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Introduction

Knots have been used for many purposes through the ages. The first to attempt
to classify knots was Peter Tait in 1876 in [34]. In his book of knots Tait succeded
to classify all unique knots up to and including 9 crossings, which are eighty-
four in total. Classification of bigger knots was not possible due to the size of
the knots. To classify bigger knots, so called knot invariants were needed. Knot
invariants are expressions that are identical for equivalent knots. Two knots are
considered equivalent if they can be obtained from each other through a number
of ‘smooth’ transformations in R3.
The first major development in classifying knots took place roughly 50 years
after Taits first attempt. In 1927, Reidemeister (and Alexander and Briggs inde-
pendently in 1926) described the equivalence of knots in terms of three moves
on diagrams [28]. These moves are called the Reidemeister moves, and they en-
abled the definition of (classical) knot invariants. To prove that an expression
was identical for equivalent knots, one only needed to prove the invariance of
the expression under the Reidemeister moves.
The most important classical knot invariant is the Alexander polynomial. The
Alexander polynomial can be calculated in a number of ways, and it was in-
vented by James Wadell Alexander II shortly after the introduction of the Reide-
meister moves in 1928 [1]. In his original paper, the polynomial is calculated by
considering the incidence matrix of a knot diagram. The Alexander polynomial
can also be calculated from the Seifert surface of the knot, or from the cyclic cover
of the knot complement to name a few options.
It was proven by Alexander that the Alexander polynomial satisfied a skein rela-
tion. A skein relation is a relation between a crossing and the sum of two trivial
strands horizontally and vertically positioned. To say that the Alexander poly-
nomials satisfies a skein relation means that it is invariant under replacing a
crossing with the sum of two knots with in the same place two trivial strands
horizontally and vertically positioned.
In the 1960s it was discovered by Conway that the Alexander polynomial could
also be computed by a skein relation and a value for the unknot, the circle em-
bedded in R3. These two identities together yield a variant of the Alexander
polynomial called the Conway-Alexander polynomial. In 1984 this construction
was applied by Vaughan Jones to define the Jones polynomial [16].
The Jones polynomial is the first example of a new class of knot invariants called
quantum invariants. Originally it was defined using Neumann algebras. It can
also be obtained by coloring links with two dimensional representations of the
quantum group Uq(sl2).
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Introduction

The class of quantum invariants consists of quantum group invariants, which are
obtained as solutions of the Knizhnik-Zamolodchikov equation (KZ-equation)
and by using finite dimensional representations of quantum groups. Another
class of quantum invariants is obtained through solutions of the Yang-Baxter
equation in statistical physics.
Shortly after the discovery of the Jones polynomial, other similar polynomials
were discovered, the most important of which are the HOMFLY-polynomial and
the n-colored Jones polynomial. The HOMFLY polynomial is a generalization
of the Jones polynomial in the sense that it considers Uq(sln)-representations in-
stead of Uq(sl2). The n-colored Jones invariant, as the name suggests, considers
n dimensional representations of Uq(sl2).
Quantum groups like Uq(sl2) are the central object in the construction of quan-
tum invariants. The first description of Uq(sl2) was due to Kulish and Sklyanin in
1981. The term quantum group was first presented by Drinfel’d in 1986 [7]. In his
paper he defines a quantum group as the dual space of the ‘quantized’ algebra of
functions on some (Lie) group G. Denote the commutative algebra of functions
on a Lie group G with F (G). If G represents the state space of a system, then
quantizing this system corresponds to quantizing F (G). This quantization can
be done in various ways, and will be denoted with Fh(G). The quantum group
corresponding to Fh(G) is defined by Drinfel’d as the dual space of Fh(G). Drin-
fel’d notes that the notion of a Hopf algebra and a quantum group are equivalent,
however the term quantum group naturally has a geometric meaning.
When defined this way, the Hopf algebraic structure of Uq(sl2) arises naturally
from the group multiplication of the Poisson Lie group SL(2). Concretely, the
group multiplication translates to an algebra homomorphism ∆ : F (G)→ F (G)⊗
F (G). Quantizing F (G) means turning the commutative algebra structure into
a non-commutative one. In the dual of F (G) this translates to a Hopf algebra
structure.
A great discovery in 1993 was the Kontsevich universal invariant. The discov-
ery of this universal invariant followed the construction of many new quantum
invariants in the 1980s and classified these invariants as the result of a single
construction. The Kontsevich invariant is derived from the universal KZ equa-
tion and uses weight systems in its construction. The Kontsevich invariant takes
values in the space of Jacobi diagrams, which are uni-trivalent graphs. Jacobi
diagrams are also referred to as loop diagrams, or Feynman diagrams.
Jacobi diagrams can be assigned a specific (simple) Lie algebra g and an irre-
ducible finite dimensional representation V to yield the quantum group invari-
ant (g, V). This assignment is called a weight system [25]. It was proven that this
provides a solution to the Yang-Baxter equation. Kohno and Drinfel’d proved
that the R-matrix obtained in this way is equivalent to the quantum R-matrix of
the quantum group Uq(g) corresponding to the Lie algebra g. So any quantum
invariant can be found by substituting a specific Lie algebra and representation
into the Jacobi diagrams of the Kontsevich universal invariant.
Using the Kontsevich invariant, we can obtain the n-colored Jones polynomial

5



as an expansion of loop diagrams. In the second half of the 90s this expansion
was studied by Melvin and Morton for the Jones polynomial. They conjectured
that the Alexander polynomial arises in the loop expansion of the Jones polyno-
mial [24]. This conjecture was generalized by Lev Rozansky, and later proven
by Dror Bar-Natan in 1996 in [2]. It is conjectured in [35] that the polynomial
time knot invariants constructed from Uq(sl2) in [35] and [36] by Dror Bar-Natan
and Roland van der Veen coincide with 2-loop terms in the loop expansion of the
n-colored Jones polynomial. Concretely, by introducing a parameter ε such that
ε2 = 0 in the upper (or lower) triangular subalgebra of Uq(sl2), it is conjectured
that one obtains the 2-loop invariant as defined in [32] and studied by Ohtsuki in
[26]. One would expect for a similar conjecture to hold for higher loop polyno-
mial [35]. Furthermore, it could be expected that similar conjectures hold for the
loop expansion of the HOMFLY polynomial and the quantum group invariant
constructed in this thesis.

Overview

In the first chapter of this thesis the quantization of Lie bialgebras is studied.
In particular we quantize the Lie bialgebra slε

3, which is derived from sl3 by
multiplying the comultiplication on the upper Borel subalgebra with a param-
eter ε. This provides a family of quantum groups that depend on a parameter
ε. Expanding this quantum group to ε, we get an approximation of the Uq(sl3)
quantum group. For clarity we work mostly in first order of ε. The first order
expansion in ε is constructed over the ring Rε = R[ε]/(ε2). This construction
yields several difficulties, which are the main subject of the first chapter.
We first define the concept of a Lie bialgebra, and introduce the example b±, the
lower- and upper Borel subalgebra of sl3 with a parameter ε, where ε2 = 0. We
proceed with the process of quantization of a Lie bialgebra as done in [6]. In this
way we obtain the dual Hopf algebras Uq(b±ε ). To these Hopf algebras, the Drin-
fel’d double construction is applied to obtain the quasitriangular Hopf algebra
Uq(slε

3). We prove that this Hopf algebra is in fact a quasitriangular ribbon Hopf
algebra.
In the second chapter we provide a formalism to compute commutators of expo-
nentials. This is done by providing a map between a Hopf algebra and a commu-
tative ring. An Hopf algebra A over a ring R, topologically generated by a basis
B, corresponds to the commutative ring R[B]. It turns out that maps on Hopf al-
gebras can be translated to the ‘zipping’ of exponentials in B and dual generators
B∗. Zipping refers to the process of substituting a differential operator for the el-
ements of B, that act on the elements of B∗, or vice versa. However, contrary to
what one would expect, this construction does not yield a functor between cate-
gories as not all morphisms can be translated to the zipping of exponentials.
In the first and second section of chapter two, the zipping-process is defined and
convergence is proven for a certain subspace of Gaussian exponentials. In the

6



Introduction

third section we prove the existence of these tensors in the case of sl3, and an
implementation of the Drinfel’d double construction is given. This process is im-
plemented in Wolfram Mathematica, and can be found in appendix A.1.[39]
In the third chapter we construct the knot invariant Zε

3 corresponding to Uq(slε
3).

This is a construction that can be done for any quasitriangular ribbon Hopf alge-
bra, and is called the universal knot invariant for a quasitriangular ribbon Hopf
algebra A. In essence we put copies of the R-matrix of A on each crossing of
the knot, and we put the expression in a normal ordered form. There are some
details in this construction however, these are covered in the first section.
In the second section, as an example, we compute the Alexander-polynomial of
a knot by constructing its Seifert surface. In the third section, we prove the fac-
torization of the ε = 0 term of Zε

3 into Alexander polynomials. We also prove
that the calculation of the Zε

3 can be done in O(n10) calculations, where n is the
number of crossings of a knot.
In chapter 4 we attempt the construction of a Uq(slε

n) invariant using the quan-
tum Weyl group. Since Uq(slε

n) is not semisimple, there are some difficulties
associated to this construction. The main goal of this chapter is to construct a set
of algebra automorphisms that can be associated to a quantum Weyl group. In
this construction, we mainly follow [29], and many details are the same in both
constructions.
In the first section we define the Lie bialgebra slε

n and its corresponding quan-
tization Uq(slε

n). In the second section we study the quantum Weyl group as-
sociated with Uq(slε

2), and we give the corresponding algebra automorphism T.
In the third section, a general formula for the comultiplication of (non-simple)
generators is given. This formula is proven through the quantum Weyl-group
construction following [29]. This construction takes the second and third section
of chapter 4. In section 4.4 we provide a link with the first chapter through a
Wigner contraction on the usual Uq(sln) quantum group.
The construction of the quantum double Uq(slε

n) is not implemented in Wolfram
Mathematica, although a general formula for the pairing of monomials is proven
in the first section, and we also provide a way to calculate the comultiplication
of the (non-)simple generators. This finishes the construction of the Uq(slε

n) qu-
asitriangular Hopf algebra in theory. In practice it is necessary to calculate the
Hopf algebra (co)multiplication explicitly for the non-simple generators, in order
to implement the algebra in Mathematica.
A particular interesting result in this direction is given in section 4.4. We prove
that to calculate the comultiplication of Uq(slε

n) modulo εk+1, one needs to work
modulo εn+k−1. This is a consequence of a particular transformation on the alge-
bra used in 4 to obtain the Uq(slε

n) Hopf algebra as defined in chapter 1.
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Preliminaries

In this section, we mention some conventions that are used throughout this the-
sis. We prove most of these facts in appendix A.5. Let Rε = R[ε]/(ε2). In the first
and in the second chapter, the main examples are Lie and Hopf algebras over Rε.
A Lie algebra over the ring Rε is defined similarly as a Lie algebra over a field,
with the difference that a vector space over the ring Rε is defined to be a free
module over Rε. Any free module M over a ring is also flat, implying that exact
sequences are conserved under the tensor product ⊗Rε M. When M is free over
Rε, and we have an R-basis {m̃i}i∈I of M/εM, this basis can be extended to an
Rε-basis {mi}i∈I of M. We refer to a free Rε-module as a vector space over Rε.
If M is an Rε-module, then the dual of M is defined as M∗ = HomRε(M, Rε). It
is not in general true that the dual of a module is flat (or free). However, when
M is finitely generated as a module, then the dual is free as well. For the Lie al-
gebras we consider this will be the case. The underlying vector spaces are finite
dimensional.
If M is an infinite dimensional, free module over a ring, it is not true in general
that M∗ is free. However, in the cases we consider it will turn out to be the case.
We will have to prove this by providing a set that spans M∗ explicitly. Of course,
one also proves that this set is linearly independent over R.
The basis of M∗ is usually given by the dual R-basis elements φa of (M/εM)∗,
where φa(ea′) = δa,a′ , and ea is the R-basis of M/εM. One can extend φa to an Rε

basis when M∗ is free.
In the case of Hopf algebras, the modules we consider are equipped with the
Rε[[h]]-adic topology. Let h be an indeterminate, and consider a module M over
Rε[[h]]. The open sets around 0 ∈ M are generated by the sets Un = {hnx|x ∈
M}, for n ≥ 0. The collection {a + Un|a ∈ M, n ≥ 0} is a basis for the h-adic
topology on M. Continuous maps are h-linear maps.
We define an algebra on generators by considering the module of noncommu-
tative monomials, and dividing out by the (closure of the) ideal generated by
the algebra relations. Suppose we have a set B = {xi}i∈I , where I is finite. We
refer to xi as algebra generators, or generators. Consider the module Rε[{xi}]
of non-commutative polynomials in xi. Let I be the ideal generated by the rela-
tions f j(x1, · · · , xn) = 0. The algebra A generated by xi is defined as the quotient
A = Rε[{xi}]/ Ī, where Ī is the h-adic closure of I.
An Hopf algebra H is an algebra that is a coalgebra equipped with an antipode
S : H → H, which is an anti-homomorphism obeying certain compatibility con-
ditions. The Hopf structure is defined on the algebra-generators, and extending
the comultiplication, (co)unit and antipode as Rε[[h]] homomorphisms. Chari
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and Pressley in [6] refer to the Hopf-algebra as topologically generated by the
algebra generators. We use the same convention. The tensor product is assumed
to be completed in the h-adic topology whenever relevant. In the Lie-algebraic
setting the tensor product is the usual tensor product on finite dimensional vec-
tor spaces.
The dual of a coalgebra has a natural algebra structure. The converse is more
complicated, as (A⊗ A)∗ 6= A∗ ⊗ A∗, the map m∗ : A∗ → (A⊗ A)∗ dual to the
multiplication map m : A ⊗ A → A does not in general map to A∗ ⊗ A∗. The
Hopf dual is defined as the set A◦ = {a ∈ A∗|m∗(a) ∈ A∗ ⊗ A∗}.
The Hopf dual is different from the QUE-dual of a topological Hopf algebra, as
we will later see. The set A◦ can be interpreted as the set of all finite dimensional
representations when A◦ is a Hopf algebra over a field [6]. This interpretation
plays a role in the last chapter. When we say dual Hopf algebra, we will always
mean the QUE-dual, unless stated otherwise.
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