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Introduction

Knots have been used for many purposes through the ages. The first to attempt
to classify knots was Peter Tait in 1876 in [34]. In his book of knots Tait succeded
to classify all unique knots up to and including 9 crossings, which are eighty-
four in total. Classification of bigger knots was not possible due to the size of
the knots. To classify bigger knots, so called knot invariants were needed. Knot
invariants are expressions that are identical for equivalent knots. Two knots are
considered equivalent if they can be obtained from each other through a number
of ‘smooth’ transformations in R3.

The first major development in classifying knots took place roughly 50 years
after Taits first attempt. In 1927, Reidemeister (and Alexander and Briggs inde-
pendently in 1926) described the equivalence of knots in terms of three moves
on diagrams [28]. These moves are called the Reidemeister moves, and they en-
abled the definition of (classical) knot invariants. To prove that an expression
was identical for equivalent knots, one only needed to prove the invariance of
the expression under the Reidemeister moves.

The most important classical knot invariant is the Alexander polynomial. The
Alexander polynomial can be calculated in a number of ways, and it was in-
vented by James Wadell Alexander II shortly after the introduction of the Reide-
meister moves in 1928 [1]. In his original paper, the polynomial is calculated by
considering the incidence matrix of a knot diagram. The Alexander polynomial
can also be calculated from the Seifert surface of the knot, or from the cyclic cover
of the knot complement to name a few options.

It was proven by Alexander that the Alexander polynomial satisfied a skein rela-
tion. A skein relation is a relation between a crossing and the sum of two trivial
strands horizontally and vertically positioned. To say that the Alexander poly-
nomials satisfies a skein relation means that it is invariant under replacing a
crossing with the sum of two knots with in the same place two trivial strands
horizontally and vertically positioned.

In the 1960s it was discovered by Conway that the Alexander polynomial could
also be computed by a skein relation and a value for the unknot, the circle em-
bedded in R®. These two identities together yield a variant of the Alexander
polynomial called the Conway-Alexander polynomial. In 1984 this construction
was applied by Vaughan Jones to define the Jones polynomial [16].

The Jones polynomial is the first example of a new class of knot invariants called
quantum invariants. Originally it was defined using Neumann algebras. It can
also be obtained by coloring links with two dimensional representations of the
quantum group Uy (sly).
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The class of quantum invariants consists of quantum group invariants, which are
obtained as solutions of the Knizhnik-Zamolodchikov equation (KZ-equation)
and by using finite dimensional representations of quantum groups. Another
class of quantum invariants is obtained through solutions of the Yang-Baxter
equation in statistical physics.

Shortly after the discovery of the Jones polynomial, other similar polynomials
were discovered, the most important of which are the HOMFLY-polynomial and
the n-colored Jones polynomial. The HOMFLY polynomial is a generalization
of the Jones polynomial in the sense that it considers U, (sl,)-representations in-
stead of Uy (sl2). The n-colored Jones invariant, as the name suggests, considers
n dimensional representations of U, (sl).

Quantum groups like U, (sly) are the central object in the construction of quan-
tum invariants. The first description of U, (sl>) was due to Kulish and Sklyanin in
1981. The term quantum group was first presented by Drinfel’d in 1986 [7]. In his
paper he defines a quantum group as the dual space of the ‘quantized” algebra of
functions on some (Lie) group G. Denote the commutative algebra of functions
on a Lie group G with F(G). If G represents the state space of a system, then
quantizing this system corresponds to quantizing F(G). This quantization can
be done in various ways, and will be denoted with Fj,(G). The quantum group
corresponding to F(G) is defined by Drinfel’d as the dual space of F,(G). Drin-
fel’d notes that the notion of a Hopf algebra and a quantum group are equivalent,
however the term quantum group naturally has a geometric meaning.

When defined this way, the Hopf algebraic structure of U,(sl;) arises naturally
from the group multiplication of the Poisson Lie group SL(2). Concretely, the
group multiplication translates to an algebra homomorphism A : F(G) — F(G) ®
F(G). Quantizing F(G) means turning the commutative algebra structure into
a non-commutative one. In the dual of F(G) this translates to a Hopf algebra
structure.

A great discovery in 1993 was the Kontsevich universal invariant. The discov-
ery of this universal invariant followed the construction of many new quantum
invariants in the 1980s and classified these invariants as the result of a single
construction. The Kontsevich invariant is derived from the universal KZ equa-
tion and uses weight systems in its construction. The Kontsevich invariant takes
values in the space of Jacobi diagrams, which are uni-trivalent graphs. Jacobi
diagrams are also referred to as loop diagrams, or Feynman diagrams.

Jacobi diagrams can be assigned a specific (simple) Lie algebra g and an irre-
ducible finite dimensional representation V' to yield the quantum group invari-
ant (g, V). This assignment is called a weight system [25]. It was proven that this
provides a solution to the Yang-Baxter equation. Kohno and Drinfel’d proved
that the R-matrix obtained in this way is equivalent to the quantum R-matrix of
the quantum group Uy (g) corresponding to the Lie algebra g. So any quantum
invariant can be found by substituting a specific Lie algebra and representation
into the Jacobi diagrams of the Kontsevich universal invariant.

Using the Kontsevich invariant, we can obtain the n-colored Jones polynomial



as an expansion of loop diagrams. In the second half of the 90s this expansion
was studied by Melvin and Morton for the Jones polynomial. They conjectured
that the Alexander polynomial arises in the loop expansion of the Jones polyno-
mial [24]. This conjecture was generalized by Lev Rozansky, and later proven
by Dror Bar-Natan in 1996 in [2]. It is conjectured in [35] that the polynomial
time knot invariants constructed from U, (sl>) in [35] and [36] by Dror Bar-Natan
and Roland van der Veen coincide with 2-loop terms in the loop expansion of the
n-colored Jones polynomial. Concretely, by introducing a parameter € such that
€? = 0 in the upper (or lower) triangular subalgebra of U, (sl ), it is conjectured
that one obtains the 2-loop invariant as defined in [32] and studied by Ohtsuki in
[26]. One would expect for a similar conjecture to hold for higher loop polyno-
mial [35]. Furthermore, it could be expected that similar conjectures hold for the
loop expansion of the HOMFLY polynomial and the quantum group invariant
constructed in this thesis.

Overview

In the first chapter of this thesis the quantization of Lie bialgebras is studied.
In particular we quantize the Lie bialgebra sl§, which is derived from sl3 by
multiplying the comultiplication on the upper Borel subalgebra with a param-
eter €. This provides a family of quantum groups that depend on a parameter
€. Expanding this quantum group to €, we get an approximation of the Uy (sl3)
quantum group. For clarity we work mostly in first order of €. The first order
expansion in € is constructed over the ring R, = R[e]/(€?). This construction
yields several difficulties, which are the main subject of the first chapter.

We first define the concept of a Lie bialgebra, and introduce the example b*, the
lower- and upper Borel subalgebra of sl; with a parameter €, where €> = 0. We
proceed with the process of quantization of a Lie bialgebra as done in [6]. In this
way we obtain the dual Hopf algebras U, (bZ). To these Hopf algebras, the Drin-
fel’d double construction is applied to obtain the quasitriangular Hopf algebra
U, (sl5). We prove that this Hopf algebra is in fact a quasitriangular ribbon Hopf
algebra.

In the second chapter we provide a formalism to compute commutators of expo-
nentials. This is done by providing a map between a Hopf algebra and a commu-
tative ring. An Hopf algebra A over a ring R, topologically generated by a basis
B, corresponds to the commutative ring R[B]. It turns out that maps on Hopf al-
gebras can be translated to the ‘zipping’ of exponentials in B and dual generators
B*. Zipping refers to the process of substituting a differential operator for the el-
ements of B, that act on the elements of B*, or vice versa. However, contrary to
what one would expect, this construction does not yield a functor between cate-
gories as not all morphisms can be translated to the zipping of exponentials.

In the first and second section of chapter two, the zipping-process is defined and
convergence is proven for a certain subspace of Gaussian exponentials. In the
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third section we prove the existence of these tensors in the case of sl3, and an
implementation of the Drinfel’d double construction is given. This process is im-
plemented in Wolfram Mathematica, and can be found in appendix A.1.[39]

In the third chapter we construct the knot invariant Z§ corresponding to U, (sl§).
This is a construction that can be done for any quasitriangular ribbon Hopf alge-
bra, and is called the universal knot invariant for a quasitriangular ribbon Hopf
algebra A. In essence we put copies of the R-matrix of A on each crossing of
the knot, and we put the expression in a normal ordered form. There are some
details in this construction however, these are covered in the first section.

In the second section, as an example, we compute the Alexander-polynomial of
a knot by constructing its Seifert surface. In the third section, we prove the fac-
torization of the € = 0 term of Z§ into Alexander polynomials. We also prove
that the calculation of the Z§ can be done in O(n'?) calculations, where 7 is the
number of crossings of a knot.

In chapter 4 we attempt the construction of a U, (sly;) invariant using the quan-
tum Weyl group. Since U,(sl) is not semisimple, there are some difficulties
associated to this construction. The main goal of this chapter is to construct a set
of algebra automorphisms that can be associated to a quantum Weyl group. In
this construction, we mainly follow [29], and many details are the same in both
constructions.

In the first section we define the Lie bialgebra sl;, and its corresponding quan-
tization U, (sly;). In the second section we study the quantum Weyl group as-
sociated with U, (sl5), and we give the corresponding algebra automorphism T.
In the third section, a general formula for the comultiplication of (non-simple)
generators is given. This formula is proven through the quantum Weyl-group
construction following [29]. This construction takes the second and third section
of chapter 4. In section 4.4 we provide a link with the first chapter through a
Wigner contraction on the usual U, (sl,;) quantum group.

The construction of the quantum double U, (sl;) is not implemented in Wolfram
Mathematica, although a general formula for the pairing of monomials is proven
in the first section, and we also provide a way to calculate the comultiplication
of the (non-)simple generators. This finishes the construction of the U,(sl};) qu-
asitriangular Hopf algebra in theory. In practice it is necessary to calculate the
Hopf algebra (co)multiplication explicitly for the non-simple generators, in order
to implement the algebra in Mathematica.

A particular interesting result in this direction is given in section 4.4. We prove
that to calculate the comultiplication of U, (sI$) modulo X1, one needs to work
modulo €"+*~1. This is a consequence of a particular transformation on the alge-
bra used in 4 to obtain the U, (sl;) Hopf algebra as defined in chapter 1.



Preliminaries

In this section, we mention some conventions that are used throughout this the-
sis. We prove most of these facts in appendix A.5. Let R. = R[e]/(€?). In the first
and in the second chapter, the main examples are Lie and Hopf algebras over R..
A Lie algebra over the ring R, is defined similarly as a Lie algebra over a field,
with the difference that a vector space over the ring R, is defined to be a free
module over R.. Any free module M over a ring is also flat, implying that exact
sequences are conserved under the tensor product ® g M. When M is free over
Re, and we have an R-basis {7;};c; of M/eM, this basis can be extended to an
Re-basis {m;}ic; of M. We refer to a free R.-module as a vector space over Re.

If M is an Re-module, then the dual of M is defined as M* = Hompg_ (M, R¢). It
is not in general true that the dual of a module is flat (or free). However, when
M is finitely generated as a module, then the dual is free as well. For the Lie al-
gebras we consider this will be the case. The underlying vector spaces are finite
dimensional.

If M is an infinite dimensional, free module over a ring, it is not true in general
that M* is free. However, in the cases we consider it will turn out to be the case.
We will have to prove this by providing a set that spans M* explicitly. Of course,
one also proves that this set is linearly independent over IR.

The basis of M* is usually given by the dual R-basis elements ¢, of (M/eM)*,
where (pa(e“,) = 0,4, and e is the R-basis of M/eM. One can extend ¢, to an Re¢
basis when M* is free.

In the case of Hopf algebras, the modules we consider are equipped with the
Re[[h]]-adic topology. Let h be an indeterminate, and consider a module M over
R¢[[h]]. The open sets around 0 € M are generated by the sets U, = {h"x|x €
M}, for n > 0. The collection {a + U,|la € M,n > 0} is a basis for the h-adic
topology on M. Continuous maps are h-linear maps.

We define an algebra on generators by considering the module of noncommu-
tative monomials, and dividing out by the (closure of the) ideal generated by
the algebra relations. Suppose we have a set B = {x;};c;, where I is finite. We
refer to x; as algebra generators, or generators. Consider the module Re[{x;}]
of non-commutative polynomials in x;. Let I be the ideal generated by the rela-
tions f;(x1,---,x,) = 0. The algebra A generated by x; is defined as the quotient
A = Re[{x;}]/I, where I is the h-adic closure of I.

An Hopf algebra H is an algebra that is a coalgebra equipped with an antipode
S : H — H, which is an anti-homomorphism obeying certain compatibility con-
ditions. The Hopf structure is defined on the algebra-generators, and extending
the comultiplication, (co)unit and antipode as R¢[[}]] homomorphisms. Chari



and Pressley in [6] refer to the Hopf-algebra as topologically generated by the
algebra generators. We use the same convention. The tensor product is assumed
to be completed in the h-adic topology whenever relevant. In the Lie-algebraic
setting the tensor product is the usual tensor product on finite dimensional vec-
tor spaces.

The dual of a coalgebra has a natural algebra structure. The converse is more
complicated, as (A ® A)* # A* ® A*, the map m* : A* - (A® A)* dual to the
multiplication map m : A® A — A does not in general map to A* ® A*. The
Hopf dual is defined as the set A° = {a € A*|m*(a) € A* @ A*}.

The Hopf dual is different from the QUE-dual of a topological Hopf algebra, as
we will later see. The set A° can be interpreted as the set of all finite dimensional
representations when A° is a Hopf algebra over a field [6]. This interpretation
plays a role in the last chapter. When we say dual Hopf algebra, we will always
mean the QUE-dual, unless stated otherwise.



1. An expansion of the U,(sl3) quantum
group

Introduction

Hopf algebras are used to produce knot invariants such as the Jones polynomial
and the Alexander polynomial. In this chapter we will construct a quasitriangu-
lar Hopf algebra that is in some sense a deformed version of the quantum group
U, (sl3). The knot invariant associated with this Hopf algebra is stronger than the
Alexander polynomial, and is computable in polynomial time. These facts will
be proven in a later chapter.

In order to arrive at the correct quasitriangular Hopf algebra, we first cover its
classical limit, the deformed sl3 Lie bialgebra. We proceed with quantizing these
Lie bialgebras. Finally we cover the quantum or Drinfel’d double construction
to obtain the deformed version of U,(sl3).

We aim to quantize the algebras over the ring R = R[e]/ (€2>. Usually the quan-
tization and Drinfel’d double construction is done over a field. Most theorems
also hold for coordinate rings. The subject of this chapter, besides obtaining the
U, (sl§) algebra, is the question “What is €?’. There is no definite answer to this
question. One may choose between the possible perspectives we provide in this
thesis. Some perspectives do provide more information than others, however.
Most of the constructions presented here are covered in sources like [23] and [6].
It is advisable to consult these sources on the subject. The deformed Hopf al-
gebra presented here is based on the research by Van der Veen and Bar-Natan
in [35]. While [35] covers the U,(sl5)-quantum group invariant, we cover the
U, (sl§) quantum invariant. The construction is the same in essence. However,
we hope to gain insight in the problems arising in the quantization of sl,,.

1.1. Lie bialgebras

In this section we treat quasi-triangular Lie bialgebras. From a general Lie bialge-
bra it is possible to construct a quasitriangular Lie bialgebra through the classical
double construction. Using this construction, we turn the deformed lower Borel
sub Lie bialgebra of sl3 into a quasi-triangular Lie bialgebra. It is possible to
obtain the same Lie algebra relations through Wigner group contraction on the
upper Borel Lie subalgebra of gl,,. See appendix A.4 for more information.

By a vector space over a ring we mean a free module over a ring. In the case of

10



Chapter 1. An expansion of the U, (sl3) quantum group

the Lie algebras considered here, the modules are finitely generated. When we
say a Lie algebra or Lie bialgebra, we will mean a Lie (bi)algebra over a ring R.
R will be specified when necessary. A ring is always commutative with unit in
this thesis.

We will often work over the ring R, = R[e]/(€?). A specific problem that arises
is the non-degeneracy of a bilinear pairing (,) : M* ® M — R,, where M is a
free Rc module. In this and the next chapter, whenever we say that a pairing
is nondegenerate, we will mean that it is nondegenerate over R = R¢/€eR.. In
other words, the map (,) : M*/eM* ® M/eM — R is nondegenerate.

Since €2 = 0, we can only pair in M* with expressions in M as an element in
M*/eM and M/eM. In practice, this is what we will use the pairings in this
chapter for. As noted in the prelimenaries, we can extend an IR-basis of a module
M/eM to an R¢-basis of M, where M is an R.-module. The same is true for the
dual basis, since we consider finite dimensional modules in this section.

Definition 1.1.1. (Lie bialgebra) A Lie bialgebra (g, |,],0) is a vector space g over a
ring R together with a bilinear map [,] : ¢ ® g — g (the bracket) and a linear map
0: g — g ® g (the cobracket) satisfying the following axioms:

1. [X,X]=0VX €y,

2. (XY, Z)|+ (Y, [Z,X]]+ [Z,[X, Y]] =0forall X,Y,Z € g,
3. Tod(X)=—6(X) VX € g, where T(A® B) = (B® A),

4. 6% 1 g* ® g* — g is a bracket on the dual Lie algebra g*,

5. 5([X,Y]) = X0(Y) = Y.4(X) forall X,Y € g.

XO(Y) = (adx ®1+1®adx)(6(Y)), and adx(Y) = [X,Y] is the (left-)action of
the Lie algebra on itself, for all X,Y € g. We introduce the Sweedler notation
d(a) = Y a1 ®ay = a1 ® ap, where we leave out the summation symbol, but
only indicate the entry in the tensor product. Let us define the Lie bialgebra
cohomology.

Definition 1.1.2. (Chevalley-Eilenburg complex) Let M be a g-module, where g is a Lie
algebra over a ring R. Set

n
C"(g, M) == Homg(/\ g, M), n >0,

and Co(g, M) = M, where \" g is the n-th exterior power of g. This is the Chevalley-
Eilenberg cochain complex.
The differential d on c € C"(g, M) is defined as

n+1 )
de(xq,--- ,xn+1) Z( 1)Z+1xi.c(x1,. R PR ,xn)_|_

i=

~ Z< 1( )Z'HC([xZ’ X]] X1, - ,.72'1‘, e ri\jr e rxl’l-‘rl)/ (11)
<i<j<n+

11



1.1. Lie bialgebras

where x1,- -+ ,Xp41 € @, and x.d is the module action of gon d € M.
With this complex one can now define the cocycles and coboundaries.
Definition 1.1.3. (Lie bi algebra cohomology) Define the space of cocycles
ZP(g,M) := {c € CP(g, M)|dc = 0},
and the space of coboundaries
BP(g, M) = {c € CP(g,M)|3c’ € CP~ (g, M) s.t. dc’ = c}.
Then define the Lie algebra cohomology as H (g, M) .= ZF (g, M) /B¥ (g, M).

The condition 4([X,Y]) = X.6(Y) — Y.0(X) in the definition of a Lie bialgebra
states that J is a 1-cocycle in the Lie algebra complex C*(g, g ® g), with the adjoint
action of g on the tensor product module g ® g.

According to the definition, ¢ is a 1-cocycle, so we can look at the cases when 4 is
a coboundary: 6(X) = X.r for some r € g® g and for all X € g. A Lie bialgebra
where J is a coboundary is called a coboundary Lie bialgebra. g is coboundary if
and only if 7 obeys (let r = Y115 = Y_rll @ r)):

1. 2r4 = r1p + 191 is a invariant under the action of g.
2. [ri2,113) + [r12,723] + [r13,723] = 0.

Here [r1p,513) = Y[r!,s!] @ 712 @ 512, See proposition 8.1.3 in [23] for the proof
that (g, [,],7) defines a coboundary Lie bialgebra if and only if the above con-
ditions hold. Conditon 2 is called the classical Yang-Baxter equation, and r is
called the classical r-matrix. If the Lie bialgebra structure arises from a classical
r-matrix, then we call the Lie bialgebra quasitriangular. The condition that 27 is
ad-invariant is usually not included in the definition of an r-matrix, but for sim-
plicity we will do so. Usually the following definition is taken for a triangular
Lie algebra. See for example [23], chapter 8.

Definition 1.1.4. Let g be a Lie algebra. Define the classical r-matrix as an element
r € g ® g which obeys (r = Y. r1p = Y rll @ r)):

1. rip + 121 is a invariant under the action of g.
2. [r12,113) + [r12, 723] + [r13,723] = 0.

Note that [r13, 513] = Z[rm , s[l]] @12 @sbland similarly when other indices over-
lap. Let us now proceed with the construction of quasitriangular Lie bialgebras
through the classical double construction. We remind the reader that a Lie al-
gebra in this thesis is always finite dimensional. When this is the case, the dual
space is well defined and is again a Lie bialgebra.

12



Chapter 1. An expansion of the U, (sl3) quantum group

Definition 1.1.5. The dual of a Lie bialgebra g over a ring R is the dual vector space
g* with bracket and cobracket and a R-linear pairing (,) : g* & g — R satisfying the
axioms

([a,b],c) = (a®b,dc) (1.2)
(6a,c®@d) = (a,[c,d]), (1.3)

where a,b € g*, and c,d € g. We extend the bracket to the tensor-product g* ® g* @
gRgby (a®b,cd) = (a,c)(bd).

It is interesting to turn a dual pairing into an inner product (,) : (g ® ¢g*) ® (g ®
g*) — R by defining (X,7) = (X,5) and (X, X) = (n,4) = 0 for X € g and
n € g*. We record the following fact, see lemma 1.3.5 of [6].

Lemma 1.1.1. Let g,g* be Lie algebras with inner product (,) on the space g & g*.
Then g @ g* has a Lie algebra structure with g and g* as Lie subalgebras, where the
inner product (, ) is invariant under the adjoint action of g and g* if and only if g is a
Lie bialgebra. Moreover, the Lie algebra structure is unique.

There is a natural candidate for this Lie bialgebra structure when g is a Lie bial-
gebra: the classical double. Before defining the quantum double, we cover some
examples. The following examples are the classical versions of the U, (sl5) lower
and upper Borel subalgebras, as will become clear in the next section.

Example 1.1.1. Consider the Lie bialgebra (b~,|,],6) over the ring Re = R[e]/(€?)
generated by the elements {b,a,z,y, x} as a Re-module and the relations

[a,x] = =2x, [a,y] =y, [a,z] = —z (1.4)
[b,x] =x, [by] = -2y, [b,z] = —z (1.5)
xy] =z (16)
o(x) =€e(x®a—a®x) (1.7)
6(y) =e(y@b-bxy) (1.8)
0(z)=€(z®(a+b)—(a+b)Rz+2x Ry — 2y Qx), (1.9)

and all other identies on generators zero. Concretely, we define the Lie algebra b~ as the
Re-module generated by b, a, z, vy, x, divided out to the ideal generated by the algebra rela-
tions stated above. The algebra-relations are equal to the relations in the lower triangular
subalgebra of the Lie algebra sl3(R). The cobracket is the usual cobracket multiplied by
€. Hence it satisfies the Lie bialgebra axioms.

The b~ Lie bialgebra is a central object in this chapter. We might denote the
generators {b,a,z,y,x} of b~ as the more general

{H; , Hy, X{,X;,, X5},

with Hy = H; + H,. Although b~ is not semisimple, as can be seen from
calculating the Killing form, where the diagonal block-matrix corresponding to
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1.1. Lie bialgebras

(2,9, x) (using the order (b, 4, z, y, x)) vanishes, the Killing form « restricted to the
maximal toral subalgebra H of b~ is nondegenerate over IR. See appendix A.3 for
the definition of the Killing form.

The Killing form is not nondegenerate over R, since the Killing form is bilinear
in €. Formally, as remarked in the preliminaries, we can extend an IR-basis to an
Re-basis. So we can consider {b,a,z,y,x} as elements in b~ /eb™. In this sense is
the Killing form nondegenerate. Note that the construction of the Killing form is
independent of €.

In fact x(a,a) = x(b,b) = 6 and «(a,b) = x(b,a) = —3. This is due to the fact
that b~ is derived from a semisimple Lie algebra. The following lemma holds.
Again, the remark is that the R-basis can be extended to an Rc-basis.

Lemma 1.1.2. Let ¢ € H* and « be the Killing form on H, the maximal toral subalgebra
of b~. Then there exists a unique ty € H such that ¢(h) = x(ty, h).

This lemma allows us to identify H with H*, and also enables us to define a
nondegenerate form on H* by transferring the Killing form. Since the set of
roots & € H* consists of 3 roots «, B, + B corresponding to the root-spaces
generated by x, y and z, respectively (the root-spaces corresponding to these
roots are nonzero), the set of roots ® of b~ is the same as the set of sl;. Moreover,
the Cartan matrix is the same as the Cartan matrix for sl3, which reads

2 -1 0
-1 2 -1]. (1.10)
0o -1 2

Another example of a Lie bialgebra is the lower Borel subalgebra of s/5.

Example 1.1.2. Let g be the algebra over R generated by A and X and the relations

[X,A] = X,[X,X] =0,[A,A] =0, (1.11)
S(X)=XRA-A®X, (1.12)
5(A) =0. (1.13)

Let us check the axioms explicitly for this example. Clearly the first two Lie bialgebra
axioms are satisfied, as there are only two generators. By definition, the third axioms is
satisfied. If we use the formula for 6, the last axiom is equivalent to

I([AX])=AX|RA-AR[AX]|=X®A-ARX.

Let us now calculate the dual of g, the generators of which are denoted by a and x and
are dual to A and X respectively. Using the properties of the dual pairing (g being finite

dimensional) we get
([0,x],X) =(a@x,6X)) =@@x, XA -ARX) (1.14)
=®x,-A®X)=-1. (1.15)

14



Chapter 1. An expansion of the U, (sl3) quantum group

Hence the algebra is generated by [a, x] = —x, and the other relations zero. In the same
way we get 6(x) = x ® a — a ® x. Checking the Jacobi identity, we see that 6* is indeed
a bracket on g*, and hence g is a Lie-bi algebra. This last exercise is left to the reader.

Let us construct the dual (b~ )* of b~. (b™)* is needed for the classical double
construction.

Example 1.1.3. The dual of b, which we will call b* suggestively, can be defined by
using a pairing (,) : (b”)* @b~ — k. If we extend the dual basis over R obtained
through this pairing Re-linearly, we obtain the dual (b~ )* that is generated by the dual
basis {X,Y,Z,A,B} C b". Since b~ is finite dimensional, so is its dual.

(X,x)=1,(Y,y) =1, (Z,z) =1, (A,a) =1, (B,b) =1, (1.16)

and relations between other generators zero. The generators of b satisfy the following
relations

(X,Y] = 2¢Z, (1.17)
(X, A] = €X, [X,B] =0, (1.18)
[Y,A] =0, [Y,B] = €Y, (1.19)
[Z,A] =€Z, [Z,B] = €Z, (1.20)
5(A) =5(B) =0 (1.21)
5(X)=X®((2A-B)—(2A-B)®X (1.22)
5(Y)=Y®(2B—A)—(2B—A)®Y (1.23)
5(Z)=Z®(A+B)— (A+B)®Z+ XY -Y®X. (1.24)

The relations between generators that are not mentioned here are zero. It can be checked
that these relations indeed satisfy the pairing axioms in a similar fashion as the previous
example (in fact, there is only one relation that is different from the previous example,
namely [X, Y] = 2eZ). It follows that b™ is a Lie bialgebra. Note that b™ is constructed
in such a way that the generators are dual with respect to the pairing (, ). It is interesting
to see that this algebra is solvable.

Let us now define the classical double construction. For a proof that this structure
indeed defines a quasitriangular Lie bialgebra in the sense of definition 1.1.4 and
definition 1.1.1 see 8.2.1 in [23].

Definition 1.1.6. (classical double) Let g be a finite dimensional Lie bialgebra over a
ring R with Lie-dual g* (i.e. there exists a dual pairing obeying 1.16). The classical
dual D(g) is the vector space g* @ g together with Lie bracket, cobracket and classical
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1.1. Lie bialgebras

r-matrix

ladb,cadp = ([cal +) ci{ca,b) —ar(az,d)) & ([b,d] + ) _bi{c,by) — di{a,dz))

(1.25)
5D(€l S5 b) = Z(Cﬁ ©® 0) &® (Elz & 0) + Z(O S7) b1) ® (0 S7) bz), (1.26)
rp =Y (f"®0)® (05 e,). (1.27)

a

Here, a,c € g* and b,d € g. The elements f* € g* form a basis dual to the basis
e® € g. We use the Sweedler notation for 6(a) = Y. a1 ® ay, where we often forget the
summation symbol.

Note that g and (g*)°? are included in D(g) as sub Lie bialgebras. See Lemma
1.4.2 of [6] and lemma 1.1.1 for the connection between the classical double and
b~ and (b™)*.

Example 1.1.4. Let us construct the classical double of the upper Borel of sl from the
previous example. From the definition we get

xel,1eX]=ad A (1.28)
[x®1,1P A =—x (1.29)
ol l1eX] =-X (1.30)
r=x®X+ad A. (1.31)

The r-matrix follows from the definition of the dual generators. The algebra relations
follow by direct calculation.

The classical double D(g) is a quasitriangular Lie bialgebra built on the vector
space (g)* @ g with bracket, cobracket and r-matrix. Note that g* has the negated
(opposite) bracket in D(g). This specific Lie bialgebra structure is related to the
invariance of the inner product on g* @ g under the adjoint action. See [23] chap-
ter 8.2 for example. Let us briefly describe what we mean.

Let 2r be the symmetric part of r € D(g) ® D(g) as defined before. Since g is
finite dimensional, 2r can be interpreted as a map 2r; : D(g)* — D(g). This
map is given by 2r, (E ® ¢) = (€ ® ¢, rN)r@ + (¢ @ ¢, r2))#[1]. Note that since
e, and f? are dual basis with respect to (,) we get 2r, (E ® ¢) = ¢ B &, so 2ry is
an linear isomorphism (over R) with an inverse 27’;1 : D(g) — D(g)* which is
invariant under the adjoint action because r is an r-matrix, so 2r, = ryp + rp; is
invariant under the adjoint action of g. This implies that 27 gives rise to a Lie
algebra isomorphism between D(g) and D(g)*.

Because we are not working over a field but over the ring R, the definition of
2r; ! does not follow automaticaly from 2r.. However, as noted in the prelime-
naries, we can extend an IR-basis to an Re-basis. In this way we can define 21’;1
to be the inverse of 2r as a map of R-modules and extend it to an R, map. This
map is injective. We could also construct 2r;! by introducing € as an invertible
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Chapter 1. An expansion of the U, (sl3) quantum group

parameter. Since this changes nothing in the algebra-relations on generators, we
can take €2 = 0 after defining 2r ™.

This means that we can write 21! (¢ @ &) = K(¢ @ &, -) for an adjoint-invariant
element K € D(g)* ® D(g)*. Since K is a bilinear map this will define a bilinear
form. So in short, if 7 is quasitriangular, we can define a bilinear symmetric form
on D(g) ® D(g)* that is invariant under the adjoint action.

The question arises when is r quasitriangular. In particular, when is 2r, ad-
invariant. It turns out that this is the case if we use the opposite multiplication
ong*. Let¢ € g* and ¢ € g. We identify ¢ 0 = ¢ and 0 & § = ¢ in the notation.
For the moment we denote J(x) = x|;] ® x|y

ady(r) = [¢, f]p(g) @ €a + f* @ [P, ea] D(g)
= [f", ¢p] ®ea — f* @ Ppj(Ppa) €a) — f* @ a1 (P, o))
= f* @ean(P eap) — [ @ Pj{Pp) ea) — f* @ eap) (s ap)
= —f" @ (PP, €a)
= —Pp) @ Ppy = 0(¢)-

We used the properties of a Lie bialgebra pairing 1.1.5. The same result holds
for §(&), only the minus signs change in + signs, since the product on g is the
multiplication on the double. However, this is exactly the right order to obtain
adg(r) = 6(g). Since ¢ is anti-symmetric we see that ady(2ry) = adg(2ry) = 0.
It follows that the opposite multiplication is essential to obtain a coboundary Lie
bialgebra.

We denote this sub-Lie algebra with g*’?. One can take the dual of D(g), the dou-
ble construction this results in is called the co-double. The resulting Lie algebras
are equivalent in the sense that there exists an explicit Lie algebra isomorphism
relating the two.

Definition 1.1.7. Let g and g* be finite dimensional dual Lie algebras over a ring R.
Let a,d € g* and b,c € g. Define the Lie algebra pairing (,)p : D(g) x D(g)* — R :
(a®b,d®c)p = (a,c)+ (d,Db).

With this pairing it is possible to calculate the dual of a classical double D(g). To
this end we state the following lemma, which simplifies this task.

Lemma 1.1.3. Leta,d € g* and b,c € g. Then
([a,b]p,c)p = (a,[b,c]), (a,[d, c]p*)p = ([d, ], c).
The bracket [,] denotes the bracket in g and g*.

Proof. The proof is by direct verification, and can be found in [23] for example.
We use the fact that (, ) is a Lie bialgebra pairing, and the definition of [, |p. O

We proceed to use the classical double construction on b~ and its dual. We are
using the co-double construction, which is the dual of the classical double. Let
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1.1. Lie bialgebras

us first give the classical double D(b~), by combining examples 1.1.1 and 1.1.3,
where we put the opposite bracket on the b™ = (b~ )* side. Only the trivial
relations and the relations of b~ and b~* are left out. Remember that (b~)* has
the opposite bracket in D(b™). The bracket on b~ is the usual bracket.

[X,b] =X, [X,a] = -2X, [X,z] =2ey, [X,x] =2A — B+ea, (1.32)

[Y,b] = =2Y, [Y,a| =Y, [Y,z] = —2ex, [Y,y] =2B— A +¢€b, (1.33)
Z,b] =—Z, [Z,a)l = —-Z, [Z,z| = A+B+ea+eb, [Z,y]=-X, [Z,x]=Y

(1.34)

[A,z] = —ez, [A, x] = —ex, [B,z] = —ez, [B,y] = —e€y, (1.35)

Ip=A®Ra+BRIV+X@x+YRQy+2Z®z, (1.36)

Lemma 1.1.4. D(b™) is a quasitriangular Lie bialgebra, and is the classical double of
the Lie bialgebras b~ and (b~ )*.

Proof. g = D(b™) is a quasitriangular Lie bialgebra by construction. The bracket-
relations follow by direct calculation from the definition, and can be checked
manually. Observe that the relations follow from group contraction on the stan-
dard gl, structure. See for example 4.4.1 in [10]. See appendix A.4 for an example
of Wigner group contraction.

The axioms for the cobracket are satisfied by examples 1.1.1 and 1.1.3, together
with the definition of the cobracket on the classical double. The r-matrix follows
from the definition of the algebra relations of the classical double. The fact that
D(b™) is the double of b~ and (b~ )* can be seen from the uniqueness of the clas-
sical double (see lemma 1.1.1) and the fact that D(b~) contains b~ and (b™)* as
Lie subalgebras. This finishes the proof. O

The relations of the algebra D(b~)* are given by

[X,b] =X, [X,a] = -2X, [X,z] = —2ey, [X,x] = —2A+ B —eq, (1.37)
[Y,b] = =2Y, [Y,a| =Y, [Y,z] =2ex, [Y,y] = —2B+ A — €D, (1.38)
[Z,b] =—Z, [Z,a] = —Z, [Z,z] = —A—B—ea—eb, [Z,y]=—-X, [Z,x]=Y
(1.39)

[A,z] = ez, [A x| =ex, [B,z] =€z, [B,y] = ey, (1.40)
rp=A®a+BRb+XRXx+YRYy+Z®z, (1.41)

and the bracket as defined above on the Lie subalgebras b*. In particular, bT does
not have the opposite bracket in D(g)*. The cobracket J is negated on (b~ )* C
D(g)* (as Lie algebras), and stays the same on b~. The cobracket in general is
very complicated, and can be calculated by using the dual pairing. We will not
describe the cobracket of D(g)* explicitly.

Theorem 1.1.1. The algebra D (b~ )* constructed above is a quasitriangular Lie bialge-
bra, and is the dual of D(b™ ). We refer to this Lie bialgebra as slf.
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Chapter 1. An expansion of the U, (sl3) quantum group

Proof. The bracket of b* C D(g)* is calculated from the cobracket of D(g). By
construction of b* = (b™)*, it follows that the bracket on b* is the usual (non-
opposite) bracket. The other relations follow by using the ad-invariance of (, ) :
D(g)* x D(g) — Re. This enables us to directly calculate the bracket of D(g)*.
The fact that D(b~)* is dual to D(b™) follows from this calculation. We will do
one example with the generators X and z. In the classical double [X, z] = 2ey.
y pairs dually with Y, hence it follows by ad-invariance of the inner product (,)
that

(X®lzeL1aY]p)p = [z X],Y)
= (—2ey,Y)
= —2e.

So we can conclude that [Y, z] at least contains a term 2ex, since x is the only
generator that pairs nonzero with X. Since there are no generators in D(b™) that
commute with z to yield y except X, we can conclude that [Y,z] = 2ex. The
other relations follow in a similar fashion. On generators, the cobracket of D(g)*
is negated on (b~ )* C D(g)*. From the pairing we can define the cobracket on
mixed terms. This will not be done explicitly, but it is also not necessary. We
conclude that D(g)* is a Lie bialgebra.

To obtain a quasitriangular Lie bialgebra we need to check that é(u) = u - r for
all u € D(g)*, and moreover that 2r; = ri5 + o1 is a invariant under the ac-
tion of g, and [r12,713] + [r12, 723] + [r13,723] = 0. Define a = g*°?, where g*“°?
refers to g* with the negated cobracket, then a*’? = g. This follows from the Lie
bialgebra pairing axioms. One can do the usual double construction on the Lie
bialgebra a to obtain a quasitriangular Lie bialgebra structure on g @ g*“°? with
classical r-matrix rp. By lemma 1.1.1 this Lie algebra structure is unique and co-
incides with the Lie algebra D(g)*. The adjoint action on rp coincides in both
algebras. Moreover the cobracket of a*7 agrees with the cobracket on g by defi-
nition (and similarly for the dual), and hence the cobracket of D(g)* is identical
to the cobracket on D(a). So we see that D(g)* is indeed quasitriangular. O

For completeness we also mention the definition of the universal enveloping al-
gebra of a Lie bialgebra. The universal enveloping algebra U(g) is the noncom-
mutative algebra generated by 1 and the elements of g. Formally, we have the
following definition. One can also define U(g) by a universal property, see for
example page 90 of [14]. The concept of a Hopf algebra will be defined in the
next section. In this definition we only define the relevant maps without proving
that they in fact define a Hopf algebra.

Definition 1.1.8. Let g be a finite dimensional Lie algebra over a ring R. Let S"(g) =

é the n-th tensor space, and define the tensor algebra T(g) = li_r)n é Si(g) (with
i=1 n—i—p

tensor products over R). Define the universal enveloping algebra U(g) as T(g) modulo
the relations [a,b] = a®b—b®a forall a,b € g. Let a € U(g). The coproduct
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A:U(g) — U(g) ® U(g), counit ¢ : U(g) — R and antipode S : U(g) — U(g) are
given by
Aa=a®1+1®a,ea =0,5a = —a,

where A, € are extended as algebra maps, and S as an antialgebra map.

Note that this bialgebra is cocommutative, so we can take the R-matrix to be
trivial to make U(g) a quasitriangular Hopf-algebra, as we will see in the next
section. On a seperate note, observe that U(g @ h) = U(g) ® U(h). This gives a
nice insight in the relation between the classical double and the Drinfel’d double,
which uses the tensor product instead of the sum. We have extended the bracket
of a Lie bialgebra g to U(g), and we have equipped U(g) with a Hopf algebra
structure, but we have not yet extended ¢ to U(g).

Definition 1.1.9. (Co-Poisson Hopf algebras) A co-Poisson Hopf algebra over a ring R
is a cocommutative Hopf algebra H with a skew symmetric R-module map 6 : H —
H ® H (the Poisson cobracket) satisfying

1. cod®idod = 0, where o means summing over cyclic permutations of the tensor
product.

2. (A®id)d = (id ® 0)A + 093(8 ® id)A, where 03 means switching the second
and third factor.

3. Foralla,b € H, 6(ab) = 6(a)A(b) + A(a)d(b).

This definition is natural, as follows from the following proposition. This propo-
sition can be found as proposition 6.2.3 in [6]. Although we state the proposition
for a specific Lie algebra over the ring R, it is expected to hold for a general ring
of characteristic zero and a general Lie algebra, with a proof similar to the proof
in [6]. Of course we have the same proposition for the Lie bialgebras constructed
in example 1.1.2. The proof is identical, and we will not state this proposition
here, as it is only a formality.

Proposition 1.1.1. Let g = b™ be the Lie bialgebra over the ring R, as defined above.
Then the Lie cobracket extends uniquely to a Poisson cobracket § on U(g), making U(g)
a co-Poisson Hopf algebra.

Conversely, if U(g) has a Poisson cobracket 6, then 6| is a Lie cobracket on g.

Proof. First consider b* /eb™ as a Lie bialgebra. According to proposition 6.2.3
in [6] the cobracket extends uniquely to a Poisson bracket on U (b™ /eb™). The
cobracket on b* /eb™ is also a cobracket when extended to b*. We obtain the
proposition for the ring R, by considering the universal enveloping algebra of
the Lie algebra g = b over R.. One can check that this yields the correct co-
bracket on the Lie algebra generators, trivially. The co-Poisson bracket obeys
the first axiom, as J is antisymmetric. Since 6(1) = 0, the second axiom follows
straightforwardly. The last axiom follows from the fact that ¢ is 1-cocycle.
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Secondly, consider the Lie bialgebra b C sl3 of lower triangular matrices over
R. This extends uniquely to a co-Poisson Hopf algebra by proposition 6.2.3 in
[6]. Consider the map ¢ : b~ — b by taking the cobracket § on b~ and for-
getting about €. This map extends to the co-Poisson Hopf algebra U(b™), since
d(ab) = 6(a)A(b) + A(a)é(b), and A is trivial in U(b~). Suppose that J,- can-
not be extended uniquely to U (b~ ). The difference between the two extensions
is proportional to €. Taking its image under ¢, we get a contradiction with the
uniqueness of the cobracket on U(b). This proves the proposition. O

In the following theorem and in later chapters we will use the language of roots
and root systems. In particular it is important to know that a Lie bialgebra is
characterised by its Cartan matrix (a;;). The Cartan matrix has integer coeffi-
cients. For more information on this subject see for example [14]. The most
important notions are collected in appendix A.3. Remember that to each sim-
ple root one can associate a simple generator, as we showed before. Non-simple
roots are sums of simple roots, and to non simple roots one can associate non-
simple generators. We will denote the two roots of the Lie algebra sl3 with greek
letters @ and B. More generally, we may write §; or «; for the roots of the Lie
algebra .

Root systems are interesting for the classification of semisimple Lie algebras.
They also provide a way of ordering the generators of a Lie algebra. We present a
general way in which these generators form a basis for the universal enveloping
algebra of a Lie algebra .

Theorem 1.1.2. Let g = b" @ b~ be a Lie bialgebra over Re with simple generators
X, H,i=1,--- ,n,wherenis the rank of b*. gis defined as the classical double of the
Lie bialgebras b*. b~ is defined as the lower Borel subalgebra of sl,,, where the cobracket is
multiplied by €, and b™ is defined as its dual. Then U (g) is spanned as a vector space by
the monomials (X;) -+ - X ()i (HF ) - -« (HF) ! (Hy ) -+ (Hyy )i (X)k - (X)),
This basis is called the PBW basis.

Proof. We first observe that U(g) = U(b™) @ U(b™), so it is enough to prove that
the monomials in X* and H* span U(b*) respectively. Let us denote g as sl¢.
First consider U(b™). The universal enveloping algebra of a semisimple Lie alge-
bra g has a countable basis called the Poincare-Birkhoff-Witt or PBW basis. This
theorem is proved in for example [14] in the case where g is a semisimple Lie
algebra over a field. sl;, contains the lower triangular matrices b~ C sl, as a Lie
subalgebra over R. Since the commutation relations in b~ do not contain €, we
can use the theorem for semisimple Lie algebras by dividing out to eg. We con-
clude that U(b™) C U(sl§) has a PBW basis as well, and thereby also its dual has
a PBW basis.

Consider U(b"). One can easily see that U(b™) is spanned by commutative
monomials, since any expression can be rewritten using the Lie algebra relations
inb*. So U(b") is free. The pairing is nondegenerate over R, and we can extend
the dual basis over R to an R¢-basis, since U(b™") is free. The dual basis is given
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by monomials in the generators dual to the generators of U (b~ ), which can be
checked on generators. We conclude that the dual basis of b* forms a basis over
R, that is identical to the monomials stated in the theorem. ]

For completeness we mention the Chevalley basis of a general Lie algebra over a
field k. A semisimple Lie algebra g over a field k with Cartan matrix a;; generated
by a Chevalley basis X;, H; has the following relations.

[Xi Hj] = a;X;, [X{" Hj] = —ay X, (142)

kzlfﬂij

- 1—a; o

X, X! = Heéy Y (—1)k< ] v) (3o ()1 =
k=0

The last relations are called the Serre relations. The Serre relations yield the com-

mutation relations for non-simple generators. It can be rewritten as ad_ " i (X]i) =
0, fori # . '

The non-simple generators can be defined in a nice way using the Weyl group.
The Weyl group is the space of reflections of the root-space and can be used to
define a set automorphisms denoted by T;. For a semisimple Lie algebra, the
T; are given by the adjoint action on non-Cartan elements and as the reflections
on Cartan subalgebra elements. The T; are Lie algebra automorphisms and are

given by the following expressions.

Ti(X]) = - X}, T,(H;) = H; — a;;H;, (1.43)

1) L
E_aiwdx%) (XE), i £ ] (1.4
This yields a braid group action on g [6]. These relations also define a set of
generators X, for every root a with the property that [X,, Xg] = X, 4.
We will later attempt to quantize this braid group action in the setting of sl5.
However, the described T; fail to be algebra automorphisms when e* = 0. Non-
simple generators can still be defined using the T;, but we have to be careful
when using the T; further. See chapter 4 for a solution to this problem.

T;(X}")

1.2. Hopf algebras

We proceed with the construction of a quasitriangular Hopf algebra based on
the Lie bialgebra constructed in the previous section. Let U(b™) be the universal
enveloping algebra of b~ as a Hopf algebra. This turns U (b~ ) into a Hopf algebra
over R.. The goal is to find a quantization of the universal enveloping algebra
of b, such that the Lie bialgebra structure is incorperated in the Hopf algebra
structure. After the quantization we apply the Drinfel’d double construction to
find a new solution to the Yang-Baxter equation.

The definitions below are usually given over a field, but since we work over the
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ring R, in this chapter (except when stated otherwise), we state the definitions
over a ring. We observe that the usual definitions hold over a ring as well [23]. As
remarked in the prelimenaries, when considering a free module M over the ring
Re, we can extend any R-basis of M/eM to an Rc-basis of M. See [23], chapter
7, for the explicit proof of propositions 1.2.2 and 2.3.1. For the definition of the
Hopf cohomology, see [6]. We remind the reader of the fact that we refer to a
module over a ring R as a vector space over R. A ring is always commutative
with unit in this thesis. When we say Hopf algebra, we mean a Hopf algebra
over a ring R. Often, R will be implicit.

Definition 1.2.1. ((co)algebra) An algebra (H,m,1) over a ring R is a vector space
(H, +, R) with a compatible multiplication m (also denoted as - or as the concatination
of two elements) and unit map 1 with the following properties. Let i,a € R.

1. the multiplication m : H® H — H is an associative, bilinear map which preserves
the unit,

2. theunit map 1 : R — H is a linear map with property - 01®Qid(i®a) = 1(i - a),
and -0id @1(a®i) =1(i-a) foralla € H,i € k (or 1(1) = 1p).

A coalgebra (H, A, €) over R is a vector space (H, +, R) with a compatible comultiplica-
tion A and counit € with the following properties. Let h € H.

1. the comultiplication A : H — H ® H is a linear, coassociative map, where coasso-
ciativity means A @ ido A =id @ Ao Aand A(ly) =1y ® 1y,

2. the counit ¢ : H — R has property (id @ €) o A(h) = (e ®id) o A(h) = h (so
S(lH) = 1).

We define a Hopf algebra as follows.

Definition 1.2.2. A Hopfalgebra (H,+,m,1,A,¢,S, R) over R is a vector space (H, +, R)
which is both an algebra (H, m,1) and a coalgebra (H, A, €), and is equipped with a lin-
ear antipode map S : H — H (which is an anti-homomorphism) obeying

1. A(gh) = A(g)A(h),
2. e(gh) = e(g)e(h)
3. m(S®id)oA=m(id®S)oA=1o0c¢

To construct a parallel between Lie bialgebras and Hopf algebras, let us define
the Hopf algebra cohomology using the following cochain complex.

Definition 1.2.3. (see p. 173 in [6]) Let H be a Hopf algebra. For i,j > 1, define
C" := Homg(H®', H®/), and define d;; : C"1 — C'*li and iy C — Ciitl gs
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follows (let y € C¥):
@)@ @ @ai) = AV (@) Y(a2 @+ @ ai)+

1
Z(—l)r’)’(ﬂl Q- @A 10r11 @ A2 @ -+ - @ A1)

j .
+ Z:(—l)’(id‘@r*1 RARAY ) (Y ® - ®a;))
+ (=1 (y @ mD) (A1 (a1)Dgira(a2) - - - Aini(ar).
in this definition, m() and AU) are defined as follows

m(i)(ﬂ1®"'®ﬂi) :gl ....ui
AD@)=(id®---®@id®A) - (id @A) (Aa)).
(apply the comultiplication j times).

The A; j means sending the coproduct to the i-th and the j-th coordinate. The next
proposition follows by direct computation and can be found on p. 175 in [6].

Theorem 1.2.1. Let d’ and d"’ be as in the definition, then, d' od’ = d" od” = d' o
d//+d//od/ — 0

Finally we can define the Hopf algebra cochain complex. The previous theorem
implies that the cohomologies are well defined.

Definition 1.2.4. Let H be a Hopf algebra, and let d' and d" be as defined previously,
and set d = d}; + (=1)'d}} and C" = ©iyj=y1CY. Thend : C" — C"* and (C, d) is
a cochain complex with cohomology groups H*(H, H).

Define Hy, (H, H) as the cohomology of the complex (C1,d"), and similarly define
Hjoalg(H, H) as the cohomology of the complex (C',d").

This cohomology will become important once we start studying deformations of
Hopf algebras, for example of the universal enveloping algebra of a Lie bialgebra
g. We can write down the cocycle conditions for this cochain complex. See ex-
ample 2.3.1 in [23]. [23] uses a simpler definition of the cochain complex, which
is equivalent, but is not well defined for n > 2.

Proposition 1.2.1. Let H be an Hopf algebra. Then a 1-cocycle is an invertible element
X € H such that

X®x = AX)
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Chapter 1. An expansion of the U, (sl3) quantum group

A 2-cocycle is an invertible element x € H ® H such that
1ex)(doA)x=(xo1) (A id)y.
Some Hopf algebras can be equipped with an R-matrix.

Definition 1.2.5. (Quasitriangular Hopf algebras) A Quasitriangular Hopf Algebra is
a pair (H, R), where H is a Hopf algebra and R € H ® H is invertible and obeys

1. (A & ld) (R) = R12Ro3 and (ld &® A) (R) = R1z3R12
2. ToA(h) = RA(W)R™Y, forallh € H.

R=YRWD ®R(2),and7€i]- = 7V1®-- - RV®1---9RP .- -1, with R
and R?) on the i-th, resp. j-th entry.

We see that the first condition of quasitriangularity is equivalent to the 2-cocycle
condition together with the requirement that for a cocycle x (1® x)(id ® A)x =
X13-

A Hopf algebra is a bialgebra in particular, so it makes sense to look at both com-
mutativity and cocommutativity, since algebra and coalgebra structures are dual
to each other. An R-matrix measures the non cocommutativity of the comultipli-
cation.

Definition 1.2.6. ((Co-)commutative) A Hopf algebra is said to be commutative if it is
commutative as an algebra, and cocommutative if the coproduct A obeys To A = A.

The R-matrix is used to solve the Yang-Baxter equation. The Yang-Baxter equata-
tion follows from the axioms for quasitriangularity. See chapter 2 of [23] for more
information.

Proposition 1.2.2. Let (H, R) be a quasitriangular Hopf algebra, then R solves the
equation: R12R13Ra3 = RazR13R12, called the (quantum) Yang-Baxter equation.

In order to use a Hopf algebra for constructing knot invariants, one needs to
have a ribbon element. This will be explained in chapter 3. Let us write R =
Y RM @ R, Then define u = Y(SRP)RM € H,and v = Su = Y RVSR®?),
The following proposition is proven in chapter 2 of [23].

Proposition 1.2.3. Let (H, R) be a quasitriangular Hopf algebra with antipode S. Then
S is invertible and S*(h) = uhu=! forall h € H, and S~2(h) = vho ..

We can now define the ribbon element.

Definition 1.2.7. (Ribbon element) A quasitriangular Hopf algebra is called a ribbon
Hopf algebra if the element uv has a central square root v, called the ribbon element, such
that v = vu, Sv = v, ev = land Av = Q"1 (v @ v), where Q = R 'R.

Let us construct the main example U, (sl5) in the next section.
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1.3. Quantizing a Lie bialgebra

In this example we follow the basic example in paragraph 6.4 in [6]. After quan-
tizing the b~ subalgebra of sl3 (which technically is quantizing the Hopf algebra
structure on the enveloping algebra of b™), we construct an explicit set of gener-
ators.

In order to construct llq(slg), one usually quantizes b™ (or b™), and takes the
Drinfel’d double of this Hopf algebra and its dual with the opposite multiplica-
tion or comultiplication. After this procedure, the generators associated to the
simple roots on both sides are identified to construct U, (sl3). With the introduc-
tion of €, this identification is not possible.

Formally, when quantizing U(g), we introduce an indeterminate / (or 7 in some
sections) to obtain U}, (g), which is isomorphic as an h-module to U(g)[[#]]. How-
ever, it is possible to leave & more implicit, and introduce g = ", or in our case
g = e~¢". The Hopf algebra is denoted as U,(g) in this case. The two notations
will mean the same thing in this thesis. This implies that it is always possible to
expand g in terms of & and €.

Throughout this chapter we work over the ring R, = R[e|/(€?). Since we are
considering free modules over R., we can use most of the results that hold for
Hopf and Lie bialgebras over a field. For future reference, the Drinfel’d double
construction yields a quasitriangular Hopf algebra for any commutative ring. [6]
Note that it is possible to do the quantization of si§ for € in R(¢), and afterwards
take the expansion in terms of €. In this case, one has to prove that taking this
expansion is possible. The reason to take € to be invertible is that this provides
an Hopf algebra isomorphism between Uy (sly;) and U,(sl,). See chapter 4 for
this approach.

Let us start with defining the h-adic topology for an indeterminate 4. In this
section we consider Hopf algebras over a general ring R.

Definition 1.3.1. Let h be an indeterminate, and let H be an R[[h]]-module. Define the
basis of the neighbourhoods of 0 € H as the sets C, = {h"H|n > 0}. Define the h-adic
topology to be the topology such that translations are continuous. In other words, the
sets {a + Cp, }acp form a basis for the topology.

All Hopf algebra maps are continuous, meaning they are h-linear maps, by def-
inition. The following examples are equipped with the h-adic topology. Some
caution is advisable in this subject. In particular when taking the dual of an in-
finite dimensional Hopf algebra we will have to pay attention to the topology.
This will be addressed later in this section. Tensor products are assumed to be
completed in the h-adic topology.

Let us define what a quantized universal enveloping algebra is.

Definition 1.3.2. A deformation of a Hopf algebra (H,1,m,¢,A,S) over a ring R is
a topological Hopf algebra (Hy, 1y, my, €5, Ay, Sy,) over the ring R{[h]] of formal power
series in h over R, such that
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Chapter 1. An expansion of the U, (sl3) quantum group

1. Hy, is isomorphic to H[[h]] as a R[[h]] module.
2. my, = mmodh, A, = A mod h.

Two Hopf algebra deformations are said to be equivalent if there is an isomorphism fy, of
Hopf algebras over R[[h]| which is the identity (mod h).

Let us write a;, = a + ajh + ayh? + - - - for an element of Hj,, where a = 0 mod h,
a; = 0 mod h. Here we use the isomorphism H;, = H|[[h]]. Because m;, and A, are
R[[h]]-module maps, they are determined by their values on elements of Hj, for
whichay =ay =--- =0,a; € H. Write

mpla@a)=ma®ad)+m(a@a)h+mya®a )h*+- - (1.45)
Ap(a) = Aa) + A(a)h + Ay(a)h?® + - - (1.46)

The (co)associativity and algebra homomorphism conditions of the Hopf algebra
deformation are

my(mpy(a ® ax) ® az) = my (a1 @ my(a, ® az))
(A ®@id)Ap(a) = (id @ Ap)Ay(a)
Ap(my(ay @ a2)) = (my @ my) A (a1) A7 (a2).

Modulo 4?2, this translates to the following proposition.

Proposition 1.3.1. A pair of R-module map (my, Ay ) is a deformation mod h? of a Hopf
algebra H if it satisfies

my(a1ap ® az) + my (1 @ ay)az = aymy(ax @ az)

+ my (a1 ® aza3)

(A®id)A(a) + (A @id)A(a) =

(id ® A)Aq(a) + (id @ M)A (a)

A(my(a1 @ a2)) + Ar(a1az) = (m @ my + my @ m)AB (ay) A% (ay)
+ A1(a1)A(az) + A(ar)Aq(az).

More generally, a deformation mod Wt is a 2n-tuple (my, -, my, Ay, -+, Dy)
which satisfies the (co)associativity and algebra homomorphism conditions (mod
h"*t1). We now have the following classification of Hopf algebra deformations.

Theorem 1.3.1. Let H be a Hopf algebra. The following relations between Hopf algebra
cohomology and Hopf algebra relations hold:

1. there is a natural bijection between H?(H, H) and the set of equivalence classes of
deformation (mod h?) of H,

2. If H*(H, H) = 0, every deformation of H is trivial and
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1.3. Quantizing a Lie bialgebra

3. If H3(H, H) = 0, every deformation (mod h?) of H extends to a genuine deforma-
tion of H.

Using this theorem we can state an important result in Hopf algebra deforma-
tion theory called the rigidity theorem. The theorem is formulated in terms of
reductive Lie algebras in [6]. Semisimple Lie algebras are reductive, see [14], and
we will skip the definition alltogether. For an R.-module M, an IR-basis of the
module M/eM can be extended to an R.-basis of M. Using this basis we can
generalize the following theorem to a Hopf algebra over the ring R..

Theorem 1.3.2. Let g be a semisimple Lie algebra over a field of characteristic zero. Then
H;‘lzg(ll(g), U(g)) = 0. So every deformation of U(g) is isomorphic to U(g)[[h]] as an
algebra.

The example we work with is not semisimple, so we have to come up with a
workaround to use the rigidity theorem. The idea is to only look at the half of the
deformed sl§ which has a Lie algebra structure that agrees with sl3. Since we are
looking for an algebra isomorphism (or even an Isomorphism of R.-modules) be-
tween Uy, (b~ ) and U (b~ )[[h]] (not an Hopf algebra isomorphism), we can simply
restrict the isomorphism between Uy, (sl3) and U(sl3)[[h]] to Uy (b~). Of course
we will have to pay attention to R, too.

Definition 1.3.3. (Quantized universal enveloping algebra (QUE)) A Hopf algebra de-
formation of the universal enveloping algebra U (g) of a Lie algebra g is called a quantized
universal enveloping algebra, or QUE algebra.

The isomorphism in the definition of a deformation of a Hopf algebra is an iso-
morphism of R¢[[h]]-modules, meaning that the isomorphism does not necessar-
ily respect the Hopf structure. In certain cases one can prove that (if g is semisim-
ple and is associated to a reductive algebraic group) every deformation of U(g) is
isomorphic to U(g)[[h]] as an algebra. This isomorphism is not an Hopf algebra
isomorphism. See Proposition 6.3.1 in [6].

Finally, the quantization of a Hopf algebra can be defined.

Definition 1.3.4. (Quantization of Hopf algebra) Let A be a cocommutative co-Poisson-
Hopf algebra over a ring R of characteristic zero, and let & be its Poisson cobracket. A
Quantization of A is a Hopf algebra deformation Ay, of A such that

— A%
sy = 2O

where x € A and a € Ay, such that x = a (mod h), and A°? = T o A is the opposite
cobracket.

A quantization of a Lie bialgebra (g, 8) is a quantization Uy,(g) of its universal envelop-
ing algebra U(g) equipped with the co-Poisson-Hopf structure. Conversely, (g,0) is
called the classical limit of the QUE algebra Uy,(g).
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Chapter 1. An expansion of the U, (sl3) quantum group

For more details see e.g. [23] and [6]. We will use both the notation Uq( g) with
g = €" and Uj,(g) in our examples. The difference is subtle and is pointed out
in for example [6]. The main difference is topological, as we pointed out before.
The Uj,-notation has an explicit h-adic topology, while in the U, notation this
topology is hidden. One concrete application of hiding the parameter % in g is
that one can specify g to a root of unity, for example. Since we are not concerned
with these properties, and always work with & explicitly present (and €), we
will use both notations. For the main example we will use the notation He , or
U, (sl§), taking the notation from [36].

Before doing the main example, we will briefly state the usual quantization of
the lower Borel subalgebra of sl3. This example can be found in many sources,
for example [6]. In this example we introduce an invertible parameter .

Example 1.3.1. Let b~ be the Lie bialgebra as in example 1.1.1, with an invertible inde-
terminate <y instead of €. The following relations define the Hopf algebra Uy, (b~ ). More-
over, it is the quantization of the Lie bialgebra b—. We use the generators {b,a,z,y,x},
and take the free noncommutative module over R(7y) in these generators. Define the
quantum commutator as [u,v], = uv — qou, and let q = e~ for the duration of this
example. The algebra Uy, (b™) is defined as the module of noncommutative polynomials
in{b,a,z,y,x} divided out to the iddeal generated by the following relations

[a,x] = =2x, [a,y] =y, [a,z] = —z (1.47)
b,x] =x, [by] = -2y, [bz] = —z (1.48)
[, ylg =z [x,z];1 =0, [y,z]g =0. (1.49)

This is the standard example with a parameter introduced, so it is obvious from litera-
ture that this algebra has a basis consisting of the ordered monomials in the generators.
This proves that the quotient is not empty, and that the multiplication defined here is
associative. The Hopf algebra structure is defined by the following identities

Ab)=b®1+1®b, A(a) =a®1+1®a, (1.50)

Let us check that A is an algebra homomorphism. In fact, the only non-trivial relations

to check are [x,ylq, [x,z],-1 and [y, z]q, as it is easy to see that [A(x), A(a)] = [x,a] @
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1.3. Quantizing a Lie bialgebra

14+ ¢ ® [x,a] = A([x,a]), and similarly for the other relations.

[AX), AWy =y @1+ 3" @y +q"y@x+4"" @ xy
—qyx®1—qyq' ®x —qq"x @y — qq" "’ © yx
=y @1 —qyx @1+ (g ' = q)g"x @y +q"" @ xy —gg"’ @ yx
:z®1+6]“+b®z—|—(q_l—q)qu@)y.

Let us check [A(x), A(z)]
follows in the same way.

g1 = 0, and leave [A(y), A(z)]g = O to the reader, as this

[A(x), A(2)] 1 = [%,2],1 @1+ 0P @ [x, 2], 1 + 99" Px @2 — g 2" P2 @ 2
+ (07 —a Dzg" @x+ (07 = )" Px @y — g7 — g)g" Px @ yx
=(@-q "M ez+ (0 )" ®z
=0.
Let us show that A is coassociative. Coassociativity on a and b is trivial. For coassocia-
tivity of A on x and y, observe that q* is grouplike, so A(q") = q" ® g°. Let us explicitly
perform the calculation
[d@AM(z)=1d0Az01+9""0z4 (0" —g)g'x @)
:Z®1®1+qa+b®z®1+qﬂ+b®qa+b®z
+@ =l oY+ )@ eyel+ e ®y).
Performing a similar calculation for A ® Id(A(z)), we see that coassociativity holds.
Note that ¥ is grouplike (similarly for g**°). Plugging in A(z) and A(x), and using the
fact that A is an algebra homomorphism, we obtain the desired result.
We check if the antipode is the involution inverse of the comultiplication. Denote the
multiplication as my (4 ® v) = uv. The indices 1 and 2 stand for the first and second

tensor entry. We will use the more general version later. We only check this explicitly for
z, the axiom is obvious for a and b, and is left to the reader in the case of x and y.

mip(S @id(A(2))) = ma(—2q " P21+ (g =) Tyx@1+q " @2
—(1=)g " "x®y)
=0 "'z (g - ) yx + g7
—(q—a)g " Pyx— (1—q%)q
~0.

—a—bz

The antipode is continued as an anti-algebra homomorphism. This is by definition. The
counit axioms are also satisfied, as one can check for oneself. We can conclude that we
have a Hopf algebra.

We are quick to notice that this Hopf algebra does indeed have the right classical limit,
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Chapter 1. An expansion of the U, (sl3) quantum group

and since this algebra is imbedded in U, (sl3) there exists an isomorphism Uy, (b~) —
U(b™)[[h]], by the rigidity theorem [6]. Hence we have obtained a quantization of the
Lie bialgebra b—. This finishes the example.

Quantizing a sub Lie bialgebra s/3

We now treat the quantization of the Lie bialgebra b~ defined in example 1.1.1
for non-invertible e. We follow the basic example 6.4 in [6]. The results of this
section are summarized in theorem 1.3.3.

Quantizing the b~ subalgebra of the s/3 Lie algebra starts with constructing the
comultiplication A; which has the b~ cobracket as classical limit. For a and b,
which have 6(a) = 6(b) = 0, the choice is Ay (a) = a® 1+ 1 ® a, and the same
for b. This is the trivial Hopf algebra structure on U(b~). Note that U(b™) is a
graded algebra with deg(a,b) = 0 and deg(x,y) = 1. Hence deg(z) = 2. The
multiplication and comultiplication have to preserve the grading. We define a
grading on the tensor product by adding the grading of the factors. We can guess
A(x) =x®f+g@x.

Let A denote the trivial comultiplication on U(b™). Since A, = A(mod h), we get
f = g = 1(mod h). We want Ay, to be an algebra homomorphism that is coas-
sociative. Working out the condition for coassociativity forces A,(f) = f ® f,
and the same relation for g. Hence f and g have to be group-like (by defini-
tion). Note that A, : U(b™)[[h]] — U(b7)[[k]] ® U(b™)[[h]], where the tensor
product is completed in the h-adic topology. This yields (U(b™) @ U(b™))[[H]]
as the image of Aj. It is a simple computation to show that all group like ele-
ments are of the form e"*, where H € b, an element of the Cartan subalgebra,
and pu € R[[h]] [6]. Hence Aj(x) = x ® " + e @ x. Since A, is an algebra
homomorphism, we may multiply x with a grouplike element to simplify the
expression to Ay(x) = x® 1+ e"® ® x. The definition of the quantization of a
Hopf algebra then gives Ay (x) = x ® 1+ e " @ x.

The definition of a Hopf algebra can be used to obtain the antipode of x. In the
same way the comultiplication of y can be deformed. Since the cobracket for a
and b is trivial we can easily quantize this cobracket with the trivial comultipli-
cation. As a result, the multiplication relations between 4,b and x and a,b and
y equal the classical relations. We obtain the comultiplication and antipode re-
lations for x, y, a and b displayed in 1.57. The multiplication between x and y
needs to be altered in order for Ay, to be an algebra homomorphism.

Let us consider the Serre relations of the Lie bialgebra b~. In our case they need
to be slightly altered in order for Aj to be an algebra homomorphism. The so
called quantum Serre relations are obtained, and we use these to calculate the
products between the non-simple algebra generators.

The classical Serre relations in the case of b~ are given by [x,x,y] = 0 and
[y, y, x] = 0. This can be rewritten as X~ (X]_)2 —2X; X X+ X;X? = 0, where

i#j,i,j€{1,2}, or (Xi_)sz_ + X, (X;)” = 2X; X, X;. Applying the comulti-
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plication

Ay)=y®1l+e "V ey, (1.51)
Alx) =x@1+e ") @« (1.52)

to the left hand side, we get for b~ (definingg =1 —¢€ = ¢7°):

Au(xPy + ya?) = By (x)* A (y) + Bi(y)di(x) (1.53)
=y @1+ (1+g¥)e Mxy@x+e XMy + g% 2@y
+ (1 + qZ)qe—eh(a—i-b)x ® xy + e—eh(Za—l—b) ® X2y + e—eh(2a+b) ® yxZ
+y? @1+ (1+4%)ge M yx @ x + gPe My @
+e7 M2 @y + (14 ¢?)e "0+ x @ yx.
Now we will use the classical Serre relation as ansatz. We assume x?y + yx? =

Cxyx. We will compute C by applying A on both sides. We apply A, to the right
handside now:

Ap(X) Ay () Ay (x) = xyx @1+ ge ™ x2 @y + e yx @ x + e~ M+ x @ xy
(1.54)
+ q—le—ahexy ® x + q—le—eh(a+b)

+ q—le—Zeh(a)y ® x2 + e—eh(2a+b) ® xyX.

X ®yx

We simplify by taking the exponentials up front. We do not know what C is,
but we assumed that x*y + yx?> = Cuxyx holds for some C. This simplifies the
equation between 1.53 and 1.54. The terms involving triple products of x and y
on one side of the tensor product cancel out. We can compare the terms term by
term. Doing this, we note that C = g+ g1, and the following relation should
hold

X2y +yx® = (g+q Hayx. (1.55)

This relation is called the quantum Serre relation, and is also derived in [6]. We

_—2n
will use the convention [n], = 117# in this chapter, where we differ from [6] in a

_4—2n
factor ", making future notations easier. Observe that % =(14+q2%+ -+

q~2""2), the geometric series. So the expansion in € of [1], is well defined, as the

singularity is removable. Using this convention, g + ¢! = q(}:gj) =q[2];. In
fact, this is generalizable, as we will see in chapter 4. For now we remember that
€2 = 0, so the quantum Serre relation for us is equal to the classical Serre relation.
To obtain a complete set of generators corresponding to the elements of the root
system of b~, the Weyl group action is needed. In this case, the generators cor-

responding to the non-simple roots can be calculated by using the Weyl group
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action on Uj,(g) (sometimes refered to as the quantum Weyl group). This action
respects the algebra structure, but not the co algebra structure and the antipode,
in the sense that the braid group acts via algebra automorphisms that are not
coalgebra maps, and hence the comultiplication on the non-simple generators
needs to be calculated differently. [6] is followed in this case (in particular chap-
ter 8.1 and 8.2). This procedure is described in the last chapter for the b™ subal-
gebra of s, for general n > 0 with Cartan-matrix a;;.

Let us continue with defining the generator corresponding to the commutator of
x and y. This is the only generator of U, (b~ ) corresponding to a non-simple root.
The fact that we can talk about root spaces and elements corresponding to roots
is a consequence of the fact that b~ is a subalgebra of the semisimple Lie algebra
sl3, so we can use the sl3 root space and basis for the Borel subalgebra b~. This
was discussed in the first section of this chapter.

Let us define the following map on Uy (b~), fori # j X; = x and X, = y. This
map can be defined on U,(sly) as

oy ()

Ti(X;") = ad_
Here, ad is the adjoint action of the Hopf algebra on itself, see [23].
When € = 0, T; cannot be extended to yield a set of global automorphisms, see
chapter 4. For the non-Cartan elements X;” of U,;(b~), T; are automorphisms
over R[[e]], however. So we can use the T; to define non-simple generators.
We define the generator

z=Ta(y) = ad«(y) = x1)yS(x(2)),

using the Sweedler notation. The automorphisms T; differ from the automor-
phisms defined in chapter 4 by a central factor. This factor is essential for the
Weyl property. We absorb this factor into z, as the Weyl property is trivial for s/3.
Note that we need the antipode of x to do this calculation, which can be com-
puted from Ay (x). We obtain

hea eheu

z=xy—e "“ye"x =xy— (1—e€)yx.

We used the multiplication relations between y and a and the antipode and co-
multiplication of x. Using the above calculated quantum Serre relation, together
with the definition of z, we get the following commutation relations.

[z,y] = hezy, [z, x] = —hezx.
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We can also calculate the comultiplication of z

A (2) =Bn(x) D1 (y) = (1 = €)An(y) Au(x) (1.56)
—(x®@1+e "D @x)(y1+e 0 gy)
—(1-e)yel+e oy (xel+e ) ax)
=(xy— (1 —e)yx) @1+¢ @ (xy — (1 - e)yx)
+efe xRy tey@x—(1—e)(fe “y@x+e Pxxy)
2@ 14 @z 4 2ee x @ y.
This ends the construction of U,(b™) as a quantization of the Lie bialgebra b™.
Let us summarize the construction. Consider the R¢[[/1]]-module M of noncom-

mutative polynomials in the generators {b,a,z,y,x}. Let I be the ideal of M
generated by the following relations, where [, ] stands for the commutator.

b,2] = —2, [b,y) = ~2y, [b,x] = x,
[a,z] = =z, [a,y] =y, [a,x] = —2x,
[z,y] = hezy, [z,x] = —hezx, [y, x] = —z + heyx.

We consider the closure I of I in the h-adic topology on M. Define the algebra
Uy(b™) (also denoted as U, (b~ )) as M/I. Furthermore, there are R.[[}]]-algebra
homomorphisms Ay, : Uy (b~) — Uu(b~) @ Up(b™), € : Uy(b™) — Re[[h]] and
algebra anti-homomorphism S : U, (b~) — U, (b~) that define a Hopf algebra
structure on U, (b~ ). These maps are defined by the following relations.

Theorem 1.3.3. The Hopf algebra U, (b™) is a quantized universal enveloping algebra
with classical limit the Lie bialgebra b~.

Proof. By construction U, (b~) we have the correct classical limits of the multipli-

cation and comultiplication. Furthermore, the (co)multiplication obeys the Hopf
algebra axioms by construction. The antipode can be easily computed from the
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(co)multiplication. By theorem 1.4.2, which will be proven separately, U,(b™)
has a PBW basis. By sending monomials to monomials in U (b~ )[[}]] we obtain
an Re[[h]]-module isomorphism between U, (b~) and U(b™)[[h]]. This finishes
the proof. O

For clarification, we provide another proof of theorem 1.3.3. This proof relies on
example 1.3.1, and looks at a quotient of this algebra.

Proof. Observe that the relations presented here are exactly the same as the rela-
tions in example 1.3.1 with y — € and €2 = 0. In particular, this yields a basis of
monomials of U, (b~ ), which we will refer to as a PBW basis.

To prove that U, (b~) = U(b~)[[h]] as Re[[h]]-modules, consider b~ C sl as a
Lie algebra, ignoring the comultiplication. Observe that € occurs only together
with h in Uy, (b™) in the quantum Serre relations. Furthermore, we know that the
isomorphism between Uj,(sl3) = U(sl3)[[h]] is an isomorphism between R|[[h]]-
modules. So we know that this isomorphism must be an isomorphism when we
replace i with i’ = he and putting €> = 0, given that epsilon only occurs in
g = 1—eh mod €2, which is invertible modulo €. In particular we know that the
constructed isomorphism must be the identity modulo £, so it sends monomials
of generators to monomials of generators of the Lie algebra b~. This finishes the
proof. O

We wish to do the double construction with this algebra and write down the
universal R-matrix. We will do this in section 1.4.

1.4. The U, (sl5) relations

In the previous section we obtained an Hopf algebra Uy, (b~) or U, (b~) thatis a
quantization of U(b~). The explicit check of the Hopf algebra axioms is a lengthy
exercise. For this reason we present a Wolfram Mathematica implementation of
the Hopf algebra in the next chapter, and set up the required formalism. The
program can be found in the appendix A.1. The algebra relations are easier to
implement, these can be found in a seperate program in A.1. The interesting ax-
ioms to check manually are (co)associativity, that A is an algebra homomorphism
and that the antipode is an anti-algebra homomorphism.

We work over the ring R¢[[h]] of formal power series of an indeterminate h. We
repeat theorem 1.3.3 for completeness.

Theorem 1.4.1. The following relations define a Hopf algebra U,(b™) over Re[[h]].
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1.4. The U, (sl5) relations

Moreover, U,(b™) is the quantization of the Lie bialgebra b~

[b,2] = =z, [b,y] = =2y, [b,x] = x, (1.57)
a,z] = —z, [a,y] =y, [a,x] = —2x,

[z,y] = hezy, [z,x] = —hezx, [y, x] = —z + heyx
Ab) =b@1+1@b, Ala) =a@1+1a,
Az) =z2@14e ") @z 4 2ehx @y,
Ay)=yol+e P ay,

Alx) =x®@14e M) gy,

S(a) = —a, S(b) = —b,

S(z) = <1 —Zeh) €@tz + 2ehyx,

5(y) =

S(x) =

To obtain a deformation we need an algebra isomorphism between U, (b~ ) and
U(b~)[[h]] as Re[[h]]-modules, as stated in the proof of theorem 1.3.3. This iso-
morphism can be found by means of the rigidity theorems if € is invertible. If € is
not invertible, it is possible to construct a basis of monomials which can be send
to the classical PBW basis of U(b~)[[h]]. The algebra U (b~ )[[}]] has the multipli-
cation of the universal enveloping algebra of U (b~ ), h-linearly extended. On the
other hand, if one has such an isomorphism, it is possible to directly construct
the g-PBW basis of U, (sl5) by looking at the image of the classical PPBW basis.
This is how [6] proves the existence. We will provide a direct proof.

Theorem 1.4.2. The monomials b™a"2z"3y"x"s, n; € IN form a basis of Uy, (b™) as an
Re[[h]]-module.

Proof. The proof is similar to the proof in [31], and it uses a Q-degree on Uy, (b~ ).
It is enough to prove that b™a"2z"3y"x"s, n; € IN form a basis of Uj,(b~) /el (b™)
as an R[[}1]]-module. We can then extend the monomials to a basis of Uy (b~) as
an R¢[[h]] module.

Let h be the Cartan subalgebra of b~. Via quantization we can associate to each
element in h an element in U}, (b~). Let us call this subalgebra H for the duration
of this proof. Firstly, define the elements Ky = eHr where A € ®isarootof b,
and H) the element in H corresponding to A via lemma 1.1.2. Following [20], we
define an action of K, on U, (b~ ) by conjugating:

KapK;t = M) p. (1.58)
The root p is called the Q-degree of p. The Q-degree of p is well-defined since

(-,-) is nondegenerate on H*, so if p has Q-degree o and p, then g*#) = q(4) for
all A € H*, and so ¢ = A. Now the proof consists of two parts: (a) proving that
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the monomials span the vector space, and (b) proving linear independence. Part
(a) is proven by choosing a normal ordering, in our case (b,a,z,y, x), on U, (b~).
It is always possible to write an expression in a normal ordered way in finitely
many steps. This is left to the reader. It can be proven by induction, see for ex-
ample [31] for the explicit calculations.

Part (b) is proven in 2 parts. Firstly, one can prove that a4, b are linearly indepen-
dent in the same way lemma 12 is proven in chapter 6.1 of [20]. Let us scetch the
proof. The details can be found in [20]. As a first step we prove that x"y"vz"= # 0
forn = (ny,ny,n;) € N3 This is done by constructing an algebra homomor-
phism between U,(sI§) to the ring of power series Re[[h]][e, [, f, 1], and map-
ping x and y to a copy of Uy (sl5) in which they are nonzero. See proposition 3.1
in [20]. The factor of q*}rl is only cosmetic in [20].

Suppose now }_, a,K, = 0. We apply the adjoint action ad(}_, a,K,) to a mono-
mial z":y"vx"s, n; € IN. We obtain Y., a, + a,e(y, Cn;p;) = 0 for any Y- n;p;, as
Z"y"x" #£ 0. Since p; span the root space of sl3, as noted earlier in this chapter,
we obtain that a, = 0 for all y € ®. Since €? = 0, this implies that monomials in
a and b are also linearly independent for different exponents of a and b.

The independence of x, y and z is proven by following [31], with induction to the
Q-degree. We know that monomials in 4, b, x, y, z are nonzero. Assume that we
have a relation between monomials in x,y,z. By applying A, which conserves
Q-degree by construction, and using the linear independence of monomials in
a and b, we see that the terms in the relation have the same Q-degree. The case
where the Q-degree is equal to one of the simple roots is equivalent to the U, (sl5)
case, for which we refer to the proof of proposition 6.4.7 in [6].

For the case where the Q-degree is a sum of roots «;, we can look at the Q-degree
in both factors after applying A. Consider the biggest i such that E, ;... (taking
the convention that x = E,,, y = Ea,, 2 = Eg,+a,) Occurs with a nonzero expo-
nent. Let n be the biggest common exponent of E,, ;... After applying A, consider
the terms with Q-degree na; left of ®. The relation obtained on the right of ® in
this way is a (nonzero) multiple of the original relation, as is clear by a calculation
similar to the one in [31], and is of a strictly lower degree, hence the coefficients
of these terms are zero by the induction hypothesis. So ordered monomials in
x,Y, z are linearly independent.

Finally, the linear independence of ordered monomials in b, 4, z, y, x is proven by
following the proof of lemma 13 in chapter 6.1 of [20]. This is a similar argument
as before, by applying A and combining the linear independence of monomials
in a,b and monomials in x,y, z. For the explicit proof of this lemma we refer to
[20]. O

Duality

In order to apply the Drinfel’d double construction we need the dual of Uj,(b™).
To obtain the correct dual of U, (b~), one has to take the dual of a smaller sub-
algebra called a quantized formal series Hopf algebra (QFSH-algebra for short).
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[6] The dual of a quantum formal series Hopf algebra is a quantized universal
enveloping algebra (QUE-algebra). Notice that it is also possible to define the
QUE-dual of a QUE algebra the other way around, by taking the QUE-algebra
corresponding to the Hopf algebra-dual of a QUE-algebra, which is a QFSH al-
gebra [7].

Before we introduce the notion of a quantized formal series Hopf algebra, let us
consider the dual of the universal enveloping algebra U(g) for a Lie algebra g.
The following can be found as example 4.1.16 in [6].

Let g be a Lie algebra over a ring R. Concretely, we have the ring R. in mind.
We need R to have certain nice properties, such that R is obtained by extending
R with a finite number of algebraic elements. In this way, we can extend any
R-basis of a quotient module to an R-basis of the entire module, as is discussed
for R in the appendix A.5. We do not go into details here, as we will only be
concerned with Hopf algebras over a field or Hopf algebras over the ring R..
The Lie algebra g has a basis {x1,--- x4}, so U(g) has a PBW basis consisting
of ordered monomials in x;. We number this basis by A = (A, ,Ay) € IN¢,

Mo A
and denote x; = f\ll ,i‘; r- The universal enveloping algebra U(g) of g has the

structure of a Hopf algebra if we take the trivial coproduct, and in this case we
obtain

Axp) = 25y+v,hxy @ Xy.
wyv

Consider ¢* € U(g)* defined by ¢*(x,) = 6y, then the multiplication m :
U(g)* © U(g)" — U(g)" is defined by m (¢ © ¢*)(x)) := ¢* ® ¢¥(A(xy)). From
the definition we obtain the relation ¢#¢¥ = ¢#*¥ (apply both sides to x; € U(g)).
Let Re[[¢1, - -+, &4]] be the algebra of formal power series in indeterminates ¢;. By
sending & — Cfl S (jil‘d we obtain an isomorphism between U(g)* — R[[¢1, -+, &4]]-
With the dual of U(g) in mind we state the following definition. We follow para-
graph 7 of [7]. The condition of a field, as is used in [7], is not essential. It is
essential that the ring R has the property that any R-basis can be extended to an
R-basis, together with other properties discussed in appendix A.5. We are con-
cerned with the ring R¢[[}]] mainly in this paragraph. For this reason, we do not
state the precise conditions on the ring R.

Definition 1.4.1. (QFSH-algebra) A quantum formal series Hopf algebra is a topolog-
ical Hopf algebra By, over the ring R[[h]], where R is a ring, such that By, is isomorphic
as a R[[h]]-module to R[[h]]! (equipped with the product topology) for some set I, and
By, /hBy=R[[&1,&2, - - - ]] as a topological algebra.

The dual of the universal enveloping algebra is equipped with the weak topol-
ogy. An isomorphism of topological algebras should be continuous and have
a continuous inverse. To illustrate this definition, let us consider the following
example.

Example 1.4.1. We start with the lower Borel subalgebra Ay, of U,(sl2) over R, gen-
erated by {x,a} and the relations [a,x] = —2x, Ala) = a®1+1®a, Alx) =
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x®1+e®x. If we define @ = ha and ¥ = hx, we obtain the algebra B, with
relations [a, %] = —2h%, Ad) =@ 1+104, A(F) =Ti@1+e Q%

As a R[[h]]-module, By, is isomorphic to R[[h]]! = Map(I,R[[h]]), where I = N x
IN = IN enumerates the PBW basis of By,. The PBW basis of By, is given by ordered
monomials in @ and X. Concretely, we send X"a" — ¢y, ), where P (x"a™) =
S Oy W ™. Furthermore, By, /hBy, is commutative as an algebra, and hence By, /hBy,
is isomorphic to R[[X, d]], as required. So By, is a QFSH-algebra. See also [7] for this
example.

Generalizing the previous example, one can define a QFSH algebra inside any
QUE algebra [6].

Definition 1.4.2. Let Aj, be any QUE algebra with cobracket Aj. Define Ay(a) :
Ay — AP as Ay(a) = (id — uE)* A" (a). Here AW = ... (A@1®1)(A®
1)--- is the iterated cobracket with n-1 As. Then define B, = {a € Ay|A,(a) =
0 ( Mod h" ) for all n > 1}.

The statement is that By, is a QFSH subalgebra of Aj,. For a proof, see proposition
8.3.3 in [6]. To prove the proposition, one proves that an element is in By, if and
only if a monomial of total degree n has a prefactor that is divisable by h". As we
have seen from the previous example, this proves that B), is a QFSH-algebra.

Proposition 1.4.1. Let B, € Ay, be as defined above, and let Aj, be a QUE Hopf-algebra.
Then By, is a QFSH-subalgebra of Ay,.

We can prove the following proposition (see chapter 10 of [9] for the proof). It is
essentially a generalization from the classical case, where we could calculate the
dual of U(g) explicitly.

Proposition 1.4.2. Let H be a quantized universal enveloping algebra over a ring R.
Then the dual H* = Hompg(H, R) of H is a QFSH algebra. Conversely, the dual of a
QFSH algebra is a QUE algebra.

With the dual of any QUE algebra H, we will mean the dual of the QFSH subalge-
bra B;, C H as definied in 1.4.2, which is a QUE algebra, and we will denote this
in the usual way, as H*. We refer to this space as the QUE-dual of H. Sometimes
literature uses the reduced dual, or the Hopf dual H® of any finite or infinite di-
mensional Hopf algebra, meaning they take the subset of the dual for which the
comultiplication lands in the usual tensor product. Since this does not always
happen in the infinite dimensial case, this is a useful definition. We will not use
this definition here. We use the completed tensor product.

Let us describe the QFSH subalgebra of U}, (b~ ), in terms of its basis.

Proposition 1.4.3. Let a,b,x,y,z be the generators of Uy, (b™~) with relations 1.57. Then
the QFSH subalgebra of Uy, (b~ ) as defined in 1.4.2 is topologically generated by ha, hb,
hx, hy and hz.
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1.4. The U, (sl5) relations

Proof. The proof is a straightforward repetition of the proof of proposition 8.3.3
in [6].
O

We calculate the dual of the QFSH subalgebra of U, (b~ ) by introducing X, Y, Z, A, B
as the linear functionals equal to one on hx = &, hy = ,hz = Z,ha = d,hb = b
respectively, and zero on all other monomials of the form #"{"22"33"4p"s. We
denote this evaluation as follows:

(X,%) =1, (Y, §) =1, (Z,2) =1, (A,d) =1, (B,b) = 1. (1.59)

The pairing is extended as a Hopf algebra pairing, according to the following
definition. This defines a Hopf algebra structure on Uy, (b~ )*. We will later show
that if Uy (b~) has an R, then so does U, (b~)*. This basis is given by noncom-
mutative monomials in {X, Y, Z, A, B}.

Definition 1.4.3. Let (H, -, A, ¢,1) be a QUE Hopf algebra over the ring R with dual
(H*,-,AN,e,u). Let a,b € H* and c,d € H. Denote by (,) a bilinear map (,) :
H* ® H — Re. The map (, ) is called a Hopf algebra pairing if it obeys

(ab,c) = (a®b, Ac) (1.60)
(Aa,c®@d) = (a,cd)

(1,¢) = e(c)

(a,1) = e(a)

(Sa,c) = (a,Sc).

We will refer to (,) as nondegenerate if it is nondegenerate over R, interpreted as a
pairing on H* /eH* ® H/eH — R.

The space we use as the dual of Uy (b™) is the QUE-dual of Uy (b~). We use the
notation Uy, (b~)*. We write 7, but this is informal notation for the topology on
the dual module. For example, if ¢ is the dual basis element of %, then we may
write % as the dual element of x, informally. For this reason it is important to
keep track of the factors of h.

Only when applying the pairing to H* ® H one has to be careful with the fac-
tors of , since the pairing is only defined on the subspace H* ® B, C H*®H.
We defined the QUE-dual of U,(b~) (which is U,(b")) to be the dual of the
QFSH-subalgebra of U,(b~). So for an element that is not part of the QFSH-
subalgebra of U;(b~) the pairing will not be defined. This problem is resolved
in the Drinfel’d double by applying the antipode to one side of the pairing, can-
celling the ; term in the final expression for the product of the Drinfel’d double.
Constructing the Drinfel’d double will be the only application of the pairing on
Uy (b™)" @ Uy (b7).

Another point of care arises when applying the pairing on elements in Uy, (b~ )*&U, (b ™).
The R-matrix we will construct later for example, can be written as an element in
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the completed tensor product of these algebras, when considered as Re.-modules.
Applying the pairing to the R-matrix diverges, as we will see later. Furthermore
define (1 @ b,c ®d) := (a,c)(b,d).

Lemma 1.4.1. The following relations define a Hopf algebra Uy, (b™) that is dual to the
Hopf algebra 1.57. Moreover, it is the quantization of the Lie bialgebra b™.

[Y X] = —2eZ +ehXY, [Z,X] = —ehXZ, [A,X] = —€X, [B,X] =0 (1.61)
=ehYZ, [Y,A] =0, [B,Y] = —€Y,
—€Z, [B,Z] = —€Z,

Y] =
2] =
A(X) X®e 2478 11X,
AY)=Y®5Y 11wy,
AZ)=Z®e" P 110 Z + h(X @ Ye?A~B))
AMA)=A®1+1®A, A(B)=B®1+1®B,
S(X) h(2A—-B) S(Y) — _Ye—h(ZB—A)’
S(Z) = (1 — 2he)(Z — XYh)e MA+B) 5(A) = —A, S(B) = —B.

Proof. By theorem 1.4.3, the module of noncommutative polynomials divided
out by the algebra relations has a basis of ordered polynomials, so the quotient
is nontrivial. To prove coassociativity, one repeats the calculation in the case of
U,(b™). It is obvious that coassociativity holds. It also follows straightforwardly
that A is an homomorphism. In this case we only need to check three relations,
effectively. The antipode and (co)unit axioms are straightforward to check on
generators. We leave this to the reader.

To prove duality, let u, 11" € U, (b™). We have to check that for all v, w € U, (b™),
(A(u),v®@w) = (u,vw). We assume normal ordering {b,a,z,y,x} on U,(b™).
Let n > 0 be an integer.

(X, xa") = (X, (a+2)"x)

211
_ n _
= (X,2"x) = T
Similarly, (X, b"x) = —(72 )" By duality, we observe that these expressions are the

only terms that pair nonzero with X. On the other hand we have

(AMX),x®a") = (X®"?A7B) x @ a")
(2hA)

=(X®

21’!
We obtain (A(X),x ® b™a™) = (X, xb™a") for all positive m and n. As observed
before, these are the only monomials that pair nonzero with A(X), so we obtain

x®a')
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(A(X),v®@w) = (X, vw) for all v, w. By the same argument we obtain (A(Y),v ®
w) = (Y,vw). The argument for Z is a little bit more involved, as we have to
check the monomials containing x and y too. However, we observe

(Zxy) = (22— (e-1)xy) =
=(hXeY,xy) = (A

~ I =

2),x®y).

We have to prove that the same axiom holds for the comultiplication on U, (b™).
This can be checked on generators in a similar way. We leave this to the reader,
as well as the counit and antipode pairing axioms. This proves that U, (b") is the
Hopf algebra dual of U, (b™).

The fact that U, (b™) is the quantization of b follows in the same way as 1.3.3,
by checking the classical limit of Uj,(b"). By duality we have a PBW basis of
U, (b™) (we will prove this explicitly in the next theorem), and hence we have an
isomorphism between U, (b") and U (b*)[[h]]. This proves the lemma. O

The Hopf algebra obtained is the quantization of b™ (the dual of b~ in the Lie
bialgebraic sense), which is why we call it U, (b™). To proof the existence of an
algebra isomorphism between U}, (b+) and U(b™")[[h]] is difficult to do explicitly.
A proof for the case where € is invertible that evades this problem can be seen in
prop. 4.8 to 4.11 in [9], however one should beware of the different conventions
used when computing the double. Roughly speaking, [9] first takes the dual and
then makes the space smaller, while we do the opposite. This is the same in the
end [7].

As we noted before, the usual finite dimensional highest weight representations
of U, (sl5;) do not exist if € is not invertible. So the usual geometrical interpreta-
tion of the Hopf-dual of U, (sl;;) does not apply here. The geometrical interpreta-
tion as functions on a Poisson Lie group is probably lost. See [7] for a discussion
on this subject. Some definitions can be found in appendix A.2.

On Uy, (b™) we choose the order {X,Y,Z, A, B}. By the definition of the pairing,
it is nondegenerate over R, so we have a PBW basis of monomials of generators.

Theorem 1.4.3. Let X, Y, Z, A, B be the elements of Uy, (b~)* dual to the generators b,
a,z, Y, x of Uy (b™). Then the monomials X"Y"2Z" A™B"s form a basis of Uy, (b~ )*.

Proof. The fact that they span the space is easy, since we can rewrite any ex-
pression in a normal ordered way. This implies that U,(b™) is free as a Re[[h]]-
module. The pairing is nondegenerate over R, proving that the monomials are
linearly independent over R. As we prove in the appendix A.5, we can extend a
basis over R to a basis over R, if the module is free, and hence we obtain an R,
basis of U, (b~ )*. O

For future reference, let us calculate a basis for U, (b~ )*, the elements of which
we require to pair to one with the basis elements of Uy (b~). We already have a
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basis for Uy (b~ ) and Uj,(b~)*, which consists of monomials of dual generators.
These monomials form a dual basis when normalized.

Proposition 1.4.4.

(XY™ 7" ACBP, b 0% 2"y XY = 118yt O O Oy h O I 0l p (][] g1 [ 1],

where [n]; = ~—17.

Proof. We use the comultiplication to prove the proposition, following the proof
of lemma 8.3.4 in [6]. Consider (X", %"). Applying A to the non-capital side for
n=2vyields (X®X,(¥f®@1+eM"®%)?) = (X®@X,f M0 %+e i@ x).
The other terms pair to zero. Commuting ¥e 2" = g2¢=¢"* % with g = ¢~ yields
<X2/ f2> = 17;17112 = h(lliqsz)-

Now consider (X", #"'). We observe thatn = n’. Applying A(") to the non-capital
side gives AU (%) = (¥ @e @ - - @e " ... +101®---®%)". Letus, like
[6], denote this expression with (a1 + - - - 4 a,)". Each term a; in this expression
has a commutator g% with a term a; for i < j, since in each term there is precisely
on . In the final expression, terms that contain a quadratic factor a? can be
dropped from the expression, since this will pair to zero with X ® X ® - - - ® X.
So we only consider permutations of a; a;, - - - a;,, where a; # a; if k # I, and
ij = 1,2,---n. Let us now perform an induction argument on n. For n = 2

1

_ 4
we saw that the coefficient ¢, of 414, equals 1 + qz = 11(17_’1/2) Now assume that

cn = [n],!. We consider the coefficient of the term aya; - - - 4,11 in the expression
(a1 + -+ +ay41)" L. We obtain the 1 + 1 case from the n case by adding a tensor
factor ®e =" to a; fori < n+1,and taking a,,1 = 1 ® - - - ® 1 ® £. The argument
now follows from counting the factors of ¢. If in the first factor (a; + - - - +a,41) in
(ay+ - +au1)" ' we pick a,,11, then this term will contribute q2” to coefficient
of a; - - - a,41 since we have to commute 7 factors of e™“*. In a similar way we

obtain a contribution of qu_z by choosing in the i-th factor a,.1. Hence ¢,41 =
__2n+2 ’

A+¢*+ - +q")cn = 1117‘72@1. From this we obtain (X", ") = 6, [n],!.

By performing a similar induction argument we get the desired results for a,b

and y. For (X'Y"A°BP,b" a° y™ x!') we now obtain that

XY™ AOBP, b7 0y XY = 81y 6 S b 0P M0t p ] 111,
y 1" Om,m’ Om,m’ 91, p:lmiq:1tiq

by duality of x,y,4,b and X,Y, A, B. Observe that we apply AHMT0+p) ¢ the
non capital side, and that the only terms that pair nonzero are of the form b ®
- ®b®a®--- X x, this allows for no mixing between the terms.

The only possibly troublesome generator is z, since A(z) = z® 1+ e~ &
z 4 2ehx ® y. We scetch the argument to prove that there occurs no mixing here.
One can prove this relation in general in a much more elegant way in the manner
of proposition 8.3.7 in [6]. This is done in the last chapter.

To prove that there occurs no mixing of terms, we observe that the number of x’s
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1.4. The U, (sl5) relations

and y’s can only increase after applying A to b” a® z" y" x" through a contribution
of A(z). To see this observe that the x ® y term in A(z) has a factor of €, and
€[z, x] = €[z,y] = 0. The only way to increase the number of z’s is by a term
exy ®y = €z ® y occuring. For this we need a contribution from A(y). This
implies that an entry that pairs with a Y does not contain a y. The only way
to increase the number of ys is by the x ® y term in A(z). Since we apply A to
one entry only (it does not matter which order we take, due to coassociativity),
we observe that creating a z in one entry annihilates an y or an x in another
entry. So the term which originates from 2ehx ® y in A(z) will necessarily pair
to zero with X ® --- @ X ® Y ® - - - ® B, as it can never yield a contribution to
h® - - ®a®---®zRY®---® x. This implies the result. O

The Drinfel’d double

For the Drinfel’d double D(H), let H be any Hopf algebra with dual H*. In the
infinite dimensional case, let H* be the QUE-dual of H. Consider the vector space
H* ® H. Note that the tensor product is the completed tensor product, since the
comultiplication doesn’t map to the H* ® H ® H* ® H in the infinite dimensial
case in general. See for example 4.1.16 of [6] for a discussion on this subject.

Definition 1.4.4. Let H be a Hopf algebra with QUE-dual H*. The Drinfel’d dou-
ble D(H) (also called quantum double) is a quasitriangular Hopf algebra generated by
H, H*°F as Hopf subalgebras with the quasitriangular structure R =Y, f* ® e,, where
{ea} is the basis of H and {f"} its dual basis. D(H) is realised on the vector space
H* ® H with product (a @ h)(b® §) = Y_bya ® hpg(Shy, by)(h3, bs), and the tensor-
product unit, counit and coproduct:

Ah®a) = Za(l) X ]’1(1) ®ap) h(z)

That this definition yields a quasitriangular Hopf algebra is proven in the first
paragraph of chapter 7 of [23]. The proof over rings is exactly the same and is
not repeated here.

One can show that the antipode S provides an isomorphism between H*’7 and
H*P, where cop stands for the opposite coproduct. See [23] or page 253 of [20].
Using this isomorphism, we get another version of D(H). We will use the mul-
tiplication more often than the comultiplication. So the latter definition is the
definition we will use, although both constructions are equivalent[6]. Again, the
definition is the same as in [23].

Definition 1.4.5. The quantum double D(H) in a form containing H, H*“°F as subal-
gebras, is a quasitriangular Hopf algebra generated by these subalgebras on the vector
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Chapter 1. An expansion of the U, (sl3) quantum group

space H* ® H together with the relations

R = Zf“ ® e, (1.62)
= Za 2 1 (1) [ I’l(z) (164.)

Here the antipode on H*“°P is the inverse of the antipode of H*.

That this construction works was first proven by Drinfel’d. The theorem is that
the relations of D(H) define a quasitriangular Hopf algebra. For the proof we re-
fer to [23]. Let D(U, (b~ )) be the quantum double on the space U, (b™) @ U, (b™).
We have the following theorem.

Theorem 1.4.4. Let U, (b*) be the Hopf algebras as defined in the previous section,
with pairing (, ). Let D(Uy,(b™)) be the quantum double on the space U, (b™) @ Uy (b™)
with (co)multiplication, antipode and (co)unit as defined above. Then D(Uy (b)) is a
quasitriangular Hopf algebra with R-matrix

R X'Y"Z" A°BPbP a2y
- Z hfofpfl*m*”O!P![n]q![m]q!mq! .

n,m,lo,p

We might write U, (sl5) instead of D (U, (b™)).

Proof. We calculated the dual of Uy, (b~ ) before, and proved that Uj,(b™) is indeed
a Hopf algebra. One can explicitly calculate the Drinfel’d double of U, (b*). This
will be done in the next chapter. Observe that Drinfel’ds theorem remains true
in the case where a ring is used instead of a field [23].

It is a trivial matter to prove quasitriangularity. From theorem 1.4.3 it follows that
the monomials X" Y"2Z" A" B" and b"5a™z"y"x™ form a basis of respectively
U,(b") and U,(b~). By construction the monomials are dual to each other, up
to a factor. This factor was computed in proposition 1.4.4. Hence by Drinfel’ds
theorem it follows that R is an R-matrix. O

For completeness we state the explicit algebra relations. We will calculate the
explicit algebra relations on generators in the next chapter, when we have devel-
oped the necessary tools. These relations might be calculated explicitly by hand.
However, since there are a lot of relations, and the possibility for errors is high,
it is better to use the computer.

Theorem 1.4.5. The following relations define, together with the antipode and the co-
bracket as defined on U,(b™) and the opposite coproduct on U, (b™) with the inverse
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1.4. The U, (sl5) relations

antipode, the quasitriangular Hopf algebra U, (sl§) with R-matrix R.

[X,Y] =2eZ — ehXY, [Z,X]| = —ehXZ, [X,A] =€X, [X,B] =0, (1.65)

[X,b] = X, [X,a] = =2X, [X,z] = —2ey + €hXz,

[X,y] = —ehXy, ,[Y,x] = —ehYx,

o—h(2A-B) _q

(X, x] = — eae "24=B) 1 2enXx,

Y,Z] = —ehYZ, [Y,A] =0, [Y,B] =¢€Y, [Y,b] = =-2Y, [Y,a] =Y,

[A,x] =ex, [A,y] =0, [B,x] =0, [B,y] =y,[A z] = [B,z] = ez,
e—h(ZB—A) -1

Y, 2] = 2exe™"2B=A) - enyz, [Y,y] = —

(Z,A] =€Z, [Z,B] =€Z, [Z,b) = —Z, [Z,a] = —Z,

— ebe M2B=4) 4 2ehYy,

_ —h(A+B)

[Z,z] = 1++ — e MATB) (g 4 b) 4 2ehzZ,
[Z,y] = =X+ heZy,
1Z,x] = Ye "CAB) 4 he(Zx — (=1 +a)Ye "2A-B)),
b,z = —2, [b,y] = ~2y, [b,x] = %, [a,2] = —2, [a,y] = v, [a,2] = —2x,

,z| = —hezy, [x,z| = hezx, [x,y] = zh — ehyx,
y hezy h y] = zh —ehy

XY™ 7" A°BPbPa®z"y" x!
R = .
)y h=o=p=l=m=nolpl[n] ! [m],![1],!

n,m,l,0,p

Here the antipode is as defined on the generators before, and is extended as an antihomo-
morphism. The comultiplication is reverted on the ‘capital’ side, and is extended as an
algebra homomorphism.

We need to be careful when doing calculations with the pairing. The pairing ax-
ioms will not hold in general for the comultiplication of the double, since it has
the opposite order. The relations agree nicely with the commutation relations
found in [35]. This was to be expected, given that they used the same construc-
tion, namely the cop-construction for the quantum double. It is possible to do
the op-construction of course, yielding a different set of commutation relations.
The classical limit of the relations here agrees nicely with the classical co-double
calculated in theorem 1.1.1.

It is more difficult to do the quantization of sl§ without treating the two Borel
subalgebras separately. The problem lies with the fact that sl is not semisimple,
so it is not possible to use the rigidity theorems as we did in theorem 1.3.3. This
seems the biggest issue, although other problems might arrise in the definition
of the R-matrix and finding the algebra relations in general. The basic example
in [6], chapter 6.4 gives insight in how to perform this quantization for sl,. This
is very tedious to do in our case.

We interpret the tensor product in the h-adically completed sense. The Hopf-
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Chapter 1. An expansion of the U, (sl3) quantum group

algebra Uy, (b™~) is graded, where the grading is inherited from U(b~). The grad-
ing on the b side is inhereted from the grading on the lowercase side, since the
coproduct by construction respects the grading.

1.5. R-matrix and ribbon element

As noted in the previous section, we have a basis of the both Borel subalgebras
which consists of monomials in the generators. To make these bases dual we
correct with the pairing of the monomials, calculated in the previous section.

Remember that we use the convention [n], = %
(X'Y™Z" A°BP, bPaZ"y" xly = ko PT Mot pl 1] ] ! [1] . (1.66)

With this identity it is easy to write down the formal R-matrix. The real trouble
is working with the R-matrix to calculate the knot invariant itself, and in this
activity we will find use for the € introduced in the algebra. Without €, so with
the ordinary s/3 quantum invariant, or even with the sl, invariant this procedure
is exponential in the number of crossings of a knot. When e = 0, the procedure
is polynomial time, which we will prove in the next chapter. We introduce a trick
for working with quantum exponentials, of which the R-matrix is an example.

Ro Yy X0z
= h_o_p_l—m—ﬂolp![n]q![m]q![l]q!

n,m,l,0,p

(1.67)

.. . 1—g2"
In this identity, g = 1 — he, [n], = J? and [n]y! = [n]4[n —1];- - - [1],. The fact
that this is an R-matrix follows from the Drinfel’d double construction.

The R-matrix can also be written with quantum exponentials, which are defined

as follows.

dn
el =ey(d) = ; i (1.68)

This expression is a formal power series in 1. However, we observe that [n],! =
n! mod h, giving the connection to the usual exponential. The R-matrix can be
written with ordered polynomials. In order to rewrite the R-matrix, we map
the expression to a commutative ring generated by the generators of the Hopf
algebra over the ring R¢[[l]]. The ordening is indicated, so that one can give
the inverse of this map to ordered monomials. In this ring, expressions become
much more compact.

Letus call suchamap O(-|p) : O — H,where O = R[[]][X,Y,Z, A,B,b,a,z,y, x|
is the ring of (commutative) power series over R¢[[h]] with generators

{X,Y,Z,A,B,b,a,zy,x}

47



1.5. R-matrix and ribbon element

,and H = D(Uy(b™)) = Uy(sl§). p is a specific ordering. In our case p =
XYZABbazyx. O(T|p) sends an unordered expression T € O to an ordered ex-
pression with ordering p in all monomials. With this map we can rewrite for
example

) xnb!l = O(e*|xa). (1.69)

n

Likewise, we can rewrite R in terms of quantum exponentials

R = 0(eMePe) e, vy e7*| XYZ ABbazyx). (1.70)

This notation will become important in the following chapter, where commu-
tative rings will provide a nice way of calculating commutation relations. We
prove the following lemma for the implementation of the R-matrix in Mathemat-
ica. The formula is called the Faddeev-Quesne formula. The proof is due to D.
Zagier.

Z ) q 271)11 n
Lemma 1.5.1. ¢;(x) = ™" n-a=")

Proof. Let f : R — R be a continuous function. Define the operator D, (f)(x) =
M - Note that D 2¢j = ¢, since

g 2x— q’
—2n,n nl
— q9 ~x —
D= BT - Sy

The second last equality follows by definition of [1],.
Now suppose that a function f has D,2(f) = f, then f(47%x) = (7 %x —x +
1)f(x), or in other words log(f(g~2x)) = log(1 — x(1—g72)) + log(f(x)). Let

us assume that log(f(x)) can be expressed as a power series log(f( ) =Y a,x”,

then, using the expansion of log(1 — x), we get 4~ >"a,, = 1= = 2" 4 a,. This

gives the desired result. O
Zk L] 271);1 n

Lemma 1.5.2. Ifq = e, and vF = 0, then ey =e" Uon(i=g72m)

Proof. For the proof let us look at the n-th term ﬁ Observe that (g2

1)" = (=2h)"y" + O(y"*1). Also, (1 — g ") ~ 4+ O(9?). This proves the
lemma. O

The Ribbon-element is calculated from the R-matrix. Let us write R = Y. RV @
R, Then u = Y R®S(RW), and v = S(u), where S is the antipode. uv is
a central element [23]. The Ribbon element v is defined as the square root of
the product vu. If we assume that v is of the form uw?, for some w € H, then
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Chapter 1. An expansion of the U, (sl3) quantum group

2 2

v° = uuw*, and, since uv is central, v = uw. So we can calculate the square root
of u~'v = w? and multiply by u to obtain v.

V= O(e—hAu—th—eh(‘2A+B)hXx—eh(A‘23)Yy+e‘h(A+B)thYz—e”(A+B)hZz (eh(A—i-B) _

axXel?e®Bh=An _ peheAM Bl | XY zeh® —

azZel?* — byYel?e? =B _ pepeAttBh

ngXZGh?)eSBh_SAh o 2xX2Y26h4€Bh_2Ah +

ZXXGhZEZBh_Ah + Zx2YzZZ€h5e—Ah—Bh _

XyY?zeh*eMM=2B1 _ 20Xy 72 ZehteAM—BI 1
3

§y2y2€h3€3Ah73Bh 2y Yen2eAn-Bh
%ZZZZ€h3€7Athh 4 ABR Y gl —

bzZeh?* — 2xXyYeh® 4 2xyZeh?* — 5XYzel® + 6zZel?)|p)

Remember the following notation: R;j =} 1® -+ ® RV .- . R ®1---®
1, where the R and R(?) are on the i-th and the j-th position respectively. The
ribbon element is central and invertible, and it has the following properties.

e(v) =1, 1> =uS(u), S(v) =v

, (1.71)

A(V) = (R21R12)71 (1/ & 1/).
Remember that ¢ is the counit, and here u is as defined previously. Combining
the various results of the previous sections we now have the main theorem of
this chapter.

Theorem 1.5.1. The Hopf algebra U, (sl5) together with R-matrix R and ribbon ele-
ment v is a quasitriangular ribbon Hopf algebra that is the quantization of the quasitri-
angular Lie bialgebra slS.

Proof. The only thing left to prove is that v is the ribbon element corresponding
the the R-matrix R. This check is performed in Mathematica in the next chapter.
O

In the next chapter we will proceed with the implementation of this algebra in
Wolfram Mathematica. The main problem is of course commuting normal or-
dered exponentials.

Conclusion

In this chapter we started with constructing a quasitriangular Lie bialgebra sl
through the classical double. We quantized this Lie algebra by quantizing the
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1.5. R-matrix and ribbon element

lower Borel subalgebra b~ C sl§ and taking the Drinfel’d double of the resulting
Hopf algebra U, (b~ ) to obtain the quasitriangular ribbon Hopf algebra U, (sl5).
We succeeded in working over R., where €2 = 0. We could also have quantized
this algebra starting from the b™ side. It is possible to do the same procedure ex-
plicitly for ek =0, for any positive k. We calculated an example for invertible €,
and it is clear that this algebra can be turned into a quasitriangular Hopf algebra.
In this algebra one can take the expansion up to any order of €. This will be done
in chapter 4.

Since Uy (b~ ) has the same structure as the quantization of the lower Borel subal-
gebra in the usual s/3, we could prove a number of results, including the existence
of a PBW basis and the fact that U, (b~ ) is a quantization of b~. As for the ques-
tion ‘what is €?’, we showed that it can be viewed as part of the underlying ring.
This introduces a number of difficulties which we could work around. Overall it
seems a better strategy to work with an invertible epsilon, and afterwards prove
that one can take the expansion in € up to any order in the calculations. In fact,
this is how we will approach the problem for constructing U, (slj;) in chapter 4.
Interesting variations for future research would be to introduce a second param-
eter v dual to €. The knot invariant of this algebra is expected to yield a finite
type invariant, which is in some sense an expansion of the U, (sl§) invariant. An
advantage to this knot invariant is that although it will be much weaker, it will
also be much faster to compute. One might even prove certain properties of
U, (sl5), such as detection of mutants, this way.

50



2. Perturbed Gaussians and their
applications

Introduction

In this chapter we describe an approach to do calculations in the quantum group
described in the previous chapter. The idea is to describe Hopf algebra maps
such as (co)multiplication as a single object, instead of a number of seperate re-
lations. This method has an advantage when computing the knot invariant, it
provides a formalism through which we can do computations in Wolfram Math-
ematica. Also, since the information of the Hopf algebra is contained in only
a few objects that can be checked with the computer, there are less errors to be
made. The goal is to prove that this construction is isomorphic to the construc-
tion given in the previous chapter. A key ingredient is the map O : O — H
introduced in the previous chapter for some ring O of commutative power series
and a Hopf algebra H. This operator gives a vector space isomorphism between
the commutative ring O and the Hopf algebra H. The essential theorem is the
PBW theorem that is proven in the previous chapter.

2.1. The tensor formalism

Let A and A’ be Hopf algebras over R¢[[h]], where R, = R[e]/(€?). We write
Hom(A, A") := Homg (A, A’) for the algebra homomorphisms between A
and A’. Let B C A be a finite subset of A that generates A. In other words, we
assume that A has a basis of ordered monomials in the elements of B. In the
previous chapter we saw that B = {X,Y,Z, A, B,b,a,z,y,x} generates U,(sl5)
topologically.

Let V be the vector space over R¢|[[h]] generated the (finite) basis B. Let V* be
the linear dual of V. As B is finite, this is well defined. We will refer to the basis
of V* dual to z; as zj. z} € V* are not to be confused with the generators of the
dual Hopf algebra A*. To make sure this confusion does not take place, when
we refer to the generators of the dual Hopf algebra A*, we will write them with
capital letters Z; € A*. This will become important mainly in the second section,
where we will work with the Hopf algebra constructed in the previous chapter.
Consider the tensor algebra T (V) associated with V. T(V) is equipped with the
trivial product, which concatenates tensor products of elements of V. To make
this product commutative, let us divide out to the relation u ® v —v®@ u, u,v €
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T(V). This new space is denoted as S(V), the symmetric tensor algebra of V. In
the same way one can construct S(V*). Note that S(V) is isomorphic to the ring
of polynomials in the elements of S(V') = R¢[[h]][B]. If B = {z1,-- - ,zn}, then the
ring of polynomials in z; is also written as R¢[[h]][z1,- - - ,zn] = Plz1,- -+ ,2za] =
P[B]. Here P = R¢[[H]].

S(V) = P[B] can be equipped with the J-adic topology, where | is the ideal
(z1,- -+ ,2zn) generated by the elements z; € B. Then the J-adic topology has a
basis consisting of the sets x 4 J”, x € P[B],n € IN. The sets |" are the polynomi-
als of which the monomials have minimal degree 7. In this topology, a sequence
{xn}nen is a cauchy sequence if for all n, there exists N > 0 such that for all
i,j > N, x; — x; € J". This is equivalent to saying that x; and x; differ by a poly-
nomial which has monimials of minimal degree #, in the ring R¢[[h]][z1, - - - , za]-
To take the completion in the J-adic topology amounts to adding the limits of
Cauchy sequences to the space. These limits can have nonzero powers in an infi-
nite number of terms. So the completion of S(V') = P|B] is isomorphic to the ring
of formal power series in the generators B. We use the notation 5(B*) = P[[B*]]
for the completion S(V*) of S(V*).

We will mainly use the ring of power series in z; € B, and leave the symmetric

tensor algebra on the background. Instead of R¢[[h]][z1, - - - , zn] and Re[[h]][[z1, - - -

we may also write P[B] and P[[B]] respectively. R in P = R.[[h]] has the discrete
topology, so exponentials in 1 exist only as formal power series in the ring Re[[4]],
since R¢[[h]] has the h-adic topology.

On P[B], one can define the map O(-|p) : P[B] — A for an ordering p on A.
We state the definition of O for a general Hopf algebra A with PBW basis con-
sisting of monomials in z € B. Whenever it is obvious what ordering p we use
we will leave it out of the notation, writing simply O(---). When we write a
general Hopf algebra A, we have U,(sl§) = D(U(b™)) in mind, which was
constructed in the previous chapter, with B = {X,Y,Z, A, B,b,a,z,y,x}. By the
PBW theorem, we have an isomorphism of D (U,(b~)) = U,(sl§) = P[B], as was
mentioned in the previous chapter.

Definition 2.1.1. Let B be a finite set with ordering p. Let A be a Hopf algebra with a
basis consisting of ordered monomials in elements of B. Define the map O(-|p) : P[B] —
A as the map that sends an unordered expression T € P[B| to an expression T € A in
which all monomials are ordered via ordering p on B.

We have the following proposition.

Proposition 2.1.1. O : P[B] — D(Uy(b™)) is an isomorphism of Re[[h]] modules,
withB={X,Y,Z,A,B,b,a,z,y,x}.

Proof. The proposition is obvious from the PBW theorem in chapter 1. O

This proposition holds for O(-|p) : P[B] — U,(sl5), and for any Hopf algebra
A with ‘nice” properties in general. If we wish to extend O to multiple copies
of P[B], as we would for example do for the multiplication m : P[By, By] —
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P[B’], we have to specify on which indices O takes its input. Especially when
there are more copies than the algebra map takes input on, for example. This is
dependent on which entries we specify the algebra maps to take their input. As
a consequence, when writing down a map for which this could be ambiguous,
we have to specify the entries of its input.

Let ] C N be a finite subset of IN. We define the map Oy as the map O extended
to A%/ and P[B|]jc;. We can define an inverse of O by forgetting the ordering of a
normal ordered expression Q € A. For multiple indices, this is only well-defined
if we specify on which entries (index j € ]) the expression Q is put by O, so
we write (Dl_l, for some finite set indices I.

We want to use O to be able to calculate F : P[B] — P[B’] for any Hopf algebra
map F: A — A’ or on A%/ in general. This happens by taking the pullback of F
under O. The notation for CD]_I is a specification of the input of F when F acts on
A®]. In particular when composing multiple maps it is important to keep track
of the indices. Wedenote A; :=1® - ®1®A®1®---®1 C Al, with a copy
of Aonly onentryi € I.

Definition 2.1.2. Let B; for each i € |, where | is a finite index set, be a finite set
of generators of the Hopf algebra A; C A®). Denote an element in P[B;] as 2/ =
(z1)]"(22);% - - (zm){™, where (z;); € B;. For a subset ' C ], define Oy : P[Bilic; —
A®" @ P[B;licj_y as O on each index j € ]’ and as the identity on j € ] — J'. Con-
versely, define 0]71 as the map that is equal to O~' on A%/ for each index j € |’ and acts
as the identity on the other indices.

Concretely, for any map F we will have to specify its input data in terms of the
indices or tensor factor on which F takes its input. So instead of writing F, we
will write F]I , where I and | are a finite set of entries corresponding to the domain

and codomain of F : A®l — A®J,

Definition 2.1.3. Let F : A®! — A%/ be a map between tensor products of the algebra
A. Define the map F| : P[B]ic; — P[Bj]jcj as O o Fo Oy : P[B]ic; — P[Bjje).

There are no requirements for a general map F on multiple copies of A. We
distinguish cases. First we cover the one-dimensional case, where there is only
one copy on both sides: F : A — A’. This may be an homomorphism or an
antihomomorphism like the antipode. Later we will cover the cases where F has
A®/ as a domain and A as codomain and vice versa.

Leta € A, then we define F : P[B] — P[B’] using the PBW ordering on A. So
F : P[B] — P[B'] is denoted in the same way as F : A — A’, and is defined as
O !0 FoO. Since the input of F is assumed to be normal ordered, F : P[B] —
P[B’] corresponding to an algebra map F is automatically a ring-homomorphism
on P[B]. So F € Hom(P[B], P[B’]). Hence we can define the following.

Definition 2.1.4. Let F € Hom(P[B|, P[B']) and let B = {z;}icy, and B* = {z }icy,
where z;(z;) = d;;. Define a map ¢ between Hom(P[B], P[B']) and P[B'][[B*]] which
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maps F € Hom(P[B], P[B']) to 'F := F(exp[YLicy z;zi]) =, z; € B*,z; € B. We say
that 'F is the tensor corresponding to F.

In this definition we denote elements of P[B’][[B*]] as 'F with a bold t. This is not
to be confused with the transposed matrix, which we will denote with the usual
t, and we write it as A! for a matrix A. The map that one should have in mind is
the antipode.

Proposition 2.1.2. ¢ is well-defined.

Proof. Note that exp[Yz;z;] € S(B) ® S(B*) = P[B][[B*]]. A homomorphism
F : P[B] — P[B’] yields a well defined map F : P[[B*||[B] — P[[B*]][B’], which
is the identity on P[[B*|]. Since F is an homomorphism on P[B], F is specified by
its image on B. For any generator z € B, F(z) is an element of P[B’]. F is linear in
the generators z;, and by definition acts trivially on B*, so 'F = exp[y.z/F(z;)] €
P[B'][[B*]]. In particular, the tensor exp[}_z;z;] € P[B'][[B*]] corresponds to the
identity in Hom(P|[B], P[B']).

O

A more general version that is defined in the same way is where F : A — A’®!
is an algebra homomorphsim. Consider O;' o Fo O : P[B] — P[B!];c; = P[B}].
We introduce the notation By = |J B;, where B; = {z;};¢j, for all i € I, for some
i€l

finite index set I. Then we can extend ¢ by the same definition.

Definition 2.1.5. Let F € Hom(P[B], P[B]) and let B = {z;}icp, and B* = {z] }icy,
where z{ (z;) = ¢;j. Define ¢ : Hom(P[B], P[Bj]) — P[Bj][[B*]] by sending F ¢
Hom(P|B], P[B}]) to 'F! := F(exp[ © z}zi)).

e’

Where F is an algebra map and is extended B*-linearly to P[B,][[B*]], so 'F! =
exp| Y z/F(z;)] € P[B}][[B*]]. The map that one should have in mind is the
icJ’

comultiplication in a Hopf algebra.
Foramap F : A®! — A the calculation of 'F is slightly more difficult, as there are
more generators to check. We explicitly use O in the definition of 'F in this case.

Definition 2.1.6. Consider the isomorphism O : P[Bj] — A®! for finite I. Let B; =
{Zj}je];/ J! finite for all i € I, and let Bf = {z]’f‘}jejlg, where zj (zx) = O For F :
A®T — A’ define F; := O 1o FoOj : P[B;] — P[B']. Define ¢ : Hom(P|[B;], P[B']) —
P[B'][|B}]] which maps F € Hom(P[B],P[B}]) to 'F; = F(exp| ¥ zjzj]) =
j€Vier]}
O 'oFo Oi(exp[ ¥ ziz]).
j€Vier]}

Here P[[B]|&P[[B’]] = P[[B, B']], and in this sense we interpret P[[B;]] for finite

I. We note that O; : @ P[B;] = P[B;] — A®! is an isomorphism. The tensor
i€l
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products are over P = R¢[[h]]. Usually the calculation of 'F; something compli-
cated. The typical example is when F is the multiplication map. This will be the
most important instant of this construction. To illustrate the definition we will
cover two examples. Through these examples, one can develop some intuition
for what we are calculating later in the case of U, (sl§).

Example 2.1.1. Let A be the coalgebra R[|z]] generated by the element z, and the map
A:A— AR A with A(z) =z® 1+ 1® z, and the usual counit sending z to 0 and
1to1 € R. It is clear that this obeys the coalgebra axioms. We define the pullback of A
under O as A%’?’ = (DZ__% o A o O, where ([)2_31 (a ®b) = aybs, and 1 is not written. So
Af'?’(zl) =z + z3.

Following the above definitions we obtain tA>> = 187 (31) = pFi(tn) ¢ R{[z3]][z2, z3]-
Conwversely, we can obtain A%’3(zl) from tA%B by substituting zy — 9: in the expres-
sion thA%S = 21€%132%%) and putting z* to zero after differentiating. We denote this
process as <zltA%3>Zl, or (zltA%'?’)l for short. The subscript indicates that the variables

z; with index 1 are substituted for a derivative 0, and that z; with subscript 1 are put
to zero. We obtain

@80 = @z g0 =2+ 2

This is the so called Feynman-trick, and can be generalized A%’S(z’f), or even to expo-
nentials of z. Since z is grouplike, this is an easy exercise. When z is not grouplike, the
process will become more complicated.

Let us consider a more difficult example, the U, (b™) C U,(sl5). Instead of check-
ing the relations in Mathematica and using other tricks, as we will do in the next
section, one can see the correctness of the tensors and other identities used in the
implementation by directly performing the multiplication of O; ;(*Id;'Id;), for ex-
ample. The following example is taken from [36].

Observe that it is (in theory) a straightforward but lengthy exercise to generalize
this example to U, (sl5). In practice one runs into the problem of calculating the
commutator between ordered exponentials. This would correspond to the naive
way of multiplying R-matrices. For € = 0 this can be done explicitly, but for
€ # 0 trails so far have been unsuccesful. One has to use some kind of Feynman-
trick, using differential operators to obtain these commutators. See [36] for more
information. In fact, this is where the zipping theorem originates.

Example 2.1.2. Consider the universal enveloping algebra A of the Lie algebra gener-
ated by x and a and the relation [x,a] = —x. This becomes an algebra when we take
the universal enveloping algebra, and we choose to ignore the underlying tensor-algebra
structure by just writing u ® v = uv € Rx,a]. Consider multiplication m in A. We
wish to consider the description of m as a tensor 'm. Let L be finite. Remember that in
R[x, a1V we label the variables with i and j to indicate in which tensor factor they
are. Wewritex; =1® - ®@x® ---® 1, with the x on the i-th tensor factor. We have
to add indices to 'm to indicate on which tensor factor m is acting. We denote tmi-‘, j for the
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2.2. The ZIP-function

multiplication tensor of the multiplication map m : R[x, a) 13V - Rx, a]2VE, [n
order to find 'm, observe that A has a basis consisting of ordered monomials in x and a,
by the PBW theorem, so that we can define O~'. Now we can define *m as the pullback
under O, as we did before. We use order ax in this example.

'mf. = O (m(0;

i (exp(xixj +aia; + x;x; +ajai)[p)))

j
C)1@])" o g o v

— Z ok o (= fi)( k)qex Xk
= exp((az- +a;)a + (e_“;‘x;‘ + x7)xk).

We can now do some basic calculations with tm, like checking associativity, or calculating
commutation relations. For checking associativity in tensor-language, one needs to check
that 'mf , //'m} 5 = "m5 5 //m , for example. The concatination operation // is defined
as 'F //*G := *(G o F). This is the main subject of the next section. For calculating [x,a]
using 'm, we proceed as follows. We start with the expression x ® a € A ® A, which
is in the "wrong” order. We now map this to Oi%(x ®a) = ayx1 € Rlxq,a1,x2,a2],
which is a choice of convention for Oy ;.

tm’{,z(ale) = (ayxiexp((aj + a5)ag + (e72x} + x3)xx) )12

= (mexp(((a; + a3)ax)e 2 xi)o = —xp + @ = (@ — 1)x

2.2. The ZIP-function

We proceed with translating the Hopf algebra structure to the tensor formalism,
including the (co)multiplication maps and the antipode. Composition of tensors
is the most important tool that is developed in this section. Furthermore, we will
prove that a certain space of perturbed Gaussian exponentials is closed under
composition. Care will have to be taken when attempting to interpret general
exponentials as maps on Hopf algebras. Some conditions will have to be put in
place.

We want to be able to calculate the composition tensor *(Go F) = 'F //'G =
exp[LzFG(F(z;))] from the two seperate tensors 'F,'G. In this section we will
define the concatination // of two tensors using the ZIP function. To do calcula-

tions we wish to specify how to compute tF}, //tG/] for maps F and G on Uy (sl$)®'.

In this section we consider an Hopf algebra A over the ring R¢, except when
noted otherwise, with topological generators B = {z1, - - - z,, }. The ordered mono-
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mials in the elements of B form an R¢[[l]]-basis of A by definition. Further-
more we consider the vector space V linearly generated by the elements of B,
which is a finite dimensional vector space. We introduced the notation P[B] =
Re[[h]][z1, - - - , zu] in the previous section. By the ordering operator we obtained
an isomorphism O : P[B] — A, which uses the PBW basis of A of ordered mono-
mials in the elements of B. The algebra A = U, (sl5) obeys the conditions. In par-
ticular it has a PBW basis, and a set of generators B = {X,Y,Z, A,B,b,a,z,y,x},
with an ordering.

This was generalized in the previous section to the case where multiple copies
of A are present by introducing indices through the map O; : P[B;] — A%l
This map provides an isomorphism of R.-modules. By specifying on which ten-
sor factors a map acts it is possible to define the same maps on the space P[Bj].
Given a map F on P[B;], we defined its corresponding tensor F;. In this section
we continue with the concatination of such tensors.

Definition 2.2.1. Let V and V* be the vectorspaces generated by the finite sets B and
its dual B* respectively. Denote with (,) the natural pairing on V and V* which eval-
uates the functionals of V* on elements of V. Consider the space S(V*) @ S(V). Us-
ing the leibniz rule one can use this pairing to define a map (-) : S(V*) @ S(V) —
Re[[h]] where we define (1 @ - @ P @ fi @ -+ @ fu) = (P1, (P2, - (P, f1 ®
- @ fu) -+ ), and extend the map linearly. Here ¢; € V* and f; € V.

Note that V** = V. Using the isomorphism between S(V) and R.[[h]][B] we
see that this pairing acts the same way as substituting the formal derivative 9+
for v € V since the pairing by definition obeys the Leibniz rule. To obtain a
pairing, we put v* to zero after differentiating. We see that the pairing is well
defined whenever the expression converges in R¢[[h]]. Since S(V*) ® S(V) =
Re[[h]][B, B*], and this ring consists of finite polynomials, we see that this is al-
ways the case. We present the following alternative definition, which we will use
throughout this chapter. It is a more specific version of () in which we can pair
specific generators of B. We refer to this function as the ZIP-function.

Definition 2.2.2. Consider the finite sets B and its dual B* respectively, and let ¢; € B*
and f; € B. Define the ZIP-function as

<.>¢i;p[B*,B] _>R€[[h]] :4)1"‘47i"‘47mf1"'fn’_>4’1"‘afi"'(Pnfl"‘fn’@-:O/

sending ¢; — 9y, and acting as the identity on ¢;, for j # i and for all f; € B, and
putting f; — 0 after differentiating.

Let zs C B, let {s = {x*|x € zs}, and let Q € P[B*,B]. To implicate dependence
onz € B,{ € B* we write Q(z*,z). The ZIP-function ()¢s : P[B*,B] — P[B*,B] is
written as ()¢, : Q(Ci,zi) — Q(0z,2i)|z=0. If {s = {Ti}i=1,... m, then we then define
O =0l

This function is called the ZIP-function, and we may refer to applying the ZIP
function as zipping, or more general with the verb to zip. In this case, it is usually
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2.2. The ZIP-function

clear from the context on which variables the ZIP-function is applied. Observe
that the pairing (, ) is symmetric in the definition of V and V*, so we can choose
to substitute b € B or b* € B* with a partial derivative. It is not clear that the
definition is independent of the order in which the zipping occurs. This will be
proven later in this section.

Consider the ring P[B][[B*]], which is isomorphic to the subspace S(V) @ S(V*).
An element w € P[B][[B*]] can be written as the limit of a sequence {w,} of
elements w, € P[B][B*]. In this way, the definition of (,) can be extended to
P[B][[B*]]. Note that the extension of the ZIP-function to P[B][[B*]] is not always
well-defined.

For example we have for a polynomial P(x*, x) = ¥ a,,,x*"x™ the formula

<P(X*rx)>x = E”!ann/

by simple calculation. This shows that (¢** ), diverges as R is equipped with
the discrete topology in R¢[[h]]. Observe furthermore that we cannot complete
both P[B] and P[B*], since for example ¢%%¢*¥ does not converge. Since R, has
the discrete topology, (¢%¢*), does not converge either as a series in R.
However, R.[[h]] is completed in the h-adic topology. So {e%¢*¥), = e does con-
verge in the h-adic topology. This trick allows us to extend () to exponentials of
the form %% %% ¢ P[B][[B*]], while assuring convergence. While (%*7 +7i%/)
does not converge in P[B][[B*]], (¢"**+"=+"=%) does converge in P[B][[B*]]. The
convergence follows in essence by the observation that

h'n! 1

<ehzz haz*z Z an n _Z o — 7

n

More generally, we introduce formal parameters 7;, y;, ®;; € P[[B']], where i, ] €
I, the index set labeling elements in B. B is some finite set, and P[[B’]] equipped
with the the [’-adic topology, where ' = (B’) is an ideal generated by the el-
ements | = (z},---,z,) of B". For convergence we require that 7;, y;, ©;; €
(2}, 2z, h) C P[[B']]. In practice, #1;,y; and @;; will be other variables, part
of a bigger space on which we can zip later. We now prove convergence of the
ZIP-function for a specific domain.

Proposition 2.2.1. Consider the ring P[[B’, B*]|[B|, where B = {z1,--- ,z,} and B*
its dual, and B’ is some finite set. P[[B']] is equipped with the (B')-adic topology, where
(B') is the ideal generated by the elements of B'.Let (h, B') be the ideal generated by B’
and h. Consider the subspace of exponentials
W ={Q(B, B*) expc + ) 7izi +y;z; +©;ziz]|Q € P[B', B, B"],

SNy s Y1, /y}’l/@ll/ e /@nn € (h/ B/> C pHB/”/ dEt(l - ®) # 0}

Summation over indices appearing twice is assumed. Extend () linearly in P[[B]] to
the ring P[[B', B*]|[B]. Let w € Wg, and let {s = {z},-- ,z;,} C B*. Then (w)¢; is
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convergent in P[[B’, B*]][B].

Proof. Let w = Q(B, B*) exp[c + L 7izi + yjz; + ©yz7z] € Wp. Without loss of
generality we can take (s = B, and Q = 1, since we can obtain Q by differen-
tiating the exponential a finite number of times to y; and #;. We will prove the
proposition by induction to the number of elements of B. We have to prove that
after one zip, the result is a power series in Wg. Then the result will follow by
induction. Let us specify an order when zipping to B for now, as we do not know
yet if zipping is independent of the order of zipping.

The case where B = {z} will be proven in a seperate lemma. Let us state the
result here. The idea is to reduce the general case to the case where B = {z}.
Let us zip to z;; € {s = {z},--- ,z;} = B*, so we substitute z;, — 9,,. The one
dimensional result is given by

(exple +nz + yz" + ©z2"z]) () = det((1 - ©) ) (explc +7(1 - ©) " (z + y)]) -

The last expression is clearly convergent in P[[B’, B*]][B]. We now proceed with
the general case, where sums over i and j are from 1 to 71, unless stated otherwise.
Let us take ¢ = 0 without loss of generality.

<exp[2 nizi +yiz; +0jiziz])z, =
L]
(exp[Y_mzi+ Y vz + Y, ©izizi+ (fn + ) Onjz} )z
i<n j<n ij<n j<n
+ (yn + Z Oinzi)zy + Onnzyznl)z,-
i<n

Since we only zip to z;, the variables z, i < n are unaffected by the zipping.

1
Hencewecantakec = Y ;_, #izi + Zj<n y]'z;‘ + Zi,j<n G)jiz]*fzi, =1+ Zj<n @njz;-‘,
Y =1VYn+Yicn Oinzi, and © = O, and apply the one dimensional formula. This

yields

x " 1 1
(el + i)+ Oizale, = =g {enple + =g n(an +

To check that the result is an element of Wg, we note that @ij is of a positive
degree in P[[B']], and likewise for y, and 7,,. Furthermore,

: _1®m W= _1®nn (2 ©uOuizjzi + fayn + 1n () Oinzi) + yu(} Onjz))).
ij<n i<n j<n

As a coefficient of z7z; we now get (0,0, + Ojj). Since ©;; € (B',h) # P[[B']],

and the ideal does not include 1 since none of the generators is invertible in

P[[B']], we know that the matrix 1 — ©;; — ©;,0,; is invertible. Note that 1 — @

is invertible for any matrix ® with ©®;; € (B, h) C P[[B']]. We conclude that the
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2.2. The ZIP-function

result is indeed an element of Wg. This concludes the proof of the proposition.
O

From now on, we restrict ourselfves to the space of formal power series spec-
ified in the proposition. We state a formula for the case where B = {z}. The
derivatives in this section should be interpreted as formal derivatives. This in-
terpretation makes sense as long as the variables are part of a formal power series
ring. In Wp, the parameters and the elements of B only occur in the exponentials
in pairs or triples. This means that when taking a derivative of the exponential to
either an element of B or a parameter, the result will be an element of the formal
series ring. We use this property in the proofs in this section.

Lemma 2.2.1. Consider the ring P[[B’, B*]|[B|, where B = {z} and B* its dual, and B/
is some finite set. P[[B']] is equipped with the (B')-adic topology, where (B') is the ideal
generated by the elements of B'. Let (h, B') be the ideal generated by B’ and h. Consider
the subspace of exponentials

W, ={Q(z,z") exp[c + ) _nz +yz* + ©z"z]|Q € P[B',z,z"],
¢,1,y,0¢€ (hB) CP[[B]],(1-0) # 0}.
Let w € W,. Then

(Q(z,z") explc +nz +yz" + @z*z])w} =
(1-0)"HQ((1-0) '(z+y),z") explc +7(1 - O) ' (z+y)]) 2.

Proof. Let w = exp[Ynz + yz* + ©z*z] € W,. The proof of the lemma is by
explicitly expanding (w).-. By differentiating to 7, and z +— 9,, we obtain the
case where Q is not equal to 1. We can put ¢ = 0 as zipping acts trivially on e.
We now proceed with the actual proof.

ok
Z y Ui m+kzl+k|Z:0

(exp[nz +yz" + Oz"z]) (1 pICH

m,,l
yn 1 k+l k
__Zm AR k ( . >®|Z:0

_ I+1

T tml (=g =

— 1 ym m nz p+m
_1—@);”(p+m)!m!az(1—®) =0

_L y Ui m 1-0
_1—® m'(l ®) Z

- 1_1®<exp[<1 — @)z +y))e

60



Chapter 2. Perturbed Gaussians and their applications

This finishes the proof. O

Consider an Hopf algebra A over R¢[[]] and a finite set I. As noted in the intro-
duction, A = P[B], which is completed in the h-adi topology. One can generalize
the zip function to a finite tensor product P[[B’, B*]|[B]®! = P[[B, B{]][Bi], for a
finite index set I and the completed tensor product. Since I is finite, convergence
is clear by the previous proposition. In fact it is essentially identical to the case
where we extend B. Only the map O is more complicated, as one has to keep
track of the multiple tensor factors by introducing additional indices. This has
been covered in the previous section.

For simplicity we will not write the tensor products explicitly, as P[[B]] ® P[[B']] =
P[[B,B']] when B and B’ are finite and the tensor product is completed. We la-
bel elementary elements in B®! with an index i € I to indicate the tensor fac-
tor on which they live. This is not to be confused with the labeling used ear-
lier for the elements of B. Implicit is the isomorphism between S(V)®! and
Re[[M]][(z))ili € I1,(zj); € B;]. In practice we will denote the topological gen-
erators of A without an index, butas B ={X,Y,Z, A, B,b,a,z,y, x} in the case of
U, (s15).

We proceed with the general case of the previous lemma, which is what is used
to calculate '(G o F). We aim to calculate the ZIP-function explicitly, so we will
restrict the definition of () to the space where we can explicitly calculate the con-
catination *F //'G = ¥(G o F) of two tensors, as we did in the case where I = {1}.
The method we use to calculate explicit zippings on Wjp is called the zipping
formula. The theorem is true for any finite set B, given the conditions on Wj,
independently of the underlying Hopf algebra.

Theorem 2.2.1. (The zipping-formula) Let B = {z1,-- - ,z,}, and its dual B*. Let
Qzi, -+ zn 21, - zn) exple + ) (izi + yjzi +©4z7z;)] € Wh.
ij
Then
(Q(z1,- -+ ,zn,21, -+ ,Zn) €Xp[c + Zmzi + yjz]’-‘ + @ijz;‘zi]>3* (2.1)
ij

= det(©)(Q(z{,- -+ , 2}, ] Oz + i), -+ - /;(@nk(zk"‘yk)))

exp [C + Z 771@17( (Zk + yk)] >B* .
ik
Denote by © the inverse of the matrix 1 — @. Sums are from 1 to n unless stated other-
wise.

Proof. Let w = Qexp[---] € Wp. Since Q is only a polynomial of finite degree,
we can reduce the theorem to the case where Q = 1. Like before, we also can
take ¢ = 0 without loss of generality.
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Before attempting the general case, let us prove the simpler case

<Q( )exp[mzl+y] ]> =(Q(z ]/(Zl+yz))exp[’7i(zi+yi)]>2/-

We will prove this formula by replacing y; by iy;. Introducing 7 yields

(Q(z],zi) explmizi + hyjzj])z; = (Q(z], (zi + hyi)) explni(zi + hyi)])z. (22)

Evaluating at i = 0 gives an identity that is obviously true. We will now prove
that the identity holds when both sides are differentiated with respect to 7. Inte-
grating to 71 will then prove the identity.

First, for any power series Q(z), the operator ¢ has the effect of shifting the
argument of Q by hy:

¢%Q(z) = Q(z + hy). (2.3)

One proves the statement for any polynomial of finite degree by a straightfor-
ward induction argument on the degree. Then the statement is also clear for
power series.

Now we can prove 2.2. Evaluating the left and right hand side of 2.2 at i = 0, the
equality holds clearly, as observed before. Let us differentiate the left hand side
with respect to 7:

0n(Q(z], zi) explnizi + yjz7|)z; 7Q(z],zi) exp[nizi + hyjz;])-, (2.4)

Yz ( i,zi + hy;) exp[ni(zi + hy;i)])z; (2.5)
(Q (j,a-%hyOeXphﬁ(m-%hyo]kf (2.6)

Where we use the definition of the ZIP-function in the second and third equality,
and 2.3 in the second equality. If we integrate 2.4 and 2.6 with respect to  we get
2.2, since we already know that 2.2 holds at 7 = 0.

Let us proceed with proving 2.1. We will prove it by differentiating to ©;;, and
show that both sides obey the same differential equiations

= (y;z
= (yz
G

do, ¥ = 3,0y, ¥, 2.7)

and that both sides agree on @z’j = 0. If we can prove this, then both sides
are actually the same, since this set of differential equations fully determine a
solution. To see this, note that ¥ is a power series in ®; ; and 7; and y;, so that both
the right and the left hand side is a power series. The set of equation becomes a
set of ordinary differential equations in the variables ©; ;.

One can also try to prove a more general shift lemma, however to prove this
lemma is much more cumbersome. It is insightful to prove the general shift
lemma for the case where ® is a 1 X 1 or a 2 x 2 matrix and P is a degree 1
polynomial. This gives a nice insight in where the determinant originates. The 1-
dimensional case has been done in the previous lemma. The higher dimensional
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calculations are left as an exercise for the curious reader.
Firstly, for 0©;; = 0, 2.1 reduces to 2.2, and hence holds true. Let O be nonzero
such that the matrix 1 — ® is invertible. We obtain on the left hand side

0,(Q(z], zi) explc + nizi + yjz; + Ojjz;zi])7; (2.8)
( ziz; Q(z;, zi) explc + mizi + yjzj + ©jjz; i)z,
= 0y,9y,(Q(z],zi) explc + mizi + Yz} + 04z} i)z, (2.9)

ad]

Let Aj; = (1 — ®);; be an invertible matrix. Since Ay T = det( L , 9o, (det(A)) Ly =

adj adj adj adj ad i
do, (AmAy) = do,(Aw)An = —Linli Ay = —ImAn].] = —Aj /. where A%
is the adjugate matrix, or the matrix with the determinants of the minors of A

(A?jd] is the determinant of the minor of A that arises by deleting the i-th row and
the j-th column and multiplying with a sign). We use the einstein summation
convention if the same index appears twice in different matrices. However, I,
means the 7, n-th entry of the identity matrix. Hence, if A, is dependent on Ojj,

then Aflij is independent of ®;;, and so by the product rule, dg, (det(A)) = —A?;ij .
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Using this identity, on the right hand side of 2.1 we get using the product rule,

do, (det((1—-©)) " (2.10)
(Q(z}, (1 = ©) in(zi +yx)) exple + 11 (1 = ©) iz + 1))z
= 9g, (det((1-©))7")-
(Q(z}, (1= ©) Hi(zi + i) exple +1i((1 = ©) ik (2x + yi)])z)
a@ij((]' - ®)17k1) «
det((1=0)) 3 TR QG x1)) ], ~(a-0)yutartw)
exple + (1 = ©) ™)z +yi)])z+
9, ((1—0);!
Ot s e+ ) QL7 (1~ ©) i+ )
explc+ 177 (1 = ©) ik (zx + yi)])7;

- (-9 (1o o
= Jer =) \QE (1= O Dzt yi)) exple + 1 (1= ©) Dz + v

2.11)

1-0);1(1-0);!

( det)(l(kl(— ®) I + Yi)0sy (Q2, %) Ly =((1-0) ) arw)
explc + 117 ((1 = ©) ™ )ik(zi + yi)])z +
(1-0);'(1-0);/ 1ot

der(i o)) (@ Ty, ((1-0) e+ )

exple + (1= ©) )ik (zk + yi)])z;

B czket((11—®))aﬂiayf<Q(27' (1= ©) " )im(z + i) (2.12)

explc+ 177 ((1—©) Nz + yi)]);-

adj

To calculate the derivative of (1 — @) ! we used the identity Ai;l = di’g 47+ The

third equality follows from the product rule. This finishes the proof of 2.1. O

The theorem implies that the ZIP-function as defined above is actually indepen-
dent of the order in which we zip, so we can define the ZIP function for any set
(s C B* as substituting and differentiating to the corresponding elements of B.

Corollary 2.2.1. Let B be a finite set of generators of a Hopf algebra A as above. Let Wg
be the corresponding space of Gaussian exponentials in P[[B’, B*]|[B] for some finite set
B'. Let {s C B*, and let w € Wp. The ZIP-function (w)s is independend of the order
on (s.

We consistently chose to zip on elements of B* in this section, and completed B*.
This was only a convention, as noted before. One might equally well choose to
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Chapter 2. Perturbed Gaussians and their applications

substitute partial derivatives for elements of B, and complete the ring of power
series in elements of B. When zipping to one set of variables this does not make
a difference. However, when one chooses to zip to elements of B’ afterwards for
example, convergence can be an issue. One has to make sure that the exponen-
tials that are being zipped on are convergent in the appropriate formal power
series ring. Especially in maps on more than one copy of the Hopf algebra, this
choice might make a difference.

In the next chapter we will have to specify which variables are completed as for-
mal power series. This will be indicated by the phrase ‘zipping to variables - - -7,
where the polynomials in the variables - - - are then completed as power series.
It is then a matter of checking that the ZIP-function is defined in each case. This
mostly boils down to verification that the matrix © is invertible. Whenever this
will come up, it will be clearly stated.

Let B and B’ be finite as before, and let F € hom(P[B], P[B']). Let 'F = ¢(F)
as defined in the previous section. Define the map ¢ : im(¢) C P[[B*]][B'] —
Hom(P[B], P[B']) by sending 'F € im(¢) to the map ¢(F) : z — (zF)p+ where
z € P[B]. Since tF € im(¢) C P[[B*]][B'] is of the form eXiZ(z), we can apply
the zip-formula to see that (z'F)g converges when z € B. Note here that F(z;) €
P[B’], and that we only zip on the elements of B. When z € P[B] convergence is
only clear when z = Qexp|c + Y, yizi] € P[B], where Q is a finite polynomial. In
this case ztF € Wz, and we can use the above theorem.

More generally, when F : A — A®! is a map of algebras, ¢ is defined in the
same way. Convergence follows in the same way as the elementary case where
F: A — A. The most complicated case is when F : A®! — A. There is no way
to define a universal inverse of ¢, since it depends on the conventions chosen
in O; which indices have to be zipped on. The process works in the same way,
but one has to consider the specific case at hand. This is what one needs to keep
track of when working with tensors in practice. For the following propositions
we restrict ourselves to the elementary case where F : A — A for simplicity. In
this case we label the generators of the image of F differently, and denote the
basis of A with B instead of B. This is to make sure that we do not zip on the
wrong set of generators.

Proposition 2.2.2. The composition ¢ o ¢ : Hom(P[B], P[B']) — Hom(P[B], P[B'])
is the identity.

Proof. Both ¢ and ¢ are continuous functions in the h-adic topology. The first be-
cause the pairing is continuous, and the second map is applying the homomor-
phism, which is clearly continuous. From the zipping formula and the definition
of the zip formula, we can write down the following formula for monomials of
generators. Since the composition ¥ o ¢ is continuous, and the ZIP function is
linear, we can then take the limit, so the formula will apply to elements in the
completion. One can apply the ZIP function on each generator z; sperately, and
since F is a homomorphism, without loss of generality we can prove the formula
for monomials of the form z!, where z; € B. Note further that F(z;) € P[B'] is
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2.2. The ZIP-function

independent of z; € B.

The following result follows by similar reasoning.

Proposition 2.2.3. (composition law) Let F : P[B] — P[B'| and G : P[B'] — P[B"] be
homomorphisms, and let the sets B,B' and B" be finite. Then whenever (¢(F)Pp(G))p
is convergent,

(p(F)p(G))p- = ¢(G o F). (2.13)

Proof. Because the ZIP function is a linear function on monomials of generators,
we can take the limit of a sequence of monomials to obtain the result in the com-
pletion in the h-adic topology. Let ] be the set of indices of the elements in B/,
and I the index set for B. Since F and G are functions on power series, we can
take without loss of generality F(z) = [T;c;(z})", as we can write a general ho-
momorphism as a sum of these elementary functions. An essential observation
here is that we can indeed take the limit when considering infinite power series
such as the exponential.

Let us take F(z;) = fi(z})™, where f; is a constant, for all i € I. The gen-
eral case follows in the same way, one only has to pick out the right term in
the exponential. We can write ¢(F) = 'F = exp[L;c;z; fi(z})!"], and similarly
'G = exp[Lic;(2})*G(z})]. Since we can zip on one element of B’ at the time, it is
enough to check

(((z)"F(z:)")'G)zp) = (2])"G o F(2}).

1

This follows by a simple calculation.

((z)"F(z:)"$(G)) ) = ((27)"F(z:)" exp[}_ 7} G(z))]) (z)-
]

()" fi"(z)"" |20

This finishes the proof. ]

We should note that when composing maps, one has to be careful with conver-
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Chapter 2. Perturbed Gaussians and their applications

gence of the zip-function. The composition of tensors does not always converge.
In particular, the spaces of Gaussian exponentials do not form a category. When-
ever care should be taken, we will clearly mention this. In most cases that we
encounter it is clear that the composition of tensors converges. We will however
have to prove that 'F € Wy explicitly in these cases. When 'F € Wj, it is clear
that composing tensors converges. This tactic will be used in the next section.
We cover a simple example of this method here, to introduce the reader to the
general setting in the next chapter. This example continues the examples of the
previous section.

We write F/ // tG[ for the composition of tensors 'F and 'G. When writing //,
it is implied that zipping takes place on the input | of G and the output | of F.
Convergence will have to be proven in this case, and the zipping takes place on
the corresponding elements of B;. The variables on which is being zipped are
left implicit, and will be clear from the tensors that are composed.

Example 2.2.1. Consider the set B = {x,y,z} and its dual B* = {x*,y*,z*}, and let
R([[1]][[B}, B;]|[B1, B2, B3] be the polynomial ring in variables

{xl, Y1,21,%X2,Y2,22,X3,Y3, Zs}

over the formal power series in an indeterminate h and the variables of By, B;. In this
ring consider the element *Z = E[x}y}z3), where we introduce the notation e* = E|x|.
In general *Z occurs in a slz-like multiplication tensor such as the following (simplified)
tensor

tmiZ = E[x3(x™1 +x"2) + y3(y"1 + y"2) + z3(x" 1y 2 + 2" + 2%2)].
Let (s = {x},y;3 }, naively. We wish to perform the following zip

((x1y2)Elzax"1y"2]) gs-

However tZ is not of the form ¢®%", so we cannot apply the zipping theorem to this

expression at once. We are forced to zip to x* and y* separately. First we calculate

((x1y2)Elzax"1y"2])x: = (%12)E[230x,¥"2][ ;=0
= (x1+ ¥523)Y2|x,=0
= Y223Y2-

Zipping to y; now yields z3. In this calculation we used the zipping theorem on the
second line. For bigger expressions this takes a lot of computations. With a smart choice
of the zipping variables we might be able to zip a cubic term like 'Z at once, using the
zipping theorem.

Observe that 'Z € R[[h]][[y1, Y2, y3, X}, %3, 25, 25, 23] [y, ¥4, X1, X2, X3, 21, 22]. I this
ring, let us take {s = {yo,x7} C {y1,y2,y3, x5, x5,25,25}. Now 'Z is of the form

ENEES Concretely, we can take @1y = z3, and all other entries of © zero. Note that
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2.3. The tensor formalism for U,(sl5)

x] € s plays the role of the ‘starred’ variable and y; plays the role of the z’".

. 1 —2Z3 . . . -1 _ 1 Z3
Now1l -0 = <O 1 > with inverse (1 — @)™ = (0 1
We can apply the zipping theorem to the formula, where we have to substitute y ; (1 —
@) (xk) = (x1 +Y3z3) for x1 in the polynomial in front of the exponential. This yields

) and determinant 1.

((x1y2)E[z3x"1y"2])zs = 1+ (((x1 + 23¥2)y2) ) s
=2z3

We are now ready to calculate more complicated examples, such as the multiplication of
e* and e¥ by using 'm and zipping e*1"V2'm to {s = {yo, x}}. This is now a simple
application of the zipping theorem. This is left to the curious reader.

There is not much difference between the two ways of zipping in this exam-
ple. However, when the multiplication becomes more difficult, when we wish to
implement the R-matrix for example, it does matter much what choice of vari-
ables we make. There will be only a few correct choices in starred and unstarred
variables to make that will lead to convergent expressions. Moreover, as we il-
lustrated in the first half of the example, sometimes one can only zip in steps.

In the next section we will encounter a combination of these problems. As the
number of variables is increased, we will make a specific choice to which vari-
ables we zip, and we will have to zip to those variables in three steps. This way
of zipping is referred to as the three-way or three-stage zip. It is this method that
will enable us to implement the U, (sI§) Hopf algebra in Mathematica. One must
not forget the essential role € plays here. € cuts of higher order terms that would
occur in the exponential otherwise. This allows us to use the zipping theorem in
calculating these zips.

2.3. The tensor formalism for U, (sl5)

In this section we give the explicit tensors for the U,(sl§) quantum group, and
prove that the formulas we use in the implementation in Mathematica are cor-
rect. We have proven that the U, (b~ ) is a Hopf algebra in the previous chapter.
In the previous section we have proven the essential zip-theorem. In the imple-
mentation of this theorem in Mathematica, we check the axioms for the tensors
associated with the U, (b~) algebra. We prove in this section that the given ten-
sors indeed correspond to the U,(b™) algebra.

The tensors and algebra relations are calculated by implementing the Drinfel’d-
double construction in the tensor formalism. We define the tensors up to order €.
We can obtain the order €* term from the usual U,(b~) C U, (sl,) QUE algebra.
See chapter 1 and chapter 4.

We denote T € Wp, for B = {X,Y,Z,A,B,b,a,z,y,x} as E[L,Q, P|, where P is
the term proportional to €, which is finite, since we work over R¢[[h]]. L is the €
independent part that only depends on A, B, b and a. Q is the € independent part
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Chapter 2. Perturbed Gaussians and their applications

of T in the exponential that is not in L.

Instead of i, we may use f. To simplify the notation, we introduce A = exp[—hA],
and similarly for B. For the explicit tensor tdmf-‘j for the multiplication in the quan-
tum double we refer to the appendix.

We should warn the reader that the starred variables in this section correspond
to the dual variables of elements of U, (sl5), as to indicate on which entry a tensor
'F takes its input and output. This should not be confused with a choice for the
set of variables on which we zip.

In this section we use the three stage ZIP function. We first zip to the variables
{A*,B*,b,a}, thento {X,Y*,y,x*} and at last to { Z*, z}. In this section we prove
that this choice, together with the stated expressions leads to a convergent im-
plementation of U, (sl§) in the tensor-formalism.

Theorem 2.3.1. The quantum double multiplication dm of the Hopf algebra D (U, (b™)),
where b~ C sl is the lower bgel sub Lie bialgebra, can be constructed as a tensor tdm
by composing fam, 'bm, 'R, 'R and 'P as

‘mif; = (IEgﬁ [aja*; + A; A" + bjb*; + B;B";,
XX+ Y+ ZiZ% + xix" +yiyt + ziz", 1]
// (tP,1,3tP,3,1tam§,jtbmii,2) .

Moreover, the composition of tensors converges. In particular, the tensor *am corre-
sponds to multiplication on Uy(b™), tbm corresponds to multiplication on U, (b~ )*, 'R
corresponds to the R-matrix of Uy (sl), 'R to its inverse and 'P to the pairing between
Uy (b~) and Uy (b~ )*. taS is the inverse of the antipode on Uy (b~) and *faA and *bA are

the comultiplication on U, (b~ ) and U, (b™) respectively.
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2.3. The tensor formalism for U,(sl5)

tam, tbm, 'R, 'R and * P have the following explicit form

tami-‘]- = [ak (a*i + LZ*]') + by (b*i + b*j) ,
X <62a*]‘—b*]‘x*i + x*]) +yk <e—ﬂ*]‘+2b*jy*i _|_y*]> 4
1— e—a*j_b*jh <e3u*jxkykx*iy*j + eza*j+2b*jykzkx*iy*iy*j + eaa*j]/kzkx*i (y*)]z o
63”*J’xkzkx*iz*j + e3b*/ykzky*iz*]- — eSa*fz%x*iy*]-z*j> €+ O[e]Z}
fbmﬁf]. = E [AcA*; + AyA”j + BiB*; + BB},

X X"+ XkX*]' + Y. Y* + YkY*]' + Z 2" + ZkZ*]',

1+ (—XkA*iX*]' -+ thYkX*]'Y*i — YkB*l’Y*]' + ZZkX*,'Y*]' — thZkX*jZ*i—l—
WY ZKY* [ Z¥ i — Zk AN 24— ZyB*Z¥}) € + O[e)?]

tRi]' =E [hain + hb]’Bl', hiji + hy]Yl -+ hZ]'ZZ',
L 3 3
1+ 5 (h CXP A+ YIYE +h z]ZZl-Z) €+ O[e]z]
tﬁi]‘ =E [—hﬂin — FlbjBi, —hx]-XiA?hlBi_h + hZXiYiZjA?IB? — hZ]'ZiA?lB?—
hy; YA "B
1+
3
<—2h4xjxfyisz§h + Eh%fX?A;*hlB;Zh — 1Pax X, APB " -
21°x; Xy YiAMB] — XYz AMB! + 1Pa; X, Yiz; Al Bl +
Fl3b]'X1‘YiZ]'A?]B? + 2h2x]y]Z1AlhIBfl + ZhZZjZiA?IB? - hzﬂ]’ZjZiA?IB?—
WbiziZi B! — Wby YA "B + 20° XY 2 AT BT —
3
20 XYz} ZATBY + §h3z]2ZZ-2A?‘lB?’ — 1 Xy Y2z B+

3
SERRA DB ) ¢ Ol

Py —E{i,j}%{} |: 7 + n T h + 7 + n
*\2 %\ 2 *\2 %\ 2 %12 %12
(x )j (X7 (v )j (Y)i  (z )]’ (Z7); 2
1+ (- 7 — 7 — o e+ Ol[e]”] .

The proof of this theorem consists of multiple steps, and will be the subject of
this section. We prove that the comutiplication and the antipode of the quantum
double can be obtained from the multiplication on U, (b~ ) and U, (b™)*, the R-
matrix R, its inverse R ! (also denoted as R to avoid confusion in the indices)
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and the pairing P in proposition 2.3.1.

We then provide an iterative formula (in orders of €) to obtain the pairing and
the inverse R-matrix for any order of €, in propositions 2.3.2 and 2.3.3. Note
that although we work modulo €2, we will provide proofs for general order of €,
whenever possible.

For the R-matrix we have an explicit formula due to the Faddeev-Quesne for-
mula, which was proven in the first chapter. We then check that the stated ten-
sors correspond to the pullback of the Hopf algebra maps, and that zipping on
the tensors converges. In particular proving that zipping on the pairing con-
verges is an important step in the proof of theorem 2.3.1.

Convergence of the above stated zip follows by explicitly checking that the ten-
sors are of the correct format. When we have proven that the zips converge in
the necessary compositions of tensors, we use the composition lemma in the pre-
vious section to compose tensors.

We start with providing formulas for the comultiplication and the antipode. In
lemma, we will provide the corresponding tensor identities, and prove that the
zipping of these identities indeed converges. This way we obtain 'aA, 'bA, taS
and 'bS. The inverse of the antipode on U, (b™) is computed in the same way as
the inverse R-matrix in a seperate proposition.

Proposition 2.3.1. (Comultiplication and antipode) Let u € Uy(b~), v € Uy(b™)
and w € Uy(sl§). It is understood that R = Y. R @ R?) can be written without
summation sign. The following relations hold for Uy (sly)

Proof. Let S be the antipode in the double U,(sl§). For the first identity, we
have R1, = S® Id(R). This result follows from the double construction with
the opposite comultiplication and the quasitriangularity axioms. Now we get

RPRY, uy = RO (pS(RM), u). S S(R) =R, so
R (bS(RMW),u) = aS(RP)(BS(BS(RM)), u) = aS(RP(RW, u).

Since R() and R are the sums of dual bases with respect to the pairing by
construction of the R-matrix, we get the desired result. The results for bS follows
similarly.

For the formulas for aA and bA we use the quasitriangular property of the comul-
tiplication A of U, (s1§) A(RM) @ R(2) = RV @ RW @ (RPR(2)). Applying
(-, u) on both sides to the third factor yields the desired result. Again we use that
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the R-matrix is constructed by summing over dual bases of Uq (bi). O

The inverse R-matrix, the pairing and the inverse of the antipode 4S$ can be re-
cursively calculated from the zeroth order operation in €, the R-matrix, the mul-
tiplication and the antipode on both sides of the double. In the case of the pairing
there is also a recursive formula, which we will prove here.

For a generator u € U, (b*), define A as the expansion of A in € up to and includ-
ing the k-th order term. If v = u; - - - u, is a product of generators, not necessarily

in the PBW ordering, define Ay(v) = Ag(uq) - - - Ag(uy). Define A,(J” similarly
(A" stands for A applied n times).
Remember that (UV,u'v') = (A(UV),u’ ® v'). Define the k-th order pairing as

<ul"'un/u1"'un>k: <Al(cn)(ul...un)’u1®...®un>
— <U1®--~®UH,A,((”)(u1---un)>.

Forn #n', (Uy--- Uy, uy - - - uy) = 0 by duality. Further observe that
<A(n)(u1 . un),A(n) (ul . un)> — <u1 . un’ul . un>’

as there is only one term in mgn)n (A" (U - - - U,)) that has the correct order.

Proposition 2.3.2. Let U; € Uy(b") and u; € Uy(b™) fori = 1,- - - n and where we
take € invertible for the moment (See chapter 1 or 4). Then

(Uy -+ Uy, g - - - uy) mod €41

=(Uy - - Up, g+ tpyo+ Uy - Up,u1 -+ ) g1
—(Uy - - Un,R(2)>o<R(l),M1 c Uy g mod ekt

~ ~

Proof. If we prove that (U - - - LI,,,R(Z)>0(R(1), Uj -+ - Uy)k—1 equals
(Uy - - Uy, g -+ Uy - Uy -ty — Uy - - Uy iy -+ U1,

then we are finished. To prove this, observe that since R is the summation of
dual basis, i.e. it is the canonical R-matrix, we have (-,-) = (-, R@)Y(RW,.) =
(A (),Rg%) <Rg,)1, A (), for any order of k. Here Vi, stands for the expres-
sion V split into n tensor factors. By coassociativity this is well-defined inside
the pairing.

To prove the formula, we look at the expression

(Uy - Uy, RDNV(RD 1 )
= (AP (U L), RED R, A, (- )) = (AL (U L), AL, (a1 - ).

We notice that for n = 1 the relation holds trivially, since Ag(U;) = A(U;), be-
cause in LL,(b*), there is no factor of € present in A. For n > 1, we look at the
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ordering of A((Jn)(lll -U,) = AUy ---U,) and we observe that the prefac-

tor of this expression mod €* equals the inverse-prefactor of A,(Ji)l (- up) =

A,(i)l(ul -~ u,) mod €, since

<A(”)(ul e uﬂ)lA](:i)’l(ul e un)> — <ul e un’ul v un> mod €k.

So we are finished if we can prove that the prefactor of the e* term equals mi-
nus the k-th term of the prefactor of A]({n) (u1---uy). This follows by induction.
Assume this is true for n — 1 generators. Adding one generator on both sides,
which has to be dual on both sides, only is non-trivial in the case of U, = X,Y
or Z. Since there is only one correct order to put them, calculating the prefactor
of A(n)(U; - - - Uy,) (and similarly that of the u; side) now follows by commut-
ing exponentials g past a number of U; in other tensorfactors. Now observe
for any exponent p, where g = e~¢", we have (denoting q,f for the expansion
of g% in € up to and including the k-th order term) g Pq; |, = —q} +q; ;. To
see this, observe that g~ !gx_; = —qx + gx_1. This formula follows from the ex-

k _
pression El E;j?; !li = —%, which follows from Newtons binomial expansion

of (1 — 1) = 0. Furthermore observe that the commutation relations in U, (b*)
between Cartan generators and X, Y, Z (respectively x,y,z) have a minus sign
compared to each other. By induction the result follows. O

It is possible to prove this proposition more directly using the generating func-
tion of the pairing, which we will write as P;j. When writing multiplication, we
mean applying the zip function on the appropriate indices. One should take the
following proof only as a suggestion, since we are not allowed to zip the R-matrix
and the pairing on both indices.

The canonical R-matrix sums over the g-PBW basis of U, (b~) and the dual basis
as R =) f* ®e,. In chapter 1 the R-matrix was constructed in such a way that
the monomials are normalized to pair to one: (f? ¢e,) = 1. Pairing each term in
R then yields ) 1. This is remeniscent of certain quantum field theoretical tech-
niques. The difference between the k-th order and the k — 1-th order of (P;j)(R;;)
then is not equal to 0 as the following proof suggests, but it is presumably equal
to the zipping of the zeroth order in P;;, to match the expression in the proposi-
tion.

The zipping in the zeroth order of P;; is left unevaluated in the Mathematica im-
plementation, since this would diverge for the reasons mentioned above. We
could try to do the computation of (P;j)(RR;;) here explicitly, but this would
amount to the proof given above. For this reason the following proof is only
a suggestion, meant to give an intuition for the result.

Proof. Suppose (Pij) k1 = a_lis the generating function of the pairing up to the
k —1thorderin h. Let (Ral )k—1 = a be the R-matrix up to the k — 1-th order in h.
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Define the k-th order term of the R-matrix respectively the pairing as x = (R;; )k
and y = (P;j)x. Then mod /**!, wehave 1 = (a+x)(a ' +y) = 14+ay+xa~?,
since we work mod K1, Soy = —a~'xa~!. Since x is divisable by k¥, y =

—ay lxao_ 1 where ay stands for the zeroth order in 4 of a. O

For the following proposition, which proves an iterative formula for the inverse
R-matrix, we use the technique of tensor generating functions legally, contrary
to the previous ‘proof’. The proof is taken from [36].

Proposition 2.3.3. Define Y, = R~ mod h"*'. Then Y, 11 =1 —R;jY, + Yy

Proof. The proof is by induction. Suppose Ri;l =Y, mod K", and that Y, 1 =
Y, + Zh" ! mod h" 2. Let RijYn = 1+ Eh"t! mod h"*2. We know that Rij =
1 mod h, so the zeroth order in & does not contribute to the product Ri]-Rgl =
1 = Rij(Yy + Zh"™) mod h"*2? = (E + Z)h"*! + 1 mod h"*2. So we conclude
that Z = —E,and Y, .1 = Y, — EW**1. This finishes the proof. Since € occurs only
together with & in the expression for the R-matrix, it is clear that the proposition
also holds when working mod €. O

We can now proceed with the implementation of the zipping formula, and prov-
ing that it converges for the specific implementation of the quantum double we
use. This implementation uses the previous two propositions. See the appendix
for the implementation.

In the Mathematica file we use a specific implementation of the zipping theorem,
namely we zip in three stages. First we zip the Cartan Lie subalgebra, then we
zip the simple generators x,y, Y, X and at last we zip the non-simple z and Z. We
prove that this way of zipping called the three-stage zip converges in each step.

Theorem 2.3.2. (Miracle-theorem) The three-stage zip converges for all finite combina-
tions of the tensors fam, 'om, 'R, 'R and *dm.

Proof. The perturbation is finite, so the zipping of these terms converges by the
zipping theorem. To see that the zipping of exponentials without the perturba-
tion converges we inspect the exponentials of tam, tbm, 'R, ¥R and tdm term by
term. The only terms for which it is not clear that they yield a result in Wp for
B={X,Y*,y,x*} or B= {Z* z} are the cubic terms.

The only non-perturbative cubic term arises in the tam tensor and the tﬁilj tensor.
Both are essentially dual to each other. Note at first that in every non-perturbed
exponential of Uq(slg) the x and the y are only present with an X and an Y in
front, respectively. Zipping the X7y zy term to the variables x and y first yields
terms like CX;/Yj, for some i’ and j', with a term C. Zipping e*¥i* is well-defined
in the three-stage zip because we choose B = {X, Y*,y, x* }, and so e*i¥i* is of the
form e?'%, b, c € B.

Let us be more concrete, and look at the structure of the matrix ®. We observe
that with the choice B = {X,Y*,y, x*}, there are never any diagonal terms in @
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when zipping any of the tensors tam, tbm, *R, 'R and tdm. It is important to note
here that in one application of the zipping theorem, we only zip any tensor on
either its input or on its output. Moreover, remember that the lowercase gener-
ators on the input-entries are only present in the exponential with an uppercase
generator in front. An exception is z, but this results in another cubic term, as
mentioned before.
Observe that 1 — @ is always upper-diagonal (or lower-diagonal, depending on
the conventions and assuming normal ordering). This follows since the lower-
case multiplication tensor has a cubic term in the exponential, but the upper-
case multiplication tensor has not. Applying the zipping theorem for an up-
pertriangular matrix 1 — ® with only 1’s on the diagonal yields a prefactor of
det(1 — ®) = 1, which is non-singular. As mentioned before, the other cubic
term which is present in the inverse R-matrix has the same property that © is
upper-diagonal.
When combining both terms, it is important to mention that the upper- and low-
ercase starred variables are chosen such that for example X is a “starred” vari-
able, while x is a non-starred variable. With this choice, 1 — ® remains of upper-
triangular shape.
So far, we have not mentioned the cubic terms present in 'dm, but it can be seen
that these terms are in fact equivalent to the above case by zipping once. In this
case, we are again saved by the xX terms in the R-matrix, and the fact that these
are the only occurances of the non-starred lowercase variables. This finishes the
proof.

O

We have proven that zipping on the space spanned by the above tensors and all
finite zips is well-defined. The subspace of Wp formed by these exponentials is
closed under zipping.

Corollary 2.3.1. If'T and 'S are two tensors in the ring Re(z1, - - , zn][[h, 25, -+, 2%n]]
obtained from the tensors fam, *bm, *R, "R =1 and *dm by a finite number of zips, then
Z1Pg (*T'S) converges.

Proof. We know by the previous proposition that zipping converges on all ten-
sors arising from finite zips of these tensors, this implies the above result. O

In the implementation of the quantum double, we need the pairing for the calcu-
lation of the multiplication in the double and for checking the pairing-axioms. It
is also used in the computation of the antipode and the comultiplication. After
the calculation of the double, the pairing is not used anymore.

To prove that the zipping of the pairing tensor with the appropriate tensors con-
verges, we explicitly check convergence for these relations. The double multipli-
cation is obtained from the multiplication on the the lower- and uppercase Borel
subalgebra, together with the pairing and the (inverse-)R-matrix. In this case we
will prove convergence as well.
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2.3. The tensor formalism for U,(sl5)

To circumvent the troubles with the pairing, it turrns out to be possible to define
the pairing from the R-matrix. See [36] for details. In particular theorem 8 of [36].
In this method, one implicitly defines the multiplication on the Drinfel’d double
by proving the existence of a dual element. Although this this would be a way
to circumvent the zipping of the pairing, it does not show that we may explicitly
compute the double multiplication in our implementation. As this is what we
are aiming for, we will explicitly prove convergence.

Proposition 2.3.4. (Pairing-zip) Let ' P, ; be the tensor corresponding to the pairing on
the entries i and j. The zip of ' P; j along one of the indices i or j but not both i and j with
the tensors tam, tbm, 'R, "R~ is well defined.

Proof. We are zipping the pairing along the i or the j, but never along both in-
dices. Both multiplication tensors have two input strands and one output strand.
The input-variables correspond to starred variables, the output variables are
the non-starred variables in our convention. In the notation of the tensors, the
starred variables are not necessarily the variables on which is zipped. The non
starred variables correspond to elements of U, (sl§). The R-matrix and its inverse
are elements of Uy (sl§) ® Uy (sl), where the exponent of the exponential is pro-
portional to h.

Any term in the perturbation is finite and the zip of this term with P converges.
Looking at non-perturbative € = 0 part, we note that we need to make a consis-
tent choice for which variables to zip to. Observe that the pairing tensor does not
contain non-perturbative cubic terms, so if we can make a consistent choice such
that we only have z;z; terms, we only need to prove that the given exponential
is a power series in R¢[[}]][[B’, B*]][B].

We know by the previous proposition that the zips excluding the pairing con-
verge, and that a consistent choice is made so that cubical terms in the exponen-
tials can also be zipped. To this end we choose {X, Y*, y, x*} in our implementa-
tion, as noted before. the tensors tam, tbm, *R or R 1.

The convergence of a zip including the pairing and the tensor tam, tbm, 'R or
¥R~1, is clear from the fact that we only zip on one of the two indices in 'P;;. In
the case of the multiplication, it is clear that the exponents are not proportional
to h. In the case of the R-matrix we have to be more careful, as the exponents are
proportional to . However, when zipping the pairing and the R-matrix on one
index, the result includes a term BB* or bb*, where b, B € B, depending on which
index is zipped. Independently of the choice of starred and non starred variables
this is proportional to an element of the formal power series ring R¢[[1]][[B*]]. So
this choice is consistent with zipping the pairing on one index. This proves the
proposition. O

Before providing the tensors for the comultiplication and the antipode, we have
to know that we are working with the correct multiplication tensors.

Proposition 2.3.5. ‘am and *bm are the pullback under O of multiplication on U, (b™)
and U, (b™) respectively.
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Proof. We verified both the associativity of the multiplication am* j and bm* ;in

U,(b™) and Uy, (b™) respectively. We verify the associativity of 'am and tbm ten-
sors separately in Mathematica (see appendix A.1). The proposition can be seen
to be true for generators by explicitly using the zipping theorem in Mathematica.
Note that B = {b,a,z,y,x} for Uy(b~) and B = {X,Y,Z, A, B} for U,(b"). We
get

O (amf;) = '1d;'1d; // Oy // amf,
and the same for bmé‘, ;- But this implies the result.

Note that it is enough to check that 'am and 'bm agree on generators. Since sl3
has only one non-simple generator, z in our case, this follows directly from the
relation [x, y| = z and its g-equivalent. This finishes the proof. ]

For higher # it is necessary perform the check on monomials of higher order. The
same proposition is true for the R-matrix and its inverse.

Proposition 2.3.6. 'R and 'R are the pullback under O of the R-matrix and its inverse
of the quasitriangular Hopf algebra D(U,(b™)) respectively.

Proof. The proof of the statement for the R-matrix is easy, as R is an element
of U, (sl§) ® Uy (sl§), and by the Fadeev-Quesne formula proven in the previous
chapter we obtain the given formula.

The expression for 'R can be obtained by applying the iterative formula for Y, =
R 1mode™ !, YV, =1— RijYn + Yy. The €> = 0 case we are working with
then corresponds to Y1 = 1 — R;; Y + Yo. We claim that Yy € U, (sl§) ® Uy(slS) is
given by

YO = Oi,j(]E{i’j} [—hllei — hbjBi, —hXiX]'AiZhlBi_h
+ 1°X;Yizj AMB! — 1Yy AT"B — hZiz; ATBY).

Observe that in R;;Yp, entry-wise multiplication is implied. Multiplication here
is interpreted in the Hopf-algebraic sense. The multiplication of the R-matrix
and Y takes place entirely in U, (b") ® U, (b™) C Uy(sl§) @ U,(sl§), as we con-
structed the Drinfel’d double with the opposite comultiplication. We already
proved that the zipping of the corresponding tensors tam, tbm and 'R converges.
We now observe that Yy € Wg as a tensor. To see this, first observe that A = ¢4
and 1 — hA act as the same element of U, (b"). So we can replace the two in
the expression for O(Y)), and consequently in the corresponding tensor Y. The
terms seem like higher order products of generators. However, when we first zip
to {s = {A, B*,b,a*}, secondly to {s = {X*,Y,y*, x} and at last to {s = {Z*, z}
we see that in each stage Y is of the appropriate form.

We check by zipping the tensors that Y| is the zeroth order in € of the inverse
R-matrix. We use the fact that *bm and tam are the pullback under O of the
multiplication in U, (b= respectively. It then follows from the implementation
in Mathematica that 'R is indeed the pullback of R. This ends the proof. ]
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We can now construct the comultiplication and antipode tensors from the multi-
plication and R-matrix, and the pairing.

Proposition 2.3.7. faA, tbA, taS and *aS are the tensors corrsponding to respectively
the comultiplication on U, (b~ ), U, (b™), the antipode on U, (b™) and the inverse of the
antipode on U, (b™). They can be constructed as a composition of tensors as follows.

‘Al = ("Ryj'Rox) //bnid 5 //"Py,

DAY = (‘Rin'Rez) // ("amzss) /] Pig
'aS; = *aS|c=o — "aSile=0//*aS;//"aSi|c=o
taS; = ('Ri'P;j)j,

a

and have the following explicit form. We introduce the notation a = e~* , and similarly
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for b.

k k * * * * * * * * *
A] —]E?}} [aja i taxa i—f—b]'b i+ beb XX XX Yy i T YRY iz

+zkz%;, 1+ <—hajxkx*i — hxjx (x*)l2 — hbjyky*i + hxkij*iy*i — hyyx (y*)l2 +

2hixjypz"i — hajziz"; — hbjziz"; — hxgzix™iz" + hyrziy™iz" — hzjzg (z*)f) €]
A 113?}"} [AjA*; + A A%, + B;B*; + BB,

Xe X'+ XA BIX + Y + Y AIB Y + 22t + ZiA B 2+

hX AT BLZY,

1+ (—hXijAk‘Zh]BZ (X*)F — hX YA P BEX Y — WY,V AT, (Y*)] +

WX ZA P BEX 2+ hZX]ZYkA;‘*h]B%hX*iZ*i — 1Y, Z A}B Y2 —

XY A "B Y2 — PXGZiA (Z20)F — hZi 2 A MB (27)7 +

—h3X2Y,§A B (Z7); ) e+ 0[e] }

aS; = EH { @i — bib*i, —e 2 ity — o iyt e izt —

e~ @iy,
1 i _thib,'x*i . haix,'bix*,' i hxzzblz (x*)lz _ 2hyiaiy*i _ hbiyiaiy*,'_
a? a? a} b? b?
2hxiyix*iy*i + 3hzix*iy*i + haizix*ly*i + hbizix*iy*i .
aib,‘ aibi aibi aib,‘
iz () y' | hyRal (v )] ReE () (V)7 2zt
a?’ b? aizbz-2 a;b;
2hziz*i _ haiziz*i _ hbiZiZ*l’ _ 2hzl.2x*iy*iz*i hZ ( ) et O[ ]
a;b; a;b; a;b; a’b? a?b?
_]E{l}_‘*‘_‘*‘_xlll_lll irMiY i A4
S {i} |: aia”; = bib", alz bi2 a;b; a;b;’
1+
haixl-bix*z- hx2b2 (x*) hbiyiaiy*i 2hxiyix*iy*i hzix*iy*i
N az T 4 bz B a;b; B a;b; +
i a; i ivi ivi
ha;zix*y*; hb zix* iyt hxzi (x *)Z-zy*i hy%a? (]/*)12
b - 3 + 4 +
a;b; a;b; a; b;
thz (x*)lz (y*)lZ i 2hxiyiz*z- + ZhZiZ*i B haiziz*i B hbiZiZ*i .
a?b; a;b; a;b; a;b; a;b;
2hz?x*ytizY hz? (27); )
+ € + O[e]?
2 2
a?bi ZZb

79



2.3. The tensor formalism for U,(sl5)

Proof. For the tensors corresponding to the comultiplication, the pairing is only
zipped on one index. By the previous proposition this is well-defined. As for
the antipode, the same holds true. From the explicit form of taS we see that
taS;|e—0//aS;//taS;|c~o is well-defined, and that the zipping converges.

The fact that the given tensors are the pullback of the comultiplication and the
(inverse) antipode follows by explicitly checking the Hopf algebra axioms in
Mathematica. We refer to the implementation U, (sl5) in the appendix for this
calculation. We already proved that the multiplication tensors tam and tbm cor-
respond to multiplication in the Hopf algebras U, (b*). Hence it follows that the
tensors given in this proposition must correspond to the comultiplication and
antipode in U, (b*), as they agree on generators. O

We now proceed with the pairing, the most problematic part of this section.
Proposition 2.3.8. *P is the pullback under O of the pairing between U, (b™).

Proof. When pairing on generators, which is a straightforward application of
the zipping formula, we see that the pairing agrees on generators, and makes
Z; € Uy(b*) and z; € Uy (b~ ) dual.

What is left now is to prove that 'P obeys the pairing axioms. This means prov-
ing that the zips necessary to check the pairing axioms in the tensor formalism
converge. Then we are finished, for the explicit check we refer to Mathematica.
The proof that the checking of the axioms converges in the tensor formalism boils
down to proving that for the expressions in Wy for the appropriate set B have an
invertible 1 — @. This is an issue here as we are dealing with a formal power
series in R¢[[}]][B], the inverse of h.

The check that the zipping formula converges is equivalent to checking if the
prefactor in the final result is still dependent on . This isequivalent to check-
ing that the exponents of the tensors that the pairing is zipped with are not
proportional to ki, but to a constant in R C R.. When the result of an (inter-
mediate) zip is not dependent on #, the power series are still well defined in
Wg C Re[[#]][[B*]][B] since the exponent consists of pairs zz*, where z* € B*.
However, the prefactor ® might yield an uninvertible matrix 1 — @ in the fol-
lowing zips. This leads to divergences.

To show that the result of the zip in both inputs of the pairing tensor 'P has in-
vertible 1 — ®, we do not have to zip, we only need to write down the tensors,
which is a product in the formal power series ring. By the previous propositions
we do have the explicit form of tam, tbm, taA, tbA, taS and 'bS and the inverse an-
tipodes. Moreover, we know that they are the pullback of the (co)multiplication
and antipodes on both halves of the Drinfel’d double U, (sl§), remembering that
U,(b™) has the opposite comultiplication. So if we prove convergence of the zip
we know that ! is the pullback of the pairing, as it agrees on generators and it
obeys the pairing axioms. In this last observation we use O.

The pairing axioms that need to be checked are stated in the first chapter, and are
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as follows

(ab,c) = (a®Db, Ac)
(Aa,c®@d) = (a,cd)

(1,¢) = e(c)

(a,1) = e(a)

(Sa,c) = (a,Sc).

We write down the corresponding tensor identity with the appropriate indices
of the first relation (ab,c) = (a ® b, Ac). The relations are checked in the Math-
ematica implementation. The check that the zip converges is then trivial, and
consists of checking the tensors stated above on their dependence of h. The other
relations are similar to the first one, and are left to the reader. The concrete ex-
pressions can be found in the Mathematica implementation in appendix A.1.

The terms we need to check are the cubic terms in 'bA and ‘am of the form
hX;Yy---. Terms like this are zipped twice (or three times in the case of the

term hZXiYiZ]' in R 1), and hence get a factor of %2 and %3 respectively from the
pairing. We never encounter a term like X;X; in the exponent, so there are always
multiple terms in the pairing involved in zipping cubic terms.

For example for the term %% X;Y; izj combines with the terms X i X and 7Y/ yj and
1Z*z]* in the pairing to hx jY;Z{. So we obtain a prefactor of 7 in both cases. In
particular, 1 — ® is 1nvert1b1e for a suitable choice of variables in the three-stage
zZip.

To check the pairing axioms we apply 'P to the identity tensor

]EH [asa*s + b3b*3, x3x"3 + y3y™3 + 23273, 1]

. We obtain that zipping with ! obeys the pairing axioms for a general expression
in U, (sl§) by differentiating both sides, as usual.
We now give the first pairing axiom in tensor form.

(*bmj ZE% [a3a™ 3 + b3b*3, x3x* 3 4+ y3y™s + 23z%3, 1] 'Py3)3
45m{1}

< aly IE{l}
[A2A%) + BoB*, Xo X% + Yo Y™ 2 + Zp 2%, 1] tP1,4tP2,5>{1,2,4,5}.

[AlA*l + BlB*1,X1X*1 + Y1Y*1 + Z1Z*1, 1]

)
Ep)

The other expressions are left to the reader to check. This finishes the proof. [

We are now able to prove the main theorem of this chapter, theorem 2.3.1. The
proof combines the lemmas and propositions in this section.

Proof. (Theorem 2.3.1) The main problem is to check convergence of the zipping
of the pairing 'P on both indices in the formula stated in the theorem. To prove
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convergence we once again look at the tensors that are taken as input. Since P is
the pullback of the pairing, when the zip converges we immediately know that
the corresponding tensor 'dm is the multiplication tensor on the Drinfel’d dou-
ble.

By Drinfel’ds theorem, we know that the multiplication on D(U,(b™)) converges
in the h-adic completion. This implies that the } cancels. For the explicit proof
we refer to [23] for example, and we invite the reader to check this for them-
selves. The observation is that the antipode plays an essential role in canceling
the factors of } by introducing a minus sign.

We are looking for a similar fact here. A straightforward way out of this situation
is to calculate the explicit form of the input of the pairing in the tensor formal-
ism, and check the i-dependence, to make sure that the exponents in both inputs
are not proportional to 1. We do not need to calculate this explicitly. We apply a
similar tactic as the previous proposition. Let us consider the term

(taAi{l,Z} //taA§2,3} //tgf)’) (tbA]{*L*z} //tbA{_722,73})

in the construction of dm. We observe that the exponentials taA, thA and 'S
do not have a factor of / in the exponential apart from the terms involving
more than one “unstarred” variable. These are zipped on more than once in
the three-way zip with the pairing, resulting in the appropriate factors of 1.
The essential observation here is that we never encounter a term like X;X; in
the exponent. By applying the zipping formula we see that the resulting terms
<taA;.{1’2} // taAéz’?’} // tg3) (tbA]‘.{fl’fz} // tbA{_722,73}> also do not have a factor of
h in the exponentials. We provided the explicit form of the tensors corresponding
to the (co)multiplication, antipode, pairing and the (inverse) R-matrix by calcu-
lations in Mathematica in appendix A.1. We also proved that these tensors corre-
spond to the pullback under O. This finishes the proof of the main theorem. [

As a corollary of the main theorem we obtain the multiplication relations of
U, (sl5) stated at the end of the first chapter. These relations are obtained in the
Mathematica implementation by explicitly zipping 'dm to generators. See the
appendix for details.

Conclusion

We defined and proved the convergence of a formalism that implements Feyn-
mans trick. In other words, following [36], we calculated the commutator be-
tween exponentials in an indirect way using the zipping theorem. This formal-
ism gives a correspondence between exponentials in the ring of formal power
series and the Hopf algebra maps. The zipping theorem enables us to implement
the quasitriangular Hopf algebra U,(sl§) in an efficient way. We proved that
that the given tensors correspond under to the multiplication maps in U, (b*),
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the pairing P and the R-matrix and its inverse. We proved furthermore that the
quantum double U, (sl§) can be constructed using only these maps. We noted
that one should be careful when working with the pairing in the tensor formal-
ism, as this can lead to divergence. When one restricts to zipping P on one index
with any other tensor however, we proved that we are safe. When the pairing is
zipped to on both indices one has to check convergence explicitly.

A way to circumvent this problem is by defining the pairing P indirectly by solv-
ing a differential equation. See [36] for the argument. We noted however that
we still need to prove convergence of the zip function on single index zipping
of P. The observation that P zipped on both indices with R gives a divergence
means also that it is not directly possible to generalize the zipping formula to the
zipping of quadratic exponentials. It might be possible to find such a formula for
a subspace of these exponentials, but this is subject to future research.

A particular case of cubic zipping that is used in this chapter is the so called
three-stage zip. By splitting the zipping of the variables X and Y the zipping of
Z into two different stages, we managed to prove convergence for the zipping
of certain exponentials associated to the (co)multiplication and antipode in the
Hopf algebra U, (sl5). In particular the cubic terms xyZ and XYz required a spe-
cial choice of the variables on which was to be zipped. The main reason for the
convergence of the three-stage zip on these terms is the fact that X and Y do not
occur together in one term in R and P. In other words, no mixing occurs. It is in-
teresting to see if we can define a specific subclass of tensors for which the three
stage zip converges, or in general understand the zipping of cubic terms better.
It is possible that the cubic terms can be put in the perturbation P of a tensor in
the case of certain solvable or nilpotent Lie algebras. A particular example of this
is of course the factor of €, which is a way to construct a nilpotent subalgebra.
There might by a way to be able to zip cubic terms with losing slightly less infor-
mation by introducing another such factor. In particular this will be helpful for
reducing the computation time, but also for theoretical purposes it is valuable to
understand the cubic terms.
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3. A polynomial time s/3-knot invariant

Introduction

In this chapter we explain how to turn the quasi-triangular Hopf algebra U, (sI5)
constructed in the first chapter into a knot invariant. We conclude with the proof
that the constructed knot invariant can be calculated in polynomial time using
the tensor formalism. The factorization of the knot invariant in Alexander poly-
nomials in zeroth order of epsilon is proven.

For the general form of the invariant in the sl; case we refer to [35]. For U,(sl5),
it remains an important open question if we can find a general expression for the
knot invariant. This means that one extracts the invariant part of the output of
the calculation of the knot invariant. This greatly reduces the length of the poly-
nomial for a knot K. This in turn will enable us to beter recognize the structure
of the knot invariant. Another important factor is the potential reduction of the
calculation time.

3.1. Knots diagrams and the Reidemeister theorem

We define the knot diagrams and we consider the usual embedddings of a knot
K in R®. We restrict ourselves to the class of framed knots. For an unframed
knot, one can always choose it to have writhe 0 and rotation number 0. If we use
this normalization it is possible to choose a canonical snarl diagram, as defined
in [35]. In this section we use the concept of framed knots, which enables us to
define the rotation number. A knot diagram in our convention is an rv-tangle
diagram in the language of [36]. We state the definition of (framed) knots.

Definition 3.1.1. A knot K is an equivalence class of a continuous (C*) embedding of
i: S' — R3. The equivalence class on the space of continuous embeddings is defined by
isotopies in R>.

This definition uses C*-embeddings to exclude unrealistic posibilities such as
wild knots from the space of knots. We will not go into details, see for example
[4]. A knot is usually defined to be a piecewise linear embedding of the circle.
This provides a way to formalize operations on knot diagrams on an elementary
level. We skip this step and refer to [4] for an elementary treatment of the subject.
Let I = [0,1] the unit interval. Instead of the embedding of S!, one can embed
S! x Iinto R3. Note that it is not essential to take the interval I as [0,1]. Instead,
one could also take this interval to be infinitesimally small. We wil consider I to
be infinitesimally small, say I = [0, 6], for § > 0.
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Definition 3.1.2. A framed knot K is an equivalence class of a continuous embedding of
i: S x I — R3. The equivalence class on the space of continuous embeddings is defined
by isotopies in IR3.

Let us define the framing of a framed knot.

Definition 3.1.3. (Framing) Let K be a framed knot with boundary components K*.
The framing of K is defined as the linking number of the curves K=.

If one considers embeddings of S! (or S! x I) with an orientation along S!, one
obtains an oriented knot. In this chapter we use framed oriented knots.

Definition 3.1.4. Let | = {1,--- ,n} be a finite discrete index set, and fix 2n distinct
points x;,y; € R>. A link is the equivalence class under isotopies of a continuous em-
bedding of the disjoint union ¢ : Wiejl; — R3 such that x; = ¢(0) € ¢((0,1];) and
yi = ¢(1) € ¢([0,1]y).

Two knots or links K and K’ are called isotopic if there exists a smooth family of
homeomorphisms /; : R® — R® for ¢ € [0, 1] such that hy is the identity on K and
hi1(K) =K'

The space of tangles will be most important in our discussion in this chapter, and
is closely related to the concept of long knots. The following definition is taken
from [25].

Definition 3.1.5. (Tangle) An (m,n)-tangle is a compact 1-manifold properly embed-
ded in R x R x I such that the boundary of the embedded 1-manifold is a set of m disinct
points in {0} x R x {0} and a set of n disinct points in {0} x R x {1}. To (m,n)-
tangles are said to be isotopic if there is an isotopy between the tangles that fixes the
boundary points. A framed tangle is a tangle with a framing on each component, idem
for an oriented tangle. A long knot is a (1,1) tangle, where we exclude closed compo-
nents.

A knot can be obtained from a long knot by closing its endpoints. Conversely, we
can obtain a long knot from a knot by cutting S! to obtain the interval I. This is
independend from the cutting point of the knot. A knot invariant is an invariant
if and only if it is an invariant of long knots, and the two invariants coincide
when the knot is cut, or the long knot is closed respectively. See [18], for the
context of classical knots, as we consider here.

More generally, it is not true that the closure of an (m,m) tangle without loops
is in one to one correspondence with the links of m components. There are n!
options to close an (n,n)-tangle. This is the reason that it is usually easier to
construct a knot invariant than a link invariant. In this chapter we construct
an invariant of framed oriented long knots. See also paragraph X.5 of [17], or
chapter 3 of [25] for more information.

Definition 3.1.6. A pre-knot diagram is defined to be a finite oriented four-valent graph
where each vertex is denoted as an over-crossing or an under crossing respectively. A
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3.1. Knots diagrams and the Reidemeister theorem

XK

(a) under- (b) over-
crossing crossing

Figure 3.1.: The possible crossings in a knot, up to rotation.

\ ,}\9 L \\
Elole Q” <\“K/>\

Figure 3.2.: The Reidemeister moves for a framed knot. From left to right the
Reidemeister I, IT and III move.

labeling of a vertex as an over- and undercrossing is a labeling of the vertex with a £1
and the labeling of two opposite opposite edges ending at the vertex as the underpass.
The remaining two edges are labeled as the overpass. We refer to two edges labeled as an
over- or underpass as on the same strand, or as a strand.

See figure 3.1 for the notation of an over and under-crossing.

The space of pre-knot diagrams will be subject to an equivalence relation. Two
pre-knot diagrams are equivalent if they can be obtained from each other by
applying a finite number of Reidemeister moves. The Reidemeister moves are
depicted in figure 3.2. We are using framed knots in our theory, so the Reide-
meister I move is different from the usual Reidemeister I move, in order to keep
the rotation-number of the knot-diagram constant. We refer to the usual (un-
framed) RI move as the Reidemeister I’ move. This move is depicted in figure
3.3.

Definition 3.1.7. (knot diagrams) A knot diagram is defined as the equivalence class of
a labeled pre-knot diagram under the Reidemeister moves. With labeled we mean each
edge is IN-labeled. The number IN of an edge E is referred to as the rotation number of E.

There is a similar definition of tangle diagrams, but we consider tangles without
framing, so there is no rotation number indicated on the strands. We fix the
ending and starting points in R? as the projections of x;,y; € R3. Two distinct
vertices in tangle diagrams are required to have a distinct height. The height of a
vertex is defined through the second projection 7t : R> — R. This will be implicit
in our definition of tangle and knot diagrams. One can allways present a knot or
tangle in this way, see for example [17].

Definition 3.1.8. (tangle diagrams) A tangle diagram is defined as the equivalence class
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Chapter 3. A polynomial time slz-knot invariant

of a pre-knot diagram under the Reidemeister moves, where the Reidemeister I move is
replaced by the Reidemeister I" move.

\ /_>'<,_> /
O T

Figure 3.3.: The Reidemeister move I

Given a framed knot K, we consider its projection on R?>. We assume that the
knot is embedded in such a way that no two crossings align with respect to the
projection. The result can be presented as a knot diagram. For clarity, I is taken
to be infinitesimally small. In this case, we denote the framing of the knot as an
integer on the edges of the knot diagram of K, as the rotation number.

On the other hand, it is clear that a knot diagram F can be turned into a three
dimensional framed knot K(F). Given a knot diagram, we wish to prove two
knot diagrams are equivalent if and only if the corresponding knots are equiva-
lent. The Reidemeister theorem asserts this fact. A proof can be found in [25] for
example. As a result of this theorem, we can work with knot diagrams instead
of knots.

The same conventions hold in the case of a tangle, except that tangles do not
have a framing, and hence there is no need to label the edges.

Theorem 3.1.1. Two knot or tangle diagrams F and F’ are equivalent if and only if the
knots (or tangles) corresponding to F and F’ are equivalent under isotopies.

Let us be more clear about the about applying the Reidemeister moves to a knot
(or tangle) diagram. Any knot diagram can be obtained from elementary tan-
ngle diagrams. These elementary diagrams are shown in figure 3.4. The fifth
and sixth diagrams are refered to as caps, and the last two diagrams in figure
3.4 are referred to as cups. Since we consider finite diagrams, we can put an or-

LAY NANY Y

Figure 3.4.: The elementary tangles

dening on the nontrivial elementary tangle diagrams where a knot diagram K is
constructed from. Concretely, we draw the diagrams in a way such that the cross-
ings, cups and caps are ordered vertically. This way of drawing a knot diagram
is referred to as a sliced knot diagram. See chapter 3 of [25]. On sliced diagrams,
the Reidemeister moves take a slightly different form. These moves are referred
to as the Turaev moves for oriented sliced diagrams, and are depicted in figure
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3.1. Knots diagrams and the Reidemeister theorem

Figure 3.5.: The Turaev moves for a framed knot. The removal of trivial knots
from the diagram is excluded from the pictures, but is formally a
Turaev move. The last move is replaced by the Reidemeister I move
in case of a non-framed knot. The Turaev moves are numbered in left
to right, downward orderas T —1,---T —7.

3.5. We have the following theorem for sliced diagrams. For the proof we refer
to [25].

Theorem 3.1.2. The knots are isotopic if and only if their corresponding two oriented
sliced knot diagrams are equivalent under the Turaev moves.

We wish to label the crossings in a knot-diagram with i € {£1}. Let K be an
oriented framed long knot, so the diagram of K is oriented as a graph, where the
crossings are seen as vertices. To determine the sign of the crossing, we use the
convention of the left hand rule.

We draw a crossing as having a ninety degree angles between both strands. Place
the left hand thumb on the upper strand in the direction of the orientation, with
the palm of the hand pointed towards the paper. Align the index finger along
the lower strand of the crossing. If the index finger points in the direction of the
oriented strand, the crossing has sign 41, if it points in the opposite direction, it
has sign —1. Crossings with sign +1 are called over-crossings, —1 crossings are
refered to as under crossings. We can define the following.

Definition 3.1.9. (Writhe) We define the writhe of an oriented knot diagram of a knot
K as the difference between the number of over-crossings and the number of under-
crossings. We denote the writhe of K by writhe(K).

Lemma 3.1.1. writhe(K) is well-defined for a framed knot.

To prove this, we look at the admissable moves on knot diagrams, the Reide-
meister moves. We observe that the number of positive and negative crossings is
conserved under these moves for a framed knot.
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Chapter 3. A polynomial time slz-knot invariant

Definition 3.1.10. (mutants) Consider a knot diagram K, and consider a disc D in K
such that there are exactly four edges crossing the boundary of the disc. Let T be the tangle
in the disc D. Consider the operations S on the disc D where the four crossings (equally
spaced on the circle, w.l.o.g.) are mapped to each other. By applying these operations to
T we obtain a different tangle T'. A mutant of the knot K is a knot K" where the tangle T
is replaced by a tangle T" obtained from T by any of the operations S on D. We call K" a
mutation of K.

Of course it does not matter which definition one takes in rotating the crossing.
We are now in a position to define a knot invariant for a knot K.

Definition 3.1.11. (knot invariant) Let S be a set. Let Z(K) € S be an expression in S
corresponding to any knot K. Then Z(K) is called a knot invariant if for any two isotopic
knots Kand K, Z(K) = Z(K’).

Note that for a framed knot K, writhe(K) is a knot invariant where S = Z. Let us
now define the invariant corresponding to U, (sl3). Defining a knot invariant is
equivalent to defining how to compute it. For the following considerations, we
follow chapter 4 of [25]. For a more concise treatment of knot invariants coming
from ribbon Hopf algebras we refer to this source, although there exist many
other books that treat the subject as well.

A quasitriangular ribbon Hopf algebra A is equipped with an R-matrix R, its
inverse R 1, multiplication m, comultiplication A, unit 1 and counit . Note that
e is different from the parameter € introduced in chapter 1. As introduced in
chapter 1, we have u = ¥ S(R®)RM, and v = S(u). Since A is a ribbon Hopf
algebra we have the square root v of the element uv which is called the ribbon
element.

We introduce the graphical calculus for a ribbon Hopf algebra A. Consider a
framed oriented tangle diagram T. The graphical calculus is a way to denote
operations in A. For a rigorous introduction of the graphical calculus, see [25].
The idea is to label the strands of T expressions in A®S where each strand stands
for a tensor factor. The concatination of strands as taking the product of the
boxed quantities in the order of the orientation of the strand.

The labels of the strands are written in coupons. An (1, m)-coupon (or box) is a
rectangle with n inputs and m outputs, and corresponds to a map ALmy
A®{Lm} - Multiplication with an element w € A®S is considered as a map
A®S — A®S, and is denoted as a coupon with |S| in- and outputs. A strand with
no coupon (or box) is the unit of A.

Definition 3.1.12. An expression in the graphical calculus of A is a collection of (n, n)-
coupons, where n may be any positive integer, where the in- and outputs of the coupon
are connected by elementary oriented framed tangle diagrams. A graphical expression
with n strands is referred to as an n-ribbon graph.

Note that a ribbon graph without coupons is an oriented framed tangle diagram.
An example is depicted in figure 3.6. The graphical calculus is a way to denote
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3.1. Knots diagrams and the Reidemeister theorem

Figure 3.7.: Graphical Yang-Baxter equation.

multiplication on A®S. We denote the R-matrix of A as a crossing with sign +1
for R*! respectively. By the Reidemeister theorem, this is in fact well defined on
the equivalence classes of tangle diagrams, since R obeys the Yang-Baxter equa-
tion. For clarity, we may add a coupon containing R*!, to indicate multiplication
with the R-matrix.

The graphical language is useful to prove properties of A. One can for example
prove nicely that the Drinfel’d double is a quasi-triangular Hopf algebra. See
chapter 4.1 in [25]. We state the Yang-Baxter equation in this graphical language.
For more elaborate examples we refer to [25]. We may define operations on a
ribbon graph. We only state the most important operations. Obviously one may
multiply two n-ribbon graphs by putting the two diagrams together. To avoid
confusion, we label each of the 2n strands with a different integer, to indicate
which entries are multiplied. The multiplication of two n-ribbon graphs is re-
ferred to as the concatination of the strands.

The comultiplication in the Hopf algebra Aisamap A: A — A ® A. Its opera-
tion on an unlabeled strand, or a strand labeled with a grouplike element such as
uv~1 is doubling the strand. By the quasitriangularity axioms, when a crossing
occurs, doubling a strand results in two of the same crossings. This follows from
AR id(R) = R13Ros.

Since the antipode id ® S inverts the R-matrix, we may define the action of S on a
strand as inverting the orientation of a strand. This is also well defined when the
strands are labeled with grouplike elements in A. Later in this chapter we will
use these operations to prove some properties of the knot invariant we are about
to define. We also note that it is customary in Hopf theory to denote calculations
in a graphical way, using these oberations. See for example [10].
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Figure 3.8.: Graphical depiction of Z 4 for a ribbon Hopf algebra A.

Let us consider a ribbon Hopf algebra A and a framed sliced oriented tangle T.
We will define the tangle invariant Z 4 (K) for any ribbon Hopf algebra A. This
yields a knot invariant. This is independent from the cutting of the knot, as the
knot consists of one strand. In general, this invariant is ill defined on links, as
it depends on the cutting point on the embedding of the copies of S'. We will
not attempt to construct a link invariant, but this an interesting topic for future
research.

Let S be the set labeling the strands of T. We define

Za : {tangle diagrams} /~ — A®®

as the map that takes tangle diagrams and assigns R to a positive crossing and
R~! to a negative crossing. To a left oriented cap we assign the element C =
uv~1, and to the left oriented cup we assign multiplication with C = vu~!, the
product of the ribbon element v with the inverse of u. The right oriented cup and
cap are left as they are, as are the single strands. Multiplication now takes place
according to the graphical calculus by concatinating (or glueing) the elementary
diagrams to each other in the order as they appeared in T. In algebraic terms,
when two strands are concatinated, multiplication takes place on the same copy
of A labeled according to the label of the strand in K. For clarity we may assign
seperate labels to each side of two concatinated strands. Z,4 is depicted in figure
3.8.

When considering a map F : {tangle diagrams}/~ — {tangle diagrams} /~
of tangle diagrams in |S| strands, we introduce Z4(F) : A®S — A®S as the
corresponding map on Hopf algebras. Z4(F)(Za(T)) == Zs(F(T)). By the Rei-
demeister theorem (or Turaev’s theorem, depending on the diagrams under con-
sideration) this is well defined. We note furthermore that we may identify Z(T)
with tZ4(T) for any tangle T using the map O, since Z4(T) € A®°. In what fol-
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3.1. Knots diagrams and the Reidemeister theorem

lows, we leave the O out of the notation.

Usually, for a closed knot diagram we have to take the quotient of A®° with
the space of commutators in A. So for a framed oriented sliced knot diagram
K, Zs(K) € A/]. Here ] = {xy — yx|x,y € A} is the vector space of all com-
mutators in A. We quotient out to | since there is a choice how to map each
elementary tangle to an element in A. In other words, if Z4(K) were not com-
mutative, this construction would be ill-defined. For a proof of this fact we refer
to [25], paragraph 4.2. However, we do not close the knot so we are safe.

Theorem 3.1.3. Let K be a framed oriented sliced knot, and let A be a ribbon Hopf
algebra. Then Z4(K) € A is an isotopy invariant of the knot K. We refer to this invariant
as the universal A invariant of K, and write it as Z 5(K).

We are now in a position to define the knot invariant for the case A = U,(sl5).

Definition 3.1.13. Let K be a sliced framed oriented knot diagram. We define Z§(K) =
Zy,(si5) (K).

We now state the main theorem of this section.

Theorem 3.1.4. For any framed oriented long knot K, Z§(K) is invariant under the
isotopies of K.

Proof. To prove this theorem, it is enough to prove invariance of Z§(K) under the
Turaev moves, by the above discussion. These moves are checked explicitly in
Mathematica, and we refer to the implementation in appendix A.1.

We state the appropriate equations here for clarity. The equations are matched
to the diagrams in figure 3.5 by reading from left to right. We use the notation
introduced in earlier chapters, where R;; is the R-matrix R = }° RM ® R® acting
on the i-th and j-th tensor factor by 1® --- @ RV ®1®--- @ R@ @ ... @ 1.
Similarly we write C; for a copy of C on the i-th tensor factor (‘strand’). We

define K = ROCRW and € = RPcrRWY.
R12R13R23 = RsR13R12,
RVCRLRY =G,
R12R12 =1 =R1aRa,
C1CaR12C1Co = Ry,

CcC =1,
CC=1,
KK =1=KK.

The second equality can also be written as Eﬁ”éﬂzucﬁf) = 1® 1, which is

equal to the corresponding Turaev move by the using graphical calculus. The
fourth identity can be rewritten in the same way.
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Chapter 3. A polynomial time slz-knot invariant

In appendix A.1 we number the Turaev movesas T —1,--- ,T — 7, as indicated
in the picture. The equations checked there are the exact same equations written
down in this proof. Since we already know that the Hopf algebra structure of
U, (sl§) is implemented in Mathematica in the program s/3invariant.nb as shown
in appendix A.1, we can directly conclude that Z§(K) is indeed invariant under
the Turaev moves. This ends the proof. O

3.2. Computing the Alexander polynomial

In this section, the Seifert surface S(K) of a knot diagram K is constructed, and
we compute its Alexander polynomial. The Alexander polynomial is computed
from the band representation of the Seifert surface. The idea is that we compute
the linking matrix of the generators of the fundamental group of S(K). For de-
tails we refer to [25] and [4]. We will follow page 17-22 of [25] and [4], page 107.
Let K be a framed oriented knot. To construct its Seifert surface, consider the
planar representation of K. In the knot diagram, we replace a crossing with two
untangled strands in the same direction. The result is a disjoint union of S. We
consider the discs in IR*> bound by these discs.

When a disc within a disc occurs, we elevate one of the two discs in the direction
perpendicular to the disc. Finally, connect the discs according to the crossings
present in the diagram of K. For a positive crossing we attach a band with a
positive half twist, and for a negative crossing in the diagram of K we attach the
discs with a negative half twist. The surface we obtain is the Seifert surface S(K)
of K.

Note that any Seifert surface can be expressed in a band form. This is called the

=28 (@ -

Figure 3.9.: The Seifert surface for the Trefoil knot.

band representation of the Seifert surface, see figure 3.10. This fact is proven by
considering one of the discs as the base of the band representation, and contract-
ing other discs to bands. Twists occuring will be denoted as curls in the band
representation. For a proof of this elementary fact, see [4], page 105.

We observe that the boundary of the Seifert surfact of a knot K is equal to K.
The boundary of the bands of the Seifert surface consists of two strands that are
linked together with linking number +1 or -1, depending on the convention cho-
sen. Moreover, the two strands always have opposite orientation, if we compare
them to the orientation of the band. This motivates the definition of the map B
in the next section.
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Figure 3.10.: Band representation for the Trefoil knot.

To calculate the Alexander polynomial Ak of K, consider the fundamental group
71 (S) of S = S(K). We wish to compute the linking number of the generators of
7(S). For simplicity we chose a basebpoint p of 77'(S). Since S(K) is connected
the final result is independent of the coice of p. Let p be in the ‘base’ of S(K), i.e.
the rectengular part on which the bands are attached. Consider an orientation of
each generator a; € 71!(S). Here, i runs through the number of bands attached to
the base. For the Trefoil for example, i = 1, 2.

Considering this orientation, we define the numbers /;; and r;;. Consider two
bands B; and B; with orientation a;,4; € 7! (S), respectively. When B; over-
crosses B; from left to right, define I;; = 1, else [;; = 0. Similarly, when B; over-
crosses B; from right to left, define r;; = 1. Then define the Seifert matrix V' of
S by Vij = l;j — r;;. Finally, we define the Alexander polynomial Ak(t) in the
indeterminate t as det(t~1/2VT — t1/2V/). This normalization forces Ak (t) to be
symmetric under t — 1. See [4] for details.

We calculate the Alexander polynomial for the Trefoil knot with the loops in fig-
ure 3.10. We see that a; overcrosses a, from right to left, a; overcrosses a; (itself)
from right to left and similarly, a, overcorsses itself from right to left. We have

Vi1 = Vo = Vi = =1 and V51 = 0. Computing Alexander’s polynomial we get

_ _t_1/2 0 t1/2 t1/2
det((t 1/2VT — tl/ZV) = det( (—tl/z —tl/z) + < 0 t1/2))

=t 11+t

3.3. Multiplying R-matrices

When € = 0, we know that the invariant connected to Uj(slz) is the Alexan-
der polynomial [35]. The Uy (sl5;) algebra relations are identical to the algebra
in [35], so we can connect the Uy (sl§) invariant to the Alexander polynomial as
well. Note that for ¢ = 0, and a knot K, Zg(K) is a polynomial in the variables
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S, T,ST [35].

Let K be a knot, and let G be the tangle associated to the band representation
of the Seifert surface. The tangle G is obtained from the Seifert surface, discon-
necting the bands from the central disc, and labeling them with indices 1---2g,

where g is the genus of K. Let us define the operation B = H Bf‘ 'j, as the op-

eration that turns G into the knot K. We can describe this operatlon as doubling
the strands 1, - - - ,2g, reversing the orientation on one of the strands and then
connecting the strands as they fit on the Seifert-surface to match the orientation
of K. We have the following lemma.

Lemma 3.3.1. *Z§(B)¥; = 'A[" AR /15,1 /1S 0 /)y 1 1 -

Proof. The proof follows from considering the action of A, S and m on tangle
diagrams. The action of multiplication on two given strands, as we already saw,
is that of concatinating the two strands. The comultiplication doubles a given
strand without changing its orientation. The antipode reverses the orientation of
a given strand. From the definition of a quasitriangular Hopf algebra, we know
that R € U, (sl§) ® Uy(sl§) obeys the Reidemeister moves. On knot diagrams we
define the action of multiplication with the R-matrix as a crossing.

Now we easily see that the action of B is equivalent to

tAI212 s/t e t t, k
All i A5 S /M 00

in U, (sl§). This finishes the proof. O

In what follows, we denote tZ$(B)k. as tBk for short, sometimes leaving out the

ij
indices. We write down the following exphcit form of thf]-. For convenience, a*

and b* have been put to zero. We will see that they do not play a role. We used
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Mathematica to calculate tBX

jjr see the appendix for more information.

—2n h h * Yk —2h h h % VK
b= 7 N n
—2h h h * Vo —2h h f * Vo
B2 (AY —BY) v Y*: | B (—Ap +BY) vt Y
+ -
h h
Ohm—h (AR B\ ok k7
A'B" (AL - BY) Xyt 2
h
BB (A - ABY) xiyZt AT (A - BY) Xy
h h
AB" (1- A}BY) 2527
h
—2hmp—2h h hph ¥ 4k 7% —2hmp —2h h hph * ok 7%
AB (- AT+ ALBL) xtiytiZ +Ak B, " (—A¥ + AIB!) x*jy*,Z i
h h
ACB (~ABL A+ BY) xyZY  AB" (14 ARBR) 212
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zkx iyt +

_|_

— Y ATBEx 2+ Xe AB Py 2+

Note that in particular we get
Z9(K) = Z3(G) //*B.

Now we can prove the following. The proof is based on the proof in [36]. We
use the term mixing, which refers to the U, (sl5;) subalgebras of U, (sl5) that are
invariant under certain algebra maps. This translates to the tensor-formalism
by looking at specific terms in the tensors that are used. To see this, we invite
the reader to inspect the zipping-formula closely. In particular, we observe that
terms like ¢**" leave the Uy (sl3 ;) subalgebras invariant.

Theorem 3.3.1. Let K be an oriented framed long knot. The knot invariant Z3(K) is
the product of inverse of the Alexander polynomial of K in the variables S, T and ST.

Proof. Let K be a knot, and let G be the tangle associated to the band representa-
tion of S(K). We have Z§(K) = Z§(G) //*B. We first prove that the invariant fac-
torizes into sl parts by showing that the only terms that contribute to Z3(G) //*B
are the terms of the form E[0, ull, 1], where u = x,y, z, and U stands for the dual
(capital) generator.

By symmetry of the x, y, z terms occurring in 'R and *dm and the absence of mix-
ing terms like x;Y; in the non-perturbative part of the exponentials we will obtain
the factorization. Note that we connect all strands of G to one strand, since K is
a knot. Observe furthermore that we only need to consider Z{(G) // th, j» the case
where G consists of two strands. By induction to the number of strands the the-
orem will follow for general G, with the same argument.

The second part is proving that each of the sl, terms zips to the Alexander poly-
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nomial. This is done in a similar fashion, and is done explicitly in [36]. We will
not do this here explicitly, but refer to [36] for the argument.

We start with rewriting the multiplication tensor 'dm and R-matrices with (note
€ =0)s =2A —Band t = 2B — A, where we observe thatin 'R and ‘R~ =R
the s and t only occur with an a or a b in front. Note that since the antipode S
is the convolution inverse of A, and S(p) = S(p) = —p for p an element of the
Cartan subalgebra, thf f has no terms that consist only of elements of the Cartan-

subalgebra. This follows from lemma 3.3.1, since S and S are applied on the same
index of A. After multiplication the indices are changed to k, and the a and b drop
out. Observe that Z(G) only consists of products of R-matrices and trivial curls
(which are central elements).

In 'R, we see that s and ¢ only occur in combination with 2 and b respectively.
Hence we can set s, and t, for n = i, j to zero in th’]-. That is, we put s and t with

the’incoming’ indices i and j in *Bf ; to zero. This is equivalent to setting S and
T to 1, since s and t will never occur from zipping a and b. This is because the
a and b dependence in the Cartan part of the exponential *Z§=0(B)¥ ; drops out.

Since we take € = 0, we can put a* and b* to zero in Z3(G) (which follows from
the format of tdm).

Now we look at the non-square terms in the R-matrices and the multiplication
tensor 'dm. A calculation in Mathematica shows that before the zipping the only
cubic terms are (looking at tdmif, ;and R

XiYiz;, (3.1)
j
XiYize — Yexi Z7 + Xy Z; - (3.2)

3.2 arises in 'dm, and 3.1 arrises in *R~1. If we look at the last two terms 3.2, we
see that by symmetry of x and y occurring (and X and Y terms, as a result, since
these only occur together) in 'R and 'R ~! the two will cancel out. Here we use
that in the end we are left with one strand, i.e. one index. The first term of 3.2
and 3.1 are similar in the sense that after zipping, x;'y;zx — XiYjz.

From 'dm we can see that the cubic terms are unchanged by zipping with !B,
since X* only occurs with an x in 'B, and similarly for Y. The only way these
terms could contribute is after zipping of *ZJ (B)f< j (without loss of generality we
can take i’ =i and j = ).

In 'B, *R and *R 1, z* does not occur in combination with x and y. We once
again remind the reader that € = 0 for the duration of this proof, so we only
consider the non-perturbative part of the exponentials. Similarly, x; does not
occur in combination with y;. So there is no mixing of the variables. The reader
is encuraged to check this for themselves using the Mathematica implementation
in the appendix. This finishes the proof. ]

The following theorem uses a rough upper bound for the number of variables
zipped. The proof follows [35] by looking the sizes of the matrices in the zipping

97



3.3. Multiplying R-matrices

theorem. We are using the three-stage zip and the zippinng theorem on 8 gener-
ators in total, in the most optimal implementation of U, (sl§). The computational
complexity of calculating an m by m determinant is assumed to be m>. Invert-
ing the matrix is assumed to be of complexity m?>. Differentiating a monomial of
degree m times is of complexity ¢” for some constant c. So differentiating a poly-
nomial of m’ terms will take O(m’) computations. There exist faster algorithms,
but we calculate an upper-bound. It is possible to generalize this argument to
the case ek = 0, see [36] for an argument in the sl case.

Theorem 3.3.2. The calculation of Z5(K) for a knot K with n crossings has a computa-
tional complexity of at most O(n'0).

Proof. Let K be a knot with n crossings. We will assume that it has rotation-
number 0 and writhe 0. This can be done by inserting curls after the last crossing,
which does not infect the final result, apart from a normalization of the Alexan-
der polynomial. Note that conjugating an element x in the Hopf algebra U, (sl5)
with C equals S?(x). So putting the curls that occur in K after the final crossing
will only change the normalization with factors of 4. Moreover, the curls cancel
out. Note that S? multiplies the non-Cartan generators with a factor of g, so this
operation does not contribute to the upper bound. So we can assume that the
knot invariant is calculated by zipping over and under crossings and multiplica-
tion tensors.

We assume that the zipping is done at once for K, meaning there are n crossings
where each crossing has 2 indices to be concatinated. This follows from the rela-
tion between edges and vertices in any 4-valent graph. Furthermore we observe
that s and t are central, so we can take them to be coefficients, and leave them
out of the zipping. As a consequence we drop the index from ¢;,s; and s7, t7.
The first step is zipping a,a*,b*,b. Consider a tensor of the form E = ¢lQP,
where L stands for the Cartan-part, Q stands for rest of terms in the e-independent
part. As we put s and f constant, the only contribution to L comes from *dm, and
is of the form uu*. This is a diagonal matrix, so differentiating and computing
the inverse and determinant takes O(n?) operations. The contraction of the per-
turbation and differentiating takes O(n) operations, as in each monomial of P,
a,b have a degree of at most 2, and replacement of a with d,- also takes O(n)
computations.

The contraction of {X, Y, y*, x*} takes the most computations, as it has the most
generators that need to be contracted. Note that it is of the same complexity as
zipping Z,z*. Only the prefactor differs because of the number of variables and
the number of monomials in P with the corresponding variables differ. Zipping
E to the variables {X, Y, x*, y*} computes the matrix g of Q by differentiating Q
with 9y~ and taking its inverse. This takes O(n*) computations, as there are ~ n
generators in Q.

To compute the contraction of P, we count the number of monomials in P with
the variables X, Y,y and x. Observe that there are 32n variables (counting the
indices and the fact that we are always contracting two different indices) and
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the degree of each monomial is 8 at most, looking at the multiplication tensor in
the quantum double. Now we get a total of at most (32’?8) < (321 + 8)® mono-
mials. Differentiating each monomial is of a constant complexity. However, for
contracting P we first need to substitute the variables by applying the zipping
theorem. As this is a vector of length 167 at worst, this takes O(n?) operations
at worst, since the substitution could depend on ~ n variables. So we find that
zipping to {X, Y, x*,y*} takes O(n'?) operations at most.

We observe that applying the zipping theorem multiple times is more efficient
than performing the zip for all variables at once (in the absence of cubic terms of
course). In particular since this reduces the size of the matrices we work with. In
this case we have 3 implementations of the zipping theorem, the contribution of
each we can add together. This finishes the proof. O

Although in theory our computation is very efficient in terms of the number of
crossings, the biggest problem occurs when scaling the sl3 invariant to an sly
invariant. The number of variables m per strand (currently 8) will increase with
m = (N —1)(N + 1), if we count the number of generators in sly, compensat-
ing for the central elements in the algebra, of which there are N — 1. Since we
have to compute the inverse of a matrix of size m times m by differentiating, this
takes ~ m* operations. Adding in the substitution in the zipping theorem which
takes m? operations we get a complexity of O(m!?) = O(N?) for an sly invari-
ant where all the variables are zipped in one implementation (in the assumed
absence of troublesome terms), and O(N??) if the zips are splitted into N dif-
ferent zips (one zip for each group of generators associated to a root-vector of a
particular length < N). So in terms of the number of crossings, the sl invariant
is less efficient as say the sl, invariant, although not much less. But the problem
arises from the constant prefactor.

In the case of sl3 the prefactor arising from the number of generators in the
{X,Y,y*, x*}-zip can be estimated to be approximately ~ 8(2-16)'°. The fac-
tor of 4 arises from the number of operations it takes to differentiate each term
(with a degree of at most 2 in each generator). The factor 2 - 16 counts the num-
ber of generators. If we start with {X, Y, y, x} and the dual variables, we should
add in a factor of 4 since we are always contracting 2 indices, and each crossing
has two strands. For a small number of crossings we see that the contribution
from the number of generators per crossing is very big in comparison to the con-
tribution of 1! from the number of crossings. In total, we see that for sl,, this
prefactor will be roughly ~ 41%m!°. In particular the factor of 4 contributes a lot
when m is small.

In conclusion, although the sl3 invariant computes as n1 where n is the number
of crossings, in practice, for n = 6, the prefactor will contribute a term n'3, mak-
ing the effective complexity roughly O(1n%?) for small knots up to 6 crossings. For
knots up to 10 crossings this reduces to O(10%Y). For bigger knots, the contribu-
tion will be smaller still. Only for knots of ~ 40 crossings, n'? ~ 8(32)1.

We see that for the knots we are interested in the contribution of the number of
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generators and the size of 'dm is more important than the number of crossings
in the knots. This makes the computations very slow. It is therefore necessary
to look at a way to reduce the number of monomials in the perturbation P by
for example introducing a second parameter v* = 0 on the b~ side, to make the
algebra nilpotent. 7y is equivalent to ¢, it is only present on the “other side” of the
algerba U, (sl5).

The effect will be that we compute terms of the expansion of Z2 in terms of v,
which are finite type invariants, which are less powerfull than the Z§ invari-
ant. It may be expected however, that when computed to a sufficient order of
7, these invariants will give enough information to for example prove that Z§
distinguishes mutants.

Conclusion

Starting with the definition of knots, knots diagrams and the Alexander polyno-
mial we have proven that the invariant Z} factorizes into Alexander polynomials.
We used the Seifert surface to prove this fact. An algebraic implementation of the
Seifert surface was used to compute the knot invariant. This was used, together
with the action of the (co)multiplication and antipode on knot diagrams.

The main result of this chapter is the theorem that we can compute Zf in polyno-
mial time, and in fact in O(nlo) computations, where n is the number of crossings
in a given knot. The proof of this theorem was by considering the explicit zip-
ping of R-matrices corresponding to a knot diagram of a knot K. We concluded
wiith the observation that although this might seem a small cost, in practice this
cost is much larger. This is mainly because of the number of generators of s/3.
For a general sl, invariant this complexity will increase with O(n!%), where 1 is
the rank of the algebra U, (sl,).

More research is needed to bring this cost down. In particular the zipping of
R-matrices could possibly be improved upon, to bring down the O(n!°) even
further. It seems unlikely that the cost of the number of generators can be re-
duced significantly, but this is the most important contribution to the complexity
of computing Z5. In comparison, for a knot of 6 crossings, this factor contributs
roughly as O(n?"). This is much larger than the O(n!?) contribution of the zip-
ping of the R-matrices. One way to reduce this cost greatly is by cutting off the
multiplication in the quantum double. This can be done by introducing a second
parameter dual to y for example. Although in practice this reduces the strength
of the knot invariant greatly, this seems to be the best bet to compute Zj, for big-
ger knots.

Another possibility would be to reduce the number of variables involved in the
zipping of the R-matrices. One way to do this, is to isolate the actual s/3 invariant
from the knot-polynomial Z§(K) of a knot K. For example, in the sl, case ane can
isolate this part from a long expression in a central element. It is concievable that
we can drop some zips by smartly zipping the R-matrices of a knot diagram and
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still obtain the ‘new part’ of the s/3 invariant. To obtain an idea of the general
form of Z§(K) we need more data of course, but we can also look at the invari-
ance of parts of Z§(K) under the q-Weyl group.

Another way to improve the computation speed would be to implement the com-
putation of the determinants involved in the zipping of knots in C++ for exam-
ple, or another efficient computer language. Since Mathematica is Python-based
it may not be as efficient in computing and handling large expressions. Imple-
menting the computation in C++ would also enable one to use larger computers
for the computation of the knot diagrams.
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Introduction

In this chapter we repeat the construction of U, (sl§) of the first chapter for sl,,
for general n. In the first section we quantize the upper Borel subalgebra of s,
and we construct a basis by using the Weyl-group action. The Weyl group is
constructed for U, (sl§) in section 4.2, after which we continue with constructing
the Weyl group for U, (sly;). We assume that € is invertible in this chapter. We
calculate the algebra relations up to any order of € by taking the power series
expansion of an expression.

In this chapter we assume that € is invertible, as in the non-invertible, ek =0 case
the construction of the quantum Weyl group breaks down. It is not possible to
construct the usual highest weight representations when e* = 0. Taking € invert-
ible provides an isomorphism between slj; and sl,,. The usual automorphisms T;
that originate from the Weyl group are not algebra automorphisms when € is not
invertible. When working over R(e), the maps T; turn out to be algebra auto-
morphisms.

In the last section we prove that one can define algebra maps T; from the auto-
morphisms T; for non-invertible e. However, the T; can only be applied to simple
generators times a factor of €. This is familiar from chapter one, where we saw a
similar term €Z in the commutator.

A different set of symmetries has been found by Bar-Natan and Van der Veen
when €f = 0, or more generally for R[[¢]]. The set of symmetries for non-
invertible € is isomorphic to the dihedral group D, for slj;. See [37] for details.

It remains to be seen if this means that the invariants arising are stronger, as they
might have less symmetry, or if this means there are more hidden symmetries
that arise in the invariants. This symmetries only differs for n > 4, as D3 = Ss.
If € € R][e]], it has been noted that a quotient of an affine quantum group is
obtained, see [37] and [5]. The Dynkin diagrams of affine Lie algebras have a
circular form, so there are different symmetries than in the sl,, case. When k=0
in an affine Lie algebra in some sense, these symmetries survive. See [37] and [5]
for details.

The contents of this chapter is as follows. In the first section we provide the
general slj; Lie algebra relations and its quantization U, (sl;) for invertible €. The
construction of the U, (sly;) is briefly covered. In the second section we cover
the finite dimensional representation theory for U,(sl5) for invertible €, and an
algebra automorphism is constructed. In the third section we proceed with the
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U, (sly;) case in the same way, following [29]. In the last section we scetch the
connection between the Hopf algebras covered in this and the first chapter.

4.1. Quantizing a Lie subalgebra of s/,

Let sI¢ be a Lie bialgebra over R () for an indeterminate € with generators H;*, X",
i =1---n,Cartan-matrix ajj and the relations (we introduce € in the b~ side mul-
tiplication, as opposed to chapter 1)

[H, X;'] = fea;X;", [H, H ] = 0,[H, X'] = £a; X", (4.1)
_ 1 1 —a .
(X5, X7 = =56 (H + e Hy), (ady ) (X7) =0, (i #j),  (42)
§(X") =eX;" ® Hf —eH;” ® X[, (4.3)
§(X;)=X; ®@H —H ®X;, (4.4)
S(HF) =0. (4.5)
In our convention, a;; = 2, a;; = —1if i = j £ 1 and else zero. We consider the

double of the Lie algebra of upper triangular matrices b™ C gl,, so we will as-
sume that the Cartan matrix has rank n. As noted in chapter 1, the Cartan matrix
is well defined, even though the above algebra is not semisimple.

We observe furthermore that H" generate the Cartan subalgebra b, the biggest
commutative subalgebra of g (which is the case for semisimple Lie algebra’s).
Define adx(Y) = [X, Y] as the adjoint action of g on itself. Putting € = 1 and di-
viding out to H;” — H = 0 yields the usual s, Lie bialgebra. In this chapter we
consider the generalization of the classical double quasitriangular Lie bialgebra
calculated in chapter 1, although with € present in the b~ lower Borel subalgebra
commutation relations.

The simple roots &; : h* — R(€) are defined as the linear maps uci(H].*') = ajj,
and similarly for h~ C b, with an additional factor of €. Since € is invertible, the
root space for h* are isomorphic and we may talk about the rootspace of sIf. As
we are concerned with the quantization of b™ in this section, we will use roots on
h*.

The fundamental reflections s; : h — b are defined by s;(h) = h — a;(h)H;" for
h € . The Weyl group of g is the subgroup of GL(h) generated by s1,- - - ,5,_1.
The Lie algebra slj, is finite dimensional, so there is a unique element w of max-
imal length N. Write w = s;, - - - s;,,. Define the positive roots as the set AT =
{ai,, siy(@iy), -+, si, (- - - siy_, (i) }. Note that each element occurs exactly once.
Although sl;; is not semisimple, the Killing form is nondegenerate on the sub-
algebras h* C b generated by H;*. The reason is that the upper an lower Borel
subalgebras b* are embedded in sl,,. So the Cartan matrix and the root system
corresponding to the b* algebra is well defined.

For a Lie algebra g over a field, one can extend the fundamental reflections to
act on g instead of ) C g, see [6], in which case we call the automorphism corre-
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sponding to s; T;. In the case of slj,, we have the following definition of T;. This
definition is equivalent to the automorphisms T; of sl,, as one can check in for
example [6], or [14].

Proposition 4.1.1. Let sl§, be the Lie algebra structure as specified above. The T; defined
in the following way

Ti(X;) = =X, T,(H") = e 'H; —e 'ayH;, Ti(H;) = eH;" — ea;H;", (4.6)
Ti(X;) = (—ay)! Hady ) ™"(X),i # ] (4.7)
Ti(X;) = (=1)%(—ay)! ™ (adx-) " (X[),i # J. (4.8)

are Lie algebra automorphisms of slf,.

Proof. The only relations that change in the presence of € are the commutator
[Hi’,in] = —euinjjE and [X;", X;'] = —3(H;" + e 'H; ). Applying T; and T; on
both sides of the first identity, we observe that T respects the relation. Here we
make use of the Jacobi-identity to calculate commutators of commutators.

For the second identity, we observe that the right-hand side is invariant (modulo
a global minus sign) under T; if i = j and if j # i we gain a term —al‘j(H]-Jr +
e_lH]._) = H]-+ + e_lH]f, as a;j = —1if i # j. On the left hand side we ob-
tain the term [[X]Jr, X, (X, X]’]], which we can evaluate with applying the Ja-
cobi identity twice. Note that —a; = 1, so T;(X;) = [X; ,X]f]. We see that
15,54, [, X 1) = —[1X7, X7, X7, X7 = ([, X0, X7], X7, We only
need to prove that [X", [X;", [X;", X;]]] yields a term H," + e 'H ~,and similarly
for the term i ¢+ j. Using the commutator [X*, X~] we obtain —[[X", [X;", X, X]ﬂ —
[[[X].+, X].—],xz.—],xj] = %(—[[X]._, Hf + e—lH;],X]ﬂ + [[H].+ + e_lH]._,XZ._],X;“]).
With [H 1+ , X]i] = +a l-]-in and the relations for H;", this yields the required result.
This proves the theorem. O

These automorphisms obey the braid group relations T;T;T; = T;T;T; for all i # j.

Proposition 4.1.2. Let the T; be as defined above, and let a;; be the Cartan matrix cor-
responding to sl,. Then T;T;T; = T, T;T; for all i # j.

Proof. As ajj only takes nonzero values if i and j differ at most 1, we only need to
check two non-trivial identities. The case for Hli can be reduced to the sl case
by counting the factors of € on both sides and realizing T; is linear in €. We note
that independently of the index i, T; switches the sign of H*. This is in fact the
only thing that is different from s/, for the Cartan subalgebra, together with € we
need to keep track of.

The case for XijE is the same for both b*, and can be reduced to the usual case
by realizing that H* acts in the same way as e "' H~. We only need to count the
factors of € that are introduced when checking the Weyl condition on X]jE This is
left as an exercise, as it follows by a straightforward calculation. O
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We continue with constructing the quantization of the above sl Lie bialgebra.
We first quantize the upper triangular matrices Lie subalgebra b of sI§. Consider
the subalgebra b* generated by the simple root vectors X" and H;" for all i =
1---n —1. remember that the cobracket on b™ is multiplied with e:

5(X;") = eX; AHJ. (4.9)

The cobracket on the other positive root vectors is implicitly defined. To quan-
tize a Lie bialgebra, only the cobracket on the simple generators are needed. We
follow the usual construction of U, (sl3) here to obtain a quantization of b™*. See
chapter 6 and 8 of [6].

We are looking for a Hopf algebra with classical limit 4.9, so it is easiest to start
with quantizing the cobracket. Firstly, let us take the trivial Hopf algebra struc-
ture on the universal enveloping algebra U(b™"), as introduced earlier. §(H;") = 0
yields

Ay(H) =H®1+1®H;.

Continueing with X", we introduce a grading deg on b*. Here deg(H;") = 0 and
X" = 1. In order to obtain a graded algebra, we need the (co)multiplication to
preserve the grading, or at least not lowering the degree in the case of general
positive roots. To this end, let us follow [6] and guess

A(X) = X @ et I @ X (4.10)

where j1, v € R(€)][[h]], so that eH; and e"Hi' are grouplike, meaning A, (eMHY =
eMH @ hiH Multiplying X~ with e /" thus yields

M(XH) = X @t 1o X,

so we can take v = 0 without loss of generality. We can use that the classical limit
of Ap(X;") equals 4.9, so we can take y = € to obtain

A(XH) = XF @t 110X, (4.11)

Aj, extends to an algebra homomorphism on the subalgebra generated by H;" and
X, since the H;" has trivial comultiplication. Consequently, the multiplication
(bracket) can be left unchanged. Hence we can directly write down the antipode
for H;" and X;" from the calculated comultiplication.

Su(H) = —H",S(X;") = —X; e el (4.12)

We extend A, to an algebra homomorphism on U, (b™1). Consider the classical

105



4.1. Quantizing a Lie subalgebra of sl,,

Serre-relations for i # j, that hold for the Lie algebra:

1*11,']'

(@) (%0 = L (04 G ) =0 @)
k=0

For sly, 1 — a;; = 2 for all the nontrivial relations (the case i = j yields a vanish-
ing commutator for XlJr and X;’). Note that in the case of sl3, with the definition

[x,y] =zand X] =x, X; =y, gives [z,x] = 0.

In order for Aj, to be an algebra homomorphism, 4.13 needs to be altered. Re-
peating the calculation we did in chapter 1, the correct form of the quantum
Serre relations is obtained by replacing the binomial coefficients with quantum
binomial coefficients, with g = ¢" = 1 + eh. For the calculation in the case of sl,,,
see chapter 6 of [6]. In the presence of € this calculation is the same.

1-a; -
0[] et <o (@14

One of the ingredients for the proof that with these relations A;, does indeed
become an algebra homomorphism is the commutation relation

eehHi* X;LgfehH? _ eehain]{r.

Together with the trivial counit, we have constructed the Hopf algebra structure
on U, (b™).
q

Theorem 4.1.1. Uy, (b™) is a quantization of the Lie bialgebra b™, for invertible and
non-invertible €. Moreover, there exists an algebra isomorphism U, (b™) = U(b™)[[h]]
in both cases.

Proof. In order to prove that we have indeed found the quantization of b™, ob-
serve that multiplication and comultiplication in Uy (b") have b* as classical
limit. It is also necessary to find a R(¢€)[[}]]-module isomorphism between U, (b™)
and U(b™)[[h]]. Since € is invertible, this is equivalent to the sl,, case. This equiv-
alence yields an R(e)[[h]]-module isomorphism. Even stronger, we obtain an
algebra isomorphism between Uy, (b") and U (b™)[[h]], as there exists an algebra
isomorphism between Uy, (sl,) and U(sl,)[[h]] by the rigidity theorem. See [6],
chapter 6.1.

The case where € is not invertible can be obtained from the first case by expand-
ing the isomorphism in terms of €. The fact that this can be done follows because
the € only occurs together with the / in the algebra relations on the b™ side in the
g-Serre relations. This implies that the isomorphism Uy, (b™) = U(b™)[[h]] is also
defined over R[[¢, h]]. Moreover, € is only present in g and ¢ is invertible up to
any order of €X. We note that after expansion of g there is no factor of e ! present
in the relations of Uy, (b™).
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To prove that in finite order of € we still have isomorphisms of R|[e|/ (ek )[[h]]-
modules, note that injectivity follows from comparing the terms in each order of
€. The surjectivity follows in the same way. That we obtain an isomorphism of
algebras follows from linearity of the isomorphism over €. So we have a quanti-
zation of the Lie bialgebra b™. O

We are now in a position to construct a PBW basis for Uj,(b™), while also calcu-
lating the dual of Uj,(b™), the partial R-matrices and the comultiplication on the
PBW basis. These calculations are necessary in order to be able to write an algo-
ritm that can calculate the algebra relations for general n. We could start with the
dual basis to the simple roots X;". Using these generators and the action of the
Weyl group, we can calculate the necessary partial R-matrices. Using those (and
their inverse), we can calculate the coproduct on basis elements associated with
any positive root. Then we can find the (co)multiplication properties of the dual
basis using the Hopf algebra pairing.

The action of the braid group can be defined straightforwardly on the algebra
U,(n*) spanned by X;" in U, (b™) through the Hopf algebra right-adjoint action
Ad

Ady(y) = Y xq)yS(x2))

of Uy, and U,’, the opposite coalgebra. Define Ti(X].*) = Ad (x)) (X;) and
T;(X") = Ad“P . (X;"). As we will see, for invertible € it is possible to define
] —(X,.*)( N

T; on Uy(sly;). This will be covered in the next sections. For now we restrict
ourselves to U, (n"). Note that we define the T; slightly different here than we
will do in the next section. We leave out the central factor for cosmetic reasons.
We note that this has no effect on the expression for A(Xj) we state here.

This action can be used to write down explicit generators of U, (b™) for invertible
€. If B =sisi,---si (a;) € AT, define Xﬁi =T - TiH(Xif). Assuming that
there are no redundant reflections in the notation for g, this is well defined, and
yields generators X}Bi for each positive root. The fact that this is well defined
follows from the Weyl property for T;. For the proof that T; satisfy the Weyl
property we refer to the next two sections.

Denote XﬁjE for the generators of U, (sl,;) corresponding to the root 8, and denote

Hi* for the generators of the quantized Cartan subalgebra of U,(sl§), for i =
1,---n. Let w be the longest root with decomposition w = s;, - - - 5;,. We denote
the positive roots by B, -- Bn. Corresponding to this decomposition we have
the non-simple generators X;, wherei=1,--- ,N

Monomials in X; and HE form a basis of U,(b™). The folowing theorem is a
generalization of the theorem we saw in chapter 1, however the proof is easier
since we start with an algebra over R(e).

Theorem 4.1.2. Let XE and HE be the generators corresponding to the positive roots
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N
B. Then the monomials ] (X;)m’ ‘

n
i=1 i=

l(Hf)”i form a basis of U, (b™).

Proof. From the classical PBW theorem it follows that ordered monomials in ngt

constitute a linear basis of U, (sly;). Now we use the fact that € is invertible, so
that we have an isomorphism between U,(sl5;) and U(sly,)[[}]], by the rigidity
theorem. O

This finishes the construction of U, (b™). To obtain U,(slf;) we need to calculate
the QUE-dual of U,(b*), which we refer to as U, (b~ ), consistent with chapter
1. Then one can form the quantum double of U, (b*) to form U, (sl§). We skip
this construction and state the relations of U, (sl};). The proof that these relations
form a Hopf algebra can be found in many sources, since € is invertible.

Notice that Uy, (b™) is also well defined over R|[[¢, h]] by expanding g. Over this
ring, it is possible to divide out to € for some k. When we take the quantum
double of Uy (b"), we can no longer work over R[[e]], due to the factor q—irl

present. In the last section of this chapter we cover this issue.

Theorem 4.1.3. Let € be invertible, and let q = ¢". The following relations

(X; H | =ea;X;, X, H] = —a; X}, [X; H] = a;X;, [X, H ] = —eayX]
+ _elyg- k=1— if
R e Y Yk [l ay vk by Ik
(X, X ="—"T——0; Y, (-1 (X)X (X;m) 0
is T q_q,l ijr k ; j ; =
k=0 72

A(le) — le ®ehH;/2 _i_eth;/Z ® XZ*’A(X;F) — Xl+ ®e€hHi+/2 _’_efehHi*/Z ® Xl+
AHF) = H* @ 1+10@ HY, S(X;7) = —e"X,8(X) = —e "X, S(H;) = —H;

define an Hopf algebra U, (sl;) over R(€), which is the quantization of the Lie bialgebra
sl. The monomials

N n n N
TG TIE)PTTH)PTT(XE)™
i=1 i=1 i=1 i=

form a basis of qu(sl,‘j).

In general, the action of the Braid group is not compatible with the coproduct
when extended to the full Hopf algebra. This means that one has to compute
the action of the braid group, before one can compute the coproduct. There is
another option. One can express the coproduct of the generators in terms of the
R-matrices corresponding to the U, (sl,); subalgebras of U, (sl;). We refer these
R-matrices as partial R-matrices.

Let A = a;; be the Cartan matrix. Define {; = Z(A‘l)z-]-H i For simple roots «;,

i =1,---,n—1, associated with (dual) generators XIJr ,X; and Hf ,Ci, one has
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the following pairing (g = ehy:
((HD) () (6 (X)) = Goarbih™ ol 1], (4.15)

Where [s]; = % and [n],! = [n]4[n — 1], - - - [1]; is the quantum factorial. We
wish to calculate the pairing on general monomials in X*); and HJ*, gj- To this

end, define R, ; as

5 > WX (H ) @ (6)F (X))
Rui= ), kI, '
k=0,1=0 q

(4.16)

By the quantum double construction, this is the R-matrix for Uy (sl) for the i-
th simple root. Using the braid group action, one can define the R-matrix for
general positive root B, = T;, (- - - T;,—1(«;,)) as follows. We note that the algebra
automorphisms T; can be defined on Uj(sl;). The definition can be found in
section 4.3.

Rup, = (Tyy -~ T, , @ Ty -~ T ) (Ryi), (4.17)
Ri<p, = Rup, . Rup,- (4.18)

We have the following proposition, see section 4.3 for the proof.

Proposition 4.1.3. (Comultiplication) For any p € A™,

M(X]) =Ry L (Xf @ e + 10 X)) Ry, <p.
Note that if B = Y; kia;, then Hg = Y; d;k;H;, where d; = 1 are the Cartan integers,
where we restrict ourselves to sl,,.

So it is possible to quantize the algebra on the simple generators and know the
comultiplications on the non-simple generators. We turn the PBW basis consist-
ing of monomials in generators into a dual basis to obtain the R-matrix. To this
end, we define the following generators. Let A = 4;; be the Cartan matrix. Re-
member J; = Y (A™1);H - The following pairing for monomials in the dual
generators can be calculated by using the comultiplication.

Proposition 4.1.4.
N n n N ,

(CIH™ TTEDP TTE)P TIC)™) = TT8mgm T T8pp TTH™" P T Tlmilg.
i=1 i=1 i=1 i=1

where [n]; = %.

The proof makes use of proposition 8.3.7 in [6].
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4.2. Representation theory of U, (sl5)

Proof. Let us scetch the proof of the general case. The proof is by induction,
using proposition 8.3.7 in [6] that is proven in section 4.2.1. We apply A to the
non-capital side, after which we only need to count the tensor-products that pair
non-zero. Note that our algebra has the same pairing as the U, (b*) dual pairing
in [6], except for the factor of €, and the correction with g — g~1.
In particular, since {; are dual to H;", the basis of U,(b~) corresponds to the
{T, P‘ﬁf} basis in [6]. The different conventions for the comultiplication of Xl+
in [6] result in a factor of ql/ 2t (t—1) present in 8.3.7 in [6] that is absent here.
Looking at our R;, in particular the prefactor R,, present in the sum, we get the
required result.

L]

Now this construction is finished, we can write down the universal R-matrix
corresponding to U,(sl;). The hardest part is calculating the PBW basis and
the corresponding dual, and the multiplication relations between the generators.
The quantum Serre relations together with the braid group action provide the
multiplication relations between the PBW generators.

4.2. Representation theory of U,(sl5)

Let us proceed with calculating the comultiplication of the quantized Lie bialge-
bra U, (sl5). Before we are able to properly calculate the comultiplication (in such
a way that is generalizable, anyway), we need to look at the finite dimensional
representations of U, (sl5). In this section, we may write U, (sly;), Uy(sly,) or Hy ¢
for the quantization of slj,.

First we note that if €> = 0, it is impossible to define the g-Weyl group in the way
it is usually done, since the finite dimensional highest weight representations
cannot be constructed. A solution to this problem is to work over the field R(e),
and prove afterwards that all components of the desired identity lie in R[[¢]], so
that we can divide out to (e?). For the remainder of this section we will work
over the field R(e)[[H]].

If e = 1, and one divides out to H" — H™~ one gets U,(sl,). This algebra is ob-
tained by taking the quantum double of the upper triangular matrix subalgebra,
with the Hopf structure calculated earlier. For a description of the representa-
tions of the regular U (sly) see for example [6]. We will take the op quantum
double construction in this section, instead of the cop construction.

We consider the algebra U,(sl§), also denoted as Hp. for short, generated by
X*,X~,H" and H™ and the following relations. Note that we introduce € in the
b* multiplication relations. Moreover, our conventions match the conventions

used in [29]. In particular note the factor of qul in the commutator between
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Chapter 4. Towards constructing U, (sl;,)

X*.
[X7,H ] =2X", [Xt,H"] = —2eX", [X " ,H"]| =2eX, [Xt,H ]| = —2X*
(4.19)
H- _ ,—e'H*
X x =
q9—4

Note that we scaled the generators X~ by a factor of ﬁ with respect to the

algebra in the first chapter. Substituting H™ = 2A — Band H~ = a yields the
familiar algebra structure, where B is left out when considering only the U, (sl5)
subalgebra. We take g = e~"¢, which will be useful when constructing the uni-
versal R-matrix. This is a different from the previous section. Note that € is
invertible.

Multiplying X~ with g — g~ ! yields an algebra over R|[€]] (formally we also have
the parameter , so it is an algebra over R[[¢, h]]). The final results of the con-
struction are valid for non-invertible € over the ring R[[¢]], as discussed in the
last section of this chapter.

We can take H* = e 'H" instead of H'. In this case, we have an algebra ho-
momorphism with the algebra in [29], by sending our H™ to Reshetikhin’s H, (as
well as sending our H™ to H) and substituting q% for g. Uy (sl5) agrees with ex-
ample 3.2.1 in [23] in the same way. The comultiplication, antipode and R-matrix
are given by the following formulas.

A(X7) = X~ @M /2 4 ometH /2@ X= AN(XT) = XT e /2 4 oM 2 x+
(4.20)
A(H®) = HE ©14+1@ HY,§(XT) = —¢'X",5(X") = —""X", S(H) = —H.

We also introduce the g-commutator as
[A,B], = qAB — q ' AB. (4.21)

In constructing the representations of U, (sl5), we will follow [29] (see Reshetikhin’s
website for this paper). Denote the representation map by 7 : Hye — End(V),
where V is the 2-dimensional vector space generated by {e% €1 }. We obtain
the following actions, denoted in matrix notation, where we use the order of the
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4.2. Representation theory of U, (sl5)

basis as indicated.

0 ] (4.22)

|
—~
e
+
S—
|
—m o or oo o’
O =
_

To prove this is a representation, one needs to prove that the maps given above
are indeed algebra homomorphisms. This is a straightforward exercise. Remem-
ber that we take g = e~ In the case of j = 1 we obtain the simplest case of [29],
if we identify H* and H™.

Following [29], we can denote the representation in the following more general

way. For this section, we use the convention that [n]q = qq:;,l . Furthermore,

nl [n]q!
[k] = Wtik]q!’ as usual.
q

For a finite dimensional module V7 of dimension 2j + 1 we get, where j is a posi-
tive integer or half integer and V/ is generated by the basis vectors e},, —j < m <
J

7ol Uy (sl§) — End(V7) (4.23)
70 (XH) (eh) = ([j = mglj + m+1]y)"%], (4.24)
70 (X7) (eh) = ([ +mlglj — m + 1))V %], _, (4.25)
7 (HY)(e)) = 2meel, (4.26)
7 (H)(e)) = 2mel,. (4.27)

Again, checking that this yields a representation is straightforwardly writing out
the relations 4.19. So 4.19 becomes a quasitriangular Hopf algebra with the fol-
lowing R-matrix. See [30], or [6], if you use the variables E = e"H"/2X and
F = e~"H"/2Y, and identify e "'H* with H~. Note that the factor 1/2 in the
exponential comes from the pairing between H* and H™. Ultimately this is due
to a different definition of the comultiplication, which is used in calculating the
pairing between monomials. We know that the R-matrix is defined as the uni-
versal R-matrix of the Drinfel’d double. Hence it must be of the form ) e, ® f*,
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Chapter 4. Towards constructing U, (sl;,)

where e and f are dual bases. We obtain after a correction with a factor %

R =exp(hH" @ H™/2) Y Ry(h) (" /2XT)" @ (e /2X~)"  (4.28)
ql/Zn(nfl)(l _ qu)n

Ry(h) = ;!

An application of the Hopf algebra automorphism S @ S to the R-matrix shows
that we obtain (note the plus instead of the minus sign in R,):

R =Y Ru(h)(e " /2XT)" @ (e"H/2X )" exp(hH* @ H™/2).  (4.29)

5 1/2n(n+1) (1 __ ;,—2\n
Ro(h) = 1 [n% )" (4.30)

An essential element we can construct with the R-matrix is the ribbon element,
or more importantly, the inverse of the ribbon element. See [23] for the precise
definition. In particular we can write v = pu for the ribbon element, where
u=YRASRW), and p?> = ulv, u! = YRASZ(RM), v = S(u). Using
these identities, we get

pfl _ pa(H'+eH™)
The square root w of the inverse ribbon element is not a part of the algebra Hy .
since it cannot be expressed in terms of X*. Writing these out in matrix notation
makes clear that 71(X*) don’t generate the entire End(V7/), except in the case of
j= % and j = 1, the standard representation of Hy .. We will write out the action
of w in the representations V’ later in this section, but it will be the case that w
sends a basis vector e}, to the vector ¢_,,. In matrix notation this is the element
with only non-zero entries on the ‘mirrored” diagonal. Since this is true for any
m, 7t(w) cannot be written as a linear combination of (H*)? and (X*)%, a and
b positive integers, as any combination of these will yield non-zero off-diagonal
entries.

This means that we have to add w to the Hopf algebra. To prove that this makes
sense, we can use proposition 6.3.12 and example 6.3.13 of [23]. It turns out
that we obtain another Hopf algebra, called the quantum Weyl group ([6]), and
denoted by H, ., in some sense the completion of H;¢[30]. Proposition 6.3.12 can
be used for U, (sl;) as well, but one obtains a Weyl element associated with the
longest root in sl,, so this lemma will be of less use there.

Proposition 4.2.1. Define the algebra automorphism T by
T(HY) = —eH ,T(eH ) = —H", T(X*) = —g*!XT,

and let v be the inverse of the Ribbon element. Then these data together with the
quasitriangular structure R on Hy define the Hopf algebra H; ., which is generated by
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4.2. Representation theory of U, (sl5)

Hj ¢ and w, obeying the relations
wgw ! =T(g), w* =v,Aw) = R 'wew,e(w) =1,5(w) = we? (€A +H")
Here g € Hp ¢, and € is the counit.

Before proving the proposition, let us note that if we take € = 1, and we identify
H™ with H™, taking the sl limit, the antipode agrees with [30], remembering that
we have introduced a factor of 2 in our conventions. The conventions here agree
directly with [6], however they use an asymmetric comultiplication. The expres-
sions for T can be checked in representations by explicitly taking the square root
in representations of v—!.

Proof. We check the conditions for proposition 6.3.12 in [23].

We have T? = id and T ® T(R) = Ra1, which is a consequence of the expression
for R given before, and can be checked by explicit calculation. This means that
v~ ! has to obey

v liscentral, Av™!) = (v T @v HY)RuR), T !) = v L,

The first two conditions are satisfied by definition of the ribbon element. See
prop. 2.1.8 in [23]. As noted before, v™1 = p~2u~!. Also it is useful to ob-
serve To S = S~!oT. Taking the automorphism T of this expression, we get
T(p2)T(u1) = pPT(RA(RW)) = pPROS 2(R2) = pro-T = v-1.

We have to prove that T defines an algebra map and an anti-coalgebra map, and
we have to prove that R is a 2-cocycle. The last condition follows by definition of
a quasitriangular structure, as usual. The fact that T is an algebra automorphism
is checked by checking the algebra relations, as is the case with a anti-coalgebra
map. This is a straightforward exercise and is left to the reader. This shows that
our map T and the ribbon element obey the relations of proposition 6.3.12 in [23].
As a result we obtain a Hopf algebra Hj which is generated by Hp. and w1,
which obeys the following relations

wgw ' =T(g), w? =v,Aw) = R 'w@w,e(w) =1,S(w) = wuS(w?)

We are left with the calculation of the antipode of the Weyl element.

For the calculation of the element p?> = u~'v we used the Mathematica imple-
mentation, for which we refer to the appendix. In the program we used the cop-
convention of the double construction instead of the op. Note that the antipode
S on U, (b*) provides an isomorhpism between the two double constructions.
Under this isomorphism, the R-matrix R, is taken to szl, see exercise 7.1.2 in
[23]. A simple calculation using proposition 2.1.8 in [23] shows that p is invariant
under this isomorphism.

Using similar arguments together with the general expression S(w) = wuS(w?2)
from proposition 6.3.12 in [23], we can show that in general the antipode of the
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Chapter 4. Towards constructing U, (sl;,)

Weyl group element is given by S(w) = wp~!. Observe that the w we use here
is the inverse of the w defined in [23], by definition. This ends the proof of the
proposition. [

The T defined here for sl, is not a braid group generator. However, this is not
important in the sl, case since there is only one simple root. It is possible to make
T a braid group generator in the sl,, case by performing a simple transformation
on w. For this construction we will have to do more work. .
Let us now calculate the action of the inverse ribbon element on a basis-vector ¢/,
of a module V/. We leave the representation-map 7t/ out of the notation.

v‘l(e] ) = u_lp_l ZR JS2(R (H++€H_)(e{‘n) (4.31)
=exp(hH™ H*/Z)
ZRn (h) (e—ehH’/Zx—)n((_1)2€2h€€hH+/2x+)ne—%(H++6H’) (dn)
Observe that since X™ acts as a raising operator, only the terms with 0 < n <

j — m act nonzero on e},. Hence we obtain for such an n-term in the R-matrix,
which we will sum over afterwards,

exp(hRH™H" /2)Ry(h) (e €M 12X )1 ((=1)22heH " /2X+)mec2m) (¢ ) (4.32)
= exp(hH™ H*/2)R,(h)(e ehH™ /2y~ )n(_1)2n826hn(ehe(m+1+~~'+m+n))ee(2m)(e]y'n_i_n
=exp(hH H" /2)R,(h)(—

hei((m+n)(m+n+1 m(m+1) )(eehH /2X )n —e(zm)
(-

1 ) 2n Zehn

j

Cin-+n

= exp(hH H" /2)Ry(h)
ehei((m—i-n)(m-l-n-l-l)— m(m+1))

1 ) 2n 26hn

ehe%( m(m—1)— (m+n)(m+n—1))ee(2m)e]r'n
Remember that the module V7 is generated by the highest weight vector e;:. Since
the inverse of of the ribbon element is central (see [23]), it is enough to check
equality on the highest weight vector. Then only the n = 0 term contributes, and
we get the following identity

vlel, = @i+l (4.33)

By Schur’s lemma the action of v~! is proportional to the identity. Note in partic-
ular the contribution from p~!. The following expression is a square root of v !,
and as it turns out the only one that meets the requirements of proposition 4.2.1.
It can be proven by direct calculation that it satisfies wgw ! = T(g) and w? = v.
We get the required result:

w‘le],'n _ (_1)—j+mehe(j(j+1)—m)ej

—m-

We have the following lemma.
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4.2. Representation theory of U, (sl5)

Lemma 4.2.1. Let w~! be as in proposition 4.2.1. Then the action of w~" in the highest
weight module V7 is given by

wqefi‘n _ (_1)fj+mehe(j(j+1)fm)e]'

—m:*

(4.34)

Proof. By definition, w is the non-central square root of the inverse ribbon ele-
ment v~ 1. To calculate the action of w in the representation we have to know
which square-root we have to use, given that we are working with matrices, so
there are multiple options, a priori. We claim that the square root in the repre-
sentation is uniquely determined by two equations:

wgw ™! = T(g) and w? = v.

This is proved by looking at the action of v in the representation, and is translated
into the following lemma, which will not be proven here, but can be proved
by looking at the Jordan decomposition of w(j), or by counting the degrees of
freedom, alternatively.

Lemma 4.2.2. Suppose w(j) is a 2j+1 by 2j+1 invertible matrix, and let xp(j) =
(XT) and xm(j) = 7t(X™), the action of X* in the representation VI. Let A be any
invertible element of the underlying ring. Then w(j) is uniquely defined by the following
two equations

w(j)? = Mld(j) (4.35)
w(j)ap()w(j) " = xm(j).
Here Id(j) is the 2j+1 times 2j+1 identity matrix.
Proof. O

It is clear that the scuare root w given above satisfies
wgw ™! = T(g) and w? = v.
This finishes the proof. O

We know the explicit action of w in any finite dimensional H . module, and we
can compare it with other definitions. One can check that the given square root
of the inverse ribbon element yields the correct T, as stated in proposition 4.2.1.

Usually, w™! is defined by its action on all finite representations V/ of H, ., for ex-
ample in [29] and others. This is possible if Hj ¢ is semisimple as an algebra. An
algebra is said to be semisimple if the set of elements that act as zero in every ir-
reducible representation contains only zero. We know that H; . is not semisimple
however, since e "'H" — H™ acts as zero in every representation. This element
exactly generates the ideal we need to divide out to, in order to get the U, (sl2),
which is a semisimple algebra. The non-semisimplicity implies that w is well de-
fined up to terms H™, e 1H*, which have the same action in any representation,
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Chapter 4. Towards constructing U, (sl;,)

if we would define w by its action in the representation. Of course, this is a con-
sequence of the fact that € 'HT — H™ is central in Hy.. This element will turn
out to be the term we gain in our final expression, with respect to the s, case.
The w defined here agrees, after the ‘semisimplification” of Hy ¢, with the quan-
tum Weyl element in [30], and is the inverse of the w defined in example 6.3.13
in [23], as mentioned before. This can be seen from the action of w in the repre-
sentation. Note that llq(slz) in [23] agrees with the conventions of [30].

4.3. Constructing the q-Weyl group of U, (sl;)

We proceed with constructing quantum Weyl group of U, (sly;), with Cartan ma-
trix a;; of sl,;. We follow [30]. Note that the relations here agree with [21] and [30],
when we divide out to e 'H;" — H; . Before reading this section it is advised to
study [30] in full detail, since we copy a large part of his calculations.

This algebra is non semi-simple. The Weyl group elements used in the main part
of this section come from the H . case, where we defined it to be the square root
of v~1. Later in this section we introduce w;, where w; and w; are related by a
simple transformation with g=¢ '"#"H " like the U, (sl,) case [30]. It turns out to
be the case that the algebra automorphisms obtained this way will yield a braid
group representation.

U, (sl¢) is generated by {X;", H"} and the relations

(X7, H] = a;X;, [XZ-*,H].*] = —a;eX;, [Xl.‘,H].*] = a;;eX;, [Xj,H].—] = —a; X"
(4.36)
I —bfele;r(s g k|1 —aj kvt vy l—ai—k
[Xz- /X]- ] = 1 Y Z (—1) k (Xz' ) X]‘ (Xi ) =0
q—9 k=0 7

A(Xl—) — Xl_ ®e€hHi7/2 + E_EhH;/Z ® XZ—IA(XI—F) — Xl+ ®€hHi+/2 _i_e—hH;r/Z ® Xl-‘r
AHF) =H*®1+1@H5S(X) = —"X,S(X;7) = —e "X, S(H;) = —H..

Where g = e~". Using proposition 4.2.1, we will write down the action of the
Weyl group in Uy (sly;) for each of the Hy . subalgebras. The quantum Weyl ele-
ments are defined via the Hy . submodules of the representations of U, (sly), for
each simple root a;, i = 1,-- -, rank(sl,) = n — 1 of sl,.

U, (sly)) is a quasitriangular Hopf algebra, as has been noted in the first section of
this chapter. In this section we denote the R-matrix as R, and its inverse as R .
The notation R is reserved for other purposes. The same notation will be used
for the partial R-matrices of U, (sl5).

In the notation of [30], let V* be a representation of U, (sl5). We know that v

are highest weight representations [6]. U,(sl;;) is generated by n — 1 copies of
the subalgebras H, ¢ ; corresponding to the simple roots. In each of these copies
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4.3. Constructing the q-Weyl group of Uy (sly))

we can find a corresponding Weyl element w; with proposition 4.2.1. We know
that V* factorizes into irreducable Hj .-submodules Vi. Checking this fact comes
down to checking relations on simple generators. This is equivalent to lemma 2
in [30], which proves that if V is an H; ¢ ; module X]-jE (V) is still an Hy ¢ ; submod-
ule. In general we have, for V7 irreducible H, ¢ ;-submodules for the usual half
integer values for j,

VY = P (Hom(VI, V') @ VI) = W} @ V).
j j

We define W)L Homy(VI,V}), with k = R(e). The isomorphism

f: P Hom(V, v o Vi) — v
j

is givenby (---,0,¢; ® e}, 0, -+ ) — ¢;(e),), evaluation. Since the H, . ; modules
Vi are irreducible submodules of V#, the homomorphisms ¢; € Hom(Vi, V)
are, by Schurs lemma, the identity on Vi, scaling the constant to 1 without loss
of generality.

Since U, (sly;) is generated by the H; . ; subalgebras corresponding to simple roots,
we can assume that Im(¢;) is a copy of Vi in V* as H,.;-submodule, where
i=1,---n— 1. The action of H on an element ¢ ® ¢}, is then given by H 0 ¢ ®
e, = Hf((p(e]m)) = —aij(e) 1i1 )/ 2 ((p](em) since [Hli,X]i] = :F(e)(lﬂ)/zainji,
so the submodules V/ ¢ V* are invariant under the action of Hl.i. In general,
the submodules V/ are not invariant under the action of X:. This action is more
complicated, and although it yields another H;.-submodule, it may not be the
same submodule.

Define the elements w; acting on U, (sl};) via representations by

w; = @(Iw]/) ® (w;);),

j
where [, ) is the identity on WA The (w;); are then defined via proposition

421, where (w;) j acts on the HZ,e,z submodule V/ by the action calculated in
lemma 4.2.1. Note that in the semisimple case, like in [30], this definition would
uniquely define w;. In the non-semisimple case we need to require that the Weyl
property holds for conjugation with w;. Then the w; become well-defined on the
Cartan subalgebra.

Let us calculate zt)l'H]ﬁ()l.’1 from the definition of w;, by comparing the action on
irreducable modules. By the previous discussion we can check this for the factor-
ization of V* into H, . ;-submodules, the i corresponding to the simple roots. We

denote the vectors as e}, omitting the ¢. In this case, let e{ﬁ € V" be any vector in
any irreducible H, ¢ j-submodule V" C V* of highest weight n. Let i # j (in the
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case i = j we get the action from proposition 4.2.1), then H; acts only nonzero if
i=j+1.

wiH]*wi_l(efn) = w1H+( ") = agemwi(e” ) = ajemey = —emey,.
Note that a;; = —1. On the other hand we have
(e)~= 1$1)/2(H] — a;iH;") (efh) = (—aj;i + a;ja;;)eme)), = —mee},.

From this we can conclude that w; H+ Lacts as ()~ (*ﬁl)/z(Hi — a;;H;") in
H; . i-modules. From proposition 4.2. 1 we obtain the T; (H ) relatlons Since the
algebra is not semisimple, we can always add a term H = eleiJ“ — H;” (and
idem for H;) and get the same action in representations.

However, 1f we take the T;(H;) relations together with the requirement that T;T;T; =
T;T;T; we get the followmg relations. The proof is by straightforwardly checkmg
the Weyl—relation. We leave this to the reader. The requirement that the Weyl-
property holds could be seen as a definition of the action of w; on Hj, since it
uniquely determines this action.

Lemma 4.3.1.

Ty(H') = eH; —eazH; , Ti(eH; ) = H —a;H}, Ti(X;") = —¢'X7. (437)

For sly, a;j = 2ifi = j,a;; = —1ifi = j £ 1 and zero else. By proposition 4.2.1 we
now have

Ti(e) = wiew; ", A(w;) = R(i) " w; @ w;, (4.38)

where R (i) is the partial R-matrix on the i-th Hjc-subalgebra defined by 4.28.
Remember that the adjoint action of U, (sl5) on itself is given by

= 23(1)f5<€ 2))

We denote the adjoint action for short as o, in multiplicative notation. Using this
definition, we calculate wz-X].jE w; 1

Let us define two sets of generators that make the comultiplication anti-symmetric,
and correspond to the two ways to write the R-matrix in the H; . case. Note that
our definitions agree with the definitions of [30].

-1+ —_H~ — -1+ — -
Ei — qe H; /ZXi-i-,Fi =q H; /ZXi /Kl+ — qe H; /2/K1‘ — qu /2/
= —e 1H* T = —
Ei=q ¢ B 72X F =g 72X,

Via the adjoint action we have an action of the g-Weyl element on these genera-
tors. We now have the following lemmas, the proof of which are equivalent to
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4.3. Constructing the q-Weyl group of Uy (sly))

the proofs given in [30], except for a factor of two in the definitions of H + resp.
H in [30], after reducing the Cartan subalgebra. The reason we cannot directly
follow Reshetikhin and Kirrilov’s proof is that we have to introduce the +/-back
into the equations, so we have to check all the relations manually. It is insightful
to study this proof, and the proof of proposition 2.2.1 in chapter 4 of [21], which
are roughly the same. The proof of lemma 4.3.2 is by explicit calculation of the
adjoint action of the Weyl group element.

Lemma 4.3.2.

w; ofj = wifj(K;r)”ifwi’l (4.39)

w;oFj = S(wi_l)(Ki_)_”if'FjS(wi).
Proof. We will only scetch the proof here, since this proof is exactly the same as
the proof of lemma 1 in [30], where we are keeping track of H* and the different
factors 2. Note that we start with the expression 4.29 and let R~! = S ® id(R).
Then we use R = S ® S(R) to rewrite the adjoint action of w; on E; and F;.
After using the commutation relations, the final result is obtained by using the
fact that u=! = Y R,S*(Rq), and uhu~! = S?(h) for any h € H — 2,¢, so that
u commutes with K. Note that w™! = (up)~/2 = (up)'w = u~'S(w). This
ends the proof. O

Lemma 4.3.3. The sets Vi; = {E;, - - - ,E;aif oEj}and Vij = {Fj,--- ,F;u’j o F;} are
irreducible Hy ¢ j-modules of weight —aj;.

Proof. Lemma 4.3.3 can be concluded directly from the algebra relations. Since
we used the same conventions as [30], the relations are exactly the same. An
explicit isomorphism between both sets and V*i is given by the maps

(4.40)

1

PE o F) =

p(Ej o Ej) =cj;

Note that because e 'H+ — H™ acts as zero in V/, we can make multiple choices

for Vj; and V; that are isomorphic to Vi. We will parametrize these choices by

the two parameters ci in the future, where cz-jjE stands for a central factor. O

Lemma 4.3.4.
E? OE]‘ = (Kf)fn(K;j*l[X;r,- - [Xf, X;r]quij/z]qa,-j/ﬂl . ']q(ﬂij+2n)/2—1 (4.41)
S(Fin ° Fj) = _q(inil)[xii" T [X;’X;]q”fj/z]q”ij/z+l o ']q(”i‘””)/Z*l(K;)n(K'i)

i ]
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Proof. The relations follow by induction to 7 from the algebra relations. We write
down the case for n = 1 here by using the definition of the adjoint action.

EioE; = EE; — e M EpefE, (4.42)
EE qE E _ ql/Z(K+) (K]})fqul/Z(qfl/ZXlﬂ»X;» _q1/2X1+XZ+)
— (K KX X,

The case for higher n follows in the same fashion. The second formula follows in
the same way, except we take the antipode on both sides afterwards. This proves
the lemma. O

We can use the lemmas to calculate the algebra automorphisms associated with
the quantum Weyl group explicitly. To this end let us introduce

w; = wiq—e*IHi*Hf/él.
Lemma 4.3.5.
Aw;) = R(i)"'w; @@, (4.43)
ﬁ(l) _ q (H ®H' —H'@H, ) /4 ZR *hHiJr/ZX,JF)” Q (eehHi’/ZXf)nl (4‘44)
n(n+1) (1 _ 4—2\n
Ry (h) = 7" (1 —g7?) . (4.45)
[n]v/!

Proof. This can be calculated by straightforward computation from proposition

4.2.1, where it is important to remember that g=¢ 'H"H /4 is not group-like, but

that a correction appears when taking the coproduct. ]

Note from the previous section that the partial R-matrix
R(i) = e N (H @H'-H'®H;)/4 (1 — qu)nEn £n
(i) =q° SR TREROAY Tl © 5

Since the E, F have an antisymmetric coproduct, it is this form in which we will
later recognize the algebra we are using, only with X, Y and Z instead of E; and
lowercase letters instead of F;. Denote algebra automorphisms of U,(sly;) as

T;(h) = @, 'hw;, Vh € Uy(slf). (4.46)

We have the following formula, which is a direct consequence of the above lemma.
(Denote R (i) = R;).

= =-1
AT(X)) = RiT; @ Ti(A(X))R;

The following theorem holds true and is proven by combining the above lem-
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mas, together with the action of w; in the irreducible modules. Note that the T;
are denoted in the opposite way as T in proposition 4.2.1. Observe that in the
U, (sly) case, T; are the quantization of the classical Weyl group action [6] in the
sense that the action of T; corresponds to the action of the simple reflections s;
corresponding to the simple roots «;. Looking at the first order in & we obtain the
same fact. One can compare the T; with the action of the simple reflections given
in the first section and convince oneself of this fact.

Theorem 4.3.1. The T; as defined above are well-defined up to central factors c;; depend-
ing on Ki Moreover, the T; are U, (sly,) algebra automorphisms, given by

=
=

=
Il

K (K) ™%, Ti(K; ) = K (K) ™, (4.47)
LX) = =X; (K7) 7K LT ) = — (K (KD
T ) = (=1 =gl (KK (D) E))™,

X ,[Xf,Xf]ﬂ/z]ﬂ/m---]q,a e (K7 (KGH) ™/, i £
T ) = 6t () R ) )

(X, - (X7 ,X ] o /2]qa,-j/z+1 . ']q—n 1 ((K7)™ (K+))aif/2,i #]

and when a;; = 0, Ti(X;") = X;",

Proof. The main objective is to prove that conjugation with the Weyl element re-
spects the algebra structure. We will first prove that the T; are of the form given
above. This follows directly from lemmas 4.3.3 and 4.3.2 together with the action

of w;. We can then rewrite E;aij o Ej with lemma 4.3.4, taking n = —a;;, since w;
takes the lowest weight vector E; in the module homomorphic to V% (and the

—a;;

same for F;) to the highest weight vector, which is E; "/ o E;, by the action of w;
in irreducible modules. This gives the desired relations for T; applied on X* up
to a central factor depending on i and j, due to the non-semisimplicity. Making
this choice is equivalent to choosing a root of v~!. This shows that the T; are not
well defined, when defined from the quantum Weyl group, up to a central factor.
Once we choose a root of v—1, we make a choice for Cij- Concretely, this choice
corresponds to choosing isomorphisms ¢ and ¢ in lemma 4.3.3.

Let us get some specific values for c;;. Firstly, the relations T; (K]i) = (K;F) (K;F)~%i
and T;(X;") follow from proposition 4.2.1 and lemma 4.3.1. Consider T;( [X]i, Xf] ).

Since we want T; to be an algebra homomorphism, we get the requirement c;]f Cij =
1 for all i and j, since c;; is central (it consists of powers of e 'H;" — H;"). In par-

ticular, cij must be invertible.
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Hence we have the following relations.

T(KF) = K (K7) ™, Ti(K) = KF (K7 )™, (4.48)
T(X;") = =X (K7) 7MKL T(X) = — (K (KD X
Ti(Xf)—cz;( 1)% [—alg (K ) (K7)™H) 7H(K) THK )

[ /[Xij' ] a /Z]q”ij/2+1 o ']q—”ij/z—l((K;)(Kz%)il)u[j/zli 7&]
T(X7) [_;j]q!c;l<<1<]-+>-1<K]f>>-1<<1<;><1<r>-1>“ff

X+ X X el ] g (K7 KD,

Where we will write simply ¢;; for c . Comparing T; with [30] we can conclude

that the T; must be algebra- automorphlsms since (K; )(K;")™! is a central ele-
ment for all i = 1, --n — 1. The proof that T; are automorphisms coincides then
with the proof in [30]. This concludes the proof. O

From the lemmas in this section together with proposition 4.2.1 we obtain the
following fact. It can be proven by direct verification, when we remember that
ajj = —1fori # j, since we are working with the s/, Cartan matrix. To prove it
for a general Cartan matrix, it is enough to consider rank 1 and 2 cases [6], [30].

Theorem 4.3.2. The c;; in theorem 4.3.1 are group-like elements in H; and H;, with
Hi=¢'H'-H ,i=1---n—1

Proof. We know that ¢;; are invertible from the proof of the last theorem. Note
that for any invertible element ¢, we have A(c™!) = A(c)~!. Also, c;j are central
elements, and live in the Cartan subalgebra of U,(sl;;). As a consequence, c;j
must be a power-series in the elements e 'H" — H. = H;, since these are the
only central elements that are contained in the Cartan subalgebra. This follows
from the relations [(H;")¥, X]i] = (H' £ ai]-)kai - (HllL)kX]i # X]i

We see that A(c;;) must also be central, since A(H;) = H;®1+1® H;. Asa
consequence of this, A(c;j) = R™'A(c;j)R = A(cjj). So if we can prove that
A(cij) = (cij @ cij) ¥ for some invertible 2-cocycle ¥, then we know that ¥ is also
a central element, with ¥,; = ¥ that lives in the tensor product of the Cartan-
subalgebra with itself, since the tensor algebra of the Cartan part of U,(sly) is
closed under taking the coproduct. That ¥ is a 2-cocycle means that 1 ® ¥ (id ®
A)(Y)=¥Y®1(A®id)(Y).

Since the ¢;; are invertible, let us write A(ci]-) = (ci]- ® cz-]-)‘i’. Since ¢;; are central,
sois ¥. Let us write ¥ = ¢ ® cA(c™!), where ¢ = cl.;l depends on H; for some
i without loss of generality. The fact that ¥ is central and symmetric and only
dependent on elements of the Cartan subalgebra follows from the properties of
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cij- We prove now that ¥ is a 2-cocycle.

10Y([id®A)(¥) =1®c@c(1®A(c))c® Ac)id @ A(A(c™))
=1®c®c(c®Alcc™))id® A(A(cTY))
=cRc®c(Aid)(A(cY))
=Y®1(A®id)(Y).

The second-last equality follows from coassociativity and homomorphism prop-
erty of A. The last equality follows from the definition of ¥ and the fact that A is
a homomorphism.

Since Y is central it is a power series } ;. r.en [ li=1..n—1 fk,lHlki ® Hfi, for central
elements H; and vectors k = (ky,--- ,k,—1)and1 = (l3,---,1,_1), where n — 1
indicates the rank of 4;;. However, the case where ¥ is dependend on multiple
H; can be reduced to the case of one variable.

The reason is that ¥ factorizes into terms corresponding to the simple roots. This
fact follows from requiring that ¥ is a 2-cocycle and the fact that H' are linearly
independend for different i and n. This yields fi1 = IT; f(o, k,0,---),(0, 0,0, 0)/
by comparing different terms and using a straightforward induction argument.
Conceptually, the general argument is equivalent to the case for two variables H;
and H,. This is left to the reader.

Let us note that we may take foo = 1 without loss of generality, as the invertibil-
ity of c;; implies that Y is invertible. This is the case if and only if fy # 0. So it is
enough to look at the case where ¥ = Y, f,, H!" ® H;".

Furthermore, we know that ¥ is symmetric, in the sense that when the tensor
factors of ¥ are interchanged, we obtain ¥. This forces

Y=Y I fAeuH®1+1@H)(H @H)).
li,kiEN i=1--n—-1

We claim that k = 0 in the above expression. To see this it is enough to consider
the case where ¥ only depends on one central variable, say H;, by the previous
discussion. By plugging in ¥ = ¥ e firr1 (HY ® 1+ 1 ® HF) (H! @ H}) into the
cocycle condition (putting H; = H for simplicity) we get
Z fi—&-k,kfj—O—l,l(HiJrk ® Hk ® Hl + Hk ® Hi+k ® Hl)

i,jk]1>0

(A(H)™ @1+ A(H)' @ H)

— Z fi+k,kfj+l,l(Hl ® Hi+k ® Hk + Hl ® Hk ® Hi+k)

ijk]1>0
(1@ AH)YT +H @ A(H)).

Let us look at the prefactor of the term H ® 1 ® 1. Since we assumed fog =
1, we get 2f19 = 3f10, s0 fip = 0. We use here that A(H) = H®1+1®
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H. In general, we get as a prefactor of H" ® 1 ® 1 the equation 2f, 0 = 3f,0 +
fn-10f1,0 + fn—20f20 + -+ fi,0fn—1,0. Assuming f;y = 0 for i < n as induction
hypothesis, we get f,0 = 0. This proves the claim. So ¥ can only be a power
series in H; ® H;. Hence we can write ¥ = Zni,n]_ fn,.Hf" ® Hl”’

Without loss of generality we assume that ¥ depends only on H; = H. We wish
to prove that ¥ = 1 ® 1 if ¥ is an invertible, central, symmetric 2-cocycle that
is an element of the Cartan subalgebra. Then we are finished, since the only
elements that have a coproduct of the form A(c) = ¢ @ ¢ are elements ¢ = ¢°H.
See for example lemma 6.4.1 in [6].

Let us now prove that ¥ = 1® 1 if ¥ is an invertible, central, symmetric 2-
cocycle. We will do this by explicitly checking the 2-cocycle condition for ¥ =
Y., fnH" ® H". From inserting the power series for ¥ into the 2-cocycle condition
we get, with a straightforward substitution of summetion variables,

Z fnfk( >Hk+P®Hk+i’l p®H}’l

nkp 0

k + .
} : fk+pfn—p< p) Hk+p ® Hk+n P H".
n,k,p=0 p

We take fp = 1 without loss of generality. By linear independence of the gen-
erators we can compare term by term. We claim that this relation is satisfied
onlyif ¥ =¥, 155 "@H" We have to prove that the equation above holds only if

fror1 =3 :1, We observe that a given combination of exponents of the Hs appears
only once in the equation above. The base case follows from thek = 1landn =1,
p = l-term: f12 = 2f>fo. Suppose that for some | > 0 the formula holds. Then we
look at the terms with n = I such that H*** @ H*"""P @ H" = H*"' @ H @ H'.
This implies that k = 1 and p = [. Writing down the coefficient of this term we

immediately get f;11 = { 4{1' the desired result.
However, implementing f; = f¥/k! into the equation we see that (again compar-

ing terms) for any pair non-negative integers 1,k and 0 < p < n, we have

{H—k <TZ> _ {H—n <k+P>
nlk! \p (k+p)l(n—p)! p )

We quickly realize that f; # 0 implies (n — p)!p! = n!, which is something that
people in highschool might wish is true, but fortunately for us, itis not. So f; = 0.
But this means that ¢;; is group-like. O

Theorem 4.3.3. (Weyl property) Let the T; be as in theorem 4.3.1, and let a;; be the s,
Cartan matrix. Denote c;j = c;d;. Then d; = cjzfor all j =1,---n —1if and ony if for
alli,j=1,---n—1,

T,T,T; = T,T;T;. (4.49)

125



4.3. Constructing the q-Weyl group of Uy (sly))

We call this property the Weyl-property. The Weyl-property implies that we can
use the T; for defining Hopf algebra generators. In the case of sz there are only
two simple roots, so for a decomposition of the longest root vector into simple
roots wy = s;,5;,5;,, where i1,ip = 1,2,i; # iy, there is a unique way to write
down the corresponding algebra generator: X3 = T; (le(Xf)) Hence we do
not need the Weyl property for sl5.

In general this is not the case. In that case, for each reduced decomposition of the
longest classical Weyl group element, there exist multiple ways to write down
the corresponding root-vector in the Hopf algebra. We need the Weyl-property
in order for the construction of higher order generators to be well-defined. See
for example proposition 8.1.3 in [6] and proposition 5, chapter 4, paragraph 1.5
in [3]. In general, the quantum Weyl group construction depends on a choice of
the longest root decomposition. If the Weyl-property is not satisfied, then it is
impossible to know which order of T; belongs to a given decomposition, so the
construction of higher order basis vectors is ill-defined. Let us prove the theorem.

Proof. First note that Ty (T;(X;)) is nonzero only if i = j or i = k, so we only need
to check one relation on the generators X" (the Weyl-relation follows for X;” from
the X -relations, since the prefactors are inverted in this case). Secondly, if the
automorphisms have no central prefactor, then the proof that they obey the Weyl
property is similar to the proof in [30], by explicit verification. We leave this to the
reader, since the computations are exactly the same. It is only needed to follow
the additional central factors present in T; as compared to the T; with no central
pre-factor. We include the central factor ((K;L) (Kj’)*l)*1 ((K;7)"H(K;))%/% in ¢
in this proof for simplicity.

First note that ¢;; are group-like by the previous theorem. Denote this central
(e7'HF—H;)

factor by c;; = c;d;, where c; = e ! forsomel € k, since cij is group-like.

Idem for d;. We now prove
T(T(Ti(X;"))) = Ti(T(T;(X;")))-

On the left hand side, no central factors are introduced: T;(X;") = X; (K; )%

1 1

Since i # j, a;; = —1. So Tj(X;) = Cjiil[inX;]qfl/z. Applying T; to this ex-
pression yields a central factor of ci;lTi(cj’il) = ci’ldj’lTi(c];l) = ci’ldj’ldi’lcicj =
dj_ldz._lcj.

On the right-hand side we get Tj(X;") = cj; [X]*, X;"],-12. Applying T; yields

Ti(cji) eyl (X", X g1, X 1gmr2,

where T;(cj;) = Ti(c;d;) = dici_lc]-_l. So as a central factor we have dici_lcj_lcidj =
d;d ]-cj_l. Note that applying T; to the commutator gives no additional central fac-
tor, since both X" and X; are present. We have as a central factor Tj(did]'c]fl) =
di_ldj_lcljc]._1 = dl._lc]._1 = c]._l.l. We see that the left and right handside are equal if
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and only if dj = CJZ-.

Note in particular that in 4.3.1 the central factor ((K;“) (K;) HT((K7) YK )il

obeys d;j = ¢?, since for i # ja;; = —1 or a;; = 0, in which case Weyl property

is trivially satisfied. So choosing c;; = 1 is admissable. One might want to make
a different choice for the constant c;; where A(z) is of a different form, more like
that of the semisimple case. To this end consider an element @; with the proper-
ties

A(w;) = R(i)t; @ ;, (4.50)
R(i) = Y Ra(h) (e M /2X:0)" @ (et 12X )",
T'l(h) = ?’bi_lhwi/

such that there is no central term is present in the T; as compared to the T; in
[29]. This is possible if one introduces an abstract Weyl element obeying the
above properties, however it is not clear if such an element exists at all. We could
define the explicit automorphisms T; by requiring that under the identification
ofe 'Htand H-, T, = T;. In particular this means that

AMT(X)) = RiTi @ Ti(AX )R,

for some 2-cocycle R;. Note that R; is an element of U, (sI$) ® U, (sIS), so we can

always write down this formula in the algebra U,(sl§). Note that T; by construc-
tion correspond to a choice for ¢;;, since we want T; to obey the Weyl-property.
We now prove the following fact.

Proposition 4.3.1. The automorphisms T; as defined in theorem4.3.1 obey the Weyl
property and are of the form T;(h) = W, 'hw;, where W; are defined as in lemma ??, if
and only if ¢c;j = 1.

Proof. Under the identification of e 'H* and H~, in U,(sly), we have T; = T,
so¥Y = R;lﬁi is equal to 1 ® 1 under this identification, by semisimplicity of
Uy (sly). We claim that ¥ is a central element.

We now use the fact that Ti(X]?L) = cl-jTi(X]-Jr) for some group-like element c;; if
i # j. From the identities A(Tl(X]i)) =RTi® Tl(A(X;“))le_l and idem for T; it
follows that (noting that T; and T; agree on H; . ; and on the Cartan subalgebra of
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U, (sly;) = Hy,e by definition, as this action was calculated from the H . action)

(cij @ cip) (Ti(X;" )@ Tyl ) + Tie™ )®T'(X'+)>

= R Ri(ey Ty(X[) @ Ti(e™ )+ Ti(e™ )®C1]T(X] NRAR;

= i T(X) @ ("™ ) + Ti(e ™) @ ¢y Tu(X}).

But this implies T;( X]‘“) ® Cz';l = Ti(X]?“) ® 1, by invertability of c;;, and linear
independence of the terms involved. So ¢;; = 1. It should be remarked that

We now prove the claim. Therefore look at a similar expression, A(T;(X;")). We
know that T;(X7") = T;(X;"). Furthermore ¥/ ~= 1®1, and R; and R; are
elements of Hc,;. Let H; = e:*lHl.Jr — H;". Then ¥ must be a power series in
H; ® Hy,ine '(H;" ® HT — H; ® H") and H ® H;" — H” ® H; . We have

+ + + + + + +
CHIEOH! oHY @ X+ = oHi g X+ @1 H OH;

This observation is generalizable to general power series in H* ® H*, and holds
also for the opposite case. Moreover, we observe that

N v

AT(X)) = RiTi @ Ti(A(X)) R
R

%

= RiT; ® Ti(A(X]"))
= RiT; @ T{(A(X )R

Note that H* only introduce an aditional term when commutated with X;, so
the terms of A(X;") = X @ e /2 4 eM'/2 @ X do not get mixed by commutat-
ing with ¥, so by linear independence of the two terms in the coproduct we can
compare them term by term. Since the H* commute with each other and V¥ is a
power series in tensor products of H l.i, we get the following identities

YX, @1¥ =X 01,
YIoX ¥ 'l=10X; .
This means that ¥ commutes with X;” ® 1Tand 1® XIJr , and with the above ob-

servation this means that ¥ must be a power series in H; ® H;. However, this
means that ¥ is central in U, (sl};) ® U, (sl;;). This ends the proof. O

So there is no choice in ¢;; if we want to have a quantum Weyl group. Such an
algebra would have the above mentioned property by construction, since A(w;)
is definend explicitly in the H, . case. Since we have an Hopf algebra we auto-
matically obtain for any generalization of Hy,

AMT(X)) = RiT; @ Ti(A (X )R
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We now have

AT (X]")) = MA@ X w;)
= RT @ TMX )R,
ﬁi _ qefl(Hi*Q@H?’ Hf®H;) /42Rn(h) (e—hH,-*/ZXi-i-)n ® (eeth/ZXi—)n’
P ey ok
n= [
[n]g!

This is the result with which we can calculate the comultiplication for U,(sly)
for non-simple generators T; (X ] ), corresponding to the roots «; + ;. Of course
this can be generalized to higher order generators for Uy (sl;;). This is something
straightforward and will not be done here. An example of the more general
construction can be found in [6].

We rewrite the automorphisms T; to apply them to the generators E; and F; with
non-symmetric comultiplication. This yields the algebra we use in chapter 1,
when S ® id is applied to the quantum double. We rewrite the expressions in
theorem 4.3.1, with Cij = 1.

A(Ti(E))) = RiT; @ Ti(A(E}))R;

Ri:qe”(H;e@Hﬁ—Hﬁ@H;)Mz ?37 2)" (E))" @ ()",
T(K;") =K;(I<:)‘“ff Ti(K; ) = K (K") ™
Ti(E;) = —F(K ) "KL Ti(R) = =(K; )(K?)Ei,
Ti(Ej) = (=1)" =gl ((K7) TH(K)) ™ o

[Ei, -, |Ei, E]]qaij/z]qaij/2+1 = ']q—aij/z—1,i #J,

—— (K ) (K) =)~
[—ai],!

[Fi/ Tty [Fiz Fj]qa,-]-/Z]qa,-j/2+l e ]qfa,-]—/2—],i # ]

In particular, this formula is also valid for non-invertible €, when we remember
that g~¢". The terms present are elements of the ring of power-series of €. This
allows for use in chapter 1.

To match the expressions with the algebra in chapter 1, note that we are using
a different convention for [1], in the last two sections of this chapter, then the
factor (1 — g—2)" is absorbed. The factor of g'/2*("~1) is absorbed by the commu-
tating of the group-like factor e/’ /2 @ e /2, with index i and j and the R-matrix.
Furthermore, we change the definition of g to ¢, and substitute Hf — 2A—B
and H) ~— 2B — A. The change in g implies that we should keep track of all
exponentials ¢ and change the sign to e =" and vice versa. Any factor g is substi-
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tuted.

After performing these substitutions, there is one fundamental difference be-
tween the Hopf algebra used in this chapter and the one used in chapter 1. The
Hopf algebra U, (sl;;) as defined in this chapter cannot be expanded modulo ¢, as
can be seen from the factor e ! present in the commutator between X*. To solve
this problem, we have to scale the X~ generator. This is the subject of the next
section.

Once the conventions are correct, we are well on our way to implementing U, (sly;)
in the tensor formalism however. Especially when the program is more opti-
mized, this is a very interesting topic of research. Theoretically, it is also inter-
esting to be able to do calculations in U, (sly;) for any n, and any order of €, even
when the program is not much faster than it is now.

4.4. Epilogue

Define gl¢ as the Lie bialgebra over R(e) with generators Xii, Hii, i=1,--,n—
1 and the relations

[H, Xi] = +a; X", [H, H] = 0, [H, X7'] = +a; X7, (4.51)
- 1 - —a L

X, X;7] = =58, (H + H}7), (ady ) (X5) = 0, (i # ), (4.52)

§(X) =Xt ®H— H @ X, (4.53)

6(X7)=X; ®H —H @ X/, (4.54)

S(H;) = 0. (4.55)

a;j is the usual sl, Cartan matrix.

In glf,, € is an invertible indeterminate. The Lie bialgebra glf, is a quasitriangular
Lie algebra that can be obtained through the classical double on the Lie bialge-
bras of upper and lower triangular matrices b* C gI, generated by {H!", X]i}
respectively. This procedure is described in many standard sources, and follows
the same procedure as described in chapter 1.

To obtain sI§ from gI$, multiply H; in the relations 4.51 and 4.52 with ee~!. We
define eH;” =: H,, in the spirit of the Wigner contraction described in appendix
A.4. When the redundant factors of e ' ine '[H;, X]i] = iain]-i are transferred
by multiplying both sides with €, one obtains the familiar Lie algebra relations,
and the slightly different cobracket

[H;,X]i] = ieaijx]i, [H;F,in] = iaijx].i,

- 1 1 —a .
(X, X7 ] = =561 (H + e A7), (ady ) (X]7) = 0, (i # ),
(X)) =X ®H" - H ® X,

§(X;)=e Xy ®@H —H @ X[).
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We can multiply § with any constant in R(e), this will yield a cobracket on the
same Lie algebra. To this end, consider the b~ Lie bialgebra where we multiply
0 with €. We obtain

0(X;) =X, ®H —H; ®X;.

Let us introduce the dual Lie algebra bt of b~ with generators {X;", H} by
(X ,X;7) = d&jand (H; ,I:I].’> = a;;. The algebra relations of b are defined
through the cobracket of b~, and so we obtain the relations (note that € is invert-
ible, to obtain the Serre relation)

(A, X] = +a X}, (ady- ) ™" (X7) = 0, (i # ).

The cobracket is defined through the Lie algebra relations of b~ and takes the
form

6(X;) =e(X ® H — H @ X]").

Taking the classical double of b™ and b~ we obtain the Lie bialgebra sI¢ with rela-
tions 4.1. As noted in the first section of this chapter, we have a set of Lie algebra
automorphisms T; on slf;, which are defined with the adjoint action on s§.

We can do a Wigner contraction on sl by multiplying X, € sl with ee~! and
defining X, := eX; . This has no effect on the Lie algebra relations of b* and the
cobracket of b*, as can be seen by multiplying the relations with € on both sides.
It has an effect on the pairing between X;" and X", which yields e.

In sI§, this changes the bracket between X;* to [X;, X;"] = 1(eH;" + H;"). This
relation should remind the reader of the definition of sIf, in chapter one. For now,
let us denote this algebra as sl;,. In particular we observe that with these Lie bial-
gebra relations, it is possible to divide out to €k, as there are no explicit factors of
¢! present in the algebra relations of s,.

However, another effect of this Wigner contraction is that the bracket [,] no
longer defines a set of automorphisms T; of sI;,. When writing out the require-
ment that Tj is a Lie algebra map for the [X;, X:"] relation, one finds that T; is
an algebra map only when one multiplies with a factor €% = e~! when Tj is
applied to X;. So we have to define Tj(X;) = ¢ 'T;(X;) wheni = j+1 and
Tj(u) = Tj(u) else.

This means that the Lie algebra automorphisms T; of sI<, when defined on sl;,
gain a factor e ! with respect to the Lie algebra automorphisms on sl¢ that are
used in this chapter. We note that in the definition of non-simple generators this
yields also a power of € 1. In particular, for sl this yields Xei, = T1(Xy) =
e T (X5 ). Multiplying both sides wth € now gives eX, ,, = [X;, X; ], which
is the relation familiar from chapter one.

A complication from this specific Wigner contraction on slj, is that the automor-
phisms T; do not obey the Weyl-property. Writing out T;T;T;(X%) = T;T; Tj(X;")
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gives a different factor of € on both sides. Since the T; reduce to the usual auto-
morphisms on s/, when € is put to one, one can only compensate by introducing
a factor of €? in T;. However, one quickly sees that it is not possible to make such
a choice such that T; obey the Weyl property.

As has been noted before, in the case of sl3 this is not a problem, since there is a
unique way to decompose the reflection corresponding to the longest root. For
higher n > 3, one has to make a choice for a decomposition of the longest Weyl
group element and live with this. The result for different choices of decomposi-
tion yields different Lie algebras that are presumably isomorphic, although this
is not directly clear. This is an interesting subject of future study.

When one quantizes sy, this yields the Hopf algebra Uy (slf;) of theorem 4.1.3.

The Hopf algebra U, (sl5) can be obtained from U, (sl§) by multiplying X;~ with

g—q ! qul and defining X = (g — g~ !)X;". This scaling only infuenzes the re-

lations between X:". The comultiplication, antipode and the other relations stay
the same.

Let T; be as in equation 4.48 with ¢;; = 1. As proved in the third section of
this chapter, T; obey the Weyl property and are automorphisms of U, (sl§) when
cij = 1. Note that € was introduced on the b™ side in the previous sections. This
does not change the properties of the T;, since the relation between the two alge-
bras is a scaling of HljE We have encountered this fact in the classical case, and
the quantum case follows in exactly the same way.

If we wish to define automorphisms T; on Uq(§lZ), we have to correct in the
same way as in the Lie algebra case, by introducing an additional factor of qul
when T; is applied to X;. We define Tj(X") = 6/_1?1"]()?1_) fori = j+1and
Tj(u) = Tj(u) in any other case, for an elementary generator u € Uq(s~lfl). In
exactly the same way as the classical T; failed to have the Weyl-property, so do
the quantum Weyl group automorphisms T;. This can be seen by applying T; to

X; and counting the terms p 1q,1 that are introduced.

Equivalent to the classical case, when defining non-simple generators in sl;,, one
has to choose a decomposition of the longest Weyl group element. Moreover,
on the U,(b™) C Uq(:fl,i) side, a number of factors # are introduced in the

t— q)X(x_l-i-ucz =
Ti(X, ) in the case of U,(sl3). Here, «; are the simple roots of sl5. This should re-
mind the reader of the relations in chapter 1, although the b* algebras switched
place there, among some other details. For a generator corresponding to a root of
lengthk = 1,---,n—1, weobtain k — 1 factors of g — g !. This yields T‘J‘il (--- (T“fk,l ((g—

k11— ) — ~1\k-1%— _
q ) Xlxkfl) - (q_q ) X‘B,Whereﬁ_all —{—..._i_aik‘
We can use the results of the previous section to obtain an expression of the co-

multiplication of nonsimple elements such as X, ., in qu(s~l§). In the case of
X

definition of nonsimple generators. This yields relations like (g~

w1 +an

for example we get (971 — ) X5, 1, = R Tt @ Ti(A((g — 7 1)X;))R; in

a1+
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the notation of the previous section.

When we wish to consider Uy (sl;,) over the ring R = R[e]/(eF*1), this implies
that we do not get a direct expression for A(X,. ,,,) for example, but only for
A((q—g )Xy, 44,) sinceq—q~! = 2eh+- - -, and e is not invertible. So to obtain
the comultiplication of X modulo €1, to take a specific example, we need

%)
to consider Uq(§l§) over the ring R1, since over R (which is working mod
€1, terms proportional to e¥+! vanish. So working over R_ would only give
us A(X, |,,) up to and including order €1, since (g — g™ ") X, ,,, = [X, X5 ].
One sees that one can work mod €t when k is even, as the €% term vanish in
the expansion of g — g~ .

This observation is particularly useful when attempting to construct a general
Uq(slgk) knot invariant. Using formula 4.48 of the previous section, we can ob-
tain expressions for the comultiplication of the non-simple generators. We have
to work modulo €+~ to obtain the comultiplication of every non-simple gen-
erator, since for an element of maximal length n — 1, there are n — 2 factors of €
introduced, yielding a prefactor of €*"~2 for the comultiplication of the longest
Weyl group element generator. When computing the knot invariant itself, so for
the multiplication of R-matrices, one can then work modulo ekt1 again.

A particular surprise when specializing to €¥ = 0, is that the T; are not algebra
automorphisms of Uq(s~lZ), due to the noninvertible factor of ¢ — g~ ! present. In
particular, we cannot apply T; to a non-simple generator such as X5, but only to
(a—a")X;5.

In general, the exact properties of T; become more complicated as more factors
of € are introduced in the definition of the generators associated with positive
non-simple roots. For sl5 there is one non-invertible factor introduced when
working over ek = 0, but for 572 there are n — 2 factors introduced in the def-
inition of the element corresponding to the longest classical Weyl element. So if
we wish to calculate the comultiplication of this generator in the first order of €,

say X/s_ € Uq(§lZ), we have to work modulo €”.

This explains why the usual symmetries U, (sl;,) for invertible e are not symme-
tries of Uq(s~lZ) for ¥ = 0. Some symmetries of sl; for non-invertible € were
found by Roland van der Veen and Dror Bar-Natan in [37], the classical case.
We do not know if the symmetries in [37] provide a full discription of the sym-
metries of s, or if there is a bigger set of hidden symmetries. This remains an
interesting topic of research. It is also interesting to find the explicit quantum
group analogue of the s}, symmetries.

Conclusion

In this chapter we constructed U,(b~) and Uy (sl€) from b™ C sl for invertible
€. We observed that in the algebra relations € occured only in g = ¢, and hence
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one can take the expansion to the k-th order in € for any k when the algebra gen-
erators are rescaled with a suitable factor of (g — g~1)™, for some positive m.
The fact that U, (sl};) is not semisimple does not change the symmetries of U, (sl},)
for invertible €. They are equal to the symmetries of U, (sl,,) for invertible epsilon.
In the last section we found that only when we specialize to e = 0 for k > 0 we
lose most of the usual symmetries. It turns out that in this case, instead of S,,, we
obtain D, as the group of automorphisms of U, (sly;). See [37].

However, important equalities to calculate the comultiplication remain true when
€ is not invertible, and even when one specializes to €k = 0. The main purpuse
of the last sections of this chapter was to prove these formula for the coproduct
in terms of partial R-matrices. We observed that after rescaling, this formula can
be expanded in terms of €, so that it is also valid for non invertible €.

Using this formula, we constructed a dual PBW basis of Uy (sly;) in the first sec-
tion of this chapter and we gave the pairing between monomials. This enables

one to construct the universal R-matrix of U, (sl;;). We observed that when one

1 one has to

wants to know the coproduct (and antipode) of qu(s:lZ) modulo e+
work modulo eF~1.

In the previous chapter we gave an upper bound for the computational com-
plexity of the Uy (slf;) invariant. In short, this provided the insight that for small
knots (i.e. less than say 20 crossings) the contribution of the number of crossings
is smaller than the contribution of rank of sl,,. It remains to be seen if this prob-
lem can be overcome. On the other hand, it is interesting to gain insight in the
symmetries of U, (sI¢) in the case where € = 0. This may reduce the number of
computations one might have to do. This will also give insight in the quantum
invariants that are obtained.

A concrete topic of future research is the implementation of U,(sl;;) using the
comultiplication calculated in this chapter. As a first step, we wish to implement
these formulas for the case Uy (sl5), to be able to match the conventions we used
earlier with the ones used by [29] and [6] and others. Especially with the last sec-
tion in mind, this should be possible in the current implementation of Uq(slg),
when one defines the (co)multiplication tensors for general order of €. In the last
section we concluded that the higher n, the higher the order of € one needs to
work over in order to obtain the full Hopf algebra structure. Once the Hopf al-
gebra structure has been found, one can restrict oneself to any (lower) order of €
to calculate the invariant for actual knots.
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A.1. Mathematica

In this section we present the implementation of the zipping formalism used
to do calculations with the Hopf algebra U, (sl5), and to calculate the quantum
double explicitly. The proof of the zipping theorem can be found in chapter 2.
The program labeled s/3invariant.nb is an implementation of this theorem. The
program sl3invariant.nb is based on the program sl2invariant.nb developed by
Bar-Natan and Van der Veen. This program can be found on

http : / /drorbn.net/ AcademicPensieve/ Projects /SL2Invariant /index.html.

In sl2invariant.nb one can find an implementation of the invariant based on the
quantum group Uy (sl5). The knot invariant presented in this thesis is based on
the U, (sl§) construction by Bar-Natan and Van der Veen.

The difference between sl2invariant.nb and sl3invariant.nb is the use of the three-
stage zip. This is an essential difference, since it provides a convergent imple-
mentation of the zipping theorem for the U, (sl5) Hopf algebra. The proof that
this implementation is convergent can be found in chapter 2.

In this program we implement the quantum group Uy (sl3) constructed in chap-
ter 1. We check (co)associativity, if A is a homomorphism, the pairing axioms,
the antipode axioms, associativity and the Turaev moves. The knot invariant is
computed for the Trefoil, the mirror Trefoil, the figure eight and the 6-3 knot in
the Rolfson knot table.
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In[3]:=

The full $sI_3$ invariant using the Drinfel'd double. For compatibility reasons, we use XX instead of
the generator X. This program continues sl2invariant.nb by Dror Bar-Natan and Roland van der
Veen.

Profiling

(*BeginProfile[];*)

External Uctilities

HL[E ] := Style[&, Background - Yellow];

Program

Program

Program

In[5):=

Program

Program

In[9):=

Program

Program

In[10]:=

Internal Utilities

MaxBy[list , fun_, n_] := list[[Ordering[fun/@list, -n]]];

Canonical Form:

CCF[&_] := PPCCF@ExpandDenominator@ExpandNumerator@PPTogether@Together[PPEXP[
Expand[&] //. e*~ Y- 'Y /. e* > e°CF[¥] ] ] ;
CF[& List] := CF/@§;
CF[sd_SeriesData] := MapAt[CF, sd, 3];
CF[&_] := PPcr@Module|
{vs=cases[s, (XX|Y |2 |A|B|b|s|t|a|x]|y]|z]|XX|Y|2"]
A" |B'|s* |t b |a*|x" |y |2") , »]U{XX, ¥, 2, A, B, b,
s, t,a, x,vy, z, XX*, Y*, 2*, A*, B*, s*, t*, b*, a*, x*, y*, z*}},
Total [CoefficientRules[Expand[&], vs] /.
(ps_ > c_) = CCF[c] (Times @@ vsP®)]
l:

The Kronecker ¢:
K6 /: K6; 5 :=1I1f[i===3,1,0];
Equality, multiplication, and degree-adjustment of perturbed Gaussians; E[L, Q, P] stands for ¢-*@ P
E/:E[Ll_,Ql ,Pl ]=E[L2 ,Q2 ,P2 ] :=
CF[L1 = L2] ACF[Ql = Q2] A CF[Normal [Pl - P2] = 0] ;

E/:E[Ll ,Ql ,Pl ]E[L2 ,Q2 ,P2 ] :=E[Ll+L2, Q1 +0Q2, P1«P2];
E[L ,Q , P lg :=E[L, Q, Series[NormaleP, {e, 0, $k}]];
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Program
nie= E3@Esy [w_, L_, Q_, P_] :=Module]|

{NP = Normal [P]},

Ep[L, 0'Q, (w'NP /. e>w™e)+0[e]®™?] // CF
K

E4@Es, [L_,Q ,P_] := Module[

{NP = Normal [P], w},

w= (NP /. e-»0)71;

]Esp[w, L,wQ, (NP /. e-uw'e) +O[e]$k"1] // CF

]:
Program

Zip and Bind

Program

Variables and their duals:

Program

In[15]:= (u_l )* = (u¥);;
((u)7)" s=ws
(C)Ms )" = us;
((u_)*)* :=u;
Program
Finite Zips:
Program
niel= collect[sd SeriesData, [ ] := MapAt[collect[#, ] &, sd, 3];
collect[& , § ] := PPcoirlect@Collect[E, L]
Zipy[P_] :=P; Zip s ,[P_] := PPyip |

(collect[P // Zip(esy, E] /. £_.E% » e qyf) /. £ > 0]
Program

QZip implements the “Q-level zips” on E(L, Q, P) = P9, Such zips regard the L variables as
scalars. E[L, Q, P] means Q) P, where L is linear in the a,b’s, Q is a combination of x; X;

(possibly starred and/or mixed with other variables), and P is a perturbation polynomial. It should be
interpreted via O[E[ ...], {X1, Y4, Z4, Ay, By, by, a1, 21, Y1, X1}i, ...], with an assumed standard
ordering on the generators for an interpretation of the tensor as an expression in Uq(slf).

Program
QZip§s_List@]E[L_’ Q ,P] := PPQZip@Module[{g, z, zs, ¢, ys, ns, qt, zrule, grule},

zs = Table[8*, {&, &s}];

c=CF[Q /. Alternatives@@ (£sJzs) » 0] ;

ys = CF@Table[d, (Q /. Alternativese@e@zs -» 0), {§, &s}];

ns = CF@Table[d, (Q /. Alternatives@@fs » 0), {z, zs}];

gt = CF@Inverse@Table[KS, o -08,,Q, {8, s}, {z, zs}];

zrule = Thread[zs » CF[qt. (zs+ys)]];

frule = Thread[€s -» s +ns.qgt] ;

CF /@ E [L, c+ns.qt.ys, Det[qt] Zip, [P /. (zrule{Lrule) ]] ] ;
Program

Upper to lower and lower to Upper:
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Program
In23}= U21 = {]bf:' - @ PP P 5 PP, axf:' > eP3 gP 5 eP?,
Ti— > ePt, TP 5 ePF, S 5 eP%, SP 5 @P®, af— 5 P, aP 5 P,
inJ:' - @PPi, pP_- 5 PP, ]Bl-::‘ > @PB BP_- , ePB, Ali::' > e Ph
AP > e PR, mf:' > @PRi gP_- 5 PR, BI;:' > ePPy, gP 5 ePP);
12U = {ec_. bivd ., e ed, @0 P 5 pCed, e . 5 g ed, @ At 15 g C @d,
@ it TS ed, e B 1 TCed, e it s 8T ed, e St 1 sCed,
@t divd . ag ed’ @S- a+d_. .4 gC ed, @S- Pravd . . bg ed, @%b +d_. .y pe ed,
e Bt proed, e B pCed, e Mt pCed, o Ay pC d
@ Alivd_. A ed, @S AT o, gt ed, @ B +d_. B ed, e B 1 g0 el
ea_ > eli::q::ami@&} ;
Program
LZip implements the “L-level zips” on [E(L, Q, P) = Pet*Q. Such zips regard all of PeQasa single’P’.
Here the Z’s are A, B and a*, b* and the {'s are A*, B* and a, b. s and t are not regarded as scalars
for zip-technicalities. DB and STB are variations of B with a different choice for /s in LZip, to speed
up the zipping of tensors with s and t instead of A and B.
Program
LZipgs 156t @E[L_, Q_, P_] :=
PPLZip@Module[{§, z,zs,c,ys, ns, 1t, zrule, Zrule, frule, Q1, EEQ, EQ},
zs = Table[£*, {&, £s}];
c=L/. Alternativese@e (sUzs) » 0;
ys = Table[0¢ (L /. Alternatives@®@zs » 0), {§, §s}];
ns = Table[8, (L /. Alternatives@@{fs » 0), {z, zs}];
1t = Inverse@Table[KS, ¢ -0, ¢L, {§, &s}, {z, zs}];
zrule = Thread[zs » 1t. (zs+ys)];
frule = Thread[€s » s +ns.1lt];
Ql=Q/.U21 /. (zrule{Jgrule);
EEQ[ps___] :=
EEQ[ps] = PPuggon@ (CF [e'Ql D [te , Sequence @@ Thread[{zs, {ps}}] ] ] /.
Alternatives@@zs -» 0 //. l2U) ;
CF /@ ((+CF/ex)E|
c+ns.lt.ys, Q1 /. Alternatives@@zs » 0,
Det[1lt] (Zipgs [(EQeezs) (P /. U21 /. (zrulel&rule))] /.
Derivative[ps__ ][EQ][__ ] =» EEQ[ps] /. _EQ=- 1)
]77. 12v)
]:
Program

n2el= Bey[L_, R_] :=LR;
Bis [L E, R E] := PPBind@Module[{n},
Times|[
L/. Table[(v:XX|Y|Z|A|A|B|B|s|t|S|T|
b| (xb|*)a(*x|ax*) | x|y | 2);i > Vres, {1, {is}}],
R/. Table[ (v :XX" | Y* | Z2* | A" (x| Ax) | B* | (*B]| *)b* | s”|
t*|a*|a|b|x* |y |2*)i > Vnei, {1, {is8}}]
1 // LZiPriattenerablel(A%ms Bres, (5")ness (£ nossBrossanes}, (1, (s3] /7
QZiPr)atteneTable {XXuet , Y*uet s Voot , X nes} s (1, (i511] /7 QZiPmatten@Table[{z*,,@,,z,m},(i,{is}}]] ;
Bis [L_, R_] :=Bpgl[

R];
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DBy [L_, R ] :=LR;
DB(is 3[L E, R E] := PPDBind@Module[{n},
Times [
L/.Table[(v:XX|Y|Z|s|t|b|b|a|a|x|yY]|2z)i= Ve, {i, {is}}]1,
R/.
Table[ (v :XX" | Y* | 2" |s*|t* | b*|a*|a|b|x" |y |2");i > Vnei, {1, {is}}]
1 // LZiPgiattenerable[{(s*)es, (t*) nos baessanes}, (i, (is}}] 7/
QZ1iPr1atteneTable [ {XXue: )Y aet ) Voot s X nes} s (i, (is}}] /7 QZipFlatten@Table[(Z’n@i,zn@,),(i,{is)}]] ;

DBis_[L_, R ] :=DByiq [L, R];

In29)= STBgy [L_, R_] :=LR;
STB(is }[L_E, R E] := PPsrpina@Module[{n},
Times [
L/. Table[(v:XX|Y|Z|b|b|a|a|x|y]|2z)i> Ve, {1, {is}}],
R/. Table[(v:XX" | Y | 2" | b* |a* |a|b|x* |y | 2")i > Vnes, {1, {is}}]
1 // LZiPpiattenerable[{bues,ame:}, (i, (is1}] /7

QZAPr attaneTablel (Kuss, T ses Yoot X'nes) (1, (181}] // QZLPr1atteneTablel (2, 200}, (4, (18731 ] 7
STBis_ [L_, R_] := STByis [L, R];

Program

[E morphisms with domain and range.

Program
2= Big nist[Ear or [L1_, Q1_, P1_1, Egz 42 [L2_, Q2_, P2_]] :=
E (q1Jcomplement[d2,is])- (r2JComplement[rl,is]) @@Bis [E[L1, Q1, P1], E[L2, Q2, P2]];
STBig rist[Ear or1 [L1_, Q1 _, P1_], Eqp 42 [L2_, Q2 , P2_]] :=
E (g1 complement[d2,is]) - (r2cComplement[rl,is]) @@ STB;s [E[L1, Q1, P1], E[L2, Q2, P2]];
Eg; o1 [L1_, Q1 , Pl ]//Eg 52 [L2_, 02 , P2 ]
Brinaz [Eq1,-1[L1, Q1, P1], Eg4z,.2[L2, Q2, P2]];
Eqi o1 [L1_, Q1_, P1_] = Eqp opp [L2_, Q2_, P2_] ~:=
(dl = d2) A (r1 = r2) A (E[L1, 01, P1] = E[L2, Q2, P2]) ;
Eqi o1 [L1_, Q1 , P1_] Eg L. [L2_, Q2 , P2_] *:=
E (1)a2)» (e10e2) @@ (E[L1, Q1, P1] E[L2, 02, P2]) ;
Eq 5r [L_,Q , P_lsx :=Egr@E[L, Q, Plg;
E [6___1[i_]1 :={&8}Y[il~

Program
“Define” code

Program

Define[lhs =rhs, ...] defines the Ihs to be rhs, except that rhs is computed only once for each value
of $k. Fancy Mathematica not for the faint of heart. Most readers should ignore.
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Program
In39l= SetAttributes[Define, HoldAll];
(Define[def]; Define[defs];);

Define[def , defs_ ]
Define[op_is = 8_] 1=
Module[{SD, ii, jj, kk, isp, nis, nisp, sis}, Block[{i, 3, k},

ReleaseHold[Hold[
SD [OPpip, sk_tntegers PPoot@Block[{i, 3, k}, OPigy,ex = &/ OPnis,sx] | 7
SD [°Pispr op(is},Sk]; SD[opsis_l °P(sis}]r'
] /. {SD - SetDelayed,
ispo>{is} /. {i-»i_,3->3_,k-k_},
nis -» {is} /. {i-»1ii, j > jj, k » kk},
nisp- {is} /. {i-»>ii_, 3> 3j_, k->kk }

1] 1]

Program

Booting Up

Program
Sk =1;
The multiplication tensors on both halves of the double are defined here. $k indicates the degree

€+1 = 0 we are working over. The am and bm tensors given here only work for $k=1 and $k=0.

In[43]:= Define[ami,j_,k =
E(i, 3k} [ (a*s+a*s) a+ (b*s+b*s) by, (®57@)s 2% 4 2%+ @ ®372 @05 1%y (y*) ) zpe +
(e—(a‘),+2 (b*) 4 v, "'Y*j) Vi + (e—(b”)j+2 (a*) 4 x"i+x*j) Xi,
l+e (h (z*) 5 (x*); @ ®3*2 @5 g 3 4+ B (2%) 5 (x*); (¥*) 5 e P52 @05 2, 7y -

B (z*); (v):@® 5 @s 2y - B (v7), (x%); (¥9) ;@@ @z - b (x%)
@ 5% 2 (@05 (y*) 5 (Y5 Zryr - B (x*); @ P52 @05 (g yy xk) +O[E]2]$k,

bm; 5k = E(i,5})-k) [Ak A*; + Ay A*j + B B*; + By BYy, XX XX*; + XXy XX*5 + Y Y*; +
Yo Y*5 4 2y 2% + 2y 2%, 1+ (-xxk (A%); (XX*) 5+ B XX Y (XX*) 5 (Y*); -
Yy (B*); (Y%)5+2 2y (XX*); (Y¥%) 5 - BXK 2y (XX*) 5 (27);+
B Yy Zi (Y')5 (2%)5 -2k (A%); (2%)5-2Zx (BY): (2%)5) e+0[e]?], ]

’

The R-matrix is defined with the Faddeev-Quesne formula.
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Program

Define[Ri,j =

(e—25ﬁ_1)k (hXXixj)k

$k+
E{}Q{i,j}[ﬁAia“hBibj, AXX; x5 +hY;y;+hZ;z5, @ Z

2 k (1_e-2keh)
kel (e2¢2-1)" (nYy;)t o1 (@22 -1)" (nz; zy)"
e” e? ] ,
by 1 (l_e—2leh) = m (l_e—2meh) Sk

Ri,;=E(sq,35) [-hasAi-Aby By, ~Ax; XX A" B + B XX, ¥; z5 Al Bf -
hzyz; A'BE-ny; Y, A;RB2?, 1+If[$k =0, 0, (Ris,3},8%-1) s [3] -
(((i(i,j},O)Sle,z (E{3,4),$k-1)$k) // (bmi,hi amj,z»j) // (bmi,Bai amj,4—>j)) [3]]],
1 1
P; s =E ; [—A*-a*-+—B*- (b*) 4
, {1,31-{} ’
1,3 i,3 PR 3
1 1 1
_xxixj"‘;Yin*‘EZ 2%y, 1+If[$k =0, 0, (P(i,j),$k-1)$k[3]_

h
(R1,2 // ( (P(l,j),o)sk (P{i,Z),Sk—l)sk) ) [3] ] ] ]
Program
ni#s)= Define[aS; = Ry, 3~Bi~Pi ;,
aS; = E(i}o14) [-a'i a; -b*; by, —e ®im(@i g%, 7, 4 e BN @D g (x%); 25 -
@2 ®)+ (@) Y*i vi- e(Pi-2(a"); X* %, 1+ If[$k =0, 0, (E{i),Sk—l)sk[3] -
((@8(13,0) sk ~Bi~aS:i ~Bi ~ (a8 sx1) sx) [31]]]
Program
nis)= Define[bS; = Ry 1 ~By~aS; ~By~P; 1,
bS; =R;,;~B;~a8;~B;~P; 1,
alh;i,;,x = (Rl,j Rz,k) //bmy 5,3// P3;,
bAiLy,x = (Rj,l Rk,2) //amy 5,3 /7 Pi,3]
Program
7= Define [dm; 5o = (Es,3)-02,9) [ (A%) 5 As+ (B*); By +b*5 by + a*;ay,
Y'Yy Xy Ry o+ 25 Zg o+ (XXN) XK+ (Y1) Yo +2%5 25, 1] (2Bus1,2 // @Bayp,3 // 383)
(bAj—>—1,—2 // bA-z-»-z,-a)) // (P-1,3 P_3,; amp 5, bmi,—z—»k) ’
ds; = Egiyaq1,2) [ (A%) 1 Ay + (B¥); By +b*; by + a%; ay,
Vi Vo X5 Xp + 2%5 2o # (XX*) 3 XXy + (Y*); ¥Yp 425 25, 1] // (El asz) //dmy 15,
dAiLs x = (bAjL3,1@l0;5,,4) // (d-m3,4—>k d'm'1,2—>j) '
dS: = E(i)o01,2) [ (A%) 1 A + (B*); B +b*s by, + a*; ay,

Vi Vo X% Xp + 2% 2o # (XXY); XXp + (Y)Y +2%5 29, 1] // (bsl 52) /7 d.mz,l_,i]

Program
1 h (aj +bi) €
né)- Define[Ci = Egasy [0, 0, - +olel?]
Al B! Al B2 sk
Ci=Eq,u[0, 0, (B}B]+ (ha; A} B} +2b; Al BE) €) +O[e]2]$k,
Kink; = (R1,362) //dmy 5,y // dmy 3.,
Kink; = (§1,3 Cz) //dmy 5, /7 d'ml,3—)i]
Program

Note: s=2A-B+ea, t=2B-A+eb. This substitution is implemented in the following tensors.
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Program

2

Si

2 t;
In[49]:= Define[ABZsti = E(i}o(i} [b";‘L b; + a*;a; + (A%); (; (si + ;l)] + (B*); [g (ti + ;)] ’

(XX"); XX + (Y*); Y5 + 2% Z5 +Y"; Vi + X" x5 +2%5 23,

1 1
1—e(A*)i—(2ai+bi)—e(B*)i—(2bi+ai)+0[e]2] ,
3 3 $k

St2AB; = Egs),q [b*sbs + a%sa;+ (s*); (2R3 -B;) + (t%); (2B -Ay), (XX'); XX, +

(Y):Yi+2% 2 +y*; va+x"sxs+2% 25, 1+€ (s¥) as+e€ (t*)ibi+0[€]2]$k]

The following definitions are used for a slightly faster implementation of the quantum-double that
leaves out the s and the t from the zip. Since s and t are central, this is well defined and yields the
same result. These tensors should be zipped using the STB and DB zip function. As such, we also
check the axioms for these tensors.

niso)= Define[stRy,; = (Ri,3~Bi,s) ~ (AB2st; AB2st;)) // Simplify,

StRi,j = (Ri,5~Byi,y) ~ (AB2st; AB2st;)) // Simplify,
StC; = (Ci~Bpy ~ (AB2st;)) // Simplify,
stC; = (Ci~Byiy~ (AB2st;)) // Simplify,
StKink; = (Kink;~By)~ (AB2st;)) // Simplify,
stKink; = (Kink;~B;)~ (AB2st;)) // Simplify,
stdm; s = ((st2AB; st2AB;) ~B; 5 ~dm;, j,x ~Bx ~AB2sty) ,
stdA;,;,x = (St2AB; // das,y,x // (AB2st; AB2sty) ),
stdS; = (st2AB; // dS; // AB2st;),
stP; 5 = ((st2AB; st2aB;) // Ps 5),
ddA;,;,x = (St2AB; // dAs,y,x // (AB2st; AB2sty)) /.
{Sj|k 8, T5~>T, tyx=>t, sjx=>s, (s); 20, (t*);~» 0},
dds; = (st2AB; // dS; // AB2st;) /. {S; »S, Ts » T,
s;i»s, ti»>t, (s*); >0, (t*); »0},
PP; ; = ((st2aB; st2AB;) // P; 5) /. {(s*)in 50, ()33~ o},
RR; j = (Ri,j // (AB25tiABZStj)) /. {ti|j >t s3> s},
RR; ;= (Ri,5 // (AB2st; AB2st;)) /. {ti|s > £, 855> s, Si5 S, Ty|5 > T},
CC; = (Ci~Byiy~ (AB2st;)) /. {Sij3 > S, Taj3 - T} // Simplify,
CC; = (Ci~Bysy~ (AB2st;)) /. {Sij3> S, Ty|5 > T} // Simplify,
KRink; =
(mi~B(i}~ (ABZsti)) /. {ti|j > t,si3>s,8;;28, Ty~ T} // Simplify,
KKink; = (Kink;~B;)~ (AB2st;)) /. {tiy > t, sij3>s, Sij3>8, Ta;5 > T} //
Simplify,
ddm; 5. = ((St2AB; st2AB;) // dm, j.x // AB2sty) /.
{Sk 58, Ty > T, ty>t, sy > s, (s*)i|j -0, (t*)i|:-I - 0}] ;

Define[BBi, jok = ((dAi—>1,r1 dAj—»Z,rZ) /7 dSyy /7 A8y // Amyy poy // Ay 1y /7 dmk,z-»k)]
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Testing

Block[{$k =1}, {
am - am; 45, bm > bm; j,, dm > dm; 55, R->R; 5, R- Ei,j, P-P; 4y, aS-~»aS;,
aS-»aS;, bS>bS;, bS»bS;, dS > dS;, aA > aA;,4,x, bA >bA; 55, dA > dA; L5k,
C->C;, C>C;, Kink » Kink; , Kink -» Kink;, AB2st -» AB2st;, st2AB » st2AB;

} 77

Column

Check that on the generators this agrees with our conventions in the handout:

Timing@{{"[x,a]" -
((Egyo01,23[0, 0, @z x1] // amy 5,1) [3] - (Ey,01,23[0, 0, a1 x2] // amy 5,1) [3]),
"[A,X]" > ((Egaq,2y [0, 0, XX A1] // bmy 5,1) [3] -
(E(yq1,23[0, 0, XXy Ap] // bmy 5,1) [3]), "[x,¥y]" >
((Eqysq1,2y [0, 0, y2x1] // amy 5,1) [3] - (E(y501,23[0, 0, y1 %x2] // amy 5,3) [3]),
"[Y,X]" > ((Egyaq1,23[0, 0, XX Y3] // bmy 5,1) [3] -
(E(3o¢1,2y[0, 0, XX Yp] // bmy 5,1)[3]1)} /. z_; » z,
{"A[X]" > Last[E ., [0, 0, XX,] ~B; ~bA,,; 21,
"A[A]" > Last[]E()_,(l) [0, 0, A;]~By~bA;,; 5],
"Ala]" -» Last[E(,(13[0, 0, a;] ~By~alA;,; 5],
"A[z]" » Last[E(;,(1;[0, 0, z;] ~By~alA;,; 2],
"A[x]" »> Last[E(,(13[0, 0, x;] ~By1~alA;,; 5],
"A[Z]" > Last[IE{}_,(l} [0, 0, Z;]~B;~bA1,;,21},

"S(a)" » ((E{y,¢1,[0, 0, a;]1 ~B;~aS;) [3]),

"S(z)" » ((Egy,13[0, 0, z;] ~B;~aS;) [3]),

"S(x)" » ((E(,1y[0, 0, x;] ~B;~a8;) [3]),

"S(A)" » ((E(,(1;[0, 0, A;]~B; ~bS;) [3]),

"S(X)" » ((E{y¢1y [0, 0, XX;] ~B; ~bS;) [3]),

"S(2)" » ((E{y,1[0, 0, 2;] ~B;~bS;) [3])
Y/.oz_, > z}

{1.265625, {{[x,a] »2x+0[e]?, [BA,X] > -XXe+0[e]?,
[x,y] »z-xyhe+0[e]?, [Y,X] » (-22+XXYh) e +0[e]’},

> -a+0[e]?, S(z) »-z+ (2xyh+2zh-azh-bzh)e+0[e]?,
-x-axhe+0[e]?, S(A) »-A+0[€]?, S(X) > -XXA?"B"+0[e]?,

2

]
]
1> (x1+%) ~ha; x,e+0[e]?, A[Z] > (2, + Z; BBy + h XX ¥, A; " BE) +0[el?},
)
X) >
Z) > (-ZR"B"+XXYR"B"h) + (22RA"B"h-XXYR"B"h?) e+0[e]’}}}

Hopf algebra axioms on both sides separately.
Associativity of am and bm:
Timing@Block[{$k = 1},

HL /@
{(amy 5,1 // amy 3,1) = (amy 3,5 // amy 5,1), (bmy o, //bmy 3,;) = (bmy 5,5 // bmy 5,,)}

1
{0.437500, {True, True}}
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R and P are inverses:
Timing@
Block[{$k =1}, {HL[ (Ri,j /7 Pi,k) = E(x}o(3} [aj a* +by b*, x5 X + Y5 Y + 235 2%, 1] ] }]

{0.031250, {True}}

as and aS are inverses, bs and bS are inverses:

Timing[HL /@ { (El // aSl) = Eqy,013[@1@% +by by, %9 x5 +y1 ¥*; +21 2%, 1],
(bS1 7/ 81) = Eq1yo1) [Ag A% + By BYy, XXy XX*y + ¥y ¥*3 + 25 2%, 11}]

{0.406250, {True, True}}

(co)-associativity on both sides

Timing[HL /@
{(al1,1,2 /7 @albsys,3) = (Bl151,3 /7 @l1,1,2) , (bPA1,1,2 // bAs,s,3) = (bA1,1,3 // bAL:5),
(amy 5,1 // amy 3,1) = (amp, 3,2 // amy 5,1), (bmy o,y // bmy 3,;) = (bmy 3, // bmy 5,1) )]

{1.078125, {True, True, True, True}}

A is an algebra morphism
Timing [HL /@ {(amy 5,1 // @ali,1,2) = ((2l1,1,3@85,5,4) // (Aam3 4,0 @My 5,1)),
(bmy 2,1 // bA1,1,2) = ((bA1,1,3b8s,5,4) // (bmg 4,2bmy 5,1))}]

{1.312500, {True, True}}

S is convolution inverse of id

Timing [HL[# = E1y,1,[0, 0, 1]] & /@ {
(al1,1,2~B1~a8;) ~By 2~amy 2,1, (a8l1,1,2~By~aS;) ~By a~am 2,1,
(bA1,1,2~B1~bS;) ~By 2~bmy 5,1, (bAj,;,2~By~bS;) ~By o~bmy 5,1}]

{1.015625, {True, True, True, True}}

S is an algebra anti-(co)morphism

Timing[HL /@
{am; ,,; ~B;~aS; = (aS; aS;) ~By ,~amy 1,;, bmy ,;~B;~bS; = (bS; bS;) ~B; ,~bm; 1,,,

aS; ~B; ~al;,; > = al;,5,1~By 2~ (aS; aSy) , bS; ~B; ~bA;,; 5 =bA;,5 1~By 2~ (bS; bS;) }]

{2.500000, {True, True, True, True}}

R-matrix and antipode

Ry ~Bi~ (bS;) =Ry,

True

Pairing axioms
Timing[HL /@ { (bmy 5,1 E(3;,(3)[b*3bs + a"32a3, y'3y3+x"3x3+2%323, 1]) ~B;y 3~P; 3=
(Eyoqy [(A") 1 A+ (BY) 1 By, (XX") XXq + (Y*) 1 Yy +2%; 2, 1]
Eoy,p23 [(A%) 2B+ (BY) By, (XX"), XX + (Y¥), Y + 2%, 25, 1] al3,,5) ~By 4~
P1,4~B2,5~Py,5, (bA1,1,2 E(3),3[b*3b3 + a*3a3, y'3 y3+x"3x3+2%3 23, 1]
E(a),4ay [P*aba + @a%sa4, Y  Va+ X4 %4 +2%4 24, 1]) ~By 3~P; 3~By 4~Py 4 =
(Ef1ysqy [(A%) 1 Ay + (B*) 1 By, (XX*) XXy + (Y")1 Yy +2% 23, 1] amg 4,3) ~By 3~Py,3}]

{0.34375, {True, True}}
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Timing[HL /@ { ((bS; E(z),(2) [D*2 b2 + @*2 32, Y, Yo + X*2 X2+ 2*2 22, 11) // Py 5) =
((Eq1ysy [(A") 1 Ap + (B") 1 By, (XX") XXy + (Y"), Yy +2% 21, 1] aS,) // P12),
(b_sl E )23 [b'2by + %3, ¥, ¥2 + %" x5 + 2% 25, 1]) ~By ,~Py 5 =
(Eu)-»u) [(A*)1 Ay + (B*)1 By, (XX*)1 XXy + (Y*), Yy +2% 2, 1] E2) ”Bl,z"Pl,z}]

{0.28125, {True, True}}

Tests for the double.

Check the double formulas on the generators agree with SL2Portfolio.pdf:

{
"[a,y]1" > ((E{,¢1,23[0, 0, y221] ~By,2~dmy »,1) [3] -
(E(y5(1,2; [0, 0, y1 @5] ~By >~dmy »,1) [3]),
"[b,x]" > ((E{,1,23[0, 0, xpb;] ~By 5~dm; 5,) [3] -
(E(yo01,23[0, 0, %3 by] ~By p~dmy 5,5) [3]),
"[b,y]" > ((E{5¢1,23[0, 0, y2b;] ~By p~dmy 5,1) [3] -
(E(}01,23[0, 0, y1 b2] ~By p~dmy 5,3) [3]),
"[a,x]" > ((E{,,23[0, 0, xpa;] ~By 2~dmy 5,1) [3] -
(E(ys¢1,2y [0, 0, %3 23] ~By p~dm 5,1) [3]),
"[a,z]" » ((E{,(1,23[0, 0, za;] ~By ,~dmy »,,) [3] -
(E{y»¢1,2y[0, 0, 21 @3] ~B;y,2~dm; 5,1) [3]),
"[b,z]" » ((E{,1,2)[0, 0, 22b1] ~By 2~dmy 2,1) [3] -
(E(}»1,23[0, 0, 21 b3] ~By o~dm; 5,1) [3]),
"[x,z]1" > ((Egaq,2y[0, 0, 22 %3] ~By,2~dmy 5,1) [3] -
(E(yoq1,23[0, 0, 21 X5] ~B;y 5~dm; 5,31) [3]),
"[y,z]" > ((Eg,0,23[0, 0, 22 y1] ~By,2~dmy 2,1) [3] -
(E(ysq1,23[0, 0, 21 ¥2] ~By p~dmy 5,3) [3]),
"[x,v]1" > ((E{sq1,23[0, 0, y2 %] ~By p~dmy 5,1) [3] -
(E(ys1,23[0, 0, y1 x2] ~By 2~dmy 5,1) [3]) ,
"[Y,v]1" > ((Egs,23[0, 0, y2Y1] ~By o~dmy 5,1) [3] -
(Efyo¢1,23[0, 0, ¥1 Y21 ~By ,~dmy ,,;) [3]) // Expand // Simplify,
"[Y,x]" > ((E(,01,23[0, 0, x5 ¥1] ~By 5 ~dmy »,,) [3] -
(Efyoq1,23 [0, 0, %3 Y5] ~By p~dmy 5,1) [3]) // Expand // Simplify,
"[X,v]" > ((Egsqa,23[0, 0, y2 XX;] ~By o ~dmy 5,7) [3] -
(E(y5(1,23[0, 0, y1 XX5] ~By,5~dmy 5,1) [3]) // Expand // Simplify,
"[XX,x]" > ((Egaq,2)[0, 0, x3 XX;] ~By 5~dmy 2,1) [3] -
(Efyoq1,23 [0, 0, % XX,] ~By 5 ~dmy 5,;,) [3]) // Expand // Simplify,
"[Z2,2z]" > ((E{,0,23[0, 0, 23 2] ~By p~dmy 5,1) [3] -
(E{y5¢1,23[0, 0, 29 2,1 ~By,,~dmy ,,;) [3]) // Expand // Simplify,
"[Z2,y]1" > ((Eg,¢1,23[0, 0, y221] ~By,2~dmy »,1) [3] -
(E(35{1,23[0, 0, ¥1 Z2] ~By p~dmy 5,,) [3]) // Expand // Simplify,
"[Z2,x]" » ((E(,01,23[0, 0, x32,] ~By 2~dmy 5,1) [3] -
(Eyo¢1,23 [0, 0, %3 2] ~By,,~dmy »,;) [3]) // Expand // Simplify,
"[XX,z]" > ((E(ysq1,23[0, 0, 25 XX;] ~By p~dmy 5,1) [3] -
(E¢ysq1,23[0, 0, 23 XX] ~By, 2 ~dm; »,1) [3]) // Expand // Simplify,
"[Y,z]" > ((E(ys1,23[0, 0, 2, ¥1] ~By ,~dm; »,,) [3] -
(E(y5¢1,2;[0, 0, 21 Y5] ~By p~dmy »,;) [3]) // Expand // Simplify,
"[a,2]" » ((E{sq,2y[0, 0, 22a;] ~By p~dmy 2,1) [3] -
(E(}»1,23[0, 0, Z2; @3] ~By,2~dm; 5,31) [3]),
"[a,XX]" » ((E(,q1,23[0, 0, XX3 a1] ~By 2 ~dmy »,1) [3] -
(E{ysq1,23[0, 0, XX; @3] ~By 2 ~dmy 5,1) [31)
"[a,Y]" » ((E{,q1,23[0, 0, Y22;] ~By p~dmy »,1) [3] -
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(E(ys(1,23[0, 0, ¥y @3] ~By p~dmy 5,5) [31),

"[b,2]1" » ((E{y,¢1,23[0, 0, 2, b1] ~By p~dmy 5,,) [3] -
(E(ys01,23[0, 0, 23 by] ~By 2 ~dmy 5,5) [3]),

"[b,XX]" > ((E{jsq1,2)[0, 0, XX; b;] ~By 5~dmy »,3) [3] -
(E(yo1,23[0, 0, XX; by] ~By 2 ~dm; 5,1) [3]) ,

"[b,Y]" > ((E(,01,23[0, 0, Y2b1] ~By 2~dmy »,1) [3] -
(E(y5¢1,23[0, 0, ¥Y; b] ~By 5 ~dmy »,,) [3]),

"[A,Z]" > ((Egsq1,23[0, 0, 23 A9] ~By 2 ~dmy 2,;) [3] -
(E(ysq1,23[0, 0, Z3 23] ~By 5 ~dmy »,3) [3]),

"[A,XX]" > ((Eaq,23[0, 0, XX Ay] ~By 2 ~dmy 5,1) [3] -
(E(y(1,23[0, 0, XXy Ap] ~By 5 ~dmy »,3) [3]),

"[AY]" > ((Egysq1,23[0, 0, Y5 A1] ~By p~dmy 5,7) [3] -
(E(ysq1,23[0, 0, Y3 23] ~By 5~dmy »,3) [3]),

"[B,2]" » ((E{y,(1,2y[0, 0, 22 B1] ~By 2~dmy 2,1) [3] -
(E(ys01,23[0, 0, 23 Bo] ~By p~dmy 5,5) [3]),

"[B,XX]" > ((E(js(1,2)[0, 0, XX, B;] ~By 5~dmy »,3) [3] -
(E(yo1,23[0, 0, XX; By] ~B;y o ~dm; 5,1) [3]),

"[B,Y]" » ((E(,(1,23[0, 0, Y2 B3] ~By,2~dmy »,1) [3] -
(E(y»1,2y[0, 0, Y1 B5] ~B; 2 ~dm; 5,1) [3]),

"[XX,Y]" > ((Egaq1,2)[0, 0, Y2 XX;] ~By p~dmy »,3) [3] -
(E(ysq1,23[0, 0, ¥3 XXp] ~By 2 ~dmy 5,1) [31)

"[Z2,Y]" » ((E(,0,23[0, 0, Y2 2,] ~By,2~dmy »,1) [3] -
(E(yoq1,23[0, 0, ¥3 Z5] ~By p~dmy 5,5) [3]),

"[Z,XX]" > ((E{y5(1,23[0, 0, XX, Z;] ~By o ~dmy 5,1) [3] -
(E(yoq1,23[0, 0, XXy 25] ~By 2 ~dmy 5,1) [31),

"[A,x]" > ((Egsq1,23[0, 0, x5 A1] ~By p~dmy 5,7) [3] -
(E(ys¢1,23 [0, 0, %3 A] ~By p~dmy 5,3) [3]),

"[A,Y]" > ((Egoqi,2y [0, 0, y2 A1l ~By p~dmy 5,9) [3] -
(E(yo1,23[0, 0, y1 A2] ~By 2 ~dmy »,1) [3])

Y /. {v_l - v} // Expand // Factor

"A(a)" = ((E(,2y53[0, 0, 2] ~By~dAy,3,2) [31) ,

"A(x)" = ((E(1,2)5(3 [0, 0, %3] ~By~dAy,q,5) [31),

"A(b)" » ((E(1,235¢3[0, 0, by] ~B; ~dAy,;,,) [31),

"A(Y)" = ((E(1,2353[0, 0, y1]1 ~By~dAy,;,2) [31),

"A(z)" > ((E(1,2y5(3[0, 0, 21] ~By~dAy,;,2) [31) ,

"A(XX)" > ((E(1,2)53[0, 0, XX;3] ~By ~dA1,3,2) [31) ,

"A(Y)" - ((E(1,235¢3[0, 0, ¥Y3] ~B; ~dAy,;,5) [31),

"A(Z)" > ((E(1,2y53[0, 0, 2] ~By~dA1,3,2) [31) ,

"A(A)" > ((E(,2y5¢ [0, 0, A;] ~By~dAy,; ) [3]) ,

"A(B)" > ((E(1,2),(3[0, 0, By] ~By~dAy,3,2) [3])} // Simplify

{
"S(a)" » ((E{1}-¢13[0, 0, a;] ~B; ~dS;) [31) ,
"S(x)" > ((E1).¢1;[0, 0, x,] ~B;~dS;) [3]),
"S(b)" » ((E(1)5¢1)[0, 0, by] ~B; ~dS;) [3]) ,
"S(y)" = ((E(1y5¢13[0, 0, y1]1 ~B;~dS;) [31),
"S(z)" » ((E(1y.¢13[0, 0, z;] ~B; ~dS;) [3]) ,

"S(XX)" » ((E(1y513[0, 0, XX;] ~B; ~dS;) [3])
"S(Y)" » ((E{1y-¢13[0, 0, Y;] ~B;~dS;) [31) ,
"S(Z)" » ((E{1}5(13[0, 0, Z2;] ~B; ~dS;) [3]) ,
"S(A)" » ((E(1y,¢13[0, 0, A;] ~B; ~dS;) [31),
"S(B)" » ((E(1)5¢1)[0, 0, By] ~B; ~dS;) [3])
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{[a,Y] > y+0[el?, [b,x] »x+0[e]?, [b,y] »-2y+0[€]’

[a,x] *)72X+O[€12, [a,z] a—z+0[€}2, [b,z] %7Z+O[€]2,

[x,2] *)XZhE‘FO[E}Z, [v,z] %—yzh€+0[€}2, [%,v] ez—xyh€+0[e}2,

-1+mahp2t
[Y,y] > ———————+ (-bA"B?"+2yYh) e+0[e]?, [Y,x] >-xYhe+0[e]’
h
-1+A2RpBE ,
[X,y] > -XXyhe+0[e]?, [XX,x] > ——— + (—aA’Zh]Bh+2xXXh> e+0[el?,
h
-1+mABBH o ,
(Z,2] > ———— + A 2B <—a—b+22ZAh]th)€+O[€]2,
h

[Z,y] > -XX+yZhe+0[e]?, [Z,x] >YR "B +R?" (x2R?"- (-1+a) YB") he+0[e]”
[XX,z] > (-2 y+XXzh)e+0[e]?, [Y,z] > (2xA"B?"+Yzh)e+0le]?,

[a,2] >Z2+0[€]?, [a,XX] »2XX+0[e]?, [a,Y] >-Y+0[€]?, [b,Z] >Z+0[e]?

[b XX] » -XX+0[e]?, [b,Y] 52Y+0[e]?, [A, 2] >-Z€+0[e]?

[A,XX] > -XXe+0[e]?, [A,Y] >0[€]?, [B,Z] »-Ze+0[e]?, [B XX] > 0[e]?

[B,Y] >-Ye+0[e]?, [XX,Y] > (2Z-XXYh)e+0[e]?, [2,Y] >YZhe+0[e]?

[2,%X] 5 -XXzhe+0[e]?, [A,x] > xe+0[e]?, [A,y] »0[e]?]

- (a; +ay) +O[e]2, A(xX) » (%1 +%y) —hay X2€+O[€]2,
by +by) +0[€]?, A(y) » (y1+Yy2) ~hbyy,€+0[€]?

(a) = (
(b) = (
(z) > (z1+2;) +h (2 %1y, - (a1 +01) z,) €+0[€]?, A(XX) > (XXy + XX, A" B}) +0[e]?,
(Y) > (
(B) = (

I\

Y+ Y, AYBTPP) +0[€]?, A(2) > (21+ 2, A" BI" + h XX, Y, AP BY) +0[€]?
A +Ay) +0[e]?, A(B) > (By+By) +0[e]”}

3

) »-a+0[€]?, S(x) »-x-axhe+0[€]?, S(b) »-b+0[e]?

)y 5 -y-byhe+0[e]?, S(z) »-z+ (2xy-(-2+a+b) z) he+0[e]?
X) 5> -XX BB -2 (xx A?"B h) e +0[e]?,

) > -YATB -2 (YAT"B?"h) e+0le]?,

) > A"BY (-2 +XXYh) +A"BPhA (-22+3XXYh)e+0[e]?,

A) > -A+0[e]?, S(B) > -B+0[e]?}

(co)-associativity

Timing[HL /@
{(dA1,1,2 // dBz,2,3) = (dAy,y,3 // dBAyLy,2) , (dmy o4 // dmg 3,1) = (dmg 3,5 // dmy 5_51) }]
{14.218750, {True, True}}

Timing[HL /@ { (stdA;,;,, // stdAy,5,3) = (stdAj,y,3 // stdAy,y,),
(stdmy 5,3 // stdm; 3,;) = (stdmy 3,5 // stdmy 5_,1)}]

{7.531250, {True, True})}

Timing[HL /@ { (ddmy 5, ~STB; ~ddm; 3,;) = (ddmy 3,,~STBy~ddmy 5_,1)}]
(2.125000, {True}}

A is an algebra morphism

Timing@HL[dm; ,,3 ~By~dA;,;, 5 = (dAg,;,3dAs,5,4) ~By,2,3,4~ (dmz 4,5, dmy 5,3) ]
{7.296875, True}

S, inverts R, but not Sy:
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= Timing@{HL[R; »~B,~dS; = Ry 2]}
oufesl= {0.796875, {True}}
S is convolution inverse of id
Timing [HL[# = E;,,(1,[0, 0, 1]] & /@
{(dA1,1,2~By~dS;) ~By p,~dmy 5,1, (dA1,;,,~By~dSy) // dmy 5,,}]
{4.703125, {True, True}}
S is a (co)-algebra anti-morphism

Timing[HL /@ Expand /@
{dm; 5,3 ~B;~dS; = (dS; dSy) ~By 5 ~dmy, 1,1, dS;~By~dAy,;,5 =dA;,5 1 ~By »~ (dS; dSy) }]

{22.718750, {True, True}}

Quasi-triangular axiom 1:

Timing@HL[R; »~B;~dA;_,1 3 = (R4 R3,2) ~Bz g4~dmy 4,5]
{0.375000, True}

Quasi-triangular axiom 2:

Timing@HL[
((dA; 51,2 R3,4) ~B1,2,3,4~ (dmy 3,3 dmy 4,2)) = ((dA1,2,1 R3,4) ~By,2,3,4~ (dmz 1,1 dmy 2,5)) ]
(2.359375, True}

The Drinfel'd element inverse property, (U4 Uz)~ B 2~dmq 2,4 =E[O, O, 1]:

Timing@

HL[((R1,2~B1"'dsl~Bl,2~dm2,1—>i) (Rl,z"'BZ"'dsz"BZ"dSZ"Bl,Z"dmZ,l—»j)) ~Bj, y~dm; j,55 =
E(-¢ [0, 0, 1]]

{2.453125, True}

The ribbon element v satisfies v2 = S(u) u. The spinner C=uv™". It is convenient to compute
z = S(u) u~" which is something easy. Taking the square root of z and multiplying it with S(u) yields

the ribbon element v.

Timing@Block[{$k = 1},
(((Rl,z"Bl"dsl“‘Bl,Z"dI“Z,l-»i) ~B; ~dS;) (Rl,z"'BZ"‘dSZ’“BZ"’dSZ"‘Bl,2"'dm2,1->j)) ~
B, 3 ~dm; 5.5

{8.062500, E(y,(1,[0, 0, B?"Bi"+ (2ha; RI"Bi"+2hb; A" BI") e +0[e]?]}

Turaev moves are checked here.

T-4:

Timing@Block[{$k = 1},
HL /@ {(C1 C2 R34 Cs Cg) ~By,3~dmy 3,1 ~By s~dmy 5,1 ~By 4 ~dmp 4,2 ~Bp g~dmz 6,2 = Ry,2} |

{3.796875, {True}}

T-5, T-6
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Inf63]:= Timing@Block[{Sk =1},
HL /@ {(Ci Cs) ~Bi,y~dm; 5.5 = E(yu(s3 [0, 0, 11, (CiCy) ~Bs 5~dmy, 5. = EqyLy [0, 0, 1],
(Ei Ej) ~B;j y~dm; j,; = (((R1,2"Bl"dsl"Bl,Z"d-‘nz,l-»i) ~B; ~dS;)
(R1,2”Bz”dsz“‘Bz"dsz”Bl,z“‘dmz,l»j)) ”‘Bi,j”dmi,jﬂi}]

outes= {16.296875, {True, True, True}}

Reidemeister 2 or T-3:
Timing [HL[# = E(;,(1,2,[0, 0, 1]] & /@

{(R1,2R3,a) ~B1,2,3,4~ (dmy, 3,1 dmp 452) , (Re,2 R3,a) ~B1,2,3,4~ (dmy, 3,1 dmp 452) }]

{2.500000, {True, True}}

Timing[HL[ﬂ: = E(y,(1,23[0, 0, 1]] &/@ { ( ( (ﬁl,Z RR3,4)) ~Bjy,2,3,4~ ((ddmy 3,; ddm; 4,5) )) ’
((RR1,2 RR3,4) ~STBy,2,3,4~ (ddmy, 3,1 ddm214_,2))}]

{2.718750, {True, True}}

Cyclic Reidemeister 2 or T-2:

Timing@HL[ (R1,4 Rs,2 E:«1) ~Bp,g~dmy 4,2 ~By,3~dmy, 3,1 ~By s~dmy 5,1 = Cp By, [0, 0, 1] ]

{7.765625, True}

Reidemeister 3 or T-1:

Timing@HL[ ((Ry,2 Rg,3Rs5,6) ~By,4~dmy 4,3 ~By 5~dmy 5,5~B3 ¢~dm3 6,3 ) =
((R1,6 R2,3R4,5) ~By g~dmy 4,1 ~By 5~dmy 5,,~B3 g~dmz ¢,3) ]

{5.343750, True}

Timing@HL[ ( (RR;,» RRy, 3 RR5 ) ~STB; 4 ~ddm; 4,3 ~STB; 5~ddmy 5,5, ~STB3 g~ddm; g,3) =
((RRy,g RRy 3 RRy,5) ~STB; 4 ~ddm; 4,3 ~STB; 5~ddm;, 5,5 ~STB;3 g~ddms ¢,3) ]
{1.656250, True}

Relations between the four kinks or T-7

4= Timing [HL /@ {Kink; = (Rs,1 C2) ~By,2~dmy 2,1 ~By, 3~dmy 3.,
Kink; = (Rs,1 C2) ~By,2~dmy 2,1 ~By,3~dmy 3,5, (Kink; Kink;)~B; j~dm; j,; =
Eg,qy [0, 0, 1], (Kink; Kink;) ~Bj 5~dms i, = Eqy,uy[0, 0, 11}]

oufe4= {9.187500, {True, True, True, True}}

The Trefoil

Timing@Block[{sk =1}, ZZ = RR; s RRg , RR3 7 CcC, KKinkg KKinkg KKink;j;
Do[2Z = (2Z /. {€ » 0}) ~By,;~(ddmy ,; /. {€ »0}), {r, 2, 10}];
{Simplify /e (22 /. {€ » 0})}]

s2 T2

{1.250000, {E;Hm{o, 0, ) ]}}

(1—S+52) (1—T+T2) (1-sT+s%72

Timing@Block[{$k = 1},
2Z = (RRy,s RRg, 2 RR3,7 CC4 KKinkg KKinkg KKink;) ;
Do[Print["Doing ", r]; ZZ = (2ZZ2) ~By, o~ (ddmy .,;), {r, 2, 10}];
{Simplifyezz}]
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{28.890625,

g2 2

{Emm[o, 0, (28717 (s-28%+387-28"+ T
(1-s+8?) (1-T+T?) (1-5T+8%T1?)

25T+8%T+28°T-58'T+68°T-2T2+5T?-5°T?-435*T72+538°T2-1138°T%+

373 +28T3-82 T3 +48° T +68'T2-5°T3+7s8°mP+108" TP-2T4-557T¢-

45T +65 T -248 Tt +108 T4 -128°T 115" T -63°T*+65 T+

582 T°-83T°+108T°+128°T°-8°T°+108" T°+13s8 T -1182T6+733 10~

128*T6-9°76-165°T¢+118"T¢-2035%T6+10s8T"-118*T'+108°T" +

118°T77-148"T7+1538° 7" -65*T8+133°7%-205°T8+1557 T8 -83% T8+

(1-5+57) (l—T+T2)2 (-2+45+38T+28°T*+8°T? (34T) -8°T% (3+7) -
SPT(1+3T) +8°T (-1+7%)) a1+ (1-5+8%)° (1-T+T°) (-2+T+3ST-
S(1+38) T°+8 (-1+8%) T?+8% (3+8) T"-8> (3+8) T°+28*T°) by +

2%y XXq +2 8% % XX; -5 T %y XXy -2 ST xy XXq —38%Tx XXq -2 8% T %y XXq -

5 8% T xy XX; + 9T? %y XXq + 58 T? xq XXq + 9 82 T? x4 XXq + 9 8% T? x4 XX4 +

58% T? x; XXy + 9 8% T? xy XXy -7 T x; XX; - 12 S T° xy XXy — 12 S% T° x4 XX -

14 8% T %y XXy =12 8% T2 xq XX; - 12 8° T% % XX, -7 8% T° xy XX; + 4 T xq XX; +

10 S TH x; XX, + 18 82 T# x; XXy + 14 S T# x; XX, + 14 8* T* x; XX, + 18 8° T# x; XX; +

1088 T4 x; XXq +4 8" T4 %y XX =7 S T° %y XXq - 12 8% T %1 XX; - 12 8% T° x; XX, -

14 8* T° x; XX, - 12 8° T° x1 XX; - 12 S° T° x; XX, -7 87 T° x; XXy + 9 82 T® x; XX +

598° TOx; XXy +9 8% TO xq XX; +9 8% TO % XX; +58° T0 % XXq + 987 TO x; XX; -

583 T %y XXy -2 8% 77 xq XX; =38 T x; XXy -2 8% T7 xy XXy =587 T7 xy XX, +

2S4T8X1XX1+2S7TBx1XX1+2y1Y1—5Sy1Y1+9SZy1Y1—7S3y1Y1+

48"y Y1 -28S Ty, ¥1+58° Ty, Y1 -128> Ty, ¥7+108 Ty, Y1 -78 Ty, ¥y -

3ST?y; Y- +98°T?y; ¥, -12S° T2y, Y, +188* T? vy, ¥, 128> T y; Y +

98 T2y Y1 +2 Ty Y1 -2S T3y, Y, +98° T3y Y3 -14S° T2y, Yy +

148 Ty, Y1 -128° Ty, Y1 +58° T2y, Y1 -58 Ty, Y1 =58 T4y ¥y +

582 Ty Y1 -128° Ty Y1 +14 8 Ty Y1 - 14 8° Ty Y, + 988 T yy vy -

28 Ty Y, +28 Ty ¥+ 982 Ty ¥, 1287 TP vy Y, #1884 T2 vy Yy —

128° Ty, Y1 +98° Ty, Y1 =38 Ty, ¥ -783T8 vy Y1 +108* TC vy Y4 -

128° 0y, Y, +58° 10y, v, -28" T0 vy, ¥y +48* T vy Yy -78° Ty, ¥y +

98°T v, Y, =587 Ty, Y, +28° T/ vy, Yy -2 XX, Yy 29 +7 SXX Yy 2 -

98?2 XX, Y, 2, +7 S KX, Y12, -28XX; Y12, -5STXKX; Y, 21 -58* TXX, Y, 21 +

12ST? XX, Y. 2, -98° T2 XXy ¥y 2, +21 S T2 XXy Yy 2z, - 9 8% T? XX, Y 2, +

128° T? XX Y, 2, -2 T° XX, Y, 2, -5 ST XX, Yy 2, - 98° TP XX, Y, 29 —

78 T XX, Yy 2, -7 8 TP%XX, ¥, 2, -98° T? XXy Yy 2z, -5 S TP XX, Yy 24 -

28T T2XXy Yy 21 +7 ST XXy Yq 29 +21 8% T4 XXy Yy 27 -7 S* T XXq Yq 24 +

21 8° T XXy Yy 27 +7 87 TP XXy Yy 27 -9 8% T° XXy Yy 2z, - 9 8% TP XXy Yy 2z -

98° T XX, ¥y 27 -987 T° XX, Yy 2, +7 8> T XX, Y; 27 -5 84 TO XX, Yy 21 +

12 8% TO XXy Yy 21 -5 S0 TO XXy Yy 2, +7 87 T XXy Yy 21 -2 8% TV XXy Yy 2z -

28" T/ XXy Y1 29 +4 2121 -7S21 21 +98% 2725872727 +28% 27 2, =TT zq % +

10STz,2,-128°T2,2,+58°T2,2,-28"T2,2,+9T%2,2,-12ST? 2, %, +

1852 T%2,2,-128°T?2,2,+958*T% 2,2, -38°T% 2,2, -5T> 2, 21 +

58T32,2,-128°T2,2,+145°T° 2,2, -148*T°2,2,+98°T° 2, 2; -

2873 2,2,+28" 72,2, +2T%2,2,-28T“2,2,+98°T2,2,-148°T% 2, 2, +

148*T%2,2,-128°T* 2,2, +58°T* 2,2, -58" T2, 2, -38°T° 2,2, +

98°T%2,2,-128*T7°2,2,+188°T°2,2,-128°T°2,2,+987 T° 2, 2y -

28°T92,2,+58T%2,2,-128°T%2,2,+108°T% 2,2, -787 T2, 2, +

28377 2,2, -58° T 2,2,+98°T 2,2, 7577 2,2, +48" 17 2, zl) e //
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((1—s+sz)3 (1-17+1%)° (1-sT+8%12)°

coter]})

The Figure Eight knot

Timing@Block[{$k = 1},
zZ = (RRg,1 RR;,6 RRs,9 RRyg,3 CC7 CCy) ;
Do[Print["Doing ", r];
2Z = (22 /. {€ > 0}) ~STB; .~ (ddm; ,,; /. {€ > 0}), {r, 2, 10}];
{Simplify@zz}]

52 T?
{2.125000, {]E{H{l)[o, 0, - H}
(1-3s5+8?) (1-3T+T?) (1-38T+5%1?)

Timing@Block[{Sk =1},
ZZ = (ﬁa,l RR; s RRs, g RR;g,3 CCy CC4) i
Do[Print["Doing ", r]; 22 = (22) ~STBy,, ~ (ddmy .,;), {r, 2, 10}];
{Simplifye@zz}]
{532.593750,
s? 12

E;,,]0, 0, - - (2 (s*T? (4-98+28°-9T
{” m[ (1-38+8?) (1-3T+T?) (1-38T+8%T1%) 2 | . '

12ST+6S°T+2T?+6ST°-658°T°-28T°-65°T°-1238°T3+98% T’ -
287 T +987 T -4 Th 4 (1-3T+T?) (-2+28 T?+38 (1+T)-38 T (1+7T))
ap+ (1-38+8%) (-2+3(1+8) T-38 (1+8) T°+28°T%) by +

2% XX, +2 8% XX -9 Tx; XX -3STx XXq -98°Tx, XX, +4 T? x; XX +

16 S T? % XXq + 16 S? T? x; XX, + 4 S T? x; XX, - 9 S T° x; XX; - 3 8% T3 x; XX; -
98 T  x XX +2 82 T4 % XX, +28° T4 % XX +2y1 Y1 -9Sy, Y1 +4 8%y, Yp +
2Ty Y1 -3STy, Y1 +168°Ty; ¥, -9S°Ty, Y1 -9ST?y; Y, +16S>T?y; Yy -
383 T2y Y1 +28 T2y Y1 +48° T3y, ¥, -98° T2y, Y, +28 T3y, vy -

2XX1 Y, 2, +11SXX, Y2, -29% XX, Y12, -2TXX; Y, 21 -8STXXy Yq 2 -

8 S TXX; Y12, -2S8 TXXy Yy 2, +11ST? XXy Y, 27 -88? T2 XXy Yy 2, +11 87 T?
XXy Y, 2, -28° TPXXy Y, 2, -28° T3 XX, Yy 2, +42, 2, -982, 2, +28% 2, 2 -
9Tz, 2,+16ST2,2,-3S°T2,2,+28 Tz, 2,+2T? 2,2, -3ST? 2,2+

16SZT221Z1—9S3T2zlZ1+2ST321Z1—9SZT32121+4S3T3zlzl))e)/

((1—3S+SZ>2 (1-3T+1%)° <1—BST+SZT2)2)+O[€]2H}

The 6-3 knot

Timing@Block[{Sk =1},
Zz = (ﬁs,lz RR; 0,14 RR13,7 RRy,5 RRg, 2 RR3, 5 CCy cc11) ;
Do[Print["Doing ", r]; ZZ = (ZZ) ~STB; .~ (ddmy .,;), {xr, 2, 14}];
{Simplifye@zz}]

{337.828125, {Ewm[o, 0, (s*T4) /((1-35+58°-35%+s)
(1-3T+5T?-3T°+T%) (1-38T+58°T?-38°T°+5*T")) +
(287 (8-218+3087-1587+48*-21T+36ST-308T-245"T+188*T-
6S°T+30T?°-30ST?+1238°T?2+455°T2+65'T2-65°T2-15T7°-245T%+
458° T2 -488°T°-2438T3+63°T°+68" T°+4T'+185 T +65°T! -
248374 +243° T -635°T4-1887 T4 -43° T* - 6ST°-632T°+248°T°+
48 3°T°-458°T°+24387 T°+155°T°+635° T0 - 659 70 -455°T%-123°T° +
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3087 76-308%T0+65°T'-188°T"+2438°T7+308°T'-368"T"+218°%T7-
48T 4+158°T°-308° T 4+218" 1°-88" 10+ (1-3T+572-317+71%)
(444818498 (1+7)-98"T° (1+T)-28% (5+9T+57%) +
28°T7 (549T+5T?) +38% (1+5T+5T7+T%) -38°T (L+5T+5T*+T%)) a;+
(1-38+587-38%+8") (-4+9(1+8)T-2(5+98+58%) 77+
3(1+55+55°+8%) T7-35 (1+55+55°+87) T°+25° (5+95+58%) T°-
987 (1+8) T/ +4 8 T%) by + 4 % XXy -2 S x; XXy - 2 87 x3 XXy + 4 8% x; XXy -
15T xy XX, +3STx; XXy —38°Txy XXy +38°Txy XXy -158% T x; XXy +
30 T? x; XXq + 6 S T? %7 XXy + 12 87 T? x; XX; + 12 S T? x; XXy + 6 8% T? x; XX +
30 8% T? x; XX; =21 T2 %y X¥X; - 51 S T° %y XX; - 6 8% T7 % XX; - 30 8° T? x; XX, -
6 5% T3 x; XXy =51 8° T% x XX, - 21 S° T3 x; XXy + 8 T* x; XX; +44 S T* x; XX, +
56 8% T x; XX; +8 8% T% %y XX, + 8 8* T% x; XX, + 56 S° T* x; XX, + 44 S° T* x; XXy +
887 T4 x; XX; =21 ST® x; XX; - 51 S% T% x; XX, - 6 S° T° x; XX; - 30 8% T° x; XX, -
6 8% T° x; XXy — 51 8° T° x; XX, - 21 87 T° x; XXy + 30 8% T® x; XX; + 6 S° T® x; XX, +
12 8% T x; XXq +12 S° TO %y XX; + 6 S° T® x; XX, + 30 S7 T® x; XX; - 15 8% T7 x; XX +
384T x; XXy -38° T/ x; XX, +38°T7 %y XX, -1587 T7 x; XXy + 4 8% T% x; XX, -
28 T8 x; XX -2 8°T0 x; XX +4 S T8 %, XXy +4 vy, Y1 -15Sy; ¥, +308% vy Yy -
2183y, Y1 +88  y1 Y1 -2 Ty Y1 +3STy; Y1 +68° Ty, Y1 -518° Ty, Yy +
448 Ty, Y- =218 Ty, Y1 -2T?y; Y1 -3ST?y; Y, +12 8% T% yq Yq -
6S°T?y; Y1 +568 T2y Y1 -51S° T2y Y1 +30S° T2 yy Yy +4 T3 yq Yy +
38Ty Y1 +128° T2y Y1 -30S Ty, Y1 +8S8 TPy ¥, -6S° T2y, Yy +
65°T3y, ¥ -158" T2y, Y1 -15S Ty, Y1 +6S° T4y, Y1 -6S° Ty, Yy +
88 T4y, Y -308° T4y, ¥, +128° T4y, ¥, +38 T4y, Y, +48° T4y, ¥y +
308° Ty, Y1 =518 T2y, Y1 +56S8* Ty, Y, -6S° T  y; Y, +128°T° v, ¥y —
38" Ty, Y, -28° T2y, Y, -218° Ty, Yy +448* Ty, ¥, -518° Ty, ¥, +
65°TCy Y +387 TCy, Y -28% T8y, ¥y +884 Ty, Y1 -218°T vy, ¥y +
308°T v, ¥, -1587 Ty, Y1 +4 8% T vy Yy -4 XX, Yy 27 +19S XX, Yy 21 —
3282 XX, Yy 27 +1983 XX, ¥y 27 -4 S XXy Yy 21 +2 TXXq Yy 21 —22 ST XX Yy 29 +
16S° TXX; Y. 2, +16S° TXX, Y12, -228 TXX, Yy 2, +2S° TXXy Yy 21 +
2 T? XX, Yy 27 + 35 S T? XX; Y; 21 - 28 S% T? XX; Y; z1 + 34 8% T? XX Yy zq -
28 S* T? XX, Y1 21 + 35 S° T2 XX; ¥y 27 +2 SO T? XX, Yy 27 - 4 T3 XX Yy 27 -
22 S T3 XXy Y1 27 -28 8% T2 XXy Yy 27 -4 SP TP XXy Yy 21 -4 8 T2 XXy Y; 21 -
28 S° TP XX, Yy 2; -22 S8 TP XX, ¥y 27 -4 87 TP XX, Yy z; +19 S T! XX, Yq 21 +
16 S22 T4 XXy Yq 21 +34 S T4 XXy Yq 21 -4 S* T4 XXy Yq 21 + 34 S° T4 XXy Yy 2z +
16 S° T4 XXy Yy 27 +1987 T4 XXy ¥y 2, -32S° T° XXy Yy 2z, +16 S° T° XXy Yy 2, -
28 S* T® XX, Yy 27 - 28 S° T2 XX, Yy 21 + 16 S T2 XX, Yy 27 - 32 87 T° XXy Yy 29 +
198° TOXXy Yy 27 -22S* TOXX, ¥y 2, +35S8° TO XXy Yy 2, -22 S® TO XXy Yy zq +
1987 TOXX, Y, 2 -4 8 T/ XX; Yy 21 +28° T/ XX, Yy 21 +2 S8 T XX, Y, 21 -
487 T XX Yy 21 +821 21 -21S21 27 +305% 2,27 -158%2; 2, +48%2; 2, -
21Tz, 2,+448T 2,2, -518°T2,2,+68 Tz, 2, +38°Tz,2,-28"Tz; 7, +
30T? 2,2, -518T%2,2,+568°T? 2,2, -6S5>T? 2,2, +128°T? 2, 2, -
38°T?2,2,-28°T%2,2,-15T° 2,2, +6ST°2,2,-68°T>2,2,+88° T2, 7, -
3084T° 212, +128° T2 2,2, +38°T32,2,+48 T2, 2,+4T" 2,2+
35T 2, 2-+128°T%2,2,-308>T" 2,2, +88* T2, 2, -68°T" 2, 2, +
65°T%2,2,-158"T%2,2,-25T%2,2,-3S°T°2;2,+128>T%2; 2, -
65" T° 2,2, +568°T% 2, %, -515°T%2,2,+308 " T°2,2,-28>T%2, 2, +
38°T% 2,2, +68°T% 2,2, -518°T%2,2,+448°T%2,2,-2187T%2, 2, +

4SST721Z1—15S4T721Z1+3OS5T721Z1—2156T721Z1+857T72121)E)/
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((1-3S+552-3s3+s4)2 (1-37+512-31%+14)°

coter”] )

(1-38T+58272-3837°+5'1¢)°

Mirror Trefoil

Timing@Block[{$k = 1},
22 = (RRy,s RRg,2 RR3,7 CC4 KKinkg KKinkg KKinkyo) ;
Do[Print["Doing ", r];
2% = (2Z /. {€ » 0}) ~STB,; .~ (ddm; .,; /. {€ » 0}), {r, 2, 10}];
{Simplifyezz}]
s? T

(1-5+8%) (1-T+T12) (1—ST+82T2)H}

{3.562500, {E(1L 5[0, 0,

Timing@Block[{$k = 1},
2Z = (RRy,s RRe,» RR3,7 CC4 KKinkg KKinkg KKinkyo) ;
Do[Print["Doing ", r]; 22 = (22) ~STB; .~ (ddm, .,;), {r, 2, 10}];
{Simplifyezz}]

{49.390625,

s? 12
[Egam o o, "

28212 (8—155+2082—1BS3+

(1-s+8?) (1-T+T?) (1-5T+5%T1?)

65 -15T+14ST-118°T-108>T+118*T-10S°T+20T?-11ST?+16S%T?+

S3T2 4128 T?-78°T2+118°T?-13T°-10ST°+s?T°-128°T°-108* 7%+

ST TP 58T 68 TP +6T +115T +128%T4-108°T*+2438* 7' -63°T%+

48T 4+58' T +288 T4 -10ST°-782T°+5°T°-65*T°-458°T°+3°T°-

287 T5-338%T°+118°T°-533T0+435%T04+38°T0-5"T¢+235% 7063317+

54T 28T -sf 1" +28" 77 -8 1" +25' TP -38° T8+ 258 B ST T8,

(1-5+¢7) (1—T+T2)2 (-2+8+38T+28°T"+8°T% (3+7T) -8°T° (3+7T) -
SPT(1+43T) +8°T (-1+7%)) ar+ (1-5+82)° (1-T+T?) (-2+T+3ST-
S(1+38)T°+8 (-1+8%) T7+8% (3+8) T'-8% (3+8) T°+28"T1°) by +

2% XX, +2 87 %, XX -5 T xy XX -2 ST xy XXy -38% Txy XXy -2 87T x; XXq -

58% T xy XX +9T? x; XX+ 58 T? %y XXq + 987 T? x; XXq + 987 T? x; XX; +

554 T2 % XXq + 9 8% T? xq XX; = 7 T2 %1 XX; - 12 S T2 xq XX; - 12 8% T2 x; X¥; -

14 8% TP %y XX, - 12 8% T %1 XX - 12 8° T% xy XX, - 7 S° T° x; XXq + 4 T x; XX; +

10 S T? x; XX, + 18 87 T% xy XXy + 14 S T4 x; XX, + 14 8% T% %y XXy + 18 8% T* x; XX, +

10 8% T% %y XXy +4 8 T¥ %y XX, -7 S T° %y XXy - 12 82 T° x; XX, - 12 87 T° x; XX, -

14 8% 7% %y XX; - 12 8% T% %9 XXq - 12 8% 1% %y XX; -7 87 T° x; XXq + 9 87 T® x; X¥4 +

587 T8 x; XXy + 9 8% T8 %y XXy +98° T8 x; XXy +58° T8 xy XXy + 987 TO xy XX, -

583T %, XXy -2 8 T/ x; XX -3 8° T %y XX; -2 8°T7 %y XX; -587 T/ %y XX +

28 T % XX +2 S  T¥ % XXq +2y1 Y1 =58y, Y1 +98%y, Y1 =783y, Yy +

48"y, Y1 -28S Ty, ¥1+58° Ty, Y1 -128 Ty, ¥, +108 Ty, Y1 -78 Ty, Yy -

3ST?y; Y1 +98% T2y, ¥ -128° T2y, Y, +18S T2 yq Y3 -12S° T2y, Yy +

9S85 T2y Y1 +2 T y1 Y1 -2S TPy Y1 +98% T2y, v, —14 8 T3 yy vy +

148 Ty, Y, -128° Ty, ¥, +58° Ty, ¥, -58" T2y, Y, -5S Ty, Yy +

587 Ty, Y, -128° T4y, Y1 +148* T4y, ¥, -145° Ty, Y, +9S° T4y, ¥, -

28 T4y Y 4288 Ty Y1+ 982 T2y ¥ -128° T vy Y, + 1884 T yq Yq -

128° Ty, Y1 +98° Ty, ¥, -38" Ty, ¥, -78 T8y, ¥, +108* TC vy ¥, -

128°T0y, Y1 +58° Ty, v, =28  T0 vy, Yy +484 T vy Yy =78° Ty, Yy +
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98°T v, Y, -58" Ty, ¥, +28° T/ yy Yy -2 XXy ¥y 27 +7 SXXq Yy 27 —
987 XX, Y, 2, +7 S XX, Y12, -28%XX; Y120 -58STXX; Y, 21 -58* TXX, Y, 27 +
12 S T? XXy Y; 27 - 9 S T2 XX1 Y; 27 +21 S3 T? XXy Yy 27 - 98 T? XX; Yq 21 +
12 S° T? XXy Yy 21 -2 T2 XXy Yq 2 -5 S T? XX; Y; 27 - 9 8% T° XX; Yq 2 —
783 T3 XXy Yy 23 -7 8* TP XXy Yy 27 -98% T2 XXy Yy 2z, -5 8° T2 XX, Yy 24 -
28T TIXXy Yy 29 +7 ST XXy Yy 21 +21 S¥ T4 XXy Yq 29 -7 S* T4 XXy Yy 21 +
21 8% T XXy Y1 21+ 787 T4 XXq Y1 27 - 9S82 T° XXy Yq 21 - 984 T2 XXq Yy 2 -
9S85 T XXy Yy 21 - 987 T° XXy Yq 2, +7 S T8 XXy Y; 21 -5 8% TO XXy Yy 21 +
12 8% TO XXy Yq 29 -5 S8 TOXXy Yy 29 +7 87 TO XXy Yq 27 -2 S T/ XX Y 24 -
28" T' XX Y, 27 +42,2,-7S2,2,+98°2,2,-58"2,2,+28%2,2,-7Tz, 21+
10STz12,-128°T212,+58°T2,2,-28"T2z12,+9T%2, 2%, -12ST? 2z, 21 +
188°T% 2,2, -128°T% 2,2, +98*T% 2,2, -38°T? 2,2, -5T°2, 27 +
58T%2,2,-128°T2,2,+148°T 2,2, -148*T° 2,2, +98°T° 2, 27 -
2873 2,2,+28" T2 22, +2T%2,2,-28T 2,2, +98°T 2,2, -148°T% 2,2, +
148*7%2,2,-128°T“2,2,+58°T*2,2,-58" T 2,2, -35°T° 2, 2, +
983 T% 2,2, -128%T%2,2,+188°T%2,2,-128°T°2,2,+957 T°2; 2, -
28°T%2,2,+58°T7°2,2,-125°T%2,2,+108°T% 2,2, -78" T2, 2, +

/

253T721Z1—584T721Zl+9S5T721Z1—786T721Z1+4S7T721Z1)e

oter]})

3

((1—s+sz) (1-1+7%)° (1-sT+827%)°

(*EndProfile[]; =*)
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The double multiplication tensor

For the sake of completeness, we give the explicit formula for tdmfj. We denote

by a = exp[—a*|, and similarly for b. As we did before, A = exp[—A], and the
same convention holds for B.

tdmi‘] =E [(Zkt?l*i + L'lkll*]' + AkA*i + AkA*]' + bkb*i + bkb*] + BkB*i + BkB*]‘,

2,0%, 2yr* —2h 2h h * Y7k 2%

Xpaix XasX*;, A AL — B x* X biy*;

j Z+ka*j+XkX*i+ k]:; i B (Af ) HES J+3/kaf3/l+
i ]

bj
Y bZY* . ]B72h _Ah + ]BZh Y
KPitj o Tk (—Af LR ]+Zkajbjz*i+
a; h
ka?Ak_zh]BZx*iZ*j Xkal.zy*,-Z*]-
+ +
a b;
A (AL - BY) xiyniZ'  AB" (-14+ ABY) =2
h h ’

LB
Yry j+?+YkY i+
)

ZkZ*j + Z 75+ ZkaibiZ*]- -

14
( xkajz.A*]-x*i Xkaz‘zA*iX*j 2hkaka12a]2x*iX*j

AiZhIBh *X*
b]‘ bz‘ bib]‘ +ak k K* ]+

— $\2 — * *
v (—a}Aih +3afIBZ) () X% XA (—a? AY + 3a2B]) x*; (X*)7
+ +
b; b;
— %2 %2 * % * %
Ak 4h (_A%h —|—4A%hIBZ — 3]B%h) (X )i (X )] B ykaZB iy i n thykafb]zX iy i_
2h a]' a]'bi
b ACTBIX Xyt el ty sl ANy
ZthZkalza]ZX*iX*jy*j . (_ajz'A%h + 3a]2'IBZ) (x*)? X"y
+ _
b;b; b;
hyzadx®; (v°))  BX Y.a2X*Y*;
hykzkajij*iy*iy*j - ]b' ] + ]; Jor
] 1
YibIBY*  huYialbixt Yt 27, b3XY 2hypYibiblyt Y
+ + - +
a; aib]- a; aia]-
x B2 (—a]ZAZ + aJZIBih> Xy Y
b;
—2 2A0 1220\ (15)2 v
XiB, " (—aZAl — a?B2") X* ;Y N yiBy (3b]‘Ak — bjB; ) ()i Y7
bi a]-

bkAZIBk_Zhy*iY*]’ +

+
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hYkzka]z-bfx*iy*jY*j N Zk]Bk_zr1 <_a]2'AZ + a}ﬁ]}?) X*i]/*iy*jY*j
az-b]- b]
—2h (a2 ah 12m20) L (v 2 _ i i
YiBy (3bi A} — b B} ) v ()i B (=3AF +4AIBY — B (v (Y1)
+ —
a; 2h
thzkaiza]-b]-X*]-z*i 2ykb]2‘X*jZ*i
+ +
bl' a]'
B hYkaajble]'Y*]'Z*i _ 2xka]2'AZIBk_2hY*jZ*i
a; b]'
ALBL (—2A7 +2B)) XUz 2mar ATy Y
h b;
hxkzkajz-x*iz*j B hykzkbjz-y*iz*j N hzia]zx*iy*jz*j B hXi Zea? X*iZ*;
hYkabz-zY*]‘Z*i hkakaia]Zbix*iZ*]-
a; b]
hYib; A B,z N hapYib; A Bix*,Z¥ N kafA;Zh]BZB*ix*iz*j+
a; a; a;

zrajb; A jz%; — zpajb;B* 2%

ZZka]'b]'Ak_ZhlBZx*iX*]’Z*i

— ZkaibiA*l'Z*]‘ — ZkaibiB*iZ*]‘ —

2nxYealb; A "B} (x*)7 Z*; - 2Zkbl-2Ak_2hlBZx*,-X*iZ*]~+

az-b]- a;
VAL (VAZE] - b (x)2 X2
ZthYkaibiAk_Zh]BZx*iX*]'Z*]' + : 2 ' ! _
i
hykzkaibib]z'y*iZ*j B Xia? A%y i Z¥ - hkakaiza]zx*iy*iZ*j_
a]- bi blb]

beBB Y AT (AL - BE) 2

xkAk_ZHIBk_h <—2a]2AZ + Za;-]B%h) (x")l2 Y iz

leAI?Zh]B;h (—AZ + ]B%h> x*l-y*,-Z*]- + b]

hX,%an*]y*ZZ*] XkAl?Zh]B;h (—aZ-ZAZ + 3a12]B%h) x*iX*jy*iZ*j
- + = +
i i
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—4hp—h h hph hR2h h * %
ATBT (—A + AIB + ATBY - BY) (x); X iy"iZ
h
YA By <_bjAZ —ble%h> i (y); 27 B thZkaia]Zbix YAy

a; bj
ZhYkzka]Zb?AI:Zh]BZ (x* ) Yz thzka a Xy iyt Z
az-b]- b b

— — $\2 |k k7
ZkAk 2th f (—ZaJZAZ +2a]2-lB£h> (x )i iy ]Z j N thYkaz‘zy*iY*iZ*]'
b; b;
hY2b4A ZHIth* Y* Z*
5
2 A —hp—T % % Ve 7% —2h h h *\2 \k 7k
4Yibi A B Xyt Y2 n XB ™" (af A — afBf") (y*); Y*5Z iy
a; bi
—hmp—3h * * 7%
AB (24 - 2B x*; (y*)F Y2
h

+

_|_

+

— nXiYiabiy* i Y*Z% ) + 2Zaib AYBL My Y 27—

— 2hzZyazabibiz" 7"+
3hYkaajb12bjA;2hIBZx*iZ*l‘Z*]' n
a;
— —h B Ly £
XA "By (3312 - aJZAZIB@ X2 X AC"B (a? 4 a2 AL X* 22
+ +
b; b;
Ak_:m]Bk_h (ZA%FI - Z]BZ) x*iX*jZ*iZ*j _ thzkafajbjy*iz*iZ*j
7 b,

akAI;hB]:hZ*,'Z*]' —+ bkA]:hB]:hZ*iZ*]’ +

a.
j
2B (~2aiby Al + 2aib B ) x iy 2+
ZkAk_h]Bk—h (3312 — a?AZ]BZ) x*iy*jz*iz*j . YkAk—h]Bk_h (31‘)12 . bleZ]BZ) Y*]‘Z*iz*j
b] a;
A—h]]_),—3h —ZAh + 2]]327’1 * YK kL Tk
0 B ( k - v yhYizh ]_’_ZkAfh]kah (3ajbj—ajbjAZIBZ> (z*)?Z*j—
WY ZbT A MBI 220 WX Zaly*i 2T
a; b;
thZkaly ( )]2 + 2thYkaibiAk_2hIka ly (Z*)

L 4 hY Z b3 A 2 Blx"; (Z° )7 -

ZeA BT (—3aibi Al + aibiBE) ¥y (Z°)] +
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YA (3b2A1 - BIBE) () y" (2]

+
a;
XA "B (—2a2Af 4 2a7BE) x* (y')] (Z7)] .
b;
_ _ *\2 [, %\2 %2
ACB (S3AF +4AAIBY — B (x7); (v); (Z7);

2h
ZkAI;h]B;h <3aibi — aibiAZBZ) z*; (Z*)JZ +
YkAI;?’h (—4b12 + ZbZZAZIBZ> x*z%; (Z*>]2 N 2Xka%A}:hlB];hy*iZ*i (Z*)z

j
a; b; *

1 — — * * ok *
SACTB (3A] - AYB] - 3B + ALBY) xy' iz (20)] +
AMB (=3 + 4ATBE — AP'BY) (27)F (27)F )
> €+ Ole]

A.2. Poisson-Lie groups

In this section we will describe the connection between Poisson-Lie groups and
Lie-bi algebras. A large part of this appendix is taken from the masterthesis “The
two dimensional Ising Model” by the author. In this appendix we will introduce
the notion of a Lie group, followed by the definition of a Poisson Lie group. We
follow the construction of Lee [22] and [6]. A general knowledge about smooth
manifolds is required.

Definition A.2.1. A Lie group is a smooth manifold G without boundary that is a group
with a smooth multiplication map m : G X G — G and a smooth inversion map i : G —
G. Let g,h € G, theni(g) = g~ is called the inverse of g and m(g,h)=gh. Denote with
Lg(h) = gh left translation and with R¢(h) = hg right translation.

Definition A.2.2. Let G and H be Lie groups, then a Lie group homomorphism F from
GtoHisamap F : G — H that is a group homomorphism. It is called a Lie group
isomorphism if it is a diffeomorphism.

Definition A.2.3. Let M be a smooth manifold, and let TM be the tangent bundle of
M. A vectorfield X on M is a section of the map 7w : TM — M. THat is, X is a map
X: M — TM, such that wo X = Id,.

One can add vector fields pointwise. If (U, x') is a chart of M, and p € M, then
p— % | p is a vector field on U, which we will call the i-th codrdinate vector field,
and it will be denoted by 9/9x'. A vector field X can be written out on chart as
a linear combination of coordinate vector fields, and this will be denoted with

X = Xi%, where the summation symbol over i is omitted.
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Definition A.2.4. Let X and Y be smooth vector fields on a smooth manifold M. Let
f : M — R be a smooth function. Then the Lie bracket of X and Y is given by [Y, X|f =
XYf—-YXf.

Given a smooth function f : M — R, it is possible to apply X and Y to f to
obtain new smooth vector fields fX and fY respectively. On the other hand, by
differentiation, a vector field can act on a function. To show that the Lie bracket is
well defined, one has to show that [X, Y] is again a vectorfield. This is equivalent
to showing that it obeys the product rule, which will be omitted here.

From now on we will mean with M a smooth manifold with Lie bracket [-, -],
and with X, Y, Z smooth vectorfields on M. The space of smooth vector fields
on M is denoted by X' (M) and the space of smooth functions on M is denoted
by C®(M).

Proposition A.2.1. The Lie bracket satisfies the following identities:
(a) (linearity) Let a,b € R. Then

[aX +bY, Z] = a[X, Z] + b[Y, Z]. (A1)

(b) (anti-symmetry)
[X,Y] = —[Y, X] (A2)

(c) (Jacobi identity)
(X, [Y, Z]] + [Y,[Z, X]] + [Z,[X,Y]] = 0 (A.3)

(d) Let f,g € C*(M), then
[fX,8Y] = felX, Y] + (fXg)Y — (&Y f)X. (A4)

Definition A.2.5. Let V be a finite dimensional vector space, and denote with GL(V)
the group of invertible linear transformations on V, which is isomorphic to a Lie Group
GL,, for some n. If G is a Lie group, then a finite dimensional representation of G is a Lie
group homomorphism from G to GL(V) seen as Lie group for some V. if a representation
p : G — GL(V) is injective, then the representation is said to be faithful.

Definition A.2.6. Let G be a Lie group. The Lie algebra of G is the set of all smooth
left-invariant vector fields, and it is denoted by Lie(G).

The Lie algebra of G is well defined because the Lie bracket of two left invariant
vector fields (invariant under L, for all g) is again left invariant. It turns out that
Lie(G) is finite dimensional and that the dimension of Lie(G) is equal to dim(G).
[22] The representation of a Lie group yields a representation of the correspond-
ing Lie algebra by taking the tangent map. We proceed with the definition of a
Poisson manifold.
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Definition A.2.7. (Poisson Structure) Let M be a smooth manifold of finite dimension
m, and denote with C(M) the algebra of smooth real valued functions on M. A Poisson
structure on M is an R bilinear map {,} : C(M) x C(M) — C(M) (the Poisson
bracket) satisfying for all f1, f>, f3 € C(M):

1. {fi, o} = —{fo fi}
2. {A AL st t{fs{f 23} +{fo {f5 i}} =0
3. {fife. f3} = {fi, fs} fo + il f2, f5}

One needs to consider maps between Poisson structures as well.

Definition A.2.8. (Poisson Maps) A smooth map F : M — N between Poisson mani-
folds is a Poisson map if it preserves the Poisson brackets of M and N: {f1, f2}mo F =
{fioF, faoF}n.

(Product Poisson structure) The Product Poisson structure is given by

Ur(y), faimsn(xy) = LA y), 200 1) m(x) + {filx), fa(x, ) in(y),
where f1, f» € C(M x N).
Finally we are able to define Poisson-Lie groups.

Definition A.2.9. A Poisson-Lie group G is a Lie group which also has a Poisson struc-
ture that is compatible with the Lie structure, i.e. the multiplicationmapy : G x G — G
is a Poisson map. A homomorphism of Poisson Lie groups is a homomorphism of Lie
groups that is also a Poisson map.

Now let us go into the relation between Poisson-Lie groups and Lie bialgebras.

Theorem A.2.1. Define on a Poisson-Lie group G Ad(x)(y) = xyx~! forall x,y € G.
Then the tangent space at the unit element e of G is a Liealgebra g with Lie bracket
[X,Y] = T.Ad(X)(Y). Define the cobracket & by the relation

(X, d{f1, f2}e) = (6(X), (df1)1 ® (df2)e)-
Then (T,G, |[,],0) is a Lie bialgebra.

The proof consists of checking the definitions. (See [6], page 25.) Note that if a
Lie algebra corresponding to a Lie group G (not necessarily a Poisson-Lie group)
is quasitriangular, i.e. if § is a coboundary, then one can use the classical r-matrix
to define the Poisson bracket on G. See proposition 2.2.2 on page 61 of [6]. On
the other hand one can define from a classical r-matrix r € g X g a corresponding
R-matrix R : G x G — G x G which is a solution of the quantum Yang Baxter
equation: R12R13R23 = R23R13R12. See page 67 of [6] for more details. Confus-
ingly, R is called a classical R-matrix in [6].

The dual of the universal enveloping algebra of a semisimple Lie algebra cor-
responds to the function algebra on its corresponding Poisson-Lie group. See
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chapter 7 of [6]. This is not the case for U, (sIf), since this algebra is not semisim-
ple. Suppose this were the case, then the space of functions on the quantum
group U, (sl§) would be spanned by the representation-matrices of finite dimen-
sional representations, and each function would be fully determined by its action
on finite dimensional representations. We know that this is not the case by look-
ing at central elements in U, (sl5), so the dual of U, (sl§) cannot correspond to the
function algebra of a Poisson-Lie group.

It would be interesting to consider the corresponding construction of F(G) with
a non-invertible term epsilon, and quantize it. This might give insight in U, (sl§).
When we consider € in the ring R[[¢]] it turns out to be equivalent to the quan-
tization of a quotient of an affine Lie algebra where the central extension is quo-
tiented out, see [37] and [5]. This suggests that a geometric interpretation of the
dual of U,(sl§) over the ring R[[¢]] is possible.

A.3. Lie algebras and root systems

In this section we will give the definitions of a root system corresponding to a
Lie algebra. This appendix is taken from the master thesis “The two dimensional
Ising Model” by the author. It is not our aim to introduce the reader to Lie theory,
so we will only state a few definitions and results. For a good introduction in Lie
algebras and finite dimensional representation of Lie algebras, see for example
[14].

Definition A.3.1. (Lie algebra) Let L be a vector space over a commutative ring R, with
a bracket operation [-,-] : L x L — L with the following properties:

(L1) The bracket operation is bilinear.

(L2) [xx]=0forall x € L.

(L3) The Jacobi identity is satisfied: [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0.
Then L is called a Lie algebra.

From now on, when we write L, we will always mean a Lie algebra L.

Definition A.3.2. A derivation of L is a linear map 6 : L — L satisfying the product
rule: 6(ab) = ad(b) + (a)b, for all a,b € L. The collection of all derivation on L is
denoted by Der(L).

Since Der(L) C End(L), we can define a representation on L by sending an ele-
ment x € L to its derivation ad(x) = [x,-]. This representation (a representation
of a Lie algebra L is a linear map tp gl(L) respecting the bracket operation) is
called the adjoint representation, and plays an important role. Using this repre-
sentation, we can define a symmetric, bilinear form on L.

Definition A.3.3. (Killing Form) For x,y € L, define the Killing form x(x,y) =
Tr(ad(x)ad(y)), where Tr denotes the trace.
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A special class of Lie algebras are the so called semisimple Lie algebras. This
class has certain nice properties, which we will need.

Definition A.3.4. Let L") be the sequence obtained by L(*) = Land LU+1) = [L(), L()],
We call L sovable if L") = 0 for some n.

The unique maximal solvable ideal of L is called the radical of L and is denoted
by Rad(L). Its existence follows from the property that if I and | are solvable
ideals, then sois I + .

Definition A.3.5. (semisimple Lie algebra) Let L be a Lie algebra such that rad(L)=0.
Then L is called semisimple.

For semisimple Lie algebras, the Killing form is nondegenerate (i.e. the adjoint
representation is faithful, i.e. 1 to 1). This is also true for a general faithful rep-
resentation ¢ of L. Define a symmetric, bilinear form B(x,y) = Tr(¢(x)¢p(y)). If
¢ is faithful and L is semisimple, then p is nondegenerate and associative. For a
proof of this, see [14].

It can be checked, by using the Jacobi identity, that the Killing form is invariant
under the adjoint action of L on itself, defined by ad : L x L — L : (x,y) — [x,y].
So the Killing form satisfies: «(ady(y),ad.(z)) = x(y,z), for all x,y,z in L. Itis
interesting to look at a general adjoint action invariant, bilinear form . One can
define the Casimir element associated to this form the following way.

Definition A.3.6. (Casimir element) Let L be semisimple, with basis (x1,X2, - , Xy ).
Let B be an adjoint invariant bilinear form on L, and let (y1,-- - ,yn) be the dual basis
with respect to this two form: 6;; = B(x;,y;). Then define the Casimir element associated
with B as follows:

n
cpg =) yi®x; € U(L), (A.5)
i=1

where (L) is the universal enveloping algebra of L.

The construction of the Casimir element can be generalized, at least in theory, for
any semisimple Lie algebra to higher degree Casimir elements. This might be
trivial in some cases, whereas in other cases it might not be.

Definition A.3.7. (generalized Casimir element) Let L be semisimple, and let (Xy,), - -+ , (Xa,)
be bases of L. Define the multilinear form B(x1,- - - ,x,) = Tr(ad(x1) - - - ad(xy)). Then
define the generalized casimir element cg by

xal ® P ® xan
cp= Yy Mo T 0 (A.6)
IB N1,y ﬁ(xal, e ’x“n)

The degrees for which these generalized Casimir elements exist minus one are
called the exponents of the Lie algebra. The next concept we want to define is
the Coxeter number. In order to define this concept, we need to introduce roots
and the Weyl group.
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Definition A.3.8. Let L be semisimple, and let x be the killing form on L. Let H be the
maximal subalgebra of L consisting of elements x for which ad(x) is diagonalizable (such
an element x is called semisimple, and and algebra consisting of such elements is called
Toral). Let o, p € H*, such that Ly = {x € L|[hx] = a(h)x forallh € H} # 0 (such
are called roots, the set of roots is denoted by ®). Denote by P, = {p € H*|(B,a) = 0}
the reflecting hyperplane of w (here (-, -) denotes the Killing form transferred from H to
H*, which we may do since the killing form is nondegenerate on H, see [14]), and define

ou(B) = p— T2,

As it turns out, the set @ of all roots of L obeys the axioms of a root system.

Definition A.3.9. (Root system) A subset ® of an euclidean space E is called a root
system in E if the following axioms are satisfied:

R1 ® is finite, spans E and does not contain 0.
R2 If x € ®, then the only multiples of a contained in ® are +a.

R3 If a € D, then o, leaves P invariant.

R4 Ifa,p € @, then 2B = (4, B) € Z.

()
Here, 0, is defined similarly as the case in which E = H*, since any Euclidian

space is equipped with a nondegenerate, positive definite symmetric, bilinear
form. Let us now define the notion of a coroot a¥ for a root « as follows

v 2«

b4 :W

(A7)

We need the definition of simple roots.

Definition A.3.10. Let A be a subset of a root system @ of a Euclidian space E such
that

B1 Aisabasis of E,

B2 Each root can be written as a linear combination of elements of A, such that the
coefficients are all nonnegative or all nonpositive.

Then A is called a base, and its elements are called simple roots.

Fix a base {ay,-- - ,a,} for the roots of L, and let 6 be the highest root of L, in
the sense that the sum of the coefficients 4;, when 6 is written out as a linear
combination of simple roots is maximized. The coeffients a; are called marks.
The coefficients a, when 6 is decomposed in terms of a are called comarks.

With a base fixed for L, we can define the Cartan matrix as A;j = x(«;, ocV), where

]
i and j run between 1 and r. Now let us define the Weyl group.

Definition A.3.11. (Weyl group) Let ® be a root system, and let VV be the group gen-
erated the reflections oy, for & € ®. We call W the Weyl group of .
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From the definition of a root system, it is clear that VWV permutes the roots, and
hence can be seen as a subgroup of the symmetric group on ®. To define the
Coxeter element and the Coxeter number, we need a few more definitions.

Definition A.3.12. (Base) A subset A C ® is called a base if A is a basis of ® and if
each root B can be written as B = Y_ ko with the integral coefficients k, all nonnegative
or nonpositive. The roots in A are called simple roots. The reflections corresponding to
these roots are called simple reflections.

Now we can define the Coxeter element.

Definition A.3.13. (Coxeter element) Let ® be a root system of a semisimple Lie algebra
L with a fixed base A = (a1, - -+ ,&n). Then w = 0y, - - - 0y, is called a Coxeter element
of L. The order of w is called the Coxeter number.

Note that one can define several Coxeter elements in given group, so it is im-
portant to prove that these elements have the same order. This will not be done
here, but the proof that all Coxeter elements are conjugate to each other can for
example be found in for example [14].

A.4. Wigner group contraction

In this appendix we describe the process of Wigner group contraction. In 1953
Wigner et al. came up with this method to transform Lie groups and their corre-
sponding Lie algebras into different Lie groups. This is accomplished by a con-
tinuous transformation with a function t(e) on the generators of which the limit
€ — 0is taken. Wigner proved that this limit exists under certain conditions. We
follow [12]. We will use Wigner group contraction for the construction of the Lie
algebra sI§=0. This gives some inspiration for the origin of the parameter e.

Lete € [0,1], and let g, f be Lie algebras. Let t. : g — fbe a one to one Lie algebra
map for all € # 0 such that t; = id and det(ty) = 0. Leta,b, ¢ € g. Then we have

t-te(a), te(b)] = c.

We may now take the limit € — 0. If this limit exists, this results in a Lie algebra
g’ for any € € [0,1]. For ¢ = 0 the result is nonisomorphic to g, with bracket
[a,b] = lim_et; [te(a), te(b)]. In this case we call ¢’ the contraction of g, and
we say that g is contracted with respect to f.. Suppose we have a basis a; of g.
When the contraction of g exists, define the basis a; of g’ as a; = tc(a;).

The following theorem is taken from [12], we will not prove it here.

Theorem A.4.1. Let g = h @ b be a Lie algebra and t. a transformation as specified
above such that

to(b) = b,
to(h") = 0.

164



Appendix A. Appendices

Then g can be contracted with respect to Y if and only if b is a Lie subalgebra of g.
Moreover, in this case b is a subalgebra of the contraction g of g, and b is a commutative
subalgebra of g'. In particular ¢’ is not semisimple.

We will now treat the example relevant for us, the case where g = gl,.

Example A.4.1. Define gl, as the Lie algebra with generators {X, A, a, x} and the rela-
tions

[A, X] =X, [x,a] = x,
[a,X] = X, [x,A] = x,
[X,x] =A+a,la Al =0.
Define the Lie algebra map t¢ as te(a) = a,te(x) = x on the subalgebra b, and as

te(X) = €X,te(A) = €A. We define the elements A’ = €A, X' = eX,x' = x,a’ = a.
Then we find the following relations for {X', A’,a’, x'}:

[x,d'] = [x,a] = x (A.8)
X/, A'] = [x,eA] = ex (A9)
(X', Al = [eX,eA] = —eX’ (A.10)
(X',d] = [eX,a] = X' (A.11)
(X', x| =[eX,x] =e(A+a)=A"+ed (A.12)

In these relations we already recognize a subalgebra of the Lie algebra constructed in sec-
tion 1.1 of chapter 1, in the case where € # 0. This is also the sIS algebra as constructed
in [35]. Since the elements {X, A} generate a subalgebra of gl,, by theorem A.4.1 we
can take the limit of € — 0. The result is the Lie algebra sIS=.

It is possible to do the same thing for the sl,, case, covered in chapter 4. In this
case, one could start with the algebra of section 4.4.2 in [10] to obtain the quasi-
triangular Lie bialgebra covered in chapter 1, which one would need to quantize
in the manner of chapter 4. This is a straightforward exercise for the reader.

A.5. Rings

In this appendix we follow [19]. By a ring R we always mean a commutative
ring with identity 1 and of characteristic zero. The characteristic of a ring is the
smallest number such that 1" =1+1+4+---+1=0.

An element v € R is called a zero devisor of R if there exists a nonzero element
x € Rsuch thatrx = 0. An element of R is called regular if it is not a zero devisor.
We define an integral domain as a ring without zero devisors.

Anideal I C R of R is a set I containing 0 such that I is closed under addition,
and such thatif i € I and r € R, ir € I. m is the maximal ideal m of a ring R if
m # R and if for any ideal I C R such thatm C I, either ] = mor I = R.
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Definition A.5.1. An ideal I C R is called a prime ideal if for any a,b € R such that
ab € I,a € Iorb e I, andif I # R. Define the spectrum Spec(R) of R as the set of
prime ideals of R.

Denote by R[x1,- -+ ,xy,] the ring of polynomials in n indeterminates with coeffi-
cients in R.

Definition A.5.2. Let k be a field, let S C k[x1,---,x,|. Define the affine variety
of S as Vin(S) := {(&1,---,&n) € K"|f(E1,-+-,8n) = OVf € S}. For X € k",
define the ideal of X as T(X) = Ty, ..x,)(X) := {f € kl[x1, -+ - xu]|f (1, ,Cn) =
0 forall (&1,---,&y) € X}.

We can now define the coordinate ring of a set X C k".

Definition A.5.3. Let X C k" be an affine variety. Define the coordinate ring of X as
k[X] :=K[x1,- -+, xu] /T(X).

We define a module over a ring R as one defines a vector space over a field k.

Definition A.5.4. Let R bearing. A (left-)module M over R is an abelian group (M, +)
together with an operation- : R x M — M such that for r,s € Rand x,y € M,

er-(x+y)=r-x+r-y
e (r+s)-x=r-x+s-x
* (rs)-x=r-(s-x)

® Jp-x=x.

A module over R is called free if it has an R-basis. An R-basis of a module
M is a generating set of M that is linearly independent over R. Denote for a
subset S C M of an R-module M, (S) for the submodule of M generated by
S. By definition this is equal to the set of all linear combinations of S. If 5 =
{my, cdotsm, }, we may write (S) = (my, - - - my). In the same way we may define
an ideal (my,- - - my,) C R generated by the set {my,---m,} C R.

Define the formal power series ring in the variable x over a ring R as R[[x]] :=

{ ¥ a;x'|a; € R}, and similarly for any finite number of indeterminates x;, i € I.
i=0

Definition A.5.5. A ring R is called local if it has precisely one maximal ideal. R is

called Noetherian if for every strictly ascending chain of subideals I; C M such that

I; C 1i4q there exists an integer n such that I; = I, for all i > n.

If R is a local Noetherian ring with maximal ideal m, we can define the residual
class field K := R/m. Furthermore if M is a set of sets, we define a chain in M
as a subset C C M that is totally ordered by inclusion. The length of a chain C is
defined as length(C) := |C| —1 € No U {—1,00}. We then define

length(M) := sup{length(C)|C is a chain in M }.
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Define the dimension of R as dim(R) = length(Spec(R)).
It turns out that dimy (m/m?) > dim(R).

Definition A.5.6. A local ring R is called reqular if dimy(m/m?) = dim(R).

For a ring R, we define an R-algebra A to be a ring A with a homomorphism
a : R — A. So an R-algebra is a commutative, associative algebra with unit. For a
tield k, an affine k-algebra is a finitely generated k-algebra. A k-algebra is finitely
generated if it is isomorphic to the ring k[x1,- - -, x,]/I, where I C k[x1,- -, x4]
is an ideal. It is clear that R, = R[e]/(€?) is an affine R-algebra.

Definition A.5.7. Let A be an algebra over a field k. Define the transcendence degree of
Aas sup{|T||T C Ais finite and algebraically independent}.

For a k-algebra A, we define a seta = {ay,--- ,a,} to be algebraically indepen-
dent if for all f € k[x1,---,x4], f(a) # 0. An example is the ring R.. We see
that R¢ has transcendence degree 0 over R, as €2 = 0. Moreover, R, is local, with
unique maximal ideal (€) (observe that any regular element is invertible).

For affine k-algebras, dim(A) = trdeg(A). The proof can be found in e.g. [19],
chapter 5. So dim(R.) = 0. However, in R, (€) is the maximal ideal. Since
(€)2 =0,dimgr((€)/(€)?) = dimg((€)) = 1. So we see that R, is not regular.

Definition A.5.8. Let M be an R-module and let m € M. m is called a torsion element
of M if there exists a reqular v € R such that rm = 0. M is called torsion-free if 0 is the
only torsion element of M.

In the ring R, the set of regular elements is given by {r = a + €b € R¢|a # 0}.
Let R be any ring, and let M be a free R-module. It is clear from the definition of
linear independence that M is torsion-free. Let M be a free R-module. Define the
dual M* of M as M* = Hompg(M, R). Observe that M* has a natural R-module
structure. Let ¢ € M* and r € R,m € M, then r¢(m) = ¢(rm). Let r be a regular
element of R, r¢ = 0 implies that ¢(rm) = 0 for all m € M. However, since r is
regular and M is torsion free, rm # 0 if m # 0. It is easy to show (by induction,
for example) that if R = K[X]/(X") for a field K and an integer n > 0, and if r is
regular, {rm|m € M} = M. This implies that ¢ = 0. So M* is torsion free.

We continue with the discription of freeness and flatness of a module M over the
ring Re.

Definition A.5.9. Let R be a ring, and let My, M2, M be R-modules. Let f; : My —
M, be an injective map. Define the map ¢r : M1 @M — Mp @M : x@m
f(x) ® m. We call M flat if for any injective map f, ¢ is injective.

A consequence of this definition is that if M; — M; — M3 is an exact sequence,
then M1 ® M — My ® M — M3 ® M is also an exact sequence. We will now
prove that over R, the notions of flatness and freeness coincide.

Proposition A.5.1. Let M be an Re-module. Then M is flat if and only if M is free.
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Before proving the proposition, observe that for modules over any ring it is true
that free modules are also flat. The converse is not always the case. When M is
finitely generated, the conditions of flatness and freeness are identical. We will
not prove these facts here. See for example [8], chapter 6. We will prove these
facts for the ring R, here.

Proof. We first prove freeness = flatness for an R.-module M. This is a well
known fact, but it is proven here nonetheless. Suppose that M has an R.-basis
{m;}ic;. Let K and L be two Re-modules, let ¢ : K — L be an injective map, and
letk, k' € K,m € M,and m # 0,k # 0. Let I € L. Tensor products are over Re.
We wish to prove that ¢' : K@M — L® M,k®@m — ¢(k) ® m is an injec-
tive map. Assume ¢(k) ® m = 0. We want to prove that ¢(k) = 0. Let us write
m =Y _; cjm;, to obtain ¢(k) ® m = 0if and only if }; c;j¢p(k) @ m; = 0. Since the m;
form a basis of M, we can define 771 : L ® M — L x M on elements of the form
I @ m; by sending | @ m; — (I,m;) € L x M. Now wedefinep : Lx M — KQ M :
(1, m;) = k' @ m;, where k' is chosen such that ¢ (k') = ¢(k). Since ¢ is injective,
k = k', so this map is well-defined. We extend themap ot ' : Lo M — K@ M,
which is only defined on the set {I @ m;|l € $(K),i € I} C L ® M as a linear map.
By construction o 7 (¢p(k) @ m) = k@m, and ¢’ opor 1 (l@m) = [ ®@m,
where | @ m € ¢/(K® M). This implies that ¢ is injective.

For the other implication, we assume that M is flat. We use the fact that any
module over a field (i.e. a vector space) is free. This can be proven by using the
maximal principle on a chain of linealry independent sets to construct a maxi-
mal linearly independent subset. Taking the union of all the sets in this chain
provides a maximal element in this chain. Its elements are linearly independent,
and it must span the vector space by maximality. We refer to other sources for
the extended proof.

Proceding with a flat Rc-module M, we observe that M/eM is an R-module.
Concretely, if (€) C Re is the ideal generated by €, we observe that R = (% Tak-
ing the tensor product with M yields M/eM as an IR-module.

Consider the short exact sequence

R
0—>e-1Ri>Rei]R:€€)—>o.
g is given by a + €b +— a, and f is the inclusion. All spaces are considered as
Re-modules. Since M is flat we can take the tensor product with ®g_M to obtain

—

T M
0—-eM—M-—— —0.
eM

We can form another exact sequence R, % Re = Re/ (€). This implies M N
M — M/eM is exact, since M is flat. So eM = ker(M <3 M), so we obtain an

H
injective map M/eM < €M C M, that is also surjective. So M/eM = eM.
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Suppose that {1, } i< is an R-basis of M /e M. Choose a set {m; };c; C M such that
7t(m;) = m; for all i € I. We claim that {m;},c is an R.-basis of M. To see that
{m;}ic; spans M, we consider an element m € M, then 7t(m) = Y c;7i1;, where
¢; € R. Then we know that m = Y ¢;m; + en, for some en € ker(M N M) = eM.
Because there is an isomorphism M/eM = €M, we can express n as a linear
combination n = Y ec;m;, for ¢; € R. This proves that {m; },c; spans M.

To prove linear independence of {m;};c;, we proceed in a similar fashion. Sup-
pose Y ¢;m; = for ¢; € R, where i runs over a finite set I’. We wish to prove that

iel

¢; = 0 for all i. We know that g(c;) = 0 for all 7, as 71(m;) is an R-basis of M/eM.
We interpret 7t(c;m;) = 7t(c; ® m;) = g(c;) ® m;. This implies that ¢; € €M, so
c; = ed; for some d; € R. Denote 1m; = mt(m;). Since eM = M/eM through
multiplication with €, we know that er#7; form an IR-basis of eM as an R-module.
Hence d; = 0 for all i, and we have proven linear independence. This finishes the
proof. O

As a concrete application we wish to extend an IR-basis of M/eM to an R¢-basis
of M. We will use this construction in the thesis, for example in chapter 1.

Corollary A.5.1. Let M be a free (and flat) Re-module. Let {i;}ic; be an R-basis of
M/eM. Let {m;};c be such that under the projection 7 : M — M/eM, t(m;) = i,
foralli € I. Then {m;};c; is an Re-basis of M.

This finishes the discussion of the ring Re.
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Summary

The subject of this thesis is a certain set of quantum groups, and the knot invari-
ants arising from these quantum groups. A knot is an embedding of the circle
S! into the three-dimensional space IR®. Two knots are equivalent if they can be
transformed into each other in a continuous way. Such a transformation is called
an isotopy. A knot invariant is a map that maps a knot to a set S such that the
image is invariant under isotopies of knots. S can be any set. In our case S will
be the space of polynomials in two variables.

A quantum group is, contrary to what the name sugests, not a group. A quan-
tum group is a Hopf algebra that originates from the functions on a Lie group.
A Hopf algebra is a vector space equipped with a (co)product and a (co)unit and
an antipode. In particular, a Hopf algebra is an algebra with unit. The multipli-
cation in an algebra A can be seen asamap u : A® A — A. The dual space of
an algebra is a coalgebra (ignoring infinite dimensionality issues). A coalgebra
is a vector space equipped with a coproduct and a counit. The dual map of the
multiplication map is a map u* : A* — A* ® A*, where the tensor product is
completed in the appropriate sense. This construction can be applied to the infi-
nite dimensional case by appropriately defining the dual space of A.

A Hopf algebra is both an algebra and a coalgebra which has an antipode S. S
plays the role of the inverse, but is only a convolution inverse of the coproduct.
This means that when Id ® S (or S ® id) is applied to the coproduct, and both
tensor factors are multiplied, this should yield zero. Like the inverse, S is an
anti-homomorphism. Some Hopf algebras can be equipped with a quasitriangu-
lar structure. These are the Hopf algebras that will be considered in this thesis. A
quasitriangular Hopf algebra enables us to define a knot invariant from the Hopf
algebra.

A quasitriangular structure R on a Hopf algebra H is called an R-matrix. An R-
matrix satisfies the Yang-Baxter equation. When we write R = )} R; ® R, and
denote R;; for an element in H ®n i,j <mn,i # j, where R is in the i-th factor and
R, is in the j-th factor. The Yang-Baxter equation is then written as

R12R13R23 = RazRi3R12.

A way to construct a quasitriangular Hopf algebra is given by the Drinfel’d dou-
ble construction. A standard example is given by the quantum group U,(sl2).
From this example famous invariants such as the Jones polynomial and the Alexan-
der polynomial can be cosntructed. This algebra originates from functions on the
Lie group SL(2). The U, (sl,) Hopf algebra can be considered as the quotient of
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the Drinfel’d double of a Hopf subalgebra U, (b~) of Uy, (sl2) and its dual U, (b™).
It is possible to define a variation of the U, (sl>) quantum group by deforming the
comultiplication on Uy (b~ ) with a parameter € such that €2 = 0. This deforma-
tion is equivalent to multiplying the Lie bialgebra cobracket of the Lie bialgebra
b~ with €, and quantizing this Lie bi algebra to obtain U, (b, ). A quasitriangular
Hopf algebra can then be obtained by applying the Drinfel’d double construction
to Uy, (by ).

In this thesis, this construction is applied to the Lie bialgebra s/3 to obtain the
corresponding quantum group Uy (sl). The knot invariant that is obtained from
this quasitriangular structure is studied and calculated for a few knots. For these
calculations, a new formalism is needed, and this formalism is introduced in this
thesis, along with the proof of convergence. In particular it is proven that the
knot invariant corresponding to Uj(sl§) can be calculated in polynomial time.
An attempt is made to generalize this construction to slj,.
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Dit proefschrift gaat over zogenaamde kwantumgroepen en hun knoopinvari-
anten. Een knoop is een inbedding van de cirkel S! in een driedemensionale
ruimte R3. We beschouwen twee knopen als equivalent als ze op een continue
wijze in elkaar vervormd kunnen worden. Zo'n continue vervorming tussen
twee knopen noemen we een isotopie. Een knoopinvariant is een afbeelding
van de ruimte van knopen naar een verzameling S, zodanig dat deze afbeelding
invariant is onder isotopieén. S kan van alles zijn, en in ons geval zal S een poly-
noomruimte zijn in twee variabelen.

Een kwantumgroep is in tegenstelling tot wat de naam doet vermoeden, geen
groep. Een kwantumgroep is een Hopf-algebra die afkomstig is van functies
op een Lie-groep. Een Hopf-algebra heeft een (co)vermenigvuldiging en een
(co)eenheidselement, en kan dus gezien worden als een algebra. Een vermenigvuldig-
ingsafbeelding op een algebra A is een afbeelding van het tensor product A ® A
naar A. De duale van een algebra A is een zogenaamde coalgebra. Een coalge-
bra is een vectorruimte uitgerust met een coproduct en een coeenheid. De duale
afbeelding van de vermenigvuldiging in A is dan een afbeelding van A* naar
A* ® A*, grof gezegd. Deze constructie geeft problemen als A oneindig dimen-
sionaal is. Dit kan opgelost worden door de completering van het tensor product
te beschouwen, en door de duale op een andere manier te construeren.

Een Hopf-algebra is dan een algebra en een coalgebra die uitgerust is met een
antipode S. De antipode speelt de rol van inverse, maar is dat net niet. De an-
tipode is de inverse van het coproduct, in de zin dat als beide tensor-factoren met
elkaar vermenigvuldigd worden nadat S ® id (of andersom) is toegepast op de
covermenigvuldiging Ay, dit nul geeft.

In deze scriptie worden quasi-triangulaire Hopf-algebras beschouwd. Een qu-
asitriangulaire structuur voor een Hopf-algebra H wordt genoteerd met R, de
R-matrix. Een R-matrix voldoet aan de Yang-Baxter vergelijking. Een quasitri-
angulaire structuur op Hopf-algebras zorgt ervoor dat we een knoopinvariant
kunnen definieren met behulp van de Hopf-algebra.

Laat R = }.R1 ® Ry, en noteer R;; voor een element in H®", i,j < mn,i#j
waarbij R1 in de i-de factor staat en R in de j-de factor te vinden is. Dan is de
Yang-Baxter vergelijking geschreven als

R12R13R23 = Ra3R13R12.

Een manier om quasitriangulaire Hopf-algebras te construeren is de Drinfel’d
dubbel constructie, ook wel de quantum-dubbelconstructie genoemd.
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Een standaard voorbeeld waarmee bekende knoopinvarianten zoals het Alexan-
der en het Jones polynoom geconstrueerd kunnen worden is de kwantumgroep
U, (sl2). Deze algebra is afkomstig van functies op de Lie groep SL(2). De U, (sl>)
Hopf-algebra kan beschouwd worden als het quotient van de Drinfel’d dubbel
van een deel Hopf-algebra U, (b~ ) en zijn duale U,(b™).

Het is mogelijk om een variatie op de U, (sl2) te definieren door de covermenigvuldig-
ing op U, (b™) te vervormen met een parameter € met de eigenschap €2 = 0. Dit
is equivalent met het vermenigvuldigen van het co-haakje in de Lie bialgebra
b~ en die te kwantiseren tot de Hopf-algebra U, (b. ). Vervolgens verkrijgen we
een quasitriangulaire Hopf-algebra door de Drinfel’d dubbel constructie toe te
passen.

In dit proefschrift word deze constructie toegepast op de Lie algebra s/3, en de
daarmee corresponderende kwantumgroep Uy (sl3). De resulterende knoopin-
variant wordt bestudeerd en uitgerekend voor enkele knopen. Een belangrijk
resultaat is dat dit in polynomiale tijd in het aantal kruisingen van de knoop kan
plaatsvinden. Om de berekeningen uit te voeren, is het nodig om een formalisme
te gebruiken dat in dit proefschrift wordt ingevoerd. In het laatste hoofdstuk
wordt deze constructie veralgemeniseerd naar sl,.
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