculate a basis for Uh(b−)∗, the elements of which
we require to pair to one with the basis elements of Uh(b−). We already have a
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basis for Uh(b−) and Uh(b−)∗, which consists of monomials of dual generators.
These monomials form a dual basis when normalized.

Proposition 1.4.4.

〈XlYmZn AoBp, bp′ao′zn′ym′xl′〉 = δl,l′δm,m′δn,n′δm,m′δl,l′h−o−p−l−m−no!p![n]q![m]q![l]q!,

where [n]q =
1−q2n

1−q2 .

Proof. We use the comultiplication to prove the proposition, following the proof
of lemma 8.3.4 in [6]. Consider 〈Xn, x̃n′〉. Applying ∆ to the non-capital side for
n = 2 yields 〈X ⊗ X, (x̃ ⊗ 1 + e−εha ⊗ x̃)2〉 = 〈X ⊗ X, x̃e−εha ⊗ x̃ + e−εha x̃ ⊗ x̃〉.
The other terms pair to zero. Commuting x̃e−2εha = q2e−εha x̃ with q = e−εh yields

〈X2, x̃2〉 = 1+q2

h = 1−q4

h(1−q2)
.

Now consider 〈Xn, x̃n′〉. We observe that n = n′. Applying ∆(n) to the non-capital
side gives ∆(n)(x̃)n = (x̃⊗ e−εha⊗· · ·⊗ e−εha + · · ·+ 1⊗ 1⊗· · ·⊗ x̃)n. Let us, like
[6], denote this expression with (a1 + · · ·+ an)n. Each term ai in this expression
has a commutator q2 with a term aj for i < j, since in each term there is precisely
on x̃. In the final expression, terms that contain a quadratic factor a2

i can be
dropped from the expression, since this will pair to zero with X ⊗ X ⊗ · · · ⊗ X.
So we only consider permutations of ai1 ai2 · · · ain , where aik 6= ail if k 6= l, and
il = 1, 2, · · · n. Let us now perform an induction argument on n. For n = 2

we saw that the coefficient c2 of a1a2 equals 1 + q2 = 1−q4

h(1−q2)
. Now assume that

cn = [n]q!. We consider the coefficient of the term a1a2 · · · an+1 in the expression
(a1 + · · ·+ an+1)

n+1. We obtain the n + 1 case from the n case by adding a tensor
factor⊗e−εha to ai for i < n + 1, and taking an+1 = 1⊗ · · · ⊗ 1⊗ x̃. The argument
now follows from counting the factors of q. If in the first factor (a1 + · · ·+ an+1) in
(a1 + · · ·+ an+1)

n+1 we pick an+1, then this term will contribute q2n to coefficient
of a1 · · · an+1 since we have to commute n factors of e−εa. In a similar way we
obtain a contribution of q2i−2 by choosing in the i-th factor an+1. Hence cn+1 =

(1 + q2 + · · ·+ q2n)cn = 1−q2n+2

1−q2 cn. From this we obtain 〈Xn, x̃n′〉 = δn,n′ [n]q!.
By performing a similar induction argument we get the desired results for a, b
and y. For 〈XlYm AoBp, bp′ao′ym′xl′〉 we now obtain that

〈XlYm AoBp, bp′ao′ym′xl′〉 = δl,l′δm,m′δm,m′δl,l′h−o−p−l−mo!p![m]q![l]q!,

by duality of x, y, a, b and X, Y, A, B. Observe that we apply ∆(l+m+o+p) to the
non capital side, and that the only terms that pair nonzero are of the form b ⊗
· · · ⊗ b⊗ a⊗ · · · ⊗ x, this allows for no mixing between the terms.
The only possibly troublesome generator is z, since ∆(z) = z ⊗ 1 + e−εh(a+b) ⊗
z + 2εhx⊗ y. We scetch the argument to prove that there occurs no mixing here.
One can prove this relation in general in a much more elegant way in the manner
of proposition 8.3.7 in [6]. This is done in the last chapter.
To prove that there occurs no mixing of terms, we observe that the number of x’s
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and y’s can only increase after applying ∆ to bp′ao′zn′ym′xl′ through a contribution
of ∆(z). To see this observe that the x ⊗ y term in ∆(z) has a factor of ε, and
ε[z, x] = ε[z, y] = 0. The only way to increase the number of z’s is by a term
εxy ⊗ y = εz ⊗ y occuring. For this we need a contribution from ∆(y). This
implies that an entry that pairs with a Y does not contain a y. The only way
to increase the number of ys is by the x ⊗ y term in ∆(z). Since we apply ∆ to
one entry only (it does not matter which order we take, due to coassociativity),
we observe that creating a z in one entry annihilates an y or an x in another
entry. So the term which originates from 2εhx ⊗ y in ∆(z) will necessarily pair
to zero with X ⊗ · · · ⊗ X ⊗ Y ⊗ · · · ⊗ B, as it can never yield a contribution to
b⊗ · · · ⊗ a⊗ · · · ⊗ z⊗ y⊗ · · · ⊗ x. This implies the result.

The Drinfel’d double

For the Drinfel’d double D(H), let H be any Hopf algebra with dual H∗. In the
infinite dimensional case, let H∗ be the QUE-dual of H. Consider the vector space
H∗ ⊗ H. Note that the tensor product is the completed tensor product, since the
comultiplication doesn’t map to the H∗ ⊗ H ⊗ H∗ ⊗ H in the infinite dimensial
case in general. See for example 4.1.16 of [6] for a discussion on this subject.

Definition 1.4.4. Let H be a Hopf algebra with QUE-dual H∗. The Drinfel’d dou-
ble D(H) (also called quantum double) is a quasitriangular Hopf algebra generated by
H, H∗op as Hopf subalgebras with the quasitriangular structureR = ∑a f a ⊗ ea, where
{ea} is the basis of H and { f a} its dual basis. D(H) is realised on the vector space
H∗ ⊗ H with product (a⊗ h)(b⊗ g) = ∑ b2a⊗ h2g〈Sh1, b1〉〈h3, b3〉, and the tensor-
product unit, counit and coproduct:

∆(h⊗ a) = ∑ a(1) ⊗ h(1) ⊗ a(2) ⊗ h(2)

That this definition yields a quasitriangular Hopf algebra is proven in the first
paragraph of chapter 7 of [23]. The proof over rings is exactly the same and is
not repeated here.
One can show that the antipode S provides an isomorphism between H∗op and
H∗cop, where cop stands for the opposite coproduct. See [23] or page 253 of [20].
Using this isomorphism, we get another version of D(H). We will use the mul-
tiplication more often than the comultiplication. So the latter definition is the
definition we will use, although both constructions are equivalent[6]. Again, the
definition is the same as in [23].

Definition 1.4.5. The quantum double D(H) in a form containing H, H∗cop as subal-
gebras, is a quasitriangular Hopf algebra generated by these subalgebras on the vector
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space H∗ ⊗ H together with the relations

R = ∑
a

f a ⊗ ea (1.62)

(h⊗ a)(g⊗ b) = ∑ a(2)b⊗ h(2)g〈h(3), S−1(b(1))〉〈h(1), b(3)〉 (1.63)

∆(h⊗ a) = ∑ a(2) ⊗ h(1) ⊗ a(1) ⊗ h(2). (1.64)

Here the antipode on H∗cop is the inverse of the antipode of H∗.

That this construction works was first proven by Drinfel’d. The theorem is that
the relations of D(H) define a quasitriangular Hopf algebra. For the proof we re-
fer to [23]. Let D(Uh(b−)) be the quantum double on the space Uq(b+)⊗Uq(b−).
We have the following theorem.

Theorem 1.4.4. Let Uq(b±) be the Hopf algebras as defined in the previous section,
with pairing 〈, 〉. Let D(Uh(b−)) be the quantum double on the space Uq(b+)⊗Uq(b−)
with (co)multiplication, antipode and (co)unit as defined above. Then D(Uh(b−)) is a
quasitriangular Hopf algebra with R-matrix

R = ∑
n,m,l,o,p

XlYmZn AoBpbpaoznymxl

h−o−p−l−m−no!p![n]q![m]q![l]q!
.

We might write Uq(slε
3) instead of D(Uq(b−)).

Proof. We calculated the dual of Uh(b−) before, and proved that Uh(b−) is indeed
a Hopf algebra. One can explicitly calculate the Drinfel’d double of Uq(b±). This
will be done in the next chapter. Observe that Drinfel’ds theorem remains true
in the case where a ring is used instead of a field [23].
It is a trivial matter to prove quasitriangularity. From theorem 1.4.3 it follows that
the monomials Xn1Yn2 Zn3 An4 Bn5 and bn5 an4 zn3 yn2 xn1 form a basis of respectively
Uq(b+) and Uq(b−). By construction the monomials are dual to each other, up
to a factor. This factor was computed in proposition 1.4.4. Hence by Drinfel’ds
theorem it follows thatR is an R-matrix.

For completeness we state the explicit algebra relations. We will calculate the
explicit algebra relations on generators in the next chapter, when we have devel-
oped the necessary tools. These relations might be calculated explicitly by hand.
However, since there are a lot of relations, and the possibility for errors is high,
it is better to use the computer.

Theorem 1.4.5. The following relations define, together with the antipode and the co-
bracket as defined on Uq(b−) and the opposite coproduct on Uq(b+) with the inverse
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antipode, the quasitriangular Hopf algebra Uq(slε
3) with R-matrix R.

[X, Y] = 2εZ− εhXY, [Z, X] = −εhXZ, [X, A] = εX, [X, B] = 0, (1.65)
[X, b] = X, [X, a] = −2X, [X, z] = −2εy + εhXz,
[X, y] = −εhXy, , [Y, x] = −εhYx,

[X, x] =
e−h(2A−B) − 1

h
− εae−h(2A−B) + 2εhXx,

[Y, Z] = −εhYZ, [Y, A] = 0, [Y, B] = εY, [Y, b] = −2Y, [Y, a] = Y,
[A, x] = εx, [A, y] = 0, [B, x] = 0, [B, y] = y, [A, z] = [B, z] = εz,

[Y, z] = 2εxe−h(2B−A) + εhYz, [Y, y] =
e−h(2B−A) − 1

h
− εbe−h(2B−A) + 2εhYy,

[Z, A] = εZ, [Z, B] = εZ, [Z, b] = −Z, [Z, a] = −Z,

[Z, z] =
−1 + e−h(A+B)

h
− εe−h(A+B)(a + b) + 2εhzZ,

[Z, y] = −X + hεZy,

[Z, x] = Ye−h(2A−B) + hε(Zx− (−1 + a)Ye−h(2A−B)),
[b, z] = −z, [b, y] = −2y, [b, x] = x, [a, z] = −z, [a, y] = y, [a, x] = −2x,
[y, z] = −hεzy, [x, z] = hεzx, [x, y] = zh− εhyx,

R = ∑
n,m,l,o,p

XlYmZn AoBpbpaoznymxl

h−o−p−l−m−no!p![n]q![m]q![l]q!
.

Here the antipode is as defined on the generators before, and is extended as an antihomo-
morphism. The comultiplication is reverted on the ‘capital’ side, and is extended as an
algebra homomorphism.

We need to be careful when doing calculations with the pairing. The pairing ax-
ioms will not hold in general for the comultiplication of the double, since it has
the opposite order. The relations agree nicely with the commutation relations
found in [35]. This was to be expected, given that they used the same construc-
tion, namely the cop-construction for the quantum double. It is possible to do
the op-construction of course, yielding a different set of commutation relations.
The classical limit of the relations here agrees nicely with the classical co-double
calculated in theorem 1.1.1.
It is more difficult to do the quantization of slε

3 without treating the two Borel
subalgebras separately. The problem lies with the fact that slε

3 is not semisimple,
so it is not possible to use the rigidity theorems as we did in theorem 1.3.3. This
seems the biggest issue, although other problems might arrise in the definition
of the R-matrix and finding the algebra relations in general. The basic example
in [6], chapter 6.4 gives insight in how to perform this quantization for sl2. This
is very tedious to do in our case.
We interpret the tensor product in the h-adically completed sense. The Hopf-
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algebra Uh(b−) is graded, where the grading is inherited from U(b−). The grad-
ing on the b+ side is inhereted from the grading on the lowercase side, since the
coproduct by construction respects the grading.

1.5. R-matrix and ribbon element

As noted in the previous section, we have a basis of the both Borel subalgebras
which consists of monomials in the generators. To make these bases dual we
correct with the pairing of the monomials, calculated in the previous section.
Remember that we use the convention [n]q =

1−q−2n

1−q−2 .

〈XlYmZn AoBp, bpaoznymxl〉 = h−o−p−l−m−no!p![n]q![m]q![l]q!. (1.66)

With this identity it is easy to write down the formal R-matrix. The real trouble
is working with the R-matrix to calculate the knot invariant itself, and in this
activity we will find use for the ε introduced in the algebra. Without ε, so with
the ordinary sl3 quantum invariant, or even with the sl2 invariant this procedure
is exponential in the number of crossings of a knot. When εk = 0, the procedure
is polynomial time, which we will prove in the next chapter. We introduce a trick
for working with quantum exponentials, of which the R-matrix is an example.

R = ∑
n,m,l,o,p

XlYmZn AoBpbpaoznymxl

h−o−p−l−m−no!p![n]q![m]q![l]q!
(1.67)

In this identity, q = 1− hε, [n]q =
1−q−2n

1−q−2 and [n]q! = [n]q[n− 1]q · · · [1]q. The fact
that this is an R-matrix follows from the Drinfel’d double construction.
The R-matrix can also be written with quantum exponentials, which are defined
as follows.

ed
q = eq(d) = ∑

n

dn

[n]q!
. (1.68)

This expression is a formal power series in h. However, we observe that [n]q! =
n! mod h, giving the connection to the usual exponential. The R-matrix can be
written with ordered polynomials. In order to rewrite the R-matrix, we map
the expression to a commutative ring generated by the generators of the Hopf
algebra over the ring Rε[[h]]. The ordening is indicated, so that one can give
the inverse of this map to ordered monomials. In this ring, expressions become
much more compact.
Let us call such a map O(·|p) : O→ H, where O = Rε[[h]][X, Y, Z, A, B, b, a, z, y, x]
is the ring of (commutative) power series over Rε[[h]] with generators

{X, Y, Z, A, B, b, a, z, y, x}
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, and H = D(Uq(b−)) = Uq(slε
3). p is a specific ordering. In our case p =

XYZABbazyx. O(T|p) sends an unordered expression T ∈ O to an ordered ex-
pression with ordering p in all monomials. With this map we can rewrite for
example

∑
n

xnan

n!
= O(exa|xa). (1.69)

Likewise, we can rewriteR in terms of quantum exponentials

R = O(eAaeBbeXx
q eYy

q eZz
q |XYZABbazyx). (1.70)

This notation will become important in the following chapter, where commu-
tative rings will provide a nice way of calculating commutation relations. We
prove the following lemma for the implementation of the R-matrix in Mathemat-
ica. The formula is called the Faddeev-Quesne formula. The proof is due to D.
Zagier.

Lemma 1.5.1. eq(x) = e∑∞
n=1

(q−2−1)n xn

n(1−q−2n)

Proof. Let f : R→ R be a continuous function. Define the operator Dq−2( f )(x) =
f (q−2x)− f (x)

q−2x−x . Note that Dq−2 ex
q = ex

q , since

Dq−2 ex
q = ∑

n=1

q−2nxn − xn

[n]q!(q−2 − 1)x
= ∑

n=1

xn−1

[n− 1]q!
= ex

q .

The second last equality follows by definition of [n]q.
Now suppose that a function f has Dq−2( f ) = f , then f (q−2x) = (q−2x − x +

1) f (x), or in other words log( f (q−2x)) = log(1− x(1− q−2)) + log( f (x)). Let
us assume that log( f (x)) can be expressed as a power series log( f (x)) = ∑ anxn,
then, using the expansion of log(1− x), we get q−2nan = − (1−q−2)n

n + an. This
gives the desired result.

Lemma 1.5.2. If q = e−γh, and γk = 0, then ex
q = e∑k

n=1
(q−2−1)n xn

n(1−q−2n) .

Proof. For the proof let us look at the n-th term (q−2−1)nxn

n(1−q−2n)
. Observe that (q−2 −

1)n = (−2h)nγn + O(γn+1). Also, (1 − q−2n) ∼ γ + O(γ2). This proves the
lemma.

The Ribbon-element is calculated from the R-matrix. Let us write R = ∑R(1) ⊗
R(2). Then u = ∑R(2)S(R(1)), and v = S(u), where S is the antipode. uv is
a central element [23]. The Ribbon element ν is defined as the square root of
the product vu. If we assume that v is of the form uw2, for some w ∈ H, then
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ν2 = uuw2, and, since uv is central, ν = uw. So we can calculate the square root
of u−1v = w2 and multiply by u to obtain ν.

ν = O(e−hAa−hBb−eh(−2A+B)hXx−eh(A−2B)Yy+e−h(A+B)h2XYz−eh(A+B)hZz(eh(A+B)−
axXεh̄2e2Bh̄−Ah̄ − aεh̄eAh̄+Bh̄ + aXYzεh̄3−
azZεh̄2 − byYεh̄2e2Ah̄−Bh̄ − bεh̄eAh̄+Bh̄+

3
2

x2X2εh̄3e3Bh̄−3Ah̄ − 2xX2Yzεh̄4eBh̄−2Ah̄+

2xXεh̄2e2Bh̄−Ah̄ + 2X2Y2z2εh̄5e−Ah̄−Bh̄−
XyY2zεh̄4eAh̄−2Bh̄ − 2XYz2Zεh̄4e−Ah̄−Bh̄+

3
2

y2Y2εh̄3e3Ah̄−3Bh̄ + 2yYεh̄2e2Ah̄−Bh̄+

3
2

z2Z2εh̄3e−Ah̄−Bh̄ + eAh̄+Bh̄ + bXYzεh̄3−

bzZεh̄2 − 2xXyYεh̄3 + 2xyZεh̄2 − 5XYzεh̄3 + 6zZεh̄2)|p)

Remember the following notation: Rij = ∑ 1⊗ · · · ⊗ R(1) ⊗ · · · ⊗ R(2) ⊗ 1 · · · ⊗
1, where the R(1) and R(2) are on the i-th and the j-th position respectively. The
ribbon element is central and invertible, and it has the following properties.

ε(ν) = 1, ν2 = uS(u), S(ν) = ν, (1.71)

∆(ν) = (R21R12)
−1(ν⊗ ν).

Remember that ε is the counit, and here u is as defined previously. Combining
the various results of the previous sections we now have the main theorem of
this chapter.

Theorem 1.5.1. The Hopf algebra Uq(slε
3) together with R-matrix R and ribbon ele-

ment ν is a quasitriangular ribbon Hopf algebra that is the quantization of the quasitri-
angular Lie bialgebra slε

3.

Proof. The only thing left to prove is that ν is the ribbon element corresponding
the the R-matrixR. This check is performed in Mathematica in the next chapter.

In the next chapter we will proceed with the implementation of this algebra in
Wolfram Mathematica. The main problem is of course commuting normal or-
dered exponentials.

Conclusion

In this chapter we started with constructing a quasitriangular Lie bialgebra slε
3

through the classical double. We quantized this Lie algebra by quantizing the

49



1.5. R-matrix and ribbon element

lower Borel subalgebra b− ⊂ slε
3 and taking the Drinfel’d double of the resulting

Hopf algebra Uq(b−) to obtain the quasitriangular ribbon Hopf algebra Uq(slε
3).

We succeeded in working over Rε, where ε2 = 0. We could also have quantized
this algebra starting from the b+ side. It is possible to do the same procedure ex-
plicitly for εk = 0, for any positive k. We calculated an example for invertible ε,
and it is clear that this algebra can be turned into a quasitriangular Hopf algebra.
In this algebra one can take the expansion up to any order of ε. This will be done
in chapter 4.
Since Uq(b−) has the same structure as the quantization of the lower Borel subal-
gebra in the usual sl3, we could prove a number of results, including the existence
of a PBW basis and the fact that Uq(b−) is a quantization of b−. As for the ques-
tion ‘what is ε?’, we showed that it can be viewed as part of the underlying ring.
This introduces a number of difficulties which we could work around. Overall it
seems a better strategy to work with an invertible epsilon, and afterwards prove
that one can take the expansion in ε up to any order in the calculations. In fact,
this is how we will approach the problem for constructing Uq(slε

n) in chapter 4.
Interesting variations for future research would be to introduce a second param-
eter γ dual to ε. The knot invariant of this algebra is expected to yield a finite
type invariant, which is in some sense an expansion of the Uq(slε

3) invariant. An
advantage to this knot invariant is that although it will be much weaker, it will
also be much faster to compute. One might even prove certain properties of
Uq(slε

3), such as detection of mutants, this way.
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