
Data-driven machine learning and optimization pipelines for real-world
applications
Koch, M.

Citation
Koch, M. (2020, September 1). Data-driven machine learning and optimization pipelines for
real-world applications. Retrieved from https://hdl.handle.net/1887/136270

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/136270

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/136270

Cover Page

The handle http://hdl.handle.net/1887/136270 holds various files of this Leiden University
dissertation.

Author: Koch, M.
Title: Data-driven machine learning and optimization pipelines for real-world
applications
Issue Date: 2020-09-01

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/136270
https://openaccess.leidenuniv.nl/handle/1887/1�

ch
ap

te
r

4
Multivariate Time Series Classification

In recent publications TSC plays an important and challenging role. Most of the
proposed approaches for TSC can be categorized into univariate or multivariate
techniques. In many cases, only results on univariate data sets are shown due to the
limited public availability of multivariate data (Fawaz et al., 2018; Fu, 2011; Esmael
et al., 2012; Aggarwal, 2015b). However, many applications, e.g., in engineering or
medicine, produce more than one time series. In such cases, techniques dealing
with multivariate data sets can significantly improve the performance. Some
multivariate data sets were recently published, which has enabled the scientific
study of multivariate techniques for TSC at a large scale (Bagnall et al., 2018).
In the following section 4.1, the most relevant earlier contributions in the field of
Multivariate Time Series Classification (MTSC) are summarized. Then several
approaches for MTSC are introduced.

4.1 Related Work

Hidden Markov models showed improved results on two multivariate data sets
when compared to an approach proposed in Moghaddam and Pentland (1997) and
to neural networks (Bashir et al., 2005). A two kernel approach with a vector
autoregressive model outperformed other kernel-based approaches in three out of
five tested data sets (Cuturi and Doucet, 2011). Based on industrial time series
from drilling sensors a trend- and value approach was proposed in Esmael et al.
(2012). This approach relies on and extends the symbolic aggregate approxima-
tion (SAX) (Lin et al., 2003), i.e., a segment of the time series is represented
by (v, t) where v ∈ {low, normal, high} describes the relative magnitude and
t ∈ {up, down, straight} identifies the so-called slope. These extracted symbolic

33

4. MULTIVARIATE TIME SERIES CLASSIFICATION

sequences are used as a feature matrix for a classification with, e.g, k-nearest
neighbors or decision trees. As an extension of dynamic time warping, the so-
called correlation-based dynamic time warping was developed for multivariate time
series (Bankó and Abonyi, 2012). These authors combined similarity measures
from dynamic time warping and principal component analysis. In 2014, based on
structural engineering applications the use of genetic programming for multivariate
time series classification was investigated (Harvey, 2014). The author computed
47 features based on using a sliding window. These features were processed with
genetic programming techniques. In this benchmark study, however, the methods
were tested mainly on univariate datasets. In 2009, shapelets were proposed, which
are considered to be subsequences of the time series (Ye and Keogh, 2009). Most
discriminating shapelets of different classes are identified and conglomerated in a
decision tree. Therefore, the final decision of the tree is based on the comparison of
those shapelets. Next to this, a so-called fast classification approach with shapelets
was used on multivariate data sets resulting in enhanced accuracy and reduced
computation time compared to previous shapelet methods (Grabocka et al., 2016).
An autoregressive tree-based ensemble approach was proposed in Tuncel and Bay-
dogan (2018) to model nonlinear behavior of multivariate time series. A novel
approach considered different dimensions by feature interplay (Schäfer and Leser,
2017). The authors used a sliding window on each dimension in order to extract
features. Based on similarity measures (learned pattern similarity) a generalized
autoregression method was proposed to find local patterns in time series (Bay-
dogan and Runger, 2016). A recent novel similarity-based method uses a time
series cluster kernel with a Gaussian mixture model (Mikalsen et al., 2018). This
approach can deal with missing data and avoids time consuming hyperparameter
tuning. Recent contributions show the successful use of neural networks (NN) for
MTSC. In this context, a Fully Convolutional Network (FCN) and a Residual
Network (ResNet) are considered as baseline results (Wang et al., 2016; Geng and
Luo, 2018). FCNs as well as ResNets are developed for object detection in images.
ResNets consist, like FCNs, of convolutional layers but with a deeper structure.
An overview of other deep learning methods for TSC can be found in Fawaz et al.
(2018).

The methods presented above, however, are highly specialized and use a sophisti-
cated modeling approach. They are neither developed for automated modeling nor
tested on a significant number of data sets.

34

4.2 Overview of Approaches for MTSC

4.2 Overview of Approaches for MTSC

In section 4.3, a Plain Hand-Crafted Pipeline (PHCP) is proposed, which aims to
be a practical approach using basic methods. Then, in section 4.4, parts of the
pipeline are replaced by tree-based genetic programming components to additionally
consider the combinations of features from different time series. In section 4.5,
the embedding of state-of-the-art automated machine learning approaches in the
pipeline is shown. Furthermore, in section 4.6, state-of-the-art neural networks
for time series classification, as well as a hand-crafted neural network design are
introduced.

4.3 General Approach and Plain Hand-Crafted
Pipeline

Most of the approaches to classify time series are based on computationally
expensive methods which are nontransparent in the choice of the features. In
contrast, one of our hand-crafted approaches is considered to be a plain approach
with using basic methods. It aims at being numerically efficient in order to solve
classification problems with good performance and acceptable computational effort.
The PHCP contains elements of feature-based techniques which have the effect of
creating interpretable features.

The approach consists of seven steps, which are each explained in more detail in
the following subsections. The first two steps, namely

1. Preprocessing,

2. Exploratory Data Analysis,

require some hand work due to the variety of raw time series characteristics
from different domains. This indicates that different data sets require individual
preprocessing methods, which have to be identified in a manual process once for
each data set. To get an understanding of the data set, it is strongly advised to also
execute the exploratory data analysis phase. The next four phases, namely

3. Feature Extraction from Time Series,

4. Feature Selection,

35

4. MULTIVARIATE TIME SERIES CLASSIFICATION

5. Training of a Classifier,

6. Hyperparameter Optimization

form our so-called pipeline. These four steps are completely automated with the
input consisting of the preprocessed time series data and the output being the
performance scores after the hyperparameter optimization. Our plain pipeline is
presented in Algorithm 1: It takes as input repeated measures X containing N
recordings and corresponding target labels Y and starts by extracting time series
features (line 3, using the tsfresh package, see Algorithm 2) for each recording in X .
Given d-dimensional time series and p predefined feature functions, d · p features
are generated for each recording, resulting in a feature matrix Φ0 ∈ RN×dp.

The feature matrix then undergoes the feature selection procedure (line 6), where
the so-called Boruta algorithm is adopted (see Algorithm 3). Prior to the model
training, the feature matrix is then split into the training and test matrices
Φtrain,Φtest respectively (the split of the matrix is done row-wise). To tune the
hyperparameters of the modeling algorithm A, the empirical performance of a
candidate hyperparameter vector θ ∈ Θ is assessed through a NCV-fold cross
validation (CV) that is conducted on the training matrix (lines 10-15), based on a
performance metric f , e.g., accuracy or F1 (see chapter 3.1).

The performance values are obtained and averaged over all validation data sets
(Φval, Yval), which is then passed into a hyperparameter optimizer H for proposing
new candidate hyperparameter settings (line 18). Finally, the best hyperparameter
vector θbest is used to train the algorithm A on the entire training data (line
20) and the generalization ability of the model is measured on the test set (line
22).

The last phase, namely

7. Evaluation of Results

is the manual assessment of the results to evaluate whether the results match the
hypotheses.

The seven phases mentioned above are described in detail below. Note that the
emphasis of this work is the pipeline itself. Therefore, the preprocessing and the
exploratory data analysis step are only discussed from a general perspective.

36

4.3 General Approach and Plain Hand-Crafted Pipeline

Algorithm 1 Plain hand-crafted pipeline
Require: X = {X(1), . . . ,X(N)} ⊆ RL×d input time series, Y ∈ CN target labels,
F = {Fi}p

i=1 feature functions, performance metric f , a ML algorithm A, its
configuration space Θ and an algorithm configurator H.

1: procedure plain-pipeline
2: for i = 1 to N do
3: φ(i) ← feature-extraction

(
X(i),F

)
. Alg. 2

4: end for
5: Φ0 ←

(
φ(1),φ(1), . . . ,φ(N))> ∈ RN×dp

6: Φ← feature-selection(Φ0, Y) . Alg. 3
7: (Φtrain, Ytrain), (Φtest, Ytest)← (Φ, Y) . train-test split
8: Sample θ ∈ Θ randomly
9: while stopping criteria are not fulfilled do
10: {(Φ(i), Y (i))}NCV

i=1 ← (Φtrain, Ytrain) . cross validation split
11: for i = 1 to NCV do
12: Φval ← Φ \Φ(i), Yval ← Y \ Y (i)

13: M←A.train(Φ(i), Y (i), θ)
14: Ŷ ←M.predict(Φval)
15: fi ← f(Yval, Ŷ)
16: end for
17: f̄ ←

∑
i fi/NCV

18: θ ← H(θ, f̄) . Learn new hyperparameters
19: end while
20: M←A.train(Φtrain, Ytrain, θbest)
21: Ŷ ←M.predict(Φtest)
22: ftest ← f(Ytest, Ŷ)
23: return Φ,M, θbest, ftest

24: end procedure

4.3.1 Preprocessing

Dealing with time series usually implies extensive data preparation. Such raw time
series often contain noise and have different lengths, formats and units. Especially
time series data from sensors requires certain signal processing techniques like,
e.g., filters or transformations (time domain to frequency domain). However, the
individual techniques are strongly depending on the domain and the data set at

37

4. MULTIVARIATE TIME SERIES CLASSIFICATION

Algorithm 2 Feature extraction with tsfresh package
Require: X ∈ RL×d an input time series and {F}p

i=1 feature functions.
1: procedure feature-extraction(X, {Fi}p

i=1)
2: for i = 1 to d do
3: for k = 1 to p do
4: n← (i− 1)d+ k

5: φn ← Fk (X·j) . j-th column of X
6: end for
7: end for
8: return (φ1, φ2, . . . , φdp)>

9: end procedure

hand. After having processed the data, the exploration phase starts to gain an
understanding of the data.

4.3.2 Exploratory Data Analysis

The exploration phase serves the purpose of becoming familiar with the data. This
phase is mostly done manually and essential for building comprehensible prediction
models, because a good data understanding helps building high performing models.
Based on visualization and statistical methods the data set is analyzed in order
to find, e.g., outliers and to handle missing values. Especially on small data sets,
outliers and missing values can have a significant impact. Therefore, treating those
is important for enhancing the model performances (Lissandrini et al., 2018; Zuur
et al., 2010; Kantardzic, 2011). In this phase many different techniques can be
important to ideally identify first patterns in the data.

4.3.3 Feature Extraction from Time Series

This work aims at creating comprehensible and computationally efficient classi-
fication models by automatically generating and selecting time series features.
Depending on the domain and the data set, very different features are significant.
Traditionally, such features are constructed by hand from the time series, which
requires good knowledge from experts. Constructing such significant features in
a manual process, however, is usually very time consuming. In order to create a

38

4.3 General Approach and Plain Hand-Crafted Pipeline

Algorithm 3 Feature selection with Boruta algorithm
Require: Φ ∈ RN×m feature matrix with N samples and m features, Y ∈ CN

target, B maximal iterations, CDFB(k,1/2) cumulative distribution function of
a binomial random variable B(k, 1/2) with k trials and 1/2 success probability,
a significance level α and a random forest algorithm rf with its hyperparameter
θ

1: procedure feature-selection(Φ, Y)
2: {c1, c2, . . . , cm} ← {0, 0, . . . , 0} . counters
3: S ← ∅, R← ∅ . selections and rejections
4: for k = 1 to B and S ∪R 6= [1..m] do
5: I ← [1..m] \R . remaining feature indices
6: Φ′ ← (Φ·i)i∈I

7: for i ∈ I do
8: Φshadow

·i ← random-shuffle(Φ′·i)
9: end for
10: M← rf.train

(
(Φ′,Φshadow), Y, θ

)
11: (z, zshadow)← feature-importance(M)
12: τ ← max zshadow . threshold
13: α′ ← α/k . Bonferroni correction
14: for i ∈ I do
15: if zi > τ then
16: ci ← ci + 1
17: end if
18: pi ← 1− CDFB(k,1/2)(ci − 1) . right tail
19: p′i ← CDFB(k,1/2)(ci) . left tail
20: if pi < α′ then
21: S ← S ∪ {i} . select feature i
22: else if p′i < α′ then
23: R← R ∪ {i} . reject feature i
24: end if
25: end for
26: end for
27: return (Φ·i)i∈S

28: end procedure

generic and automated approach to generate features for time series, a massive
number of time series features can be computed in order to subsequently select

39

4. MULTIVARIATE TIME SERIES CLASSIFICATION

the most relevant features for the overall classification task.

For the feature extraction phase, we adopt 63 parametric feature functions1 (e.g.,
autocorrelation, kurtosis or skewness) that are pre-defined in the tsfresh pack-
age (Christ et al., 2016, 2018). In total, by taking multiple different parameteriza-
tions (e.g., different time lags when calculating the autocorrelation) for each feature
function, 794 features (tsfresh features) are computed by tsfresh for each time series.
In this work, tsfresh was used with its default settings (see Chapter 3.4.1).

From this automatically generated feature space, the most significant tsfresh
features are selected in the next step.

4.3.4 Feature Selection

Various feature selection methods have been proposed and applied, e.g., forward,
backward and recursive selection (Witten et al., 2011). Importantly, all those
feature selection methods require a measure of the feature importance with respect
to the modeling task at hand. For instance, in random forests, the importance of
a particular feature can be defined as the mean decrease of impurity (e.g., Gini
impurity) over all the nodes that split this feature (Breiman, 2001). In the PHCP,
a recent feature selection algorithm called Boruta (Kursa and Rudnicki, 2010) is
adopted due to the fact that: 1) it is computationally relatively cheap and 2) it
has shown best performances when compared to other alternatives (Koch et al.,
2018). The Boruta algorithm is summarized in Algorithm 3: in each iteration, it
starts with creating so-called “shadow” features by randomly shuffling the values
of each feature (line 7-9). A random forests model is trained on the combination
of original and shadow features, from which the feature importance is determined
(line 11). A feature is considered for selection if its importance dominates the
maximum importance of all shadow features (line 12, 15). The number of times
such a dominance occurs is counted for each feature (line 16), on which a binomial
test is performed to determine the statistical significance (line 18 - 23).

1Please see https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html for
the detailed list of features.

40

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html

4.3 General Approach and Plain Hand-Crafted Pipeline

4.3.5 Training of a Classifier

In this phase the selected Boruta features are used to train a random forest
classifier. Of course, any other classifier can be implemented here but due to its
simplicity and its efficiency we have used a random forest in our pipeline. Random
forests belong to the class of ensemble learning methods and are considered to
achieve good performance in different problem domains. A random forest is the
conglomeration of many decision trees and the resulting decision is the average
outcome of all those decision trees (Hastie et al., 2009).

4.3.6 Hyperparameter Optimization

Setting up hyperparameters properly is vital to the performance of a machine
learning model. To boost up the performance of the random forest model on
the data, it is necessary to conduct a hyperparameter optimization. The list of
hyperparameters under consideration and their ranges are shown in Table 4.1.
Note that the resulting search space for hyperparameter optimization contains
integer variables as well as categorical ones. There are a variety of well-established
algorithms for this task, including grid search, evolutionary algorithms and Bayesian
optimization (Geron, 2017).

Table 4.1: Hyperparameter search space for optimizing the random forest classifier.

Parameter Range
Max depth of each tree {1, 2, . . . , 100}
Number of trees {1, 2, . . . , 100}
Max number of features when splitting a node {auto, sqrt}
Min number of samples required to split a node {2, 3, . . . , 20}
Min number of samples required in the leaf node {1, 2, . . . , 10}
Use bootstrap training samples? {True, False}

In the PHCP, the Bayesian optimization algorithm is chosen due to its efficiency
when optimizing expensive problems. In detail, a recent variant of it, called
Mixed-integer Parallel Efficient Global Optimization (MIP-EGO) (Wang et al.,
2017, 2018) is adopted as it handles the mixed-integer categorical variables in an
efficient way. The MIP-EGO algorithm is executed for 200 iterations, where in
each iteration a candidate hyperparameter setting is suggested and its goodness is

41

4. MULTIVARIATE TIME SERIES CLASSIFICATION

determined by the quality of the corresponding model on a validation set. Using
NCV -fold cross validation on the training data, the hyperparameter optimizer uses
the average classification quality measure f̄ across the NCV validation sets as the
overall quality measure for each configuration θ under consideration.

4.3.7 Evaluation of the Results

In the last step of this approach the outcome has to be evaluated. In this context,
it is essential to run the computation of each method multiple times and use its
average to reduce noise. Sometimes machine learning models tend to overfit /
underfit, therefore it is important to evaluate the training performance and the
validation performance in detail. Often used evaluation metrics are accuracy and
the F1-score for class-imbalanced data sets (see chapter 3.1).

Furthermore, visualization methods like, e.g., learning curves, the ROC or the
precision / recall curve can provide additional performance insights (see Chap-
ter 3.1).

4.4 Hand-Crafted Approach with Genetic Program-
ming

In the Hand-Crafted Pipeline with Genetic Programming (HCPGP) a feature
generation module is implemented in the pipeline. This feature generation is a
tree-based genetic programming approach which conglomerates many so-called
less significant features (low level features) into several significant features (high
level features). In detail, the search domain is defined by symbolic expressions for
function approximation (Koza and Rice, 1992; Poli et al., 2008). These symbolic
expressions are typically represented as parse trees, such as illustrated in Figure 4.1,
where x0, x1, . . . describe the features. The genetic operators are applied to those
trees, for example by subtree exchanges between different trees in a population
(crossover), or by mutation of subtrees or terminal nodes in the tree.

However, this requires iterations over many generations to find combinations
with adequate classification qualities. The large tsfresh feature space limits the
efficiency of the computation. As mentioned, this work focuses on competitive

42

4.4 Hand-Crafted Approach with Genetic Programming

max

∗

+

x0 2

x1

/

−

x2 8

x1

Figure 4.1: An example of a tree-based representation of symbolic expressions, as
used in Genetic Programming.

methods regarding performance and computation times. Testing large numbers of
combinations is not very efficient here.

Therefore, the dimensionality in terms of the number of initial low level features
has to be reduced either way. Promising ways to obtain a smaller set of new
features without removing any information would be by using CNNs or a PCA. It
is key not to drop information at this point, which is more or less granted in both
methods. In this work we are using PCAs mainly due to its lower computation
time when compared to CNNs. PCA represents the data in a lower dimension with
linear principal components whereas the so-called kernel Principal Component
Analysis (kPCA) transforms the data into a higher dimensional feature space and
applies PCA on this feature space. Compared to standard PCA, kPCA allows to
describe also non-linear behavior (Bishop, 2009).

With an increased prediction scores of approximately 2.5% over all data sets our
first experiments showed a slight increase in performance when using kPCA instead
of PCA. Therefore, we used kPCA in this work.

Furthermore, in this study we set the number of components of the kPCA to a
relatively small number (here 15). This means that the initial tsfresh feature space
is reduced to 15 components. Setting the number of components to such a small
number enormously improves the efficiency of the genetic algorithm regarding
computation time. Especially this boost in efficiency allowed us to investigate the

43

4. MULTIVARIATE TIME SERIES CLASSIFICATION

genetic algorithm and its parameters in this study in a computationally feasible
way.

When dealing with these algorithms we were facing issues with overfitting, because
from our experience such genetic programming algorithms tend to find perfect
solutions on the training data by overfitting the data. Therefore, the fitness scores
are based on a cross validation approach (see chapter 3.1). Furthermore, as fitness
function of our HCPGP approach a performance metric like accuracy is used to
maximize the overall performance. This is used together with a minimization of
the difference between validation score and training score of the cross validation.
This setting aims at reducing the overfitting tendency of the algorithm on the
training set of the HCPGP approach.

Table 4.2 shows the parameters of the genetic programming approach. This
parameter setting aims at generating a single complex feature based on 15 basic
features which can be used as variables in the symbolic expressions generated by
genetic programming.

Table 4.2: Parameter of the genetic feature generation algorithm.

Parameter Value
Population 10
Generation 1500
Crossover 0.5
Mutation 0.1
Tree depth 1-10
Number of features 15

The basic features are obtained from applying the tsfresh and kPCA preprocessing
algorithms. The performance of the complex features generated by the genetic
programming approach is measured by using a random forest and cross validation
(see above).

The whole pipeline with genetic programming is shown below:

3. Feature Extraction from Time Series,

4. Kernel PCA,

5. Feature Generation with Genetic Programming,

44

4.5 AutoML

6. Training of a Classifier and

7. Hyperparameter Optimization.

The pipeline based on genetic programming is shown in Algorithm 4: the input
is similar to Algorithm 1 except that this algorithm requires genetic operators
ψ and arithmetic operators ζ which are used to construct a parse tree Ω. The
feature extraction is executed as presented in Algorithm 1 (line 2-5). The kPCA is
applied on the feature matrix (line 3). Then, the feature matrix is split into the
training and test matrices Φtrain,Φtest respectively (the split of the matrix is done
row-wisely). Based on the genetic operator ψ and the arithmetic operators ζ an
initial parse tree is constructed for the given population size (here 10).

From line 6-19 the parse tree, which achieves the best cross-validated score of the
highest validation performance subtracted by the absolute difference of validation
score and training score, is optimized over generations (here 1500). Then, this
optimized parse tree Ωbest is used to compute its depending features of the split
(line 20). These features are considered in the same hyperparameter optimization
procedure and validation method as shown in Algorithm 1 (line 8-22).

4.5 AutoML

AutoML generates machine learning pipelines in an automated approach. In
this work the following AutoML methods are considered: Auto-Sklearn, TPOT,
AMLPA, GAMA, H2O, MLBOX, ATM and RECIPE (see Chapter 3.8). All of
these AutoML approaches require stationary features. Therefore, it is implemented
after phase 3 (feature extraction):

3. Feature Extraction from Time Series,

4. AutoML,

where phase 4 now replaces the steps 4 - 7 in the pipeline definition given be-
fore.

45

4. MULTIVARIATE TIME SERIES CLASSIFICATION

Algorithm 4 Hand-crafted pipeline with genetic programming
Require: X = {X(1), . . . ,X(N)} ⊆ RL×d input time series, Y ∈ CN target labels,
F = {Fi}p

i=1 feature functions, parse tree Ω, its genetic operator ψ, its arith-
metic operators ζ, performance metric f , a ML algorithm A, its configuration
space Θ, an algorithm configurator H and a genetic programming algorithm
gp.

1: procedure genetic-pipeline
2: Execute lines 2-5 of Algorithm 1
3: Φ← kPCA(Φ0, Y)
4: (Φtrain, Ytrain), (Φtest, Ytest)← (Φ, Y) . train-test split
5: Sample initial parse tree Ω with ψ and ζ
6: Ωbest ← Ω, f̄best ← −∞
7: while the stop criteria are not fulfilled do
8: {(Φ(i), Y (i))}NCV

i=1 ← (Ω(Φtrain), Ytrain) . cross validation split
9: for i = 1 to NCV do
10: Φval ← Φ \Φ(i), Yval ← Y \ Y (i)

11: M←A.train(Φ(i), Y (i), θ)
12: Ŷtrain ←M.predict(Φ(i))
13: Ŷval ←M.predict(Φval)
14: ftrain,i ← f(Y(i), Ŷtrain)
15: fval,i ← f(Yval, Ŷval)
16: end for
17: f̄train ←

∑
i ftrain,i/NCV

18: f̄val ←
∑

i fval,i/NCV

19: f̄ ← f̄train − |f̄train − f̄val|
20: if f̄ > f̄best then
21: f̄best ← f̄ , Ωbest ← Ω
22: end if
23: Ω← gp(Ω, ψ, f̄) . Learn a new parse tree from GP.
24: end while
25: (Φtrain, Ytrain), (Φtest, Ytest)← (Ωbest(Φ), Y) . train-test split
26: Execute lines 8-22 of Algorithm 1
27: return Φ,M,Ωbest, θbest, ftest

28: end procedure

46

4.6 Neural Network Architectures

4.6 Neural Network Architectures

In this work three neural network architectures for MTSC are considered, namely
the hand-crafted architecture Convolutional Neural Network + Long Short-Term
Memory (CNN+LSTM), the ResNet (He et al., 2015) and the FCN (Long et al.,
2014). Figure 4.2 illustrates these architectures.

The FCN and the ResNet architectures were proposed for time series classification
with 2000 epochs (Wang et al., 2016). Initially, both architectures were developed
for object detection on images and modified for time series classification with
the result of being very competitive regarding other state-of-the-art approaches.
Compared to FCNs, a ResNet has a deeper structure by using so-called shortcut
connections between layers. ResNets are considered as state-of-the-art in image
detection. In a recent publication the time series modification of FCNs showed
better results on time series classification tasks compared to ResNets and other
architectures (Wang et al., 2016).

Next to FCNs and ResNets, based on mainly real-world time series data (auto-
motive) within this work a hand-crafted neural network has been developed for
MTSC by combining CNNs and LSTMs. CNNs can extract important information
from the time series and exclude unimportant parts, i.e. CNNs transform the
time series into a shorter, high level representation. Furthermore, CNNs learn
local patterns, i.e., after learning a pattern this can be found independently of
its location on the time axis (see Chapter 3.6). In this setting we are using 2
times 2 CNNs with 128 units or neurons, each followed by a Max Pooling. The
number of units can be adapted to the need of the certain data set. However, our
real-world data set has 701 time steps and in the optimization phase 128 units
showed favorable results. As activation function the Rectified Linear Unit (ReLU)
function is used. In detail, the most informative sections are extracted by the
CNNs and then, the Max Pooling extracts the maximum value of every 3 successive
values. Hence Pooling removes unnecessary information like the exact position of a
certain pattern, but the information of a pattern itself still exists, i.e. Pooling thins
the data out. This again results in a higher level representation of the data.

However, CNNs do not consider the order of appearance of certain patterns in the
data. Therefore, in this setting CNNs are only used to shorten the sequence and to
provide this shortened data into a LSTM layer. LSTMs are computationally more

47

4. MULTIVARIATE TIME SERIES CLASSIFICATION

Conv1D

filters = 128
kernel_size = 3
padding = same
activation = relu

Conv1D

filters = 128
kernel_size = 3
padding = same
activation = relu

MaxPooling1D

strides = 3
pool_size = 3

Conv1D

filters = 128
kernel_size = 3
padding = same
activation = relu

Conv1D

filters = 128
kernel_size = 3
padding = same
activation = relu

MaxPooling1D

strides = 3
pool_size = 3

Bidirectional

LSTM

return_sequences = true
units = 128
dropout = 0.1
recurrent_dropout = 0.5

Dense

units = 128

Flatten

Dense

units = 6
activation = softmax

input

dense

Conv2D

filters = 128
kernel_size = 8, 1
padding = same

BatchNormalization

Activation

activation = relu

Conv2D

filters = 256
kernel_size = 5, 1
padding = same

BatchNormalization

Activation

activation = relu

Conv2D

filters = 128
kernel_size = 3, 1
padding = same

BatchNormalization

Activation

activation = relu

GlobalAveragePooling2D

Dense

units = 9
activation = softmax

input

dense

BatchNormalization

BatchNormalization

Conv2D

filters = 64
kernel_size = 8, 1
padding = same

BatchNormalization

Activation

activation = relu

Conv2D

filters = 64
kernel_size = 5, 1
padding = same

BatchNormalization

Activation

activation = relu

Conv2D

filters = 64
kernel_size = 1, 1
padding = same

Conv2D

filters = 64
kernel_size = 3, 1
padding = same

BatchNormalization

Add

Activation

activation = relu

GlobalAveragePooling2D

Dense

units = 6
activation = softmax

input

dense

Th
re

e
ite

ra
tio

ns
1.

 F
ilt

er
 =

 6
4

2.
 F

ilt
er

 =
 2

56
3.

 F
ilt

er
 =

 1
28

Figure 4.2: In this study three different neural network architectures are used,
namely CNN+LSTM (left), ResNet (center) and FCN (right).

48

4.6 Neural Network Architectures

expensive than CNNs, but LSTMs do consider the order of values. Therefore, the
CNN+LSTM uses CNNs as preprocessor to reduce the long sequence with keeping
only high-level features. In this way, the sequence can be shortened into a highly
informative sequence, which is processed by the LSTM. The LSTM returns the
extracted sequence to a dense layer which is a fully connected layer. The output
of the dense layer is flattened in order to be processed in the last dense layer. This
last layer contains a softmax activation function. For each class in the data set
exists one unit. The output of all units must add up to 1.0, i.e. the output of each
individual class unit shows the probability of this class to be the target.

The hyperparameter of this Neural Network has been tuned for the real-world
automotive data set. The LSTM has 128 units, a dropout of 0.1 and a recurrent
dropout of 0.5. Dropout is a so-called regularization method. It randomly drops
units to prevent overfitting and the lower number of units allows faster model
training. The normal dropout regularizes the inputs between layers, whereas the
recurrent dropout drops units of the recurrent state, i.e. it regularizes between
different time steps. Furthermore, in this setting 16 data points are used at once
to update the model parameters, i.e. the batch size is 16. All data are passed up
to 2000 times through the network. This are the so-called epochs. The learning
rate is set initially to 0.001 and when the objective function stagnates it is reduced
down to 0.0001. In order to reduce computation time, an early stopping criteria is
defined to stop training when experiencing no further improvement in the objective
function.

49

