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1
Introduction

1.1 Background

The recent progress on machine learning topics has sparked many research projects
in science and industry. Many science projects focus on the development of new
algorithms or methods and the industry often applies those but tries to improve and
automatize them in order to save resources and to create additional business values.
Examples are the use of historical car sharing customer data to place shared cars in
cities in more efficient ways, or quality assessments with image recognition methods
in assembly lines. Numerous industrial applications are imaginable, however, a
limiting factor can be a lack of the necessary data and the huge effort to generate it.
Nevertheless, many industrial machines or devices already generate data with their
equipped sensors which are usually implemented for, e.g., machine monitoring. The
data of such sensors are often recorded over time as a so-called time series. Using
time series for machine learning can be a tedious and time consuming procedure as
they can be and often are of highly complex nature. Next to time series, machine
learning models can be used with very different types of data like images, videos,
audio, writing, categorical features and numerical features. This results in a huge
variety of required knowledge needed for such projects. Due to this variety of
knowledge combined with the lack of data experts, industry often calls for simple
but good performing modeling techniques which can also be applied by non-experts.
In other words, industry requires simple, comprehensible and reliable techniques
which solve real-world problems with good performances in an automated manner.
Such automated methods belong to the group of so-called Automated Machine
Learning (AutoML).
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1. INTRODUCTION

When developing a machine learning model in an industrial context, it is important
to consider that the machine learning model itself is only one part of a probably
long process chain. Therefore, it needs to be implemented seamlessly in the end-to-
end process to be able to exploit all its potentials. This can be challenging because
it often requires an adaption or recreation of existing processes.

1.2 Objectives

The industry often demands automated approaches which contain sophisticated
machine learning techniques for data-driven projects. Automated methods which
are easy-to-use and applicable to real world problems are rare, especially for
processing time series. Since devices or machines are often equipped with sensors,
time series are being recorded already. The recordings of more than one time series
from, e.g., one acceleration sensor and one pressure sensor, is a called multivariate
time series. Whereas the data of a single sensor recording is called univariate time
series.

This work is mainly devoted to multivariate time series. Therefore, an extensive
study of methods for multivariate time series is conducted. Based on this, novel
time series classification pipelines with more or less complex methods are developed
and verified, as well as other state-of-the-art methods like using AutoML methods
as part of the pipeline. Pipelines can build optimized models in an automated
approach and enable dealing with machine learning topics without time-consuming
modeling, even for non-experts. Beyond that, this work proposes novel techniques
based on genetic programming and neural networks. The algorithms are tested on
both academic and real-world problems.

Another main objective of this work is to develop an end-to-end methodology
to build data-driven services in an automotive environment. This methodology
earmarks the implementation of earlier mentioned pipelines. As a real-world
problem in the automotive industry, we investigate a data-driven service to assess
the damage caused by an accident, i.e. based on vehicle on-board data this model
can compute the damaged parts of a vehicle involved in a crash. Amongst others,
in the development of the data-driven model of this service the proposed time
series modeling algorithms are tested on this real-world problem. The relevant
research questions (RQ) of this work are stated in the following:

2



1.3 Outline of the Dissertation

RQ1 Can we develop efficient time series classification approaches by using feature-
based techniques? (in terms of the trade-off between classification quality
and computation time)

RQ2 Can AutoML methods be applied to solve time series classification tasks?

RQ3 Are state-of-the-art feature selection methods suitable for time series classifi-
cation tasks based on a massive number of extracted features?

RQ4 Can the classification quality be increased when combining features with
genetic programming?

RQ5 Can we develop a systematic approach for efficiently deploying data-driven
services in the industry?

These questions are answered in this dissertation with algorithmic contributions
and the linking of most promising existing methods. All methods are applied on
academic data sets for a solid comparison. In order to evaluate the industrial use,
the methods are also applied on industrial data sets.

1.3 Outline of the Dissertation

In this section, the outline of this dissertation with its motivation and con-
tent is briefly described. After each chapter the corresponding publications are
listed.

Chapter 2 provides an overview of an industrial project called automated damage
assessment. The objective of this project is to estimate the damaged parts caused
by a low speed vehicle crash without any additional sensors, i.e. it is only based
on already existing sensor data like acceleration signals. Such a digital damage
assessment service would support the vehicle customer in the settlement of an
accident. The business motivation and the technical challenges are presented.

As part of this dissertation ideas of the invented damage assessment system are
summarized in the following patent application:

Koch, M. and Hundt, W. and Malotta, J. and Godau, R. and Geiger, M. and
Krieger, J. (13.06.2019). A Method of Determining Damage Occurring
in an Accident between a Vehicle and a Collision Partner on the Vehicle.
World Patent Application WO2019110434A1.
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1. INTRODUCTION

Chapter 3 introduces the used methods in this dissertation. Traditional machine
learning models, neural networks, state-of-the-art AutoML methods, as well as
evolutionary algorithms are described. Furthermore, the challenges of feature
engineering when dealing with time series, its methods and hyperparameter op-
timization are discussed. Parts of this chapter are published in the following
article:

Koch, M. and Wang H. and Bürgel R. and Bäck, T. (2018). A Compari-
son of Hand-Crafted and Automated Machine Learning Approaches for
Multivariate Time Series Classification. submitted.

Chapter 4 proposes novel methods for time series classifications. A first method
called plain hand-crafted pipeline represents a practical approach which aims at
creating good performing models with high efficiencies. Another pipeline method
is based on genetic programming with the objective to create complex high level
features from many low level features. Furthermore, hand-crafted and state-of-the-
art neural network designs are introduced for this purpose. Parts of this chapter
are published in the following article:

Koch, M. and Wang H. and Bürgel R. and Bäck, T. (2018). A Compari-
son of Hand-Crafted and Automated Machine Learning Approaches for
Multivariate Time Series Classification. submitted.

Chapter 5 shows three applications of the plain hand-crafted pipeline on real-world
data sets, namely on two automotive on-board data sets and one medical data
set. The data set of the first application contains recorded vehicle on-board data
from crash tests with the locational crash information on the car. The objective is
to estimate the impacted location. In the second application, based on recorded
vehicle on-board data from crash tests which were carried out within this work,
damaged parts caused by crash events are estimated. In the third application, data
from Parkinson’s disease patients is used to identify the usefulness of a certain
surgery to enhance the patients well-being.

These three applications of the plain hand-crafted pipeline were previously pub-
lished in:

Koch, M. and Bäck, T. (2018). Machine Learning for Predicting the Impact
Point of a Low Speed Vehicle Crash. In Proceedings of the 17th IEEE
International Conference on Machine Learning and Applications, ICMLA
’18, Orlando, USA, pp. 1432–1437.
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Koch, M. and Wang, H. and Bäck, T. (2018). Machine Learning for Pre-
dicting the Damaged Parts of a Low Speed Vehicle Crash. In Proceedings
of the 13th International Conference on Digital Information Management,
ICDIM ’18, Berlin, Germany, pp. 179–184.

Koch, M. and Geraedts V. and Wang H. and Tannemaat M. and Bäck, T.
(2018). Automated Machine Learning for EEG-Based Classification of
Parkinson’s Disease Patients. IEEE Big Data ’19, Los Angeles, USA, pp.
4845–4852 (2019).

Chapter 6 shows the comparison of all proposed methods for multivariate time
series classification, as well as promising state-of-the-art AutoML approaches
implemented in the pipeline. As basis for the comparison, 18 publicly available
multivariate time series data sets and the data set containing on-board data from
crash events with its damaged parts are used. Especially with the latter mentioned
data set the industrial uses of the methods are investigated. The methods are
compared based on the performance and the efficiency (computation time). This
extensive comparison is based on the following publication:

Koch, M. and Wang H. and Bürgel R. and Bäck, T. (2018). A Compari-
son of Hand-Crafted and Automated Machine Learning Approaches for
Multivariate Time Series Classification. submitted.

Chapter 7 proposes a novel method to develop data-driven services in the automo-
tive industry. The damage assessment system is used as an exemplary data-driven
service. The proposed methodology aims at giving an overview of key points
regarding business motivations, as well as the technical challenges when creating
successful services. This work has been published in this article:

Koch, M. and Wang, H. and Bürgel and Bäck, T. (2020). Towards Data-
driven Services in Vehicles. In Proceedings of the 6th International Confer-
ence on Vehicle Technology and Intelligent Transport Systems, VEHITS
’20.

Next to the mentioned publications above, another publication of the author
regarding this topic is:

Geraedts V. and Koch M. and Contarino M. and et al. (2020). Automated
EEG-based Machine Learning for Cognitive Profiling during the DBS
Screening in Parkinson’s Disease Patients. submitted.
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2
Automated Damage Assessment

2.1 Objectives

Industrial applications suffer wear. For example, in assembly lines parts are often
exchanged at an early stage to avoid fatal failures and longer downtime’s, even
when the parts are not roughly worn out. Exchanging such parts later would
be beneficial due to longer part operation times and lower material costs. The
objective is to exchange parts very shortly before the critical condition of the
part is reached. Assembly lines are often equipped with sensors which record
conditions. Based on machine learning techniques and the data recorded by the
latter sensors, predictive models can be created to estimate failures more precisely
without sophisticated process monitoring systems. Using such predictive models
for failure detection is called predictive maintenance. Predictive maintenance can
not only be realized in assembly lines but also in, e.g., passenger cars, trucks,
construction machinery or any other kind of devices or machines which have useful
data.

Though, some applications suffer other kinds of losses which are often caused
by the human interaction due to incorrect handling or undesirable incidents like
vehicle accidents. Such cases often require experts to inspect the damage, evaluate
the damaged parts and carry out the repair. Depending on the damage and the
machine this can be a time-consuming procedure. Using predictive models for
such incidents would allow estimating the loss and the damaged parts directly
after a vehicle accident. This estimation would decrease the time needed for the
repair, because damaged parts can be ordered and painted even before the car
arrives at a workshop. Furthermore, the owner of the vehicle would receive a very
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2. AUTOMATED DAMAGE ASSESSMENT

transparent overview of the required repair, as well as the precise time needed for
the repair.

Figure 2.1: A vision of a customer journey of a low speed crash settlement.

The feasibility study to estimate the damaged parts caused by a vehicle crash
is carried out in the automated damage assessment project. This project fo-
cuses on low speed crashes with a maximum change in velocity of approximately
16 km/h (RCAR, 2018). Low speed crashes usually do not cause injuries to the
occupants and are considered as the most occurring accidents. Though, such events
are stressful for occupants and usually associated with longer settlement times.
An automatic assessment would primarily support the customer shortly after the
accident and secondly improve the whole damage settlement.

Figure 2.1 illustrates a vision of an ideal customer journey of a low speed crash
settlement.
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2.1 Objectives

The journey is separated in four phases:

1. Driving,

2. Detection,

3. Supporting and

4. Repair.

The vision is arranged in a circle for clockwise reading and the starting point is
called driving. The driving represents the main purpose of using a car. In the
unlikely and unfortunate case of a low speed accident the car is able to detect such
an event (phase 2). This detection is based on machine learning techniques (de Silva
et al., 2017). A message is shown on the HMI (Human-Machine Interface) in the
car with the request to call the accident call center, which supports (phase 3) the
customer in all aspects, i.e. calming down, calling the ambulance and police if
necessary, helping to proceed in the correct way and finally take over the whole
settlement with, e.g., insurance companies and workshops.

Shortly after the customer has granted the request a connection to the accident
call center is established. Furthermore, a small data package is transferred to
a back-end system which is used by the machine learning assessment model to
estimate the damaged parts (de Silva et al., 2017; Koch et al., 2019). This estimated
assessment information is provided to the customer which allows the customer
to settle the whole accident shortly after the crash via call or app. In the last
phase of Figure 2.1, the repair, the car is picked up and delivered to the workshop,
repaired and brought back to the customer. In all steps, the customer can access
the current car status.

One objective of this project is to increase the time the car is available for driving,
i.e. the time of workshop visits should be shortened. Furthermore, this auto-
mated assessment should provide a convenient and transparent way to settle such
accidents.

Amongst many other things, within this dissertation, we evaluate time series classi-
fication methods to assess the damages caused by low speed crashes. Furthermore,
along this service development, we have evolved a method to run such data-driven
projects in the industry.

9



2. AUTOMATED DAMAGE ASSESSMENT

2.2 Data

The damage assessment project is targeted to use only vehicle on-board data which
is available in all modern passenger cars, i.e., no additional sensor is needed for this
purpose. Nowadays, not all cars are equipped with sophisticated camera systems,
radar and so on. However, nearly all cars have some sensors, e.g. acceleration
sensors for airbag deployment. This project focuses primarily on such sensor
systems which are available in most of the vehicles, because it is very likely that
an assessment model based on those data can already deliver precise results.
And equally important, the number of cars equipped with serial sensors is much
higher than cars equipped with more sophisticated sensors. Therefore, using only
serial sensor data allows to equip as many cars as possible with such a service.
Furthermore, it keeps the data packages to a minimum which is important to limit
needed resources like bandwidth, memory and so on. Obviously, for cars with a
sophisticated sensors equipment additional data can be used if needed and for new
car designs additional sensor could be added.

Figure 2.2: The vehicle coordinate system. (Original photo from BMW Group
Technical Qualification Media)

To develop such an assessment model, sensor data from crash events, as well as
its damages are needed. Within this work first data was generated in a tedious
manual process. In the following our crash test setting is described: 12 similar
cars were used and crashed in a driving-car-to-standing-car configuration in 50
different combinations. Each of those cars was equipped with recording devices to
track the sensor data while the accident had happened. Due to the 50 different
combinations, our final data set contains 100 cases: 50 from standing vehicles and

10



2.2 Data

50 from driving vehicles. Each case contains the tracked sensor data of the crash
events. We have built our assessment models with the following sensor data:

• Acceleration X,

• Acceleration Y,

• Yaw rate,

• Resulting velocity.

Figure 2.2 shows the vehicle coordinate system. It indicates that X describes the
longitudinal direction and Y the lateral direction. The used sensors are located
close to the vehicle center of gravity.

After each crash combination both cars were partially disassembled to investigate
the damage in detail. A low speed crash usually does not cause any damage on
structural parts. Therefore, this damage investigation only requires removing
the outer, mounted parts. Some representative damaged parts of low speed front
crashes are shown in Figure 2.3.

Figure 2.3: Exemplary damaged parts of a low speed crash.

11
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3
Methods

This chapter introduces the methods used in this dissertation. Machine learning
and time series classification are described in sections 3.1 and 3.2. In the follow-
ing sections, the learning models, decision trees and random forests, as well as
feature engineering techniques are discussed. Afterwards, hyperparameter opti-
mization and automated machine learning are described. Finally, neural networks
which can build models without explicit features, and evolutionary algorithms are
introduced.

3.1 Machine Learning

Machine learning describes the process of computers learning patterns of data.
This learning is done without any requirement of explicit programming. Such
learning algorithms can be separated in:

• Supervised learning: a model is trained with input data xi and output data
yi. Based on new input data x, a learned model can predict the output y.

• Unsupervised learning: a model is only trained with input data to, e.g.,
cluster the data into a number of desired classes.

This work is devoted to supervised learning techniques. Supervised learning includes
most of the methods used in machine learning. While in traditional programming
observations are explicitly programmed into decision rules, supervised learning
techniques develop such rules based on input and output (also called target) data
without explicit programming. Famous examples of applied supervised techniques
are house price predictions based on attributes like capita crime rate by town and

13



3. METHODS

full-value property-tax rate of a region (Harrison and Rubinfeld, 1978). Based
on these attributes a supervised learning model can predict the house price. The
prediction of such numeric values belongs to the regression tasks. The most simple
regression model is called linear regression. Based on the linear combination of
the input variables x1, x2, . . . , xK

,

Yi = w0 + w1x1 + w2x2 + . . .+ w
K
x

K
, (3.1)

a linear regression model derives the optimal weights w0, w1, . . . , wK
by minimizing

the loss function on the training set. A popular loss function is called mean squared
error (MSE). It is defined as

1
N

N∑
i=1

(Ŷi − Yi)2, (3.2)

with the predicted values Ŷi and the real values Yi. Another popular loss function
is called root mean square error (RMSE):√√√√ 1

N

N∑
i=1

(Ŷi − Yi)2. (3.3)

Such a regression model is often of limited use due to its linearity, i.e. it can only
describe simple data relations.

Most of the regression algorithms can also be used for classification tasks. A
classification of time series describes a mapping of the time series onto discrete
class labels.

When creating prediction models, the number N of available observations, called
data points, varies from one problem to another. In some cases, plenty of data
is already available, in other cases data has to be generated by running tedious
experiments or simulations. Especially when dealing with time series and using
simulations, the quality of the data is often difficult to estimate. Therefore, larger
numbers of experimental data is often key when developing realistic models.

The goodness of a model, i.e. the difference between prediction Ŷi and the real
labels Yi, can be measure with different metrics. The most known metric is called
accuracy which is defined as follows:

accuracy = number of correct predictions
total number of predictions · 100% . (3.4)

14



3.1 Machine Learning

It provides a percentage score of correct predictions. Especially for data sets with
an imbalanced number of data points per classes (class-imbalance) accuracy is not
a suitable score. For example, a data set contains 100 data points and 2 classes
with 95 data points representing class 0 and 5 data points representing class 1. A
model which classifies all data points as class 0 would result in an accuracy score
of 95%, since 95% of the predictions are right. However, the model is not able to
separate between the classes even when the accuracy metric shows good scores.
Therefore it is important to consider other, more suitable performance measures
like the so-called F1 score. In multi-class classification, it can be calculated for
each class/label separately. Given the number of classes q, for a class i ∈ {1, . . . , q},
F1 is defined as the harmonic mean of precision and recall in this class:

F1(i) = 2 · precision(i) · recall(i)
precision(i) + recall(i) , (3.5)

where precision(i) is the ratio of correctly classified data points over all data points
being classified to class i, and recall(i) measures the ratio of correctly classified
data points across all data points belonging to class i. Especially for imbalanced
data sets the so-called macro F1 score can be considered:

F1macro = 1
q

q∑
i=1

F1(i). (3.6)

An often used technique to display the performance over different classes is a
so-called confusion matrix. A confusion matrix describes the frequency of cases
that are correctly or incorrectly classified (Hofmann and Chisholm, 2016) and
provides a useful illustration of classification quality for all classes.

Furthermore, visualization methods like, e.g., learning curves, the Receiver Op-
erating Characteristic (ROC) and the precision / recall curve provide further
performance insights. A learning curve is a graphical representation of how an
increase in a performance measure is achieved as more data (experience) becomes
available (Geron, 2017). The ROC curve describes the trade-off between the true
positive rate1 and the false positive rate2 while the Area Under the Curve (AUC)
quantifies such a trade-off. Depending on the data, the ROC and / or the precision
/ recall trade-off provides additional understanding of the performance of the model.
The precision / recall curve should be especially considered when having a small
number of observations belonging to the positive class (Geron, 2017).

1The rate of correctly predicted positive labels to all positive labels.
2The rate of correctly predicted false labels to all false labels.

15



3. METHODS

The main objective when building machine learning models is to create so-called
generalizing models which work well on unseen data. To achieve this, different
sampling strategies are used to evaluate the model performance on unseen data.
The probably most popular method is called holdout which means that all available
data is randomly split into two parts: training data and test data.

A common split for training and test data is 75%/25%. Using a train-test split
works well when both train and test data contain similar data characteristics. This
can be achieved with a large number of data points and partly with a stratified split.
The latter describes a split which distributes the data regarding the labels and the
percentage equally in train and test parts. Especially when dealing with small data
sets, the goodness of the model depends strongly on the certain split due to usually
very in-homogeneous data, i.e., a simple train-test split cannot give a realistic
impression of the goodness. Not only in such cases, so-called cross validation can
give a better impression of the generalization of the model. In a cross validation the
data is randomly split into NCV (with e.g. NCV = 10), trained on NCV − 1 folds
and tested on the remaining fold. This process is repeated until each fold has served
as test set. The average of all test scores of the NCV -computations represents the
final score. This reveals a realistic score of the generalization possibilities of the
models. When setting NCV = N , all but one data points are used for training a
model. This trained model is used to predict the remaining data point. This is
repeatedly done for all data points. The average of the goodness of all predictions
describes the generalization potential. This strategy is called leave-one out cross
validation. Of course, this method is comparably expensive regarding computation
time but gives probably the most realistic picture of the model’s generalization
potential, because it is less biased than, e.g., a simple train-test split. Throughout
this work, NCV = 10 is used whenever a different approach is not mentioned
explicitly.

In some cases, learned models perform reasonably well on training data but when
it comes to unseen data the predictions are very poor. This is called overfitting.
The model memorizes the training data without generalization. Especially ma-
chine learning models based on small data sets tend to overfit the data, because
uninformative patterns like noise are often interpreted as relevant information.
Overfitting can be reduced by lowering the model complexity with, e.g., changing
the model from polynomial to linear, removing outliers and irregularities in the
data.
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The opposite problem to overfitting is called underfitting. Simpler models like
linear regression tend to underfit, i.e. these cannot learn all data patterns because
their intrinsic complexity exceeds what the model is able to describe.

The next section introduces the problem of time series classification.

3.2 Time Series Classification

The attention towards artificial intelligence has sparked an intense interest in
studying time series classification and time series prediction tasks, since they play
an important role in major domains like engineering, medicine, biology or finance
(Fawaz et al., 2018; Mikalsen et al., 2018). Time Series Classification (TSC) belongs
to the group of sequence classification problems (Xing et al., 2010). Sequences
containing alphabetic characters are so-called symbolic sequences, whereas a time
series describes a sequence of numerical values observed at consecutive equally
spaced points in time (Brockwell and Davis, 1991; Xing et al., 2010). The reciprocal
of such a space between points in time defines the so-called sampling rate (Brockwell
and Davis, 1991), namely the number of data points per second in Hz.

A time series is a sequence of data points: {xi : i ∈ [1..L]}, where L is the
length of the series. For multivariate time series, each data point is a vector of d
components:

∀i ∈ [1..L], xi = (xi1, xi2, . . . , xid) .

In this work, the data point is denoted as a row vector and is restricted to real
values, namely, xi ∈ Rd. When d = 1, it is referred to as a univariate time series
and naturally when d > 1, it is called a multivariate time series. Practically, the
multivariate time series represent recordings on a set of physical signals / channels
that is measured with the same frequency and duration for each channel. When
discussing modeling procedures, the input time series is typically written as a design
matrix X = (x>1 , . . . ,x>L ) ∈ RL×d (by stacking all data points together).

The classification labels are either assigned to each time point xi, or to a whole
time series X (Aggarwal, 2015b,a; Mitsa, 2010; Santos and Kern, 2016). The latter
case is commonly seen in applications such as using Electrocardiogram (ECG)
signals to predict the arrhythmia class label which is determined for the entire
ECG recordings of a patient (Li et al., 2014). In this scenario, to generate a
training data set, multiple recordings of the same multivariate time series are
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measured with the same length, from either different subjects of the study (e.g.,
different patients) or different time periods. The resulting data set is a so-called
repeated measures data set X = {X(1),X(2), . . . ,X(N)}, where N denotes the
number of recordings and X(i) is a design matrix as defined above. Given the
classification labels C = {c1, c2, . . . , cq}, the classification target is denoted as
Y = {y(1), y(2), . . . , y(N)} ∈ CN . This work focuses on solving this scenario.

Learning from data with machines require powerful algorithms. In the following
section, the classic algorithms decision tree and random forest are described.

3.3 Decision Trees and Random Forests

Decision trees consist of a root, leaves, nodes and branches. Usually decision trees
are drawn so that the root is at the top. The branches below the root or rather
the nodes are activated when the corresponding condition is true. Leaves represent
the end of a branch and the final decision. Decision trees are hierarchical models
for classification and regression problems (Guyon et al., 2008). Such trees are
especially useful because their visualisation is comparably comprehensible and
therefore decisions are interpretable.

Based on Hastie et al. (2009), Figure 3.1 shows a cutout of a decision tree to classify
email spam. The root "email (600/1536)" indicates the starting point with 600
normal emails and 1536 spam emails. This tree is trained to classify an incoming
email into normal or spam email. Amongst other character combinations higher
occurrences of !, $ or remove indicates spam.

The complexity of a decision tree is mainly influenced by the number of nodes,
leaves and the depth of the tree (Rokach and Maimon, 2014; Hastie et al., 2009).
A decision tree algorithm primarily creates those splitting conditions which can
be based on a so-called impurity (Hastie et al., 2009). Impurity, or rather gini
impurity G describes the goodness of the split of the data at a node:

G =
C∑

i=1
p(i) · (1− p(i)). (3.7)

For classification problems, C represents the number of classes and p(i) the
probability of selecting data of class i. When considering Figure 3.1, the node
in the second row on the right side, spam (48/359), shows that all data, arriving
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Figure 3.1: A cutout of a decision tree for spam email classification. Each node
represents a classification. The split conditions are shown along the branches. The
ratio in the nodes illustrate misclassification rates, based on Hastie et al. (2009).

at this point (407 emails) are classified as spam. However, 48 of 407 are normal
emails. With C = 2, this results in a gini impurity of

G =
C∑

i=1
p(i) · (1− p(i)) = 48

407 ·
(

1− 48
407

)
+ 359

407 ·
(

1− 359
407

)
= 0.2. (3.8)

A perfect purity with G = 0 is reached when a node contains only members of one
class.

Another impurity measure is called entropy:

E = −
C∑

i=1
p(i) · log2(p(i)). (3.9)

Entropy is a measure of disorder and describes the degree of randomness. In case
of homogeneous samples the entropy is 0, in case of similarly divided samples the
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entropy is 1. Considering the node spam(48/359) results in an entropy of

E = −
C∑

i=1
p(i) · log(p(i)) = − 48

407 · log2

(
48
407

)
− 359

407 · log2

(
359
407

)
= 0.52. (3.10)

Based on the entropy, in a next step, the information gain IG is computed. The
information gain describes the effectiveness of linked conditions (Ci). A higher
information gain indicates a decrease of entropy with

IG(C1, C2) = E(C1) - E(C2). (3.11)

A decision tree algorithm based on entropy tries to find conditions which maximize
the information gain.

A decision tree algorithm builds one tree. A random forest contains a forest of
many single decision trees. The results of each individual tree are aggregated
into the final decision, i.e. in a classification problem the most frequently chosen
class of all individual trees represents the aggregated result of the random forest.
Random forest is an ensemble learning method which is considered to achieve
good results in different domains. Random forests learn deeper patterns than a
single decision tree and the aggregation of many different decision trees limits the
overfitting (Hastie et al., 2009).

Decision trees, random forests and many other classical machine learning models
are based on features which are often numeric or categorical values. To create
good performing models, it is important to find and select the most promising
features in the process called feature engineering.

3.4 Feature Engineering

The most traditional way to optimize the performance of machine learning models
is by enhancing features and model hyperparameters in a manual approach. This
is very time-consuming due to the large number of possibilities and combinations.
Nowadays, already with default model parameters good performances can be
achieved. Nevertheless, intense optimizations of hyperparameter and especially the
features still improve the performance in a significant way. In general, using feature-
based methods enables creating transparent and interpretable models particularly
due to the descriptive nature of features.
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When dealing with time series instead of given features, optimization becomes
even more important due to the needed extraction of representations (features)
from the series. The extraction and selection of significant representations are of
key importance for successful modeling.

3.4.1 Feature Extraction from Time Series

Classical machine learning models like decision tree or random forest require
stationary features. When dealing with time series those features need to be
extracted. This means a time series has to be transformed into a one dimensional
vector of descriptive features like the maxima, minima, number of peaks and so
on. The relevant features differ from one problem to another, i.e. each problem
requires another set of suitable representations. For good performing models it is
essential to find the most relevant time series representations. Promising feature
extraction methods are described in the following.

Time series classification can be realized by means of meta-properties which are typ-
ically only able to describe a very limited set of time series characteristics (Kadous
and Sammut, 2005). However, if the relevant characteristics or the majority is
among them, this technique can be an appropriate and computationally cheap
choice. Ben D. Fulcher et al. (2013) proposed an algorithm for sorting time series
data sets regarding their properties on the basis of extracted representations.
A similar approach, but more all-encompassing is called Highly Comparative
Time-Series Analysis (HCTSA) which extracts 7749 features in an automated
approach (Fulcher et al., 2012; Ben D. Fulcher et al., 2013; Fulcher and Jones, 2014,
2017). A related approach is called Time Series Feature Extraction based on Scal-
able Hypothesis Tests (tsfresh), proposed in (Christ et al., 2016, 2018). From each
time series tsfresh computes 794 features based on 63 time series characterization
methods. It is designed for industrial applications (Christ et al., 2016). Feature
extraction methods like tsfresh allow finding significant features without a deep
domain knowledge. Furthermore, for automated time series modeling including
feature extraction it is typically indispensable to compute a very large number of
properties (features) in order to ensure that the relevant characteristics for the
problem in question have been generated. Such a large feature space contains noisy
and irrelevant features but also features with significant information regarding
the modeling problem. It is important to find those significant features and to
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exclude the other ones. Especially excluding irrelevant features is important in
order to enhance the general model performance. This procedure results in a lower
dimensional feature space which can provide more transparent and comprehensible
models.

In conclusion, to first extract a massive number of features and second, to select
the most important features for a certain problem is a promising approach because
it is automated and can solve a vast variety of problems.

However, extracting features from time series requires a computational effort.
tsfresh provides with 794 features a smaller number of features compared to
HCTSA, which extracts 7749 features per time series. Due to the smaller number of
extracted features, tsfresh, which is especially designed for (industrial) applications,
requires way less computational effort compared to HCTSA. Furthermore, tsfresh
is a Python based library which can be seamlessly implemented into Python based
machine learning pipelines as developed in this work. In contrast, HCTSA is a
Matlab based package (Fulcher et al., 2012; Ben D. Fulcher et al., 2013; Fulcher
and Jones, 2014, 2017). For the reasons given above in this work tsfresh has been
used to extract the features.

A selection of important features is associated with a reduction of the dimensions
of the initial feature space. This can be done with, e.g., methods belonging to the
area of feature generation, which transforms high dimensional low level features to
so-called low dimensional high level features.

3.4.2 Dimensionality Reduction with Feature Generation

Feature generation or feature construction describes the process of creating new
features from existing ones. Guo et al. (2005) applied genetic programming on raw
vibration time series data to classify bearing faults. They stated the use of genetic
programming for feature extraction / generation as efficient and powerful.

The general purpose of feature generation is to reduce the dimensions without
dropping important information (Guyon et al., 2008). This can be done by applying,
e.g., Principal Component Analysis (PCA) or neural networks (Jain et al., 2000).
PCA reduces the dimensions by combining variables in a linear transformation and
dropping unimportant ones (Hastie et al., 2009). Neural networks (see Chapter 3.6)
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can reduce the dimensions due to smaller sizes of the subsequent layers (Hinton
and Salakhutdinov, 2006).

Another method for generating low dimensional high level features from high
dimensional low level features is called particle swarm optimization (PSO). PSO
is similar to evolutionary algorithms and based on a population iterated over
generations. A swarm of particles is flying with a certain velocity in a solution
space. Within the generations each particle converges towards its best location in
the solution space (Kennedy and Eberhart, 1995). Xue et al. (2013) proposed a
method to use swarm optimization for feature generation: one high level feature is
computed from the multivariate feature space. The performance of the classification
is comparable or better than using the original features. Beyond, Swesi and
Bakar (2020) show an overview of other recently proposed techniques for feature
generation.

The probably most traditional and popular technique for dimensional reduction
without changing the features itself is called feature selection. Feature selection
methods choose the most significant features from a given feature space.

3.4.3 Feature Selection

Feature selection describes the process of selecting the most significant features
from a larger features space without changing individual features (Guyon et al.,
2008).

The most common selection algorithms for features can be divided into filter-,
wrapper- and embedded methods. Filter methods rank features independently
from the machine learning model by means of statistical tests, e.g., t-test or χ2

test. These methods are considered to be computationally effective and generally
robust to overfitting (Guyon et al., 2008).

Wrapper- and embedded methods contain a machine learning algorithm. Both
methods are more expensive than filter techniques, but more powerful towards
higher accuracy models. Wrappers are mainly independent from the training pro-
cess itself, because the selection of features is done in a first step and the selected
features are afterwards used in the main training process. Wrapper algorithms
evaluate subsets of features in, e.g., a forward or backward approach. In forward
selection, features are added iteratively until a performance measure stagnates

23



3. METHODS

or deteriorates. Alternatively, the backward selection method (a.k.a. backward
elimination) starts with all features and gradually removes less important features.
A widely known algorithm for feature selection is Recursive Feature Elimination
with Cross-Validation (RFECV), which repeatedly constructs cross-validated mod-
els (in this case a random forest) with a defined number of features. For each
calculation the most important features are identified. Loops of RFECV are run
until all features are tested (Guyon et al., 2006). More computationally expensive
but more powerful wrapper approaches are based on evolutionary algorithms,
i.e. feature subsets (population) are modified based on the evolutionary theory
in each generation iteratively. This approach is especially challenging for large
feature spaces, because of the huge number of possibilities. In each generation
best features are conserved based on a fitness function. Harvey (2014); Harvey
and Todd (2015) suggested a method for feature selection and some generation
for time series classification with the use of genetic programming in the area of
structural engineering. Tran et al. (2016) proposed the construction as well as
selection of high-dimensional features by using genetic programming. With only
4% of the initial data set, this method outperforms 15 of the 18 cases (Tran et al.,
2016). Using evolutionary algorithms for feature selection is an often scientifically
discussed topic. Evolutionary algorithm approaches are often pareto-based on
a multi-objective setting, which achieve mostly high performances with a small
number of features (Castelli et al., 2011; Cano et al., 2017). An overview of
recent publications can be found in Chandrashekar and Sahin (2014); Xue et al.
(2016)

In embedded approaches the feature selection is implemented in the main training
process (Guyon et al., 2008). Popular embedded methods are L1 Regularization
(Lasso) or Ridge Regression. Embedded methods are not relevant for this work but
mentioned for the sake of completeness. Embedded methods are further discussed
in Guyon et al. (2008).

As stated previously feature engineering methods improve the performance of
machine learning models and another technique to enhance the outcome will be
introduced in the next section. It is called hyperparameter optimization and deals
with the optimization of machine learning algorithm parameters.
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3.5 Hyperparameter Optimization

3.5 Hyperparameter Optimization

Hyperparameters control machine learning processes. To boost up the performance
of a machine learning model, it is necessary to conduct a hyperparameter optimiza-
tion. Well-known methods for parameter optimization are grid search, random
search, and Bayesian optimization (Ramasubramanian and Singh, 2017; Geron,
2017; Florea and Andonie, 2018). For all methods, in a first step, the ranges of the
parameters have to be assigned to a search space. While grid search systemati-
cally tries all possible combinations of the defined feature space, a random search
approach randomly creates combinations until a stopping criterion is reached. In
each case the parameter combination with the best performance is used. Random
search is considered to work more efficiently than grid search (Bergstra and Bengio,
2012). Bayesian optimization belongs to the field of advanced global optimization
techniques and is considered to be very efficient for finding an optimum of expensive
objective functions (Mockus, 1994; Jones et al., 1998). The objective function is a
black box function with boundaries defined by the search space. In each step of
the iteration, prior distributions are used to approximate the objective function
with a so-called surrogate function within the parameter space (Brochu et al.,
2010). Prominent surrogate models are so-called Gaussian processes or random
forests. Random forests have the advantage to operate natively with mixed integer
data.

Instead of extracting explicit features from the time series to develop machine
learning model, neural networks can be used to learn features from the initial time
series without explicit programming. Neural networks are considered as one of the
most powerful machine learning methods. These are described in the following
section.

3.6 Neural Networks

A neural network is inspired by the human brain. In the human brain cells, so-called
neurons, are connected to each other. In a neural network, layers with neurons
are located next to each other, in between an input and an output layer. The
connections between neurons of the previous and the following layer are modelled as
weight functions with two different states: stimulation and inhibition (Hastie et al.,
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2009; Zhang, 2010; Aggarwal, 2018). Learning patterns with such a combination
of successive layers is considered as Deep Learning which is a subfield of Machine
Learning (Chollet, 2018) (see Chapter 3.1).

The most simple neural network is a so-called perceptron with only an input- and
an output layer.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Figure 3.2: The perceptron is a single-layer neural network architecture, based
on (Rosenblatt, 1958; Aggarwal, 2018).

Figure 3.2 shows such a perceptron with I inputs xi (here I = 3) and the output
y. Each input is multiplied by the certain weight, summed and added up with the
bias:

Weighted sum =
I∑

i=1
xi · wi + b. (3.12)

The bias b can be used to shift the data. In the next step, an activation function is
applied on the weighted sum. An activation function is, e.g., an unit step function
like

f(x) =
{

0, if weighted sum < 0
1, if weighted sum >= 0.

(3.13)

Other popular activation functions are called Sigmoid, Logistic, Tanh (Hyperbolic
tangent) or ReLu (Rectified Linear Unit).

A perceptron is a single layer neural network, whereas multi layer networks contain
additional so-called hidden layers in between the input and the output layer.
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Figure 3.3 shows a typical multi layer neural network architecture with input layer,
output layer and one hidden layer in between. Layers which are fed into the next
following layer are considered as feed-forward layer.

When training such a neural network an objective function or rather loss function
like cross-entropy is used to update the weights. In the beginning, the weights of
a neural network are usually initialized at random. Then the input data is used
to compute a first output. The difference between the computed output and the
true output is expressed by the loss function. Note that at this point the result of
this function is only based on a random initialization and therefore, in the next
steps the weights will be optimized. For this, different optimization techniques can
be considered. A prominent and effective one is based on differentiation. In this
method the derivative of the loss function is computed. Based on the depending
gradients the objective function is used to enhance the weights. When thinking
about neural networks with a large number of layers and neurons it is a tedious
process to find the balance of the best suitable weights based on the full loss
function. To face this problem, a technique called backpropagation can be used
which derives the loss function neuron-wise starting from the end layer towards
the input layer. In this manner, each weight is optimized individually (Feldman
and Rojas, 2013; Aggarwal, 2018).

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

x4

x5

Y

Figure 3.3: A multilayer perceptron with one hidden layer, based on (Aggarwal,
2018).

Using neural networks usually means a computationally expensive training process.
Therefore, depending on the data and the problem, the most suitable architecture
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regarding performance and efficiency should be chosen. Popular neural network
architectures are perceptrons, Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN) and Long Short-Term Memory (LSTM). CNNs were
developed for image recognition problems and considered as the most successful
neural network (Aggarwal, 2018; Lecun et al., 1998). In CNNs a filter is applied
on a layer to generate a feature map. A feature map of one of the first layers
represents the data in a lower dimensional way. Based on this feature map, an
activation function decides in what way to proceed with the features. Usually a
first layer can learn basic features like corners or edges. The following layers can
learn parts of the image like, considering a picture of a face, eyes or noses. The last
layers can learn full objects. This indicates that first layers extract basic features
(low dimensional) and posterior layers contain more and more information of the
whole object (Aggarwal, 2018).

A Long Short-Term Memory has, as its name suggests, a memory. It describes a
variation of Recurrent Neural Networks, which iterate over the data points and
compute a state containing information of the data it has seen before. Compared
to RNNs, LSTMs can additionally save information for long time periods. LSTMs
decide which information should be kept and which should be dropped (Chung
et al., 2014; Chollet, 2018).

3.7 Evolutionary Algorithms and Genetic Program-
ming

Genetic programming is an evolutionary algorithm technique (Koza and Rice,
1992). Evolutionary algorithms are based on biological evolution, i.e., on genetic
changes in a population, which are inherited over generations and are subject to
mutation, recombination and selection based on the objective function values (also
called fitness) assigned to solution candidates (Bäck, 1996). Genetic programming
aims at applying this principle to the domain of optimizing computer programs.
In this work, it is used to find a single best feature by combining several other
features into one feature.

The solution space of solving Machine Learning problems is wide due to the
combinations of hyperparameters, features, models and so on. Finding the best
working combination by hand is nearly impossible. Therefore, automated machine
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learning methods aim at selecting the modeling algorithms, applying feature
engineering and optimizing the hyperparameters in an automated approach. It is
introduced in the next section.

3.8 Automated Machine Learning

Based on extracted features from time series so-called automated machine learning
methods can be applied. AutoML aims at generating machine learning pipelines
automatically, e.g., by using preprocessing methods and various feature selection
and prediction models, to create a pipeline with high accuracy predictions or
classifications. Such AutoML approaches are often developed for use by non-
experts (Feurer et al., 2015). In the following, the most promising AutoML
methods are described.

Auto-WEKA (Thornton et al., 2013; Kotthoff et al., 2017) uses a tree-based
Bayesian optimization procedure to find a strong configuration of the machine
learning framework WEKA (Witten et al., 2011) for a certain data set. Auto-
Sklearn can be considered as an extension of Auto-WEKA (Feurer et al., 2015,
2018), whereas Auto-Sklearn is based on scikit-learn (Pedregosa et al., 2011) instead
of WEKA. The main differences are that Auto-Sklearn includes a lower number
of classifiers, a smaller set of hyperparameters, and its ensembles are builtin a
second step. The smaller search space of Auto-Sklearn increases its efficiency and
in total, it results in better performances compared to Auto-WEKA (Feurer et al.,
2015).

Based on genetic programming, the Tree-based Pipeline Optimization Tool (TPOT)
(Olson et al., 2016) automatically develops and optimizes machine learning pipelines.
The pipeline operators (preprocessor, feature selection, decomposition and models)
with the respective hyperparameters are combined in a tree-based pipeline. Based
on the genetic programming algorithm the whole sequence and each operator
are evolved towards maximizing a performance metric. TPOT is based on the
libraries scikit-learn (Pedregosa et al., 2011) and deap (Fortin et al., 2012). It
contains a number of preprocessing methods like, e.g., feature selection, feature
construction with polynomial features, model selection and parameter optimization.
Furthermore, TPOT is designed for Pareto optimization to find a Pareto-front of
pipelines by maximizing a performance measure like accuracy and minimizing the
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complexity of the pipeline. TPOT is considered to be efficient and competitive
when compared to basic machine learning approaches (Olson et al., 2016). As an
extension of TPOT, Layered TPOT was proposed for larger data sets (Gijsbers
et al., 2018). It evaluates pipelines only on subsets of the data. The well performing
pipelines are tested on all data afterwards. This approach is supposed to yield
good pipelines much faster than TPOT.

Another recent method using genetic programming is called Genetic Automated
Machine Learning Assistant (GAMA) (Gijsbers and Vanschoren, 2019). It is
based on the library scikit-learn and uses its preprocessing and modeling methods.
It is closely related to TPOT and builds pipelines with genetic programming,
whereas it uses asynchronous evolutionary algorithms instead of synchronous
algorithms (Gijsbers and Vanschoren, 2019).

Another AutoML method is called Automated Machine Learning for Production
and Analytics (AMLPA) (Parry, 2019). Next to preprocessing, feature selection,
model selection and hyperparameter optimization algorithms it also contains a
feature learning method. Based on the initial feature space a deep neural network
can be used to extract significant features. These features are used for the modeling
algorithm. The author of this AutoML library states, that feature learning can
increase the accuracy by up to 5%. Furthermore, libraries like TensorFlow, Keras,
XGBoost, LightGBM and CatBoost can be embedded (Parry, 2019).

The AutoML method of the H2O library is designed to, e.g., build stacked ensem-
bles, i.e., a combination of different learning algorithms which achieves a higher
performance when used together (The H2O.ai team, 2015a,b). Based on the H2O
standard library it uses different preprocessing, feature selection and modeling
algorithms. Furthermore, a random grid search to optimize the hyperparameters
can be applied. Next to, e.g., random forests, extremely randomized trees and
XGBoost, also the H2O implementation of neural networks with fully-connected
multi-layers is available (The H2O.ai team, 2015a,b).

Another AutoML method is called MLBOX (de Romblay, 2019). MLBOX is
based on the optimization library hyperopt (Bergstra et al., 2013) which is used to
find the best combination of preprocessing algorithms, feature selection methods,
modeling algorithms and its hyperparameters. One key feature of MLBOX is drift
identification which describes the process to improve the similarity of training and
test set. Especially in real-world problems, both data parts are often differently
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distributed. MLBOX can perform a so-called covariate shift which means it shifts
the independent features towards a similar distribution of both training and test
set (de Romblay, 2019).

Auto Tune Models (ATM) (Swearingen et al., 2017) is a distributed AutoML system
which contains a hierarchical algorithm to automatically select models and optimize
the hyperparameters. The selection of the hyperpartition (set of hyperparameters
of one path of the hierarchy) is based on a bandit method and the hyperparameter
optimization on a Bayesian strategy (Swearingen et al., 2017).

The Resilient Classification Pipeline Evolution (RECIPE) (de Sá et al., 2017)
method uses a grammar-based genetic programming approach to generate classifi-
cation pipelines. The first version of RECIPE includes preprocessing and processing
steps. Preprocessing includes, e.g., data normalization techniques and feature
selection algorithms. The classification algorithm with its parameters is chosen in
the processing step (de Sá et al., 2017).

In the next chapter, the described techniques are used to form approaches to solve
multivariate time series problems.
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Multivariate Time Series Classification

In recent publications TSC plays an important and challenging role. Most of the
proposed approaches for TSC can be categorized into univariate or multivariate
techniques. In many cases, only results on univariate data sets are shown due to the
limited public availability of multivariate data (Fawaz et al., 2018; Fu, 2011; Esmael
et al., 2012; Aggarwal, 2015b). However, many applications, e.g., in engineering or
medicine, produce more than one time series. In such cases, techniques dealing
with multivariate data sets can significantly improve the performance. Some
multivariate data sets were recently published, which has enabled the scientific
study of multivariate techniques for TSC at a large scale (Bagnall et al., 2018).
In the following section 4.1, the most relevant earlier contributions in the field of
Multivariate Time Series Classification (MTSC) are summarized. Then several
approaches for MTSC are introduced.

4.1 Related Work

Hidden Markov models showed improved results on two multivariate data sets
when compared to an approach proposed in Moghaddam and Pentland (1997) and
to neural networks (Bashir et al., 2005). A two kernel approach with a vector
autoregressive model outperformed other kernel-based approaches in three out of
five tested data sets (Cuturi and Doucet, 2011). Based on industrial time series
from drilling sensors a trend- and value approach was proposed in Esmael et al.
(2012). This approach relies on and extends the symbolic aggregate approxima-
tion (SAX) (Lin et al., 2003), i.e., a segment of the time series is represented
by (v, t) where v ∈ {low, normal, high} describes the relative magnitude and
t ∈ {up, down, straight} identifies the so-called slope. These extracted symbolic
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sequences are used as a feature matrix for a classification with, e.g, k-nearest
neighbors or decision trees. As an extension of dynamic time warping, the so-
called correlation-based dynamic time warping was developed for multivariate time
series (Bankó and Abonyi, 2012). These authors combined similarity measures
from dynamic time warping and principal component analysis. In 2014, based on
structural engineering applications the use of genetic programming for multivariate
time series classification was investigated (Harvey, 2014). The author computed
47 features based on using a sliding window. These features were processed with
genetic programming techniques. In this benchmark study, however, the methods
were tested mainly on univariate datasets. In 2009, shapelets were proposed, which
are considered to be subsequences of the time series (Ye and Keogh, 2009). Most
discriminating shapelets of different classes are identified and conglomerated in a
decision tree. Therefore, the final decision of the tree is based on the comparison of
those shapelets. Next to this, a so-called fast classification approach with shapelets
was used on multivariate data sets resulting in enhanced accuracy and reduced
computation time compared to previous shapelet methods (Grabocka et al., 2016).
An autoregressive tree-based ensemble approach was proposed in Tuncel and Bay-
dogan (2018) to model nonlinear behavior of multivariate time series. A novel
approach considered different dimensions by feature interplay (Schäfer and Leser,
2017). The authors used a sliding window on each dimension in order to extract
features. Based on similarity measures (learned pattern similarity) a generalized
autoregression method was proposed to find local patterns in time series (Bay-
dogan and Runger, 2016). A recent novel similarity-based method uses a time
series cluster kernel with a Gaussian mixture model (Mikalsen et al., 2018). This
approach can deal with missing data and avoids time consuming hyperparameter
tuning. Recent contributions show the successful use of neural networks (NN) for
MTSC. In this context, a Fully Convolutional Network (FCN) and a Residual
Network (ResNet) are considered as baseline results (Wang et al., 2016; Geng and
Luo, 2018). FCNs as well as ResNets are developed for object detection in images.
ResNets consist, like FCNs, of convolutional layers but with a deeper structure.
An overview of other deep learning methods for TSC can be found in Fawaz et al.
(2018).

The methods presented above, however, are highly specialized and use a sophisti-
cated modeling approach. They are neither developed for automated modeling nor
tested on a significant number of data sets.
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4.2 Overview of Approaches for MTSC

In section 4.3, a Plain Hand-Crafted Pipeline (PHCP) is proposed, which aims to
be a practical approach using basic methods. Then, in section 4.4, parts of the
pipeline are replaced by tree-based genetic programming components to additionally
consider the combinations of features from different time series. In section 4.5,
the embedding of state-of-the-art automated machine learning approaches in the
pipeline is shown. Furthermore, in section 4.6, state-of-the-art neural networks
for time series classification, as well as a hand-crafted neural network design are
introduced.

4.3 General Approach and Plain Hand-Crafted
Pipeline

Most of the approaches to classify time series are based on computationally
expensive methods which are nontransparent in the choice of the features. In
contrast, one of our hand-crafted approaches is considered to be a plain approach
with using basic methods. It aims at being numerically efficient in order to solve
classification problems with good performance and acceptable computational effort.
The PHCP contains elements of feature-based techniques which have the effect of
creating interpretable features.

The approach consists of seven steps, which are each explained in more detail in
the following subsections. The first two steps, namely

1. Preprocessing,

2. Exploratory Data Analysis,

require some hand work due to the variety of raw time series characteristics
from different domains. This indicates that different data sets require individual
preprocessing methods, which have to be identified in a manual process once for
each data set. To get an understanding of the data set, it is strongly advised to also
execute the exploratory data analysis phase. The next four phases, namely

3. Feature Extraction from Time Series,

4. Feature Selection,
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5. Training of a Classifier,

6. Hyperparameter Optimization

form our so-called pipeline. These four steps are completely automated with the
input consisting of the preprocessed time series data and the output being the
performance scores after the hyperparameter optimization. Our plain pipeline is
presented in Algorithm 1: It takes as input repeated measures X containing N
recordings and corresponding target labels Y and starts by extracting time series
features (line 3, using the tsfresh package, see Algorithm 2) for each recording in X .
Given d-dimensional time series and p predefined feature functions, d · p features
are generated for each recording, resulting in a feature matrix Φ0 ∈ RN×dp.

The feature matrix then undergoes the feature selection procedure (line 6), where
the so-called Boruta algorithm is adopted (see Algorithm 3). Prior to the model
training, the feature matrix is then split into the training and test matrices
Φtrain,Φtest respectively (the split of the matrix is done row-wise). To tune the
hyperparameters of the modeling algorithm A, the empirical performance of a
candidate hyperparameter vector θ ∈ Θ is assessed through a NCV-fold cross
validation (CV) that is conducted on the training matrix (lines 10-15), based on a
performance metric f , e.g., accuracy or F1 (see chapter 3.1).

The performance values are obtained and averaged over all validation data sets
(Φval, Yval), which is then passed into a hyperparameter optimizer H for proposing
new candidate hyperparameter settings (line 18). Finally, the best hyperparameter
vector θbest is used to train the algorithm A on the entire training data (line
20) and the generalization ability of the model is measured on the test set (line
22).

The last phase, namely

7. Evaluation of Results

is the manual assessment of the results to evaluate whether the results match the
hypotheses.

The seven phases mentioned above are described in detail below. Note that the
emphasis of this work is the pipeline itself. Therefore, the preprocessing and the
exploratory data analysis step are only discussed from a general perspective.
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Algorithm 1 Plain hand-crafted pipeline
Require: X = {X(1), . . . ,X(N)} ⊆ RL×d input time series, Y ∈ CN target labels,
F = {Fi}p

i=1 feature functions, performance metric f , a ML algorithm A, its
configuration space Θ and an algorithm configurator H.

1: procedure plain-pipeline
2: for i = 1 to N do
3: φ(i) ← feature-extraction

(
X(i),F

)
. Alg. 2

4: end for
5: Φ0 ←

(
φ(1),φ(1), . . . ,φ(N))> ∈ RN×dp

6: Φ← feature-selection(Φ0, Y ) . Alg. 3
7: (Φtrain, Ytrain), (Φtest, Ytest)← (Φ, Y ) . train-test split
8: Sample θ ∈ Θ randomly
9: while stopping criteria are not fulfilled do
10: {(Φ(i), Y (i))}NCV

i=1 ← (Φtrain, Ytrain) . cross validation split
11: for i = 1 to NCV do
12: Φval ← Φ \Φ(i), Yval ← Y \ Y (i)

13: M←A.train(Φ(i), Y (i), θ)
14: Ŷ ←M.predict(Φval)
15: fi ← f(Yval, Ŷ )
16: end for
17: f̄ ←

∑
i fi/NCV

18: θ ← H(θ, f̄) . Learn new hyperparameters
19: end while
20: M←A.train(Φtrain, Ytrain, θbest)
21: Ŷ ←M.predict(Φtest)
22: ftest ← f(Ytest, Ŷ )
23: return Φ,M, θbest, ftest

24: end procedure

4.3.1 Preprocessing

Dealing with time series usually implies extensive data preparation. Such raw time
series often contain noise and have different lengths, formats and units. Especially
time series data from sensors requires certain signal processing techniques like,
e.g., filters or transformations (time domain to frequency domain). However, the
individual techniques are strongly depending on the domain and the data set at
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Algorithm 2 Feature extraction with tsfresh package
Require: X ∈ RL×d an input time series and {F}p

i=1 feature functions.
1: procedure feature-extraction(X, {Fi}p

i=1)
2: for i = 1 to d do
3: for k = 1 to p do
4: n← (i− 1)d+ k

5: φn ← Fk (X·j) . j-th column of X
6: end for
7: end for
8: return (φ1, φ2, . . . , φdp)>

9: end procedure

hand. After having processed the data, the exploration phase starts to gain an
understanding of the data.

4.3.2 Exploratory Data Analysis

The exploration phase serves the purpose of becoming familiar with the data. This
phase is mostly done manually and essential for building comprehensible prediction
models, because a good data understanding helps building high performing models.
Based on visualization and statistical methods the data set is analyzed in order
to find, e.g., outliers and to handle missing values. Especially on small data sets,
outliers and missing values can have a significant impact. Therefore, treating those
is important for enhancing the model performances (Lissandrini et al., 2018; Zuur
et al., 2010; Kantardzic, 2011). In this phase many different techniques can be
important to ideally identify first patterns in the data.

4.3.3 Feature Extraction from Time Series

This work aims at creating comprehensible and computationally efficient classi-
fication models by automatically generating and selecting time series features.
Depending on the domain and the data set, very different features are significant.
Traditionally, such features are constructed by hand from the time series, which
requires good knowledge from experts. Constructing such significant features in
a manual process, however, is usually very time consuming. In order to create a
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Algorithm 3 Feature selection with Boruta algorithm
Require: Φ ∈ RN×m feature matrix with N samples and m features, Y ∈ CN

target, B maximal iterations, CDFB(k,1/2) cumulative distribution function of
a binomial random variable B(k, 1/2) with k trials and 1/2 success probability,
a significance level α and a random forest algorithm rf with its hyperparameter
θ

1: procedure feature-selection(Φ, Y )
2: {c1, c2, . . . , cm} ← {0, 0, . . . , 0} . counters
3: S ← ∅, R← ∅ . selections and rejections
4: for k = 1 to B and S ∪R 6= [1..m] do
5: I ← [1..m] \R . remaining feature indices
6: Φ′ ← (Φ·i)i∈I

7: for i ∈ I do
8: Φshadow

·i ← random-shuffle(Φ′·i)
9: end for
10: M← rf.train

(
(Φ′,Φshadow), Y, θ

)
11: (z, zshadow)← feature-importance(M)
12: τ ← max zshadow . threshold
13: α′ ← α/k . Bonferroni correction
14: for i ∈ I do
15: if zi > τ then
16: ci ← ci + 1
17: end if
18: pi ← 1− CDFB(k,1/2)(ci − 1) . right tail
19: p′i ← CDFB(k,1/2)(ci) . left tail
20: if pi < α′ then
21: S ← S ∪ {i} . select feature i
22: else if p′i < α′ then
23: R← R ∪ {i} . reject feature i
24: end if
25: end for
26: end for
27: return (Φ·i)i∈S

28: end procedure

generic and automated approach to generate features for time series, a massive
number of time series features can be computed in order to subsequently select
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the most relevant features for the overall classification task.

For the feature extraction phase, we adopt 63 parametric feature functions1 (e.g.,
autocorrelation, kurtosis or skewness) that are pre-defined in the tsfresh pack-
age (Christ et al., 2016, 2018). In total, by taking multiple different parameteriza-
tions (e.g., different time lags when calculating the autocorrelation) for each feature
function, 794 features (tsfresh features) are computed by tsfresh for each time series.
In this work, tsfresh was used with its default settings (see Chapter 3.4.1).

From this automatically generated feature space, the most significant tsfresh
features are selected in the next step.

4.3.4 Feature Selection

Various feature selection methods have been proposed and applied, e.g., forward,
backward and recursive selection (Witten et al., 2011). Importantly, all those
feature selection methods require a measure of the feature importance with respect
to the modeling task at hand. For instance, in random forests, the importance of
a particular feature can be defined as the mean decrease of impurity (e.g., Gini
impurity) over all the nodes that split this feature (Breiman, 2001). In the PHCP,
a recent feature selection algorithm called Boruta (Kursa and Rudnicki, 2010) is
adopted due to the fact that: 1) it is computationally relatively cheap and 2) it
has shown best performances when compared to other alternatives (Koch et al.,
2018). The Boruta algorithm is summarized in Algorithm 3: in each iteration, it
starts with creating so-called “shadow” features by randomly shuffling the values
of each feature (line 7-9). A random forests model is trained on the combination
of original and shadow features, from which the feature importance is determined
(line 11). A feature is considered for selection if its importance dominates the
maximum importance of all shadow features (line 12, 15). The number of times
such a dominance occurs is counted for each feature (line 16), on which a binomial
test is performed to determine the statistical significance (line 18 - 23).

1Please see https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html for
the detailed list of features.
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4.3.5 Training of a Classifier

In this phase the selected Boruta features are used to train a random forest
classifier. Of course, any other classifier can be implemented here but due to its
simplicity and its efficiency we have used a random forest in our pipeline. Random
forests belong to the class of ensemble learning methods and are considered to
achieve good performance in different problem domains. A random forest is the
conglomeration of many decision trees and the resulting decision is the average
outcome of all those decision trees (Hastie et al., 2009).

4.3.6 Hyperparameter Optimization

Setting up hyperparameters properly is vital to the performance of a machine
learning model. To boost up the performance of the random forest model on
the data, it is necessary to conduct a hyperparameter optimization. The list of
hyperparameters under consideration and their ranges are shown in Table 4.1.
Note that the resulting search space for hyperparameter optimization contains
integer variables as well as categorical ones. There are a variety of well-established
algorithms for this task, including grid search, evolutionary algorithms and Bayesian
optimization (Geron, 2017).

Table 4.1: Hyperparameter search space for optimizing the random forest classifier.

Parameter Range
Max depth of each tree {1, 2, . . . , 100}
Number of trees {1, 2, . . . , 100}
Max number of features when splitting a node {auto, sqrt}
Min number of samples required to split a node {2, 3, . . . , 20}
Min number of samples required in the leaf node {1, 2, . . . , 10}
Use bootstrap training samples? {True, False}

In the PHCP, the Bayesian optimization algorithm is chosen due to its efficiency
when optimizing expensive problems. In detail, a recent variant of it, called
Mixed-integer Parallel Efficient Global Optimization (MIP-EGO) (Wang et al.,
2017, 2018) is adopted as it handles the mixed-integer categorical variables in an
efficient way. The MIP-EGO algorithm is executed for 200 iterations, where in
each iteration a candidate hyperparameter setting is suggested and its goodness is
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determined by the quality of the corresponding model on a validation set. Using
NCV -fold cross validation on the training data, the hyperparameter optimizer uses
the average classification quality measure f̄ across the NCV validation sets as the
overall quality measure for each configuration θ under consideration.

4.3.7 Evaluation of the Results

In the last step of this approach the outcome has to be evaluated. In this context,
it is essential to run the computation of each method multiple times and use its
average to reduce noise. Sometimes machine learning models tend to overfit /
underfit, therefore it is important to evaluate the training performance and the
validation performance in detail. Often used evaluation metrics are accuracy and
the F1-score for class-imbalanced data sets (see chapter 3.1).

Furthermore, visualization methods like, e.g., learning curves, the ROC or the
precision / recall curve can provide additional performance insights (see Chap-
ter 3.1).

4.4 Hand-Crafted Approach with Genetic Program-
ming

In the Hand-Crafted Pipeline with Genetic Programming (HCPGP) a feature
generation module is implemented in the pipeline. This feature generation is a
tree-based genetic programming approach which conglomerates many so-called
less significant features (low level features) into several significant features (high
level features). In detail, the search domain is defined by symbolic expressions for
function approximation (Koza and Rice, 1992; Poli et al., 2008). These symbolic
expressions are typically represented as parse trees, such as illustrated in Figure 4.1,
where x0, x1, . . . describe the features. The genetic operators are applied to those
trees, for example by subtree exchanges between different trees in a population
(crossover), or by mutation of subtrees or terminal nodes in the tree.

However, this requires iterations over many generations to find combinations
with adequate classification qualities. The large tsfresh feature space limits the
efficiency of the computation. As mentioned, this work focuses on competitive

42



4.4 Hand-Crafted Approach with Genetic Programming
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Figure 4.1: An example of a tree-based representation of symbolic expressions, as
used in Genetic Programming.

methods regarding performance and computation times. Testing large numbers of
combinations is not very efficient here.

Therefore, the dimensionality in terms of the number of initial low level features
has to be reduced either way. Promising ways to obtain a smaller set of new
features without removing any information would be by using CNNs or a PCA. It
is key not to drop information at this point, which is more or less granted in both
methods. In this work we are using PCAs mainly due to its lower computation
time when compared to CNNs. PCA represents the data in a lower dimension with
linear principal components whereas the so-called kernel Principal Component
Analysis (kPCA) transforms the data into a higher dimensional feature space and
applies PCA on this feature space. Compared to standard PCA, kPCA allows to
describe also non-linear behavior (Bishop, 2009).

With an increased prediction scores of approximately 2.5% over all data sets our
first experiments showed a slight increase in performance when using kPCA instead
of PCA. Therefore, we used kPCA in this work.

Furthermore, in this study we set the number of components of the kPCA to a
relatively small number (here 15). This means that the initial tsfresh feature space
is reduced to 15 components. Setting the number of components to such a small
number enormously improves the efficiency of the genetic algorithm regarding
computation time. Especially this boost in efficiency allowed us to investigate the
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genetic algorithm and its parameters in this study in a computationally feasible
way.

When dealing with these algorithms we were facing issues with overfitting, because
from our experience such genetic programming algorithms tend to find perfect
solutions on the training data by overfitting the data. Therefore, the fitness scores
are based on a cross validation approach (see chapter 3.1). Furthermore, as fitness
function of our HCPGP approach a performance metric like accuracy is used to
maximize the overall performance. This is used together with a minimization of
the difference between validation score and training score of the cross validation.
This setting aims at reducing the overfitting tendency of the algorithm on the
training set of the HCPGP approach.

Table 4.2 shows the parameters of the genetic programming approach. This
parameter setting aims at generating a single complex feature based on 15 basic
features which can be used as variables in the symbolic expressions generated by
genetic programming.

Table 4.2: Parameter of the genetic feature generation algorithm.

Parameter Value
Population 10
Generation 1500
Crossover 0.5
Mutation 0.1
Tree depth 1-10
Number of features 15

The basic features are obtained from applying the tsfresh and kPCA preprocessing
algorithms. The performance of the complex features generated by the genetic
programming approach is measured by using a random forest and cross validation
(see above).

The whole pipeline with genetic programming is shown below:

3. Feature Extraction from Time Series,

4. Kernel PCA,

5. Feature Generation with Genetic Programming,
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6. Training of a Classifier and

7. Hyperparameter Optimization.

The pipeline based on genetic programming is shown in Algorithm 4: the input
is similar to Algorithm 1 except that this algorithm requires genetic operators
ψ and arithmetic operators ζ which are used to construct a parse tree Ω. The
feature extraction is executed as presented in Algorithm 1 (line 2-5). The kPCA is
applied on the feature matrix (line 3). Then, the feature matrix is split into the
training and test matrices Φtrain,Φtest respectively (the split of the matrix is done
row-wisely). Based on the genetic operator ψ and the arithmetic operators ζ an
initial parse tree is constructed for the given population size (here 10).

From line 6-19 the parse tree, which achieves the best cross-validated score of the
highest validation performance subtracted by the absolute difference of validation
score and training score, is optimized over generations (here 1500). Then, this
optimized parse tree Ωbest is used to compute its depending features of the split
(line 20). These features are considered in the same hyperparameter optimization
procedure and validation method as shown in Algorithm 1 (line 8-22).

4.5 AutoML

AutoML generates machine learning pipelines in an automated approach. In
this work the following AutoML methods are considered: Auto-Sklearn, TPOT,
AMLPA, GAMA, H2O, MLBOX, ATM and RECIPE (see Chapter 3.8). All of
these AutoML approaches require stationary features. Therefore, it is implemented
after phase 3 (feature extraction):

3. Feature Extraction from Time Series,

4. AutoML,

where phase 4 now replaces the steps 4 - 7 in the pipeline definition given be-
fore.
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Algorithm 4 Hand-crafted pipeline with genetic programming
Require: X = {X(1), . . . ,X(N)} ⊆ RL×d input time series, Y ∈ CN target labels,
F = {Fi}p

i=1 feature functions, parse tree Ω, its genetic operator ψ, its arith-
metic operators ζ, performance metric f , a ML algorithm A, its configuration
space Θ, an algorithm configurator H and a genetic programming algorithm
gp.

1: procedure genetic-pipeline
2: Execute lines 2-5 of Algorithm 1
3: Φ← kPCA(Φ0, Y )
4: (Φtrain, Ytrain), (Φtest, Ytest)← (Φ, Y ) . train-test split
5: Sample initial parse tree Ω with ψ and ζ
6: Ωbest ← Ω, f̄best ← −∞
7: while the stop criteria are not fulfilled do
8: {(Φ(i), Y (i))}NCV

i=1 ← (Ω(Φtrain), Ytrain) . cross validation split
9: for i = 1 to NCV do
10: Φval ← Φ \Φ(i), Yval ← Y \ Y (i)

11: M←A.train(Φ(i), Y (i), θ)
12: Ŷtrain ←M.predict(Φ(i))
13: Ŷval ←M.predict(Φval)
14: ftrain,i ← f(Y(i), Ŷtrain)
15: fval,i ← f(Yval, Ŷval)
16: end for
17: f̄train ←

∑
i ftrain,i/NCV

18: f̄val ←
∑

i fval,i/NCV

19: f̄ ← f̄train − |f̄train − f̄val|
20: if f̄ > f̄best then
21: f̄best ← f̄ , Ωbest ← Ω
22: end if
23: Ω← gp(Ω, ψ, f̄) . Learn a new parse tree from GP.
24: end while
25: (Φtrain, Ytrain), (Φtest, Ytest)← (Ωbest(Φ), Y ) . train-test split
26: Execute lines 8-22 of Algorithm 1
27: return Φ,M,Ωbest, θbest, ftest

28: end procedure
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4.6 Neural Network Architectures

In this work three neural network architectures for MTSC are considered, namely
the hand-crafted architecture Convolutional Neural Network + Long Short-Term
Memory (CNN+LSTM), the ResNet (He et al., 2015) and the FCN (Long et al.,
2014). Figure 4.2 illustrates these architectures.

The FCN and the ResNet architectures were proposed for time series classification
with 2000 epochs (Wang et al., 2016). Initially, both architectures were developed
for object detection on images and modified for time series classification with
the result of being very competitive regarding other state-of-the-art approaches.
Compared to FCNs, a ResNet has a deeper structure by using so-called shortcut
connections between layers. ResNets are considered as state-of-the-art in image
detection. In a recent publication the time series modification of FCNs showed
better results on time series classification tasks compared to ResNets and other
architectures (Wang et al., 2016).

Next to FCNs and ResNets, based on mainly real-world time series data (auto-
motive) within this work a hand-crafted neural network has been developed for
MTSC by combining CNNs and LSTMs. CNNs can extract important information
from the time series and exclude unimportant parts, i.e. CNNs transform the
time series into a shorter, high level representation. Furthermore, CNNs learn
local patterns, i.e., after learning a pattern this can be found independently of
its location on the time axis (see Chapter 3.6). In this setting we are using 2
times 2 CNNs with 128 units or neurons, each followed by a Max Pooling. The
number of units can be adapted to the need of the certain data set. However, our
real-world data set has 701 time steps and in the optimization phase 128 units
showed favorable results. As activation function the Rectified Linear Unit (ReLU)
function is used. In detail, the most informative sections are extracted by the
CNNs and then, the Max Pooling extracts the maximum value of every 3 successive
values. Hence Pooling removes unnecessary information like the exact position of a
certain pattern, but the information of a pattern itself still exists, i.e. Pooling thins
the data out. This again results in a higher level representation of the data.

However, CNNs do not consider the order of appearance of certain patterns in the
data. Therefore, in this setting CNNs are only used to shorten the sequence and to
provide this shortened data into a LSTM layer. LSTMs are computationally more
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Figure 4.2: In this study three different neural network architectures are used,
namely CNN+LSTM (left), ResNet (center) and FCN (right).

48



4.6 Neural Network Architectures

expensive than CNNs, but LSTMs do consider the order of values. Therefore, the
CNN+LSTM uses CNNs as preprocessor to reduce the long sequence with keeping
only high-level features. In this way, the sequence can be shortened into a highly
informative sequence, which is processed by the LSTM. The LSTM returns the
extracted sequence to a dense layer which is a fully connected layer. The output
of the dense layer is flattened in order to be processed in the last dense layer. This
last layer contains a softmax activation function. For each class in the data set
exists one unit. The output of all units must add up to 1.0, i.e. the output of each
individual class unit shows the probability of this class to be the target.

The hyperparameter of this Neural Network has been tuned for the real-world
automotive data set. The LSTM has 128 units, a dropout of 0.1 and a recurrent
dropout of 0.5. Dropout is a so-called regularization method. It randomly drops
units to prevent overfitting and the lower number of units allows faster model
training. The normal dropout regularizes the inputs between layers, whereas the
recurrent dropout drops units of the recurrent state, i.e. it regularizes between
different time steps. Furthermore, in this setting 16 data points are used at once
to update the model parameters, i.e. the batch size is 16. All data are passed up
to 2000 times through the network. This are the so-called epochs. The learning
rate is set initially to 0.001 and when the objective function stagnates it is reduced
down to 0.0001. In order to reduce computation time, an early stopping criteria is
defined to stop training when experiencing no further improvement in the objective
function.
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5
Solving Real-World Problems

This chapter presents the first application of the plain hand-crafted pipeline
on three real world data sets, indicated as case A, B and C. The objective of
these applications was the development, verification and optimization of our basic
pipeline (PHCP), as well as the investigation of its usefulness for solving real world
problems. The data set of case A contains on-board car data of 417 crash tests.
This is used to develop a model which predicts the crash impact point around
the vehicle. Case B aims at estimating the damaged parts caused by a low speed
crash event. The data set contains on-board data of 100 crash tests carried out
within this work. Based on electroencephalography data from 40 Parkinson disease
patients, in case C, a model is developed to predict the usefulness of a Deep Brain
Stimulation to improve the well-being of the patients.

5.1 Case A: Predicting the Vehicle Crash Impact
Point

5.1.1 Introduction

A big share of traffic accidents takes place in a difference in velocity of less than
16 km/h (RCAR, 2018), the so-called low-speed crash. Nowadays, in the car
insurance industry, there is a growing demand for prompt transparency of such low
speed crash events. The main reasons are to increase the speed of insurance claim
processing and to reduce claim frauds. Many companies and some researchers are
developing approaches to generate valid information from crash events (Carroll,
2018; Patil et al., 2017). Recent developments are e.g. chatbots, which question
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the customer about a crash and initiate the claim settlement, or image recognition
methods, which estimate the costs based on pictures of the broken parts (Carroll,
2018). Some companies use additional devices, which are communicating with the
car via e.g. OBD1. Those devices can send information to an insurance company
after a crash event (Welt, 2018).

In this application on-board car data from crash events is used to predict the point
of impact. Such an application could be beneficial for insurance claims due to the
provided prompt transparency of the impact location. Therefore, not only driving
vehicles but also parked vehicles which are involved in a crash event can provide
more detailed crash information to the customer and, if desired, to the insurance
company. Furthermore, such a system can avoid claim fraud and autonomously
initiate repair processes.

Based on 417 crash tests, 8 impact points of the car have been defined (see
Figure 5.1). In the research presented here, a classifier is developed to predict
the impact points. Features from on-board time series data are automatically
extracted, selected and used for learning a decision tree classifier.

Figure 5.1: The 8 impact points of the car.

5.1.2 Related Work

Using on-board car data, without adding any additional sensors, to generate more
transparency of low-speed crash events has not been a major topic of scientific

1On-board diagnostics (OBD) is developed as an interface to give the repair technician in a
workshop access to the status of the car systems.
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5.1 Case A: Predicting the Vehicle Crash Impact Point

research yet. Existing research uses additional sensors for deriving information
about damages from structure-borne sounds (Gontscharov et al., 2014). Other
researchers discuss the use of image recognition methods with deep learning tech-
niques in order to generate information based on images of crashed vehicles (Patil
et al., 2017; Harshani and Vidanage, 2017).

5.1.3 Data Set Description

The data set used in this research contains time series data (e.g. acceleration)
from 421 car-to-car crash events with many different car types. Figure 5.2 shows
such a typical longitudinal acceleration signal of a crash event.
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Figure 5.2: A typical, longitudinal acceleration signal (measured at the center of
gravity) from a low speed crash.

Each event is manually labeled with the corresponding point of impact: Figure 5.1
illustrates those 8 impact locations. Furthermore, the number of cases per location
is shown as high-level description in Table 5.1 which indicates that the number of
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cases is not balanced over the locations, i.e. the data set is class imbalanced. This
is important to have in mind when exploring and analyzing the data.

Table 5.1: Description of the data set.

Class Location Cases
0 NW 71
1 N 112
2 NE 87
3 E 20
4 SE 22
5 S 72
6 SW 22
7 W 15

5.1.4 Modeling Approach

This study is the first application on a real-world data set of the methodological
approach shown in Chapter 4.3. Therefore components of this pipeline differ
from the final PHCP, e.g., a grid search algorithm is used for hyperparameter
optimization instead of the Bayesian algorithm. The particular pipeline of this
case is described in detail below.

First of all, the recorded raw data from the car has to be preprocessed for further
steps. The data is cleaned from corrupted cases and, if necessary, the units are
converted. Usually, the traces are capturing much longer time lines than needed
for the algorithm. Therefore, the time series are cut into time windows, which
catch the crash events only. One of the most time consuming steps, within the
preprocessing, is the labeling process. As shown in Table 5.1 each case is assigned
to one location (label). In order to generate a valid database, the assignment of
the location to each case needs to be done manually.

In the next step, an exploratory data analysis step is used to obtain some data
understanding and to choose the right approach for modeling. As mentioned,
a typical longitudinal acceleration of the investigated crash events is shown in
Figure 5.2: the first contact of both cars happened slightly before the largest
acceleration value at t ≈ 2.9s. This acceleration signal quickly reaches a maximum
(t ≈ 3.0s) followed by a damped oscillation towards zero. However, all curves of the
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5.1 Case A: Predicting the Vehicle Crash Impact Point

crash events are analyzed in this manner and typical behaviors are derived. As an
example, Figure 5.3 shows a pattern that has been found through the exploration.
It illustrates the normalized maximum acceleration values, extracted from the time
series, of the vertical direction (y-axis) as a function of the normalized longitudinal
direction (x-axis). The different colors indicate the different impact locations.
The rough pattern N/E/S/W can be easily observed. However, exact locations,
e.g. NW/N/NE, cannot be distinguished by those maximum acceleration values.
Therefore, better representations than maximum acceleration values have to be
extracted from the time series.

Figure 5.3: Normalized maximum values of longitudinal- and vertical acceleration
with a color indication of the crash location.

5.1.4.1 Feature Extraction from Time Series

The feature extraction is done by the library tsfresh (Christ et al., 2018). As
Chapter 4.3.3 states tsfresh computes a wide range of different features. It deduces
794 features per time series. For this approach, 4 time series are used per event,
i.e. a total of 3,176 features are created. Some of these features can possibly
describe the relation to the impact location better than others. Therefore, in the
next step the most important features need to be selected.
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5.1.4.2 Feature Selection

Most important features are selected with the Boruta algorithm. For a detailed
description of this algorithm please refer to Chapter 4.3.4.

5.1.4.3 Training a Decision Tree

A decision tree classifier is used in this application for realizing a fast and compre-
hensible approach. To find the best hyperparameters, a simple random sampling
approach with 50,000 samples is employed, using the 10-fold cross-validated pre-
diction accuracy as performance score.

Table 5.2: The optimized hyperparameters of the decision tree and the range of
values used for randomized search.

Parameter Optimized values Range
Criterion entropy {gini, entropy}
Max depth 6 {1, 2, . . . , 40}
Max features 9 {None, auto, sqrt, 1, 2, . . . , 25}
Max leaf nodes 23 {2, 3, . . . , 50}
Min samples leaf 2 {1, 2, . . . , 10}

The investigated range of hyperparameters and the best setting are presented
in Table 5.21. Figure 5.4 shows the feature importance or variable importance.
Feature importance describes the relative importance of each feature. In detail,
for each feature the improvement of the split-criterion over all splits is added
up. These values are scaled that the sum of all importances is equal to 1. This
describes the relative importance of the features (Hastie et al., 2009).

The Boruta algorithm selected 25 features. By means of the randomized search
with the decision tree as classifier, from those 25 features 9 are found to be essential.
The range of the relative importance is between 3-30%. The features are described
in Table 5.3 according to the definitions provided for tsfresh (see tsfresh (2018)).
In general, 4 different types of features are selected: 6 times fourier coefficients
calculated by fast fourier transformation, the location of the first maximum, the
standard deviation and the approximated entropy. It should be noted, that the

1Table 5.2 shows the most important hyperparameters for this application. Hyperparameters
with a low influence on the result have been tested but are not shown in this study.
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Figure 5.4: The relative importance of the selected features.

automatic approach of this study provides features, which would have been virtually
impossible to find by manual selection methods.

The average of the 10-fold cross-validated accuracy score is 76%. Due to the large
size of the decision tree only a cutout of the first nodes is illustrated in Figure 5.5.
The basic principle of decision trees is explained in Chapter 3.3. The decision tree
is drawn from upside down, which means that the root node is at the top. Each
horizontal layer of nodes represents the depth of the tree, i.e. the root node is
at depth 0 and the horizontal layer below is depth 1 and so on. The root node
contains a condition in its first line. If this condition is true, the branch down to
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Table 5.3: The description of the selected features.

Name Description

Fft coefficient

"The fourier coefficients of the
one-dimensional discrete Fourier Transform
for real input by fast fourier transformation
algorithm." (tsfresh, 2018) This feature
appears 4 times with the following coefficients:
9, 12, 13, 17, 26, 53

First location of maximum
"The first location of the maximum value of
the time series x. The position is calculated
relatively to the length of x." (tsfresh, 2018)

Standard deviation "The standard deviation of x." (tsfresh, 2018)

Approximate entropy "A vectorized approximate entropy
algorithm." (tsfresh, 2018)

the left is active – if false, the branch to the right. In the next step the condition
of the node, connected to the active branch, is checked, and so on. In the second
line of each node the entropy is shown. The entropy describes the homogeneity
of the samples, which means when having completely homogeneous samples the
entropy is zero. The more different samples are existing in a node the higher the
entropy value (Geron, 2017). The third line of each node shows the number of
samples which reach the node. The class affiliation of those samples is displayed
in the fourth line. The last line indicates the predicted class of this node. The end
of a branch, represented here with the blue and the red rectangle, is called leaf
or decision. In this case, it is the indication at which point of the car the crash
happened (Geron, 2017; Pedregosa et al., 2011). The whole decision tree is shown
in the Appendix A.

In the following section 5.1.5 the performances of the decision tree are dis-
cussed.

5.1.5 Results

A first representation to evaluate the performance of the trained decision tree
is shown in Figure 5.6, the so-called learning curve (see Chapter 3.1). Each
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5.1 Case A: Predicting the Vehicle Crash Impact Point

Figure 5.5: A cutout of the first leafs of the decision tree.

prediction is 10-fold cross-validated. This training curve increases in the beginning
and then declines smoothly to 89%. The cross-validated curve is quickly rising in
the beginning and then slowly growing until 76%. The gap between the curves
indicates that the model, when trained on all data records, is overfitting. However,
even with more than 350 training examples the gradient of the cross-validated
curve is still positive, which leads to the conclusion that more data would increase
the validation score and therefore reduce overfitting (Pedregosa et al., 2011).

Figure 5.7 shows the confusion matrix (see Chapter 3.1)1. It is obvious that some
misclassifications are observed for neighboring locations e.g. 0,1,2. Figure 5.3
indicated already that close locations are difficult to distinguish. Furthermore,
the data set represents different car types, e.g. all-terrain vehicles have different
characteristics in the time series than coupés. Therefore, features have to be found,
which describe the generalized characteristics of all used car types. Another reason
for misclassification results from the class imbalance, with four of the eight classes
being represented by only about 5% of the data points, each. This can especially
be seen in classes 4 and 6. While in general the results are already quite acceptable,

1The location of each class is shown in Table 5.1.
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Figure 5.6: The learning curve shows the increase in accuracy with more experience
of the modeled decision tree.

separating close locations accurately will likely require more training data and
better features (Pedregosa et al., 2011).

5.1.6 Summary and Conclusions for Case A

The evaluation of the described approach demonstrates that 9 automatically
computed and selected features (out of a total of 3,176) are sufficient to obtain a
decision tree with prediction accuracy of 89% for predicting the location of a low
speed vehicle crash, given the sensor signal time series data available in modern
passenger cars. This study presents an automatic approach to use time series for
machine learning with good performance and promising findings, even on such a
small and class imbalanced data set. To further improve the results, the feature set
could be enhanced by manual feature selection, because, e.g., the relation between
features of different time series is not considered in this approach. Using techniques
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5.2 Case B: Predicting the Damaged Parts of a Vehicle Crash

Figure 5.7: The normalized confusion matrix illustrates true class vs. predicted class
of each label. Deviations from the highlighted diagonal represent misclassifications.

to decrease class imbalances, e.g., generating more test data, adding copies of
instances from the under-represented classes (resampling) or producing synthetic
samples from the existing data, provide space for further improvement. More
sophisticated modeling algorithms could also potentially improve the performance,
however, most likely at the cost of losing the explicative model properties provided
by decision trees. To accelerate the search for optimal hyperparameters, as a next
step the random search approach will be replaced by an advanced search algorithm,
e.g., efficient global optimization for mixed-integer categorical search spaces (Wang
et al., 2017, 2018).

5.2 Case B: Predicting the Damaged Parts of a
Vehicle Crash

5.2.1 Introduction

In this case, we focus on predicting the damaged parts of a low speed vehicle crash.
Such an application could provide prompt transparency of the damaged parts of
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vehicles involved in a low speed crash (parking or driving). If requested, detailed
crash information can be provided to e.g. initiate repair processes efficiently and
to avoid claim frauds.

In this study, only the data from installed sensors of serial cars is used. In order
to evaluate the possibilities of such a system, crash tests are carried out and the
on-board sensor data (e.g. acceleration) is recorded. After each test, the damaged
parts of the vehicles are identified. The data set contains 100 cases. Based on 5
time series from 5 sensors, the PHCP approach is further developed to use time
series data for Machine Learning in an optimized way.

5.2.2 Related Work

The use of on-board car data, without adding any additional sensors, to generate
more transparency of crash events promptly has not been a major topic of scientific
research yet. In order to derive the damages, Gontscharov et al. (2014) apply
additional sensors for using structure-borne sounds. Other recent publications
discuss the use of image recognition methods to generate information from the
crashed vehicle after the accident with deep learning techniques (Patil et al., 2017;
Harshani and Vidanage, 2017).

5.2.3 Data Set Description

Table 5.4 shows a high-level description of the data set. It consists of a total
of 100 cases from vehicle to vehicle low speed crash tests with almost identical
vehicles. The cases are distinguished by positions (e.g. front / rear / side / ...),
the angle between the vehicles and the velocities. Each data set includes recorded
time series sensor data from the crash events (e.g. acceleration) and the damaged
parts of the crash. In this investigation, 14 car parts are used for modeling to show
the developed method. Table 5.4 indicates those parts and their corresponding
number of damages. The cases are not balanced between undamaged and damaged
due to the very different crash scenarios (positions, angles, velocities, ...). This
class-imbalance and especially the parts with a minor number of damages should
be kept in mind when creating the models and evaluating the results.
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Table 5.4: Description of the data set: the number of damages per part are shown.
The data of 100 crash tests is used.

No. Part Undamaged Damaged
1 Bumper front 57 43
2 Crossmember front (upper) 80 20
3 Crossmember front (lower) 89 11
4 Impact absorber front 77 23
5 Sidewall front (left) 93 7
6 Sidewall front (right) 90 10
7 Bonnet 92 8
8 Headlight (left) 86 14
9 Headlight (right) 83 17
10 Bumper rear 59 41
11 Crossmember rear 86 14
12 Tailgate 92 8
13 Rocker panels (left) 92 8
14 Rocker panels (right) 94 6

5.2.4 Modeling Approach

The modeling approach of this application follows the methodological steps in-
troduced in Chapter 4.3. Based on the pipeline approach of case A, the PHCP
is developed further, e.g., a Bayesian hyperparameter optimization technique
is introduced, a random forest is used instead of a decision tree and compared
to the grid search algorithm, as well as different feature selection methods are
compared.

The data set contains time series and a matrix with the damaged parts per crash
test. The information containing the time series has to be revealed by extracting
characteristic features from the time series. The damaged parts could be treated as
vector for each crash test, with ~y = (y1, ..., yk)T . This binary vector ~y represents
the status, with part i being undamaged (damaged) if yi = 0 (yi = 1). For this
problem representation, a so-called multi-label classification approach could be
used, which allows for learning a vector of labels by learning one classification
model for all parts with one set of features. Hence, the damages for all parts are
predicted by one model. This could be very promising for some cases, but for our
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damage prediction model with this small data set, it does not yield good results.
Moreover, there is little room for improving the model through hyperparameter
optimization. Therefore, we developed the so-called part-wise approach: for
each car part one individual model with specific features and hyperparameters
is generated. This transforms the multi-label classification into a regular single
binary label classification. It also provides opportunities for optimization of every
single model, in order to create best possible models with a small data set.

In the following sections, the individual steps of the methodological approach of
this case are discussed in detail.

5.2.4.1 Preprocessing

First of all, the recorded raw time series data from the crash events has to be
preprocessed. Generally, vehicle sensors shake slightly in the mounted position
depending on, e.g., the road conditions. It means, that the positions of the
axes change relatively to the defined vehicle coordination system of longitudinal,
transversal and vertical axes. Therefore, the data has to be corrected in order
to relate the sensor data to the vehicle coordination system. Furthermore, the
sampling rate of the data is very high, which results in a noisy signal. The signals
are filtered to remove such noisy components. In our case, the correction and
the filtering is done within the control units of the car. In the next step, the
recorded signals are verified visually and corrupted cases are deleted. Furthermore,
the signals are recorded with longer timelines due to the experimental conditions:
therefore, the time windows of all time series are shortened and adjusted to the
same length. If necessary, units are converted. In the last step of the preprocessing,
the labels (damaged/undamaged) of each part and crash test are collected and
digitalized for further processing.

5.2.4.2 Exploratory Data Analysis

In the exploration step, the data set is manually explored to comprehend the
data and to find the best approaches for modeling. Figure 5.2 shows a typical
acceleration time series from a crash event. Some characteristic features, e.g.,
minimum, maximum or the number of minima and maxima can be found quickly
by visual analysis. However, there could be many other important features that
cannot be discovered by manual inspection.
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5.2.4.3 Feature Extraction from Time Series

The feature extraction is done by tsfresh (Christ et al., 2018) (see Chapter 4.3.3).
In this study we use 5 recorded time series from the crash event, which leads to
3970 features. Additionally, we consider 12 manually created features, namely the
obvious ones that were found through the exploration process. Table 5.5 shows
these manual selected features.

Table 5.5: The list of the manually selected features.

No. Name

1-3 Min. of time series 1, 2, 3

4-7 Max. of time series 1, 2, 3, 4

8-9 Absolute (Abs.) max. of time series 1, 2

10
√

(Abs. max. of time series 1)2 + (Abs. max. of time series 2)2

11 Abs. max. of time series 1√
(Abs. max. of time series 1)2+(Abs. max. of time series 2)2

12 Abs. max. of time series 2√
(Abs. max. of time series 1)2+(Abs. max. of time series 2)2

5.2.4.4 Feature Selection

As indicated above, a total of 3982 features are generated. In order to find the most
important ones, which are suitable for modeling, for each part, feature selection
methods or subset selection algorithms are used. There are different common
methods and algorithms to select the significant features. In this study, two very
promising wrapper algorithms, called Boruta (Kursa and Rudnicki, 2010) and
RFECV (Guyon et al., 2008) are used and compared (see Chapter 3.4.3).

In this study, the Boruta algorithm is run with nestimators = 1000 andmaxiterations =
100. The hyperparameters of RFECV are step = 100, cv = 10 and scoring = F1.
Both algorithms use a random forest classifier. As previously described, each
car part has its own features, which are selected by these algorithms and then
used for classification (damaged/undamaged). Table 5.6 shows the comparison
of the feature selection algorithms Boruta and RFECV on this data set without
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Table 5.6: Comparison of the feature selection methods Boruta and RFECV.

Boruta RFECV

Part Fe
at
ur
es

A
cc
ur
ac
y

F
1
sc
or
e
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es

A
cc
ur
ac
y

F
1
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e

Bumper front 5 0.91 0.91 82 0.95 0.94
Crossmember front (upper) 4 0.85 0.63 1 0.83 0.60
Crossmember front (lower) 1 0.85 0.29 1 0.82 0.25

Impact absorber front 4 0.89 0.72 1 0.82 0.60
Sidewall front (left) 1 0.89 0.27 1735 0.93 0.00

Sidewall front (right) 0 0.00 0.00 1 0.83 0.19
Bonnet 6 0.94 0.50 1784 0.92 0.00

Headlight (left) 0 0.00 0.00 1 0.81 0.30
Headlight (right) 4 0.88 0.61 1 0.88 0.67

Bumper rear 4 0.88 0.85 82 0.91 0.88
Crossmember rear 4 0.88 0.55 1 0.86 0.59

Tailgate 1 0.88 0.14 1861 0.92 0.00
Rocker panels (left) 7 0.96 0.75 1 0.91 0.47

Rocker panels (right) 4 0.93 0.46 1 0.92 0.43
Computation time 20min 4h 15min

hyperparameter optimization. Individual random forest classifiers are trained per
part (training a random forest classifier). Table 5.6 illustrates the number of fea-
tures, the accuracy and the F1 score of both selection algorithms (see Chapter 3.1).
The accuracy for most of the parts is higher than 80%. This could lead to the
conclusion that the performance is quite good. However, the accuracy of e.g. the
sidewall front (left) is 89% and 93% and there are 7 damages of this part in total,
only. In this case a possible scenario could be, that just all of the 93 undamaged
cases are predicted correctly, but the 7 damaged cases are predicted wrongly. As
in Chapter 3.1 introduced, when dealing with such a class-imbalanced data set,
another performance measure other than accuracy is needed, e.g., the so-called F1

score.

The comparison of the F1 score of Boruta and RFECV (see Table 5.6) shows
mostly similar results for both algorithms but in total Boruta yields better results.
The scores vary between 0% and 94%. Obviously, the performance of the models
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Table 5.7: Computer Specifications.

Feature Specification
Processor Intel Core i7-6600U CPU @ 2.60GHz
Operation System Windows 10 64bit
Graphics AMD Radeon R7 M365x
RAM Memory 8 GB
Storage SSD 256 GB

depends strongly on the part. Furthermore, the number of selected features is in
most of the cases very different: especially for parts with a low performance like
bonnet or sidewall front (left), the number of features varies significantly between
the two algorithms. In these cases, RFECV finds a much larger number of features
than Boruta with a worse model performance. Therefore, Boruta seems to select
features in a more efficient way. Another important criterion for comparison is the
computational effort. Table 5.7 shows the specifications of the used computer in
this work. We notice that Boruta is about 3h 55min faster than RFECV. This
leads to the conclusion, that for such an application Boruta is a better choice,
mainly due to its performance and efficiency. Therefore, we are using Boruta in
the following.

5.2.4.5 Hyperparameter Optimization

In the next step, we consider two different algorithms for optimizing the hyper-
parameters of the random forest classifiers: a randomized search (Geron, 2017),
and a package named MIP-EGO (Wang et al., 2017, 2018). Randomized search is
a simple approach for optimizing hyperparameters. This kind of algorithm picks
features randomly from a defined feature space (Geron, 2017). Therefore, it is not
always very efficient due to the randomness. In order to increase the efficiency of
this approach, we are running a Bayesian optimization with the MIP-EGO (Wang
et al., 2017, 2018) for mixed-integer categorical search spaces on our data set and
compare the results. MIP-EGO is developed to solve expensive global optimization
problems.

Table 5.8 illustrates the results of MIP-EGO with 200 iterations and randomized
search with 200 iterations. Both algorithms use the cross-validated F1 score as
the objective function. Table 5.9 shows the random forest hyperparameters and
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Table 5.8: Comparison of the hyperparameter optimization methods MIP-EGO
and Randomized Search.

MIP-EGO Randomized

Part Fe
at
ur
es

A
cc
ur
ac
y

F
1
sc
or
e

A
cc
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y

F
1
sc
or
e

Bumper front 5 0.93 0.94 0.94 0.93
Crossmember front (upper) 4 0.89 0.74 0.90 0.74
Crossmember front (lower) 1 0.91 0.40 0.90 0.44

Impact absorber front 4 0.88 0.70 0.89 0.74
Sidewall front (left) 1 0.95 0.40 0.91 0.31

Sidewall front (right) 0 0.00 0.00 0.00 0.00
Bonnet 6 0.95 0.53 0.90 0.36

Headlight (left) 0 0.00 0.00 0.00 0.00
Headlight (right) 4 0.84 0.59 0.90 0.67

Bumper rear 3 0.88 0.81 0.89 0.85
Crossmember rear 3 0.89 0.71 0.90 0.71

Tailgate 1 0.93 0.36 0.93 0.36
Rocker panels (left) 7 0.96 0.80 0.96 0.57

Rocker panels (right) 1 0.92 0.62 0.93 0.53
Computation time 1h 7min 48min

their possible range or categorical parameter choices, respectively. Table 5.8 shows

that especially the higher F1 scores are in a similar range, i.e., this outcome of

both algorithms is roughly comparable. However, the MIP-EGO algorithm is

achieving considerably better F1 scores for most of the lower performing models

(e.g. bonnet or rocker panels (right)). Such behavior is especially essential on

small data sets: it approximates the model performance to the maximum scores,

which displays more clearly the whole potential of the data set. This shows, that

MIP-EGO is capable of optimizing in far less iterations than a random search. In

conclusion, the MIP-EGO algorithm is slightly more expensive (19 min) but yields

far better results for this optimization problem than a randomized search approach.

Therefore, the MIP-EGO algorithm is used in the following. The evaluation of the

results is discussed in the following section.
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Table 5.9: Hyperparameter space for optimizing the random forest classifier.

Parameter Range
Max depth {1, 2, . . . , 40}
Estimators {1, 2, . . . , 100}
Max features {auto, sqrt}
Max samples split {2, 3, . . . , 20}
Min samples leaf {1, 2, . . . , 10}
Bootstrap {True,False}

5.2.5 Results

Table 5.10 shows the overall results of the final approach. Out of the 3970 generated
features and the 12 manually created features, up to 7 features are selected for
the part-wise models. The hyperparameters of the random forest classifiers have
been optimized using efficient global optimization with 200 objective function
evaluations.

Based on the small data set, the F1 score of 7 parts is quite acceptable (F1 > 61%).
Most of the other parts show a tendency to higher scores: Figure 5.8 illustrates
the learning curve of the crossmember front (lower). The significant gradient in
the end of the curves shows, that more data would lead to even higher scores.
This observation is made for almost all low performing parts. In general, this
optimized approach delivers good results for many parts, but for some parts
the number of damages is just too low: no relevant features are found for the
sidewall front (right) and headlight (left). This means that none of the 3982
features is able to describe the relation to the damage. It is very likely, that the
prediction of damages of some parts is difficult, e.g. due to the fact that these are
small components. In addition, the mounted location and low connection stiffness
can result in not tracking relevant information in the sensor signals. For these
parts, feature representations from other sensors could be beneficial for a better
prediction. However, the low performance is mainly based on the small data set
and especially on the small number of damages of parts (class-imbalance). A lower
class-imbalance, especially for parts with more than 20 damages, leads to better
performing models like for the bumper (front/rear), crossmember front (upper) or
impact absorber (front).
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Table 5.10: The final result of the part-wise approach.

Part Fe
at
ur
es

A
cc
ur
ac
y

F
1
sc
or
e

P
re
ci
si
on

R
ec
al
l

R
O
C

Bumper front 5 0.93 0.94 0.93 0.95 0.95
Crossmember front (upper) 4 0.89 0.74 0.70 0.80 0.86
Crossmember front (lower) 1 0.91 0.40 0.75 0.27 0.63
Impact absorber front 4 0.88 0.70 0.70 0.70 0.80
Sidewall front (left) 1 0.95 0.40 0.67 0.29 0.64
Sidewall front (right) 0 0.00 0.00 0.00 0.00 0.00
Bonnet 6 0.95 0.53 0.57 0.50 0.73
Headlight (left) 0 0.00 0.00 0.00 0.00 0.00
Headlight (right) 4 0.84 0.59 0.59 0.59 0.75
Bumper rear 3 0.88 0.81 0.82 0.80 0.84
Crossmember rear 3 0.89 0.71 0.60 0.86 0.88
Tailgate 1 0.93 0.36 0.67 0.25 0.62
Rocker panels (left) 7 0.96 0.80 0.86 0.75 0.87
Rocker panels (right) 1 0.92 0.62 0.50 0.83 0.89
Time 1h 7min

5.2.6 Summary and Conclusions for Case B

This study proposes an automatic and efficient way to use time series data for
machine learning. The tsfresh package calculates a wide range of features, the
Boruta algorithm helps finding the most valuable features and MIP-EGO optimizes
the hyperparameters of the machine learning algorithm (random forests in this
case) efficiently. The approach is especially useful for small and difficult data sets,
because even on the presented small data set with a significant class-imbalance, the
resulting scores are quite promising. Part models with a lower performance show a
large potential indicating that more data would improve the results. The part-wise
approach proposed here could also be combined with methods like frequent pattern
mining in order to identify which parts are likely damaged together within one
crash.
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Figure 5.8: The learning curve of the crossmember front (lower). The significant
gradient in the end of the curve indicates better performing models when using more
data.

5.3 Case C: Automated Machine Learning
for Parkinson Disease Patients

5.3.1 Introduction

Based on EEG-profiles and machine learning techniques, the objective of case C
is to classify PD patients as having either a good cognitive performance or a poor
cognitive performance. In this context, it is proposed to use and compare both
conventional EEG biomarkers (clinical features) and features that are automatically
extracted from EEG series (including potentially new biomarkers). The models
are trained on patients with either clinically determined good or poor cognitive
performance. The evaluation of cognition of the data is based on several clinical
scores, including the SENS-PD-COG scores and the MoCA scores which are
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described below. The data set contains EEGs of 125 patients. For the research
reported here, the 40 most extreme patients of each group in terms of good cognition
and poor cognition were selected, i.e., 20 patients with a good cognition and 20
patients with a poor cognition.

In case of promising results, our approach could reveal new biomarkers, as well as
provide a machine learning model that may be used to complement the screening
procedure on cognitive assessment.

To show the background and the objective in detail, a more medical introduction
follows. Parkinson’s disease (PD) is considered the second most common neurode-
generative disorder after Alzheimer’s disease. PD patients suffer from a lack of the
neurotransmitter dopamine, and therefore initially receive oral suppletion of the
dopamine-precursor levodopa to treat motor symptoms such as bradykinesia (i.e.,
slowness of movement), rigidity, or tremor. Although levodopa initially has a good
effect on these motor symptoms, patients may develop motor complications such
as “OFF“ time during which the medication no longer generates the desired effect,
or excessive movements (i.e., dyskinesias) due to a surplus of levodopa (Ahlskog
and Muenter, 2001). For these patients, with fluctuations refractory to changes in
oral medication, Deep Brain Stimulation (DBS) may provide relief.

DBS is an invasive surgical procedure during which electrodes are inserted into
the brain. Contrary to the fluctuations in motor functioning due to intake of oral
levodopa, DBS may provide a constant level of functioning. However, an extensive
screening procedure precedes the DBS surgery, as several symptoms of the disease
may deteriorate postoperatively, mostly through unknown mechanisms (Geraedts
et al., 2019). As several patients may suffer from cognitive deterioration after
surgery, the screening procedure encompasses amongst others an assessment of
neuropsychological functioning.

The tests of neuropsychological functioning are often influenced by factors, such
as fatigue, motivation, motor impairments, or language barriers. Therefore, it
has been previously suggested to use Electroencephalography (EEG) as additional
biomarkers for cognitive impairment. EEG is a noninvasive method to study
brain activity directly by means of electrodes attached to the scalp. EEG records
the difference in electric potential between pairs of electrodes (Britton et al.,
2016). Although typically performed to detect aberrant brain activity for the
diagnosis of epilepsy (i.e., qualitative EEG where the clinician identifies abnormal
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brain activity), the use of quantitative Electroencephalography (qEEG) is being
increasingly used for research purposes. During qEEG analyses, metrics relating to
EEG-frequency (derived from the EEG power spectrum) or EEG-synchronization
(i.e., connectivity) are derived. A limited set of qEEG biomarkers has been
previously associated with cognitive dysfunction in PD (Geraedts et al., 2018),
distincting cognitively normal from cognitively impaired patients. Most biomarkers
relate to the EEG power spectrum (brain activity frequency), however recent
advances in neurophysiology have identified connectivity-metrics relating to brain-
synchronization to have additional value. The extraction of new biomarkers from
the EEG time series is a tedious and time-consuming process and there is no
driving hypothesis on which new biomarkers may be important.

5.3.2 Related Work

The study of clinical correlates of qEEG in PD has been a major topic in neurology
research. qEEG describes the analysis of EEG signals based on quantitative
measures discovered by, e.g., spectral analyses, whereas qualitative EEG relies
on descriptions or interpretations of the EEG provided by the clinician, e.g.,
epileptiform activity. This study is devoted to qEEG in PD. Relevant studies can
be separated into cognition, motor function, responsiveness to interventions and
others (Geraedts et al., 2018).

Supervised machine learning techniques are used to identify cognitive decline in
PD patients. Training on a data set collected over 3 years with 24 hand-crafted
features, a Random Forests model is able to achieve an AUC score of 75% (AUC
stands for Area under the Receiver Operating Characteristic Curve and represents
the trade-off between true positive rate and false positive rate). Theta power
was identified as the most important feature (Cozac et al., 2016). Theta power
describes the brain-activity in the slow activity range within 4− 8Hz.

In a similar approach, survival analysis and logistic regression were used to predict
cognitive worsening of newly diagnosed PD patients, which trained on a data
set of 54 PD patients collected over 5 years. In this research, both clinical and
neuropsychological features are adopted. The logistic regression model achieved
an accuracy of 82% in the leave-one-out cross validation. The survival analysis
showed that a high EEG frequency was related to long survival times and low
EEG frequency to an early worsening (Arnaldi et al., 2017).
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A larger data set with 118 PD patients, containing 5 different severity groups with
cognitive impairment, was used to train a Support Vector Machine (SVM) and
a k-Nearest-Neighbor (KNN) model. Based on 6 different EEG configurations,
the authors selected qEEG features computed from 7 frequency bands, as well
as age, gender, duration of formal education and individual peak frequency. A
filter method for feature selection was applied. Based on Pearson correlation, only
correlated features from different frequency bands and different anatomical regions
were selected. These selected features were used with a 5-fold cross validation
approach achieving accuracies of about 86%± 3.5 for SVM and 87%± 2.8 for KNN.
The results represent the average of 5 computation runs. In a second attempt, the
data was split into a group of 100 patients as training data and 18 patients as test
data resulting in an accuracy of 84% for SVM and 88% for KNN (Betrouni et al.,
2019). The evaluation of the model performance based on such a small data set
with only one train / test split does not necessarily reflect the real generalization
capacity. Furthermore, the number of patients belonging to one of the five classes
differs from 5− 43. Therefore, we can state an imbalance of the data set (class-
imbalance). However, the study reports only the accuracy results, which is no
adequate and representative metric for class-imbalanced data sets (Hossin and
Sulaiman, 2015).

Based on 70 PD patients including 27 patients with a mild cognitive impairment
(MCI) and 43 without a cognitive impairment, the authors of (Chaturvedi et al.,
2019) used a Random Forest model to classify MCI and MCI-free patients. The
model contained 66 frequency and 330 connectivity features (Phase Lag Index).
Based on a 5-fold cross validation the model achieved the maximum AUC score of
73%± 16 with Phase Lag Index features. The results represent the average of 20
computation runs (Chaturvedi et al., 2019).

The presented work shows relatively straightforward machine learning approaches,
but the described algorithms may be difficult to reproduce in independent popula-
tions, a problem that is inherent to many machine learning approaches. However,
particularly in the medical domain, the transparency of the way how a machine
learning approach is designed is key for evaluating its clinical real-world use and
to assess its capabilities. Therefore, combining clinical knowledge with mathe-
matics and computer science is key when developing reliable models (Bonanni,
2019).
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The approaches presented above offer opportunities for enhancement by using more
advanced machine learning techniques. The intense use of feature engineering,
particularly in Chaturvedi et al. (2019); Arnaldi et al. (2017); Cozac et al. (2016), in
terms of feature selection algorithms would help finding most important features and
removing less important ones. This would enhance the model overall performances.
Furthermore, the set of chosen features varies, and the features are mainly based on
hand-picked representations from earlier publications. This a limitation due to the
arbitrary selection of features with focusing only on spectral analysis of connectivity
(PLI), rather than trying to find completely new features. An automatic approach
to find relevant time series representations would create new features or rather
biomarkers which were not found by manual analysis, as well as avoiding time-
consuming feature engineering processes. In addition, in none of the presented work
model optimization techniques were used. For example, the use of hyperparameter
optimization would enhance the model performances, further (Claesen and Moor,
2015).

In this chapter, we address such downsides and use more advanced techniques.
These techniques can be still considered as comprehensible and interpretable. We
combine advanced techniques with clinical and automatically computed features
to find the most promising features and the best performing approach.

Table 5.11: Overview of the approaches for automated EEG assessments with
machine learning.

Appr. Description Cases Poor cog. Good cog. Dimension Length
1 Auto. feat. (indi.) 200 100 100 21 5000
2 Auto. feat. (aver.) 40 20 20 21 5000
3 Clin. feat. (aver.) 40 20 20 - -
4 Clin. feat. + auto. feat. (aver.) 40 20 20 21 5000
5 Clin. feat. (indi.) 200 100 100 - -
6 Clin. feat. + auto. feat. (indi.) 200 100 100 21 5000
7 Clin. feat. (all) + auto. feat. (aver.) 40 20 20 21 5000
8 Clin. feat. (all) + auto. feat. (indi.) 200 100 100 21 5000

5.3.3 Data Set

The data used in case C contains EEG recordings of 125 patients. Forty patients
with clinically confirmed ‘good cognition’ (n = 20) or ‘poor cognition’ (n = 20)
were selected for group-classification. From the EEG of each patient, 5 separate
epochs (EEG-segments) were extracted.

75



5. SOLVING REAL-WORLD PROBLEMS

The data was recorded with a sampling rate of 500 Hz, a 16 bit AD (Analog-to-
digital) converter and a band filter of 0.16− 70.0 Hz. Given the sampling rate and
the duration of 8.192 seconds, each EEG epoch contains 4096 data points.

All patients received routine EEGs (Britton et al., 2016) with 21 electrodes which
results in 21 recorded time series. The electrodes were placed according to the
international 10 − 20 system (Jasper, 1958). During recording, patients were
supine, eyes-closed, during a state of relaxed wakefulness. All epochs per patient
originate from the same recording (total EEG lasts roughly 15-20 minutes), but
we selected 5 epochs of 8.192 seconds from the total EEG to ensure all time-series
are artefact-free. EEGs are very sensitive to artefacts, including muscle artefacts
(i.e., when a patient moves, frowns, swallows, blinks, etc.), drowsiness-artefacts,
electrical artefacts from neighboring electrical apparatus, or sweating artefacts.
These artefacts are likely to interfere with the quantitative analysis of brain activity.
We therefore performed a rigorous selection of artefact-free segments through visual
inspection. Mathematically, using indices p ∈ [1..40] for the patient, e ∈ [1..5] for
the measurement epoch and i ∈ [1..21] for the channel, the EEG measurement is
denoted as follows:

∀(p, e, i), s(p,e)
i =

(
s

(i)
1 , s

(i)
2 , . . . , s

(i)
l

)>
∈ RL,

where L = 5000 is the number of recordings for each EEG channel. In addition,
for each pair of patient and epoch, the corresponding data point is represented as
matrix:

∀(p, e), S(p,e) =
(

s(p,e)
1 , s(p,e)

2 , . . . , s(p,e)
21

)
∈ RL×21.

As for the classification target, it is labelled (determined by experts) for each
patient and thus is denoted as follows: ∀p ∈ [1..40],

Y (p) ∈ {good cognition,poor cognition} .

As EEG-channels reflect upon a difference in electrical potential, i.e., the difference
in potential between pairs of channels, all time series were re-referenced towards a
single common reference (Cz).

Based on two separate scales the labelling of the data was performed by clinicians
after routine neuropsychological assessments. The scales are the disease-specific
screening tool Severity of Non-dopaminergic Symptoms in Parkinson’s Disease
scale, items cognition (SENS-PD-COG, range 0 − 9) (van der Heeden et al.,
2016), and the generic instrument Montreal Cognitive Assessment (MoCA) (range
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0− 30). In the absence of MoCA scores, scores from the Minimal Mental State
Examination (MMSE) were used. Criteria for good cognitive performance included
SENS-PD-COG scores ≤ 2 and MoCA scores ≥ 27 (or MMSE ≥ 29); criteria for
poor cognitive performance included SENS-PD-COG scores ≥ 5 and MoCA or
MMSE scores ≤ 27 (Nasreddine et al., 2005; Folstein et al., 1975).

The 20 patients selected for each group result in 100 available epochs per group if
biological intra-individual variability is being disregarded, or 20 available averaged
EEGs if this variability was accounted for.

In the following section the machine learning pipeline is described.

5.3.4 Machine Learning Pipeline

The pipeline used in this study is proposed in Chapter 4.3 and applied in the
automotive industry for time series classification with vehicle on-board data (see
Chapter 5.1, 5.2).

The adaption of the pipeline for this study is described below.

5.3.4.1 Feature Extraction from Time Series

When considering all the EEG features together, the overall feature mapping is a
real-valued function that takes all EEG channels as input (for each pair of patient
and epoch) and yields a m-dimensional (m is the number of features. Please see
below) real-valued feature vector, F : RL×21 → Rm:

∀(p, e), S(p,e) 7→ F
(

S(p,e)
)
.

For each pair (p, e) of patient and measurement epoch, we shall denote the extracted
feature vector as F (p,e), which will undergo the feature selection procedure. For
the feature extraction phase tsfresh was used with its default settings. In total,
such an extraction procedure gives us m = 21×794 = 16674 features (21 electrodes
per patient recording result in 21 time series).

In addition to the automatically extracted features, several spectral features
derived from Fast Fourier Transformation (FFT) of the raw time series, which are
predominantly used for clinical purposes, are considered in this study (Geraedts
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et al., 2018). Specifically, the following clinical features are also considered when
training the machine learning model:

• Occipital peak frequency,

• Total Peak frequency,

• FFT delta power (global),

• FFT theta power (global),

• FFT alpha1 power (global),

• FFT alpha2 power (global),

• FFT beta power (global),

• FFT ratio slow-over-fast,

• age,

• gender.

We shall denote those features together as F (p,e)
c ∈ R8 × N>0 × {male, female}

(c stands for “clinical”) for each pair of patient p and epoch e.

From this generated feature space (automatically computed features and clinical
features) the most significant ones, which are most suitable for representing the
time series, are selected in the next step.

5.3.4.2 Feature Selection

In the feature selection phase, the goal is to choose the set of features that are
mostly relevant for the classification task. Note that, due to the massive number
of automatic features (from tsfresh), those features always undergo the selection
procedure. As for the clinical features, it is undecidable whether those should be
included in the feature selection and therefore, two approaches,

• Clinical features are also selected as with automatic features, and

• Clinical features do not undergo feature selection (marked as “all” in Ta-
ble 5.11),
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are both investigated in this chapter. For each pair (p, e) of patient and measure-
ment epoch, we shall use F (p,e)

s ∈ Rm′ to denote the vector resulted from feature
selection (s stands for “selected” and m′ is the number of selected features). Note
that if clinical features do not undergo the feature selection procedure, those are
directly included in F (p,e)

s . As in Chapter 3.4.3 described, the feature selection
procedure is carried out with the Boruta algorithm.

5.3.4.3 Modeling

In this phase the selected features are used to train a random forest classifier.
Naively, the input to random forest model is those selected feature vectors F (p,e)

s ,
resulting in 40× 5 = 200 data points as the available data. In this case, each pair
(p, e) of patient and measurement epoch is considered as individual data point.
However, it might also make sense to group the feature vectors by patients as
those 5 epochs of EEG are measured on the same patient. In this case, the most
straightforward treatment is to take the average value of feature vectors over five
epochs. In this study, those two modeling approaches are both conducted. We
summarize them as follows:

• individual: the data set (pairs of input and output) is,{(
F (p,e)

s , Y (p)
)}

p∈[1..40]
e∈[1..5]

• average: each input is obtained by averaging feature vectors over five epochs:

F (p)
s = 1

5

5∑
e=1

F (p,e)
s .

And only 40 data points are available after this data aggregation:{(
F (p)

s , Y (p)
)}40

p=1
.

Moreover, for both individual (indi.) and average (aver.) approaches, the input
F (p,e)

s could be selected from 1) automatic (auto.) features (feat.) only 2) clinical
features only 3) the union of automatic and clinical features. Table 5.11 shows an
overview of the resulting 8 modeling approaches.
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5.3.4.4 Hyperparameter Optimization

The hyperparameter of the random forest model are tuned with the Bayesian MIP-
EGO algorithm (see Chapter 4.3). The list of hyperparameters under consideration
and the range thereof are shown in Table 5.12.

Table 5.12: Hyperparameter search space for optimizing the random forest classifier.

Parameter Range
Max depth of each tree {1, 2, . . . , 100}
Number of trees {1, 2, . . . , 100}
Max number of features when splitting a node {auto, sqrt}
Min number of samples required to split a node {2, 3, . . . , 20}
Min number of samples required in the leaf node {1, 2, . . . , 10}
Use bootstrap training samples? {True, False}

5.3.5 Performance Evaluation

The data set used in this chapter contains data of 20 patients with a good cognitive
performance and 20 patients with a poor cognitive performance. Since this data
set is completely balanced between both classes, the classification accuracy is an
appropriate performance measure. In addition, the commonly used performance
measures, precision, recall, F1 score, ROC curve and the Area Under ROC curve
(AUC) are also provided in the result (see Chapter 4.3).

The resulting scores are based on a 10-fold cross validation (CV) (see Chapter 4.3).
The average of performance scores from all folds represents the final score. In con-
trast to CV, when trained on all data, the models with optimized hyperparameter
settings for EEG assessment achieve a final classification accuracy of 100%. This
is a clear indication of model overfitting, i.e., such models would not generalize
well for new patients. Note that, in the individual modeling approach (where there
are five data points for each patient, obtained from five epochs), data points of
one patient is never separated to the training data and test data. It is important
to avoid, that the model is trained on an EEG of a patient and tested on another
EEG of the same patient. Each resulting score represents the average of 5 runs of
the automatic machine learning pipeline.
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Table 5.13: Performance scores of all modeling approaches tested in this chapter.
The scores are calculated on the test set and averaged in a 10-fold cross validation.
The mean and standard deviation are aggregated from 5 repeated runs of the 10-
folder CV. Here m′ stands for the number of features selected by Boruta algorithm.
A range of m′ is shown here as the number of selected features differ from one
repeated run to another.

Approach 1 2 3 4
Range of m′ 99− 108 1− 3 3 1− 3

Accuracy 66.5%±1.4 83.0%±3.3 67.5%±5.0 84.0%±4.2
F1 68.2%±1.3 83.8%±3.7 70.5%±2.7 85.6%±3.2

Precision 64.0%±0.9 81.7%±6.1 64.3%±6.2 88.3%±6.9
Recall 73.0%±1.4 86.0%±5.5 78.0%±2.7 83.0%±2.7
AUC 69.2%±1.9 86.0%±6.5 76.5%±3.8 86.8%±6.0

Approach 5 6 7 8
Range of m′ 8 103− 108 11− 14 113− 118

Accuracy 66.0%±0.0 67.4%±1.4 77.5%±10.7 67.6%±1.4
F1 74.3%±0.0 69.8%±1.2 81.6%±11.7 69.8%±1.2

Precision 72.4%±0.0 65.2%±1.4 80.3%±10.8 64.2%±0.9
Recall 76.3%±0.0 75.1%±2.7 83.0%±12.5 76.3%±1.7
AUC 72.1%±0.0 74.1%±1.4 89.5%±11.7 71.3%±1.7

5.3.6 Results

The results of all approaches are shown in Figure 5.13. First of all, the achieved
scores indicate that the assessment of PD patients into a good or poor cognition
can potentially be carried out by machine learning techniques. Comparing the
averaged approaches with the individual approaches, it suggests that the common
clinical practice to average the features is better suited than using EEG features
from a single EEG, which could be attributed to the noise reduction effect from
the averaging and more suitable features.

Based on the cross validation, the modeling approach (4) (cf. Table 5.13) shows
the best performance with an accuracy of 84.0%. This so-called averaged approach
contains an initial feature space with automatically extracted features and 10
clinical features. In 5 repeated runs, the Boruta algorithm selects 1− 3 number
of features. Moreover, all selected features are from the automatically extracted
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features, i.e., none of the clinical features were chosen by the algorithm. Hence,
approach (4) is similar to approach (2) which is also an averaged approach that
only uses automatically extracted features. This similarity is also supported by
the accuracy scores 83.0% and 84.0% for approach (2) and (4), respectively. The
small difference in accuracy, 1.0% is likely caused by random error due to the small
number of repeated runs. Since the approaches are identical, we will state (2, 4)
as the best modeling approach henceforth.

Predicted
good poor

A
ct
ua

l good 16.2 1.8

poor 4.3 13.7

Predicted
good poor

A
ct
ua

l good 1.7 0.3

poor 0.5 1.5

Table 5.14: For modeling approach (4), the confusion matrices is drawn for the
training data (left) and the test data (right). The entries are averaged over all folds
of the 10-fold cross validation.

Figure 5.14 illustrates the confusion matrices of modeling approach (4) on the
training data (left) and the test data (right). The entries are averaged over all
folds of the 10-fold cross validation (see Chapter 3.1), showing that on average only
0.3 false positives and 0.5 false negatives are incurred when testing. Furthermore,
figure 5.9 illustrates ROC curves of modeling approach (4). The mean ROC curve
as aggregated over all folds is depicted for both training data (blue) and test data
(black). The area under the curve (AUC) is an indicator of the quality of ROC
curve, i.e., the larger the area under the curve the higher the performance. The
AUC score is 91.4% and 81.3% on the training and test data, respectively.

In contrast to modeling approach (4), approach (7) excludes the clinical features
from the feature selection procedure, i.e., all 10 clinical features were used with
automatically extracted feature. The comparison of approach (4) and (7) shows
that the clinical features cause a 6.5% decrease of the accuracy.

Furthermore, the exclusive use of clinical features as in approach (3) and (5) also
results in significantly lower accuracies: 67.5% and 66.0%, respectively. This
observation is also supported by other types of performance scores. Based on the
performance score, the automatically extracted features could facilitate random
forest models to achieve a higher performance, compared to the random forest
model that only uses clinical features.
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Figure 5.9: The ROC-curve of the train and test data folds. This illustration is
based on the modeling approach (4).

The best performing random forest models from approach (2, 4) rely on features
that are automatically extracted and selected, which might be unforeseen for the
clinical expert. In the following, the most important automatically extracted
features of approach (2, 4) are listed:

• ’Fp1-Cz__fft_coefficient__coeff_54__attr_"real"’,

• ’F8-Cz__fft_coefficient__coeff_35__attr_"real"’,

• ’Pz-Cz__fft_coefficient__coeff_33__attr_"real"’,

• ’Pz-Cz__fft_coefficient__coeff_96__attr_"imag"’,

• ’Fp1-Cz__fft_coefficient__coeff_25__attr_"angle"’,
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5. SOLVING REAL-WORLD PROBLEMS

• ’F3-Cz__fft_coefficient__coeff_25__attr_"angle"’,

• ’P4-Cz__fft_coefficient__coeff_76__attr_"angle"’,

• ’P3-Cz__fft_coefficient__coeff_67__attr_"imag"’,

• ’P4-Cz__fft_coefficient__coeff_6__attr_"abs"’,

• ’P3-Cz__fft_coefficient__coeff_17__attr_"abs"’,

• ’P3-Cz__autocorrelation__lag_1’,

• ’Pz-Cz__autocorrelation__lag_5’,

• ’Fp1-Cz__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_2’.

Note that these features are a conglomerate of features from different runs of ap-
proach (2, 4). The definition of these features can be found in tsfresh (2018).

The most important clinical features of approach (3) are

• Occipital peak frequency,

• FFT beta power (global),

• Total peak frequency.

The Boruta algorithm, used in the automated approach, yields different features
from one repeated run to another due to its internal randomness. Based on this
consideration, it is additionally proposed to combine those “best” features from
all repeated runs and such a treatment might potentially achieve an even higher
accuracy. Therefore, in this hand-crafted approach, we combine the selected features
from all repeated runs, as well as the best clinical features, which results in 16
features. All of the used features are shown in the two lists above. To test the
performance of the combined features, another 10-fold cross validation is performed
without any feature selection in the pipeline (obviously not needed here), elevating
the accuracy to 91.0%. The results are summarized in Table 5.15.

5.3.7 Summary and Conclusions for Case C

This chapter presents an automated method to classify EEG data. Based on a data
set containing 40 PD patients our method extracts and selects most significant
features from the time series, trains a random forest model and optimizes its
hyperparameters in an automated approach. The results show that, compared
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Table 5.15: Test scores of the hand-crafted approach. The scores are calculated on
test sets in a 10-fold cross validation. m′ stands for the number of manually selected
features. The mean and standard deviation are aggregated from 5 repetitions of
10-fold CV.

m′ 16
Accuracy 91.0% ± 2.2

F1 92.1% ± 2.1
Precision 90.25% ± 2.8

Recall 94.0% ± 2.2
AUC 98.0% ± 1.1

to only using established clinical features, the automatically computed features
significantly increase the model performance. Furthermore, clinicians usually
average the features (biomarkers) of 5 EEGs to, e.g., reduce noise. We use this
approach, as well as a non-average approach, i.e., a single segment from the EEG
per patient is treated as one data point. The results assure that the clinical
approach with averaging over 5 EEG per patient is more suitable and achieves
higher accuracy. Based on automatically extracted features, the best model achieves
an accuracy of 84.0% in the automated approach. In a more hand-crafted approach
we used both previously selected features from the automatically extracted features
and clinical features resulting in an accuracy of 91.0%.

In a next step the model will be tested on intermediate PD patients, i.e., on
patients whose cognitive performance falls between the two extremes used in the
present study. If the approach described here can accurately identify patients with
a relatively poor cognitive function in this intermediate group, a deep analysis
of the newly extracted features may be carried out to investigate the utility of
complementary biomarkers for decision making on DBS surgery.

Furthermore, the interaction between the 21 EEG channels can be considered, i.e.,
the combination of features from different channels. This is a computationally ex-
pensive approach but can possibly improve the performance and provide additional
knowledge in terms of biomarkers.

In the following section the Boruta algorithm is discussed.
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5.4 Discussion of Boruta Algorithm

The feature selection in all three applications described above was mainly performed
by the Boruta algorithm. The comparison of Boruta and another promising feature
selection method in section 5.2 shows that the model performance of Boruta
computed features was higher than with other feature selection methods. However,
as this algorithm relies on a multiple testing procedure, it could become too
conservative, i.e. Boruta yields too many false negatives. Especially when dealing
with a larger feature space like in the examples above, Boruta eliminates possibly
important features. This behavior can be observed, for example, in the best
working approaches of the EEG study (see section 5.3): the Boruta algorithm
tends to select a small number of features (1−3) but with different selected features
in repeatedly performed runs, i.e. the individual features differ from run to run
massively which indicates that important features from one run are not considered
as important in another run.
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6
Advanced and Optimized Pipelines

This chapter shows the application of all proposed pipelines from chapter 4. The
pipelines are tested on a variety of multivariate data sets which are publicly
available. The industrial use of all approaches is investigated with a data set
containing on-board car data with the objective to estimate the damaged parts
(see Chapter 5.2).

6.1 Data Sets

Table 6.1 shows an overview of the data sets. In this chapter, we use data sets
from a multivariate time series archive provided by University of East Anglia
(UEA) and University of California, Riverside (UCR) (Bagnall et al., 2018). This
archive is called Multivariate Time Series Classification archive (abbreviated as
UEA).

The data sets of the UEA archive represent a broad range of problems, such as
Human Activity Recognition (HAR), Motion Classification, ECG classification,
EEG/MEG classification, Audio Spectra Classification and others. Therefore, the
data sets have a wide range of characteristics. Table 6.1 shows the data set sizes,
dimensions d, length L and number of classes q. Due to the large number of
expensive computations this investigation is limited to data sets with less than
62 dimensions and to comparably smaller data sets. In total, the UEA archive
contains 30 data sets from which we use 18 in this investigation. The time series of
each set have the same length without any missing values. The training and test
cases are already split in those data sets, such that there is a good, unique basis
for performance comparison. Furthermore, the imbalance of the training and the
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Table 6.1: Overview of the data sets. 18 UEA multivariate time series data sets
and one real-world industrial data set (AutomotiveCrash) are used.

Data Set Tr. Cases Te. Cases LRID (Tr.) LRID (Te.) Dimensions d Length L Classes q

ArticularyWordRecognition 275 300 0.00 0.00 9 144 25
AtrialFibrillation 15 15 0.00 0.00 2 640 3

BasicMotions 40 40 0.00 0.00 6 100 4
Cricket 108 72 0.00 0.00 6 1197 12

Epilepsy 137 138 -0.01 -0.01 3 206 4
EthanolConcentration 261 263 -4.39 -4.35 3 1751 4

ERing 30 30 0.00 -0.13 4 65 6
FingerMovements 316 100 -4.01 0.00 28 50 2

HandMovementDirection 320 147 0.0 -0.12 10 400 4
Heartbeat 204 205 -0.20 -0.20 61 405 2

JapaneseVowels 270 370 0.00 -0.17 12 29 9
Libras 180 180 0.00 0.00 2 45 15

NATOPS 180 180 0.00 0.00 24 51 6
RacketSports 151 152 -0.01 -0.01 6 30 4

SelfRegulationSCP1 268 293 -5.57 -1.16 6 896 2
SelfRegulationSCP2 200 180 0.00 0.00 7 1152 2

StandWalkJump 12 15 0.00 0.00 4 2500 3
UWaveGestureLibrary 120 320 0.00 0.00 3 315 8

AutomotiveCrash 1001 - see Table 6.2 see Table 6.2 4 701 2
1 This data set is evaluated by cross validation on all data.

test data sets are shown with the Likelihood Ratio Imbalance Degree (LRID) (Zhu
et al., 2018). Based on a likelihood-ratio, LRID describes the deviation of the class
distribution from a balanced class distribution:

LRID = −2
q∑

i=1
ni ln

(
N

qni

)
. (6.1)

A data set contains q classes. The frequency of the labels can be described by a
multinomial distribution Multinomial(N, p), with a total number of observations
N =

∑q
i=1 ni and the probability of a label p = [p1, p2, . . . , pq], which is usually

estimated as p̂i = ni

N . This leads to a so-called class distribution vector p, estimated
by p̂ = [p̂1, p̂2, . . . , p̂q]. Furthermore, when referring to b as an exactly balanced
class distribution vector with b = [ 1

q ,
1
q , . . . ,

1
q ], a measure describing the difference

between p̂ and b indicates the extent of the imbalance. LRID considers the
likelihood function in order to test the null hypothesis, whether p can be fitted
by b. The LRID value for a balanced data is zero and for an unbalanced set
LRID < 0 (Zhu et al., 2018; Ortigosa-Hernández et al., 2017).

Table 6.1 shows that most of the data sets are balanced (LRID = 0). Some data
sets, however, are imbalanced and the ratio of LRID (Train) and LRID (Test) is
not always equal. Such imbalance is important to consider when developing the
modeling approach and choosing the right evaluation metric.
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Next to the UEA data sets, we use a real-world data set called AutomotiveCrash
which contains multivariate time series from low speed car crash tests with the
label damaged / undamaged of car parts (see Chapter 5.2). The LRID of the parts
are shown which identify an imbalance of the data set.

Figure 6.1: Exemplary damaged parts of a low speed frontal crash.

Table 6.2: Overview of the data set AutomotiveCrash. It shows the parts and the
LRID. The data of 100 crash tests is used.

Part LRID
Bumper front -0.02
Crossmember front (upper) -0.39
Crossmember front (lower) -0.69
Impact absorber front -0.31
Bumper rear -0.03
Crossmember rear -0.58
Tailgate -0.83

6.2 Performance Evaluation Measure

The UEA archive provides a defined split of the data sets into training and test data.
Moreover, the archive includes Dynamic Time Warping (DTW) benchmark results
based on the key performance score accuracy (Bagnall et al., 2018). Therefore, we
apply the proposed data split, i.e. in the training procedure the model only has
access to the training data and the final model is trained on all training data and
tested on the unseen holdout test set (see Chapter 3.1).
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6. ADVANCED AND OPTIMIZED PIPELINES

Table 6.3: Overview of the computer specifications. The neural networks (FCN,
ResNet, CNN+LSTM) were computed with specification 3. Auto-Sklearn, H2O,
ATM and RECIPE were calculated with specification 2. All other methods were
computed with specification 1.

Feature Specification 1 Specification 2 Specification 3
Processor Xeon Gold @ 2.40 GHz i7 @ 2.90 GHz i7 @ 2.20 GHz
Operation System Windows 7 Ubuntu 19.4 Windows 10
RAM Memory 32 GB 8 GB 24 GB
Graphics - - NVIDIA GeForce GTX 1080
Storage SSD 300 GB SSD 256 GB SSD 500 GB

However, Table 6.1 indicates that the number of classes of some data sets are

not nearly balanced (class-imbalance), i.e., accuracy is not a suitable score for all

data sets. Therefore, in this experiment the so-called F1 macro score is used as

additional performance score (see Chapter 3.1).

Furthermore, each resulting value, based on the UEA data sets, is the average value

of three computation runs. Some of the calculations are very time consuming, which

has limited the number of runs to three. Our comparison of multiple classification

methods on the 18 data sets is based on Friedman’s test (Friedman, 1940; Sheskin,

2000). The data for Friedman’s test does not have to be normally distributed.

Using Friedman’s test for such kind of task was proposed in Demšar (2006). It is a

non-parametric test, which ranks the algorithms for each data set separately. The

lower the ranking the better the algorithm. The rejection of the null hypothesis

H0 indicates a significant difference between at least two of the algorithms. In

addition to the comparison of the accuracy and F1 performances, we investigate

the trade-off between F1 and the computation time.

The automotive data set was generated by the author. Furthermore, the data set is

small. Splitting the data in the fashion of the other used data sets would influence

the results, i.e., the model performance varies depending on the split of training

and test data. Therefore, for each part of the vehicle an individual classification

model was computed and evaluated using cross validation. The final score of this

data set represents the average of all vehicle part model scores.
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6.3 Experimental Settings

This section describes the chosen settings of the used methods. In all methods,
when possible, the number of CPUs and memory were set to a maximum. In
case of methods with a cross validation procedure, we have manually defined its
number of splits. This was important, since the default split is usually set to 5 or
10. This caused problems for some of the data sets we used which have less than
10 members in a class.

Besides this, whenever it is not differently mentioned, the methods were run with
default settings. In the case of TPOT, we were forced to modify both population
size and generations from 100 to 25 due to excessively long computation times.
The search space for the hyperparameter optimization of our PHCP is shown in
Table 4.1. Table 6.3 shows the specification of the used computers. Due to different
hardware requirements of the methods, different computers were used. The neural
networks (FCN, ResNet, CNN+LSTM) were computed with specification 3. Auto-
Sklearn, H2O, ATM and RECIPE were calculated with specification 2. All other
methods were computed with specification 1.

6.4 Results and Analysis

Table 6.4 presents the resulting accuracy scores of the methods. Based on Fried-
man’s test, the ranks in the last row indicate the method’s performances over
all data sets. At first sight, the rank values are distributed over a wide range.
This leads to the assumption, that the methods are significantly different from
each other. To verify this, we checked the null hypothesis on the basis of Fried-
man’s test. The chi-square approximation of this distribution is χ2

r = 51.68. The
tabled value of the depending 99th percentile is χ.99 = 29.14 (Sheskin, 2000), i.e.,
the null hypothesis is rejected at the 0.01 level due to χ2

r > χ.99. This verifies
the assumption: according to Friedman’s test, a significant difference between
the methods exists. Based on the 18 data sets, the AutoML method GAMA
shows the best results, followed by the benchmark DTW, Auto-Sklearn, PHCP,
CNN+LSTM and TPOT. In this context, it is important to notice that DTW
is a distance-based method and considered as a strong method for time series
classification. We show that time series classification based on classical features in
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combination with AutoML or our hand-crafted pipeline can achieve similar or even
better performances. Furthermore, the state-of-the-art neural networks (FCNs and
ResNets) are in a lower range of performance, whereas our hand-crafted neural
network (CNN+LSTM) is showing a significantly higher performance compared
to FCNs and ResNets. The HCPGP approach achieves the penultimate rank,
outperforming the kPCA+rf.

The comparably poor performance of HCPGP can be caused by many reasons.
The population size had to be reduced, potentially requiring additional hyperpa-
rameter tuning of the HCPGP parameters, and a larger number of generations
would possible also improve the results. For such algorithms it is important to
choose wisely the trade-off between performance and runtime. Secondly, and most
importantly, the 15 used features are computed by kPCA. Only kPCA has, in
combination with a random forest, the lowest performance. Using those 15 feature
with our HCPGP approach improves the performance, compared to using the 15
features purely. Based on these findings, we can conclude that the assumption is
true that using a combination of features from different time series significantly
improves performance.

When taking the imbalance of data sets into account, it is important to consider the
F1 score. Similar to Table 6.4, Table 6.5 shows the F1 scores of all methods with
their ranking1. The chi-square approximation of this distribution is χ2

r = 54.24.
The tabled value of the depending 99th percentile is χ.99 = 27.69 (Sheskin, 2000),
i.e. the hypothesis is rejected at the 0.01 level due to χ2

r > χ.99. This indicates,
that according to Friedman’s test a significant difference between the methods
exists. Again, GAMA achieves the best performance, followed by PHCP, ATM,
TPOT, CNN+LSTM and RECIPE.

Most of the real-world data sets, for example AutomotiveCrash, contain unequally
distributed classes and require other measures than accuracy for the evaluation.
RECIPE achieves the highest performance for our imbalanced real-world data set
AutomotiveCrash.

Next to the accuracy and F1 scores, we are investigating the efficiency of the
methods. Figure 6.2 shows the performance and computation times of the different
methods in one plot. As a performance indicator, we take the ranking of the

1The F 1 scores of the DTW benchmark were not published (Bagnall et al., 2018) and therefore
DTW cannot be used in this comparison.
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more realistic F1 scores into account. The computation time is the average of
all runs per method. It is important to consider that the methods Auto-Sklearn,
H2O, ATM and RECIPE were computed on a different computer due to different
requirements, as well as the neural networks (FCN, ResNet, CNN+LSTM), which
were computed on a GPU (Graphics Processing Unit) (see Table 6.3). This limits
the comparison regarding computation times of methods which are computed on
different computers but we can still gain some insights into the relative performance
of the methods. GAMA, the best performing method, requires approximately 60
min to process one data set. Similar performing methods like PHCP and ATM
show higher efficiency with computation times below 25 min. PHPC shows a
good compromise between performance and computation time. The comparison of
the neural networks indicates that the hand-crafted CNN+LSTM achieved higher
performance with shorter computation times than the state-of-the-art neural
networks, namely FCN and ResNet. Due to many generations of the genetic
programming approach, HCPGP needs approximately 14h to process one data
set.

As Figure 6.2 clarifies, there is a trade-off between rank and computation time.
Four of the tested methods, namely AMLPA, CNN+LSTM, PHCP and GAMA
belong, in the sense of the concept of Pareto-optimality (Deb, 2001), to the non-
dominated set. All other methods are dominated, i.e., another method that is
better in both objectives, rank and computation time, exists.

6.5 Conclusions and Outlook

This chapter presents a comparison of hand-crafted- and state-of-the-art methods
for classifying multivariate time series. We have evaluated the methods on 18
publicly available data sets and one real-world data set from the automotive industry.
Furthermore, we have investigated the accuracy and F1 score as performance
measures with the result that, especially for real-world problems, the F1 score is
a more suitable measure, because F1 takes the class-imbalance of data sets into
account. The performance comparison shows that feature-based AutoML methods
can achieve a higher performance than DTW, which can be considered as a suitable
technique for time series processing. Based on the settings used in this chapter,
GAMA showed the best performance regarding accuracy and F1 score. Other
methods like our plain hand-crafted pipeline and our neural network architecture

93



6. ADVANCED AND OPTIMIZED PIPELINES

10−1 100 101
4

5

6

7

8

9

10

11

12

Computation time in h

R
an

k

FCN ResNet CNN+LSTM PHCP
Auto-Sklearn TPOT AMLPA GAMA

H2O MLBOX ATM RECIPE
kPCA+rf HCPGP

Figure 6.2: The trade-off between performance and computation time. The rank
is based on F 1 score and the computation time are averaged per method over all
data sets. The time of feature extraction is not considered.

with CNNs+LSTMS show a similar performance, but these technique are more
efficient regarding computation time. State-of-the-art neural networks have a lower
performance with longer computation times. Other AutoML methods like ATM
or TPOT show also a similar performance. ATM demonstrates a good trade-off
between performance and efficiency. The approach with genetic programming
achieved a comparably low performance but we could show that the basic idea
of automatically combining features from different time series can improve the
performance.

As a result, most of the used approaches generate well performing models for
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time series classification in a more or less efficient way, and they can be used by
non-experts.

As a next step, the parameters of the AutoML methods can also be optimized. This
would enhance the results once more. In addition, the architecture of especially
the CNNs+LSTM could be enhanced further with, e.g., finding a better balance
between the number of neurons per layer. In case of the HCPGP, an efficient
approach needs to be found to use as many extracted pure features from the time
series as possible. The key is not to drop any information from the initial features,
because we do not know which combinations of which features can help to classify
the problem in a more accurate manner. A promising approach may be using a
neural network to reduce the initial feature space.

The following chapter shows a methodology to deal with the implementation of
machine learning algorithm in data-driven services in the car industry.
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7
Data-Driven Services in the Car Industry

Numerous recent studies show the prosperous future of data-driven business models.

Some key challenges have to be dealt with when moving towards the development

of data-driven car services (see Chapter 2). We present a more general approach

towards the development of data-driven car services. We point out its main

challenges and suggest a method for developing new customer-oriented data-driven

services. This approach illustrates key points in developing a practical service, from

a technical and business related perspective, which is connected to individualized

service examples that would potentially benefit from it. Such data-driven services

are developed mostly on a small number of initial test data, which results often

in a limited prediction performance. Therefore, based on an optimized Cross

Industry Standard Process for Data Mining (CRISP-DM) approach, we propose a

methodology for developing initial prediction models with limited test data and

stabilizing the models with newly gained data after deployment by online learning.

On-board and off-board services are discussed with the result that especially off-

board running services offer a large potential for future data-driven business models

in a digital ecosystem. The flexibility of such an ecosystem depends on the degree

of the integration of the vehicle in the ecosystem - in other words, the car needs

to be enabled to deliver data on demand according to General Data Protection

Regulation (GDPR) and to any applicable regional law and in cooperation with

the customer. The presented method, together with the ecosystem, enables fast

developments of various data-driven services.
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7. DATA-DRIVEN SERVICES IN THE CAR INDUSTRY

7.1 Introduction

Robotics and transportation have been underpinned by artificial intelligence since
its early beginning. In 1969, Nilsson (1969) discussed the use of artificial intelli-
gence in integrated robot systems. In the late 1970s pioneering discussions were
made on the first autonomous vehicles with artificial intelligence (Tsugawa et al.,
1979). Across the end of the 1970s to the 1990s, first prototypes were developed
by different scientists and organizations (Schmidhuber, 2018). Such technical
progresses continued until 2000 and the autonomous driving was feasible for the
first time, sparking major developments in both research and industry (Stone et al.,
2016; Huber et al., 2008; Aeberhard et al., 2019; Ardelt et al., 2012). In some
reports, it is estimated that as of 2020, 10 million cars featuring self-driving will
be on the street (Greenough, 2018). In autonomous driving, data from different
sensors are combined by computers deployed in the car (Liu et al., 2017). Us-
ing methods of artificial intelligence (specifically deep learning techniques), these
computers predict the car actions that are required to handle situations. Due
to the large data volume, those artificial intelligence models are mainly deployed
on on-board-systems (embedded) in the car (Aeberhard et al., 2019). Beyond
autonomous driving functionalities, certain types of car data, especially the one
related to self-driving, are combined with a car internet interface and a robust in-
ternet connection, offering a new era of data-driven services. Most of these services
require no additional car hardware and operate only with the vehicle data that
is available. As such services are mainly driven by small data volumes, the data
set used can be transferred to a back-end system, complying with data protection
regulations and customer’s consent. This enables running the data-driven service
outside of the car (off-board). Hence, new services do not require any changes
in the hardware, which significantly simplifies the service development. It allows
for the continuous and faster creation of new services, even within the lifetime of
cars. Therefore, off-board running services are much more powerful than in-car
computations: A car interface sends data on request to a back-end system, which
uses data-driven models for a prediction and sends the output, e. g., back to the
car. This is combined with full transparency and involvement of the customer
regarding certain data. The interconnection of vehicle and back-end system builds a
so-called digital ecosystem, which integrates all aforementioned methods to provide
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car services. It enables faster service development and deployment, even within
the lifetime of cars.

The revenue from mobility services and connected car services are projected to
reach USD 1,087 billion by 2030 (Seiberth and Gruendinger, 2018). This is not
only a large business for OEMs (Original Equipment Manufacturer), but also for
suppliers as well as ecosystem developers and other parties involved (Seiberth and
Gruendinger, 2018). Data availability, its protection and privacy of an open (e. g.
to third parties) digital ecosystem, is of key importance to integrate cars more
seamlessly into our lives with more digital services. This study mainly illustrates
the technical approach with its challenges for developing new data-driven customer
services, going from the idea to a running service.

The remainder of this chapter is organized as follows: First, existing work that is
related to our approach is discussed in section 7.2. Second, we present an example
of a data-driven service in section 7.3. Our proposed methodology with its six
main steps is then introduced in section 7.4. In section 7.5, we provide conclusions
and an outlook.

7.2 Related Work

Recent studies illustrate new data-driven business models in the car industry
by means of a digital vehicle ecosystem. In this context, Seiberth et al. present
a definition of data-driven business models: "data [...] as primary business re-
source to deliver value to customers and to convert this value into revenue and/or
profit" (Seiberth and Gruendinger, 2018, p. 8). They declare that in 2050 car
manufacturers will achieve 50 % of the revenue from data-driven services. The
growing digitalization with its disruption process destroys many traditional busi-
ness models (Weill and Woerner, 2014). The authors also picture more general
business models and the possibilities of digital ecosystems for different industries.
Car manufacturers have different approaches to deal with digital services and many
tech start-ups are already developing sustainable business models with digital
services. Furthermore, OEMs enter already strategic partnerships and invest into
such connected vehicle start-ups (Kaiser et al., 2017).

Seiberth and Gruendinger (2018) discuss the available car data, e. g. from sensors
for autonomous driving, and highlight the possible revenues when creating services
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7. DATA-DRIVEN SERVICES IN THE CAR INDUSTRY

based on it. In addition, there is a growing need for building trust towards
the customers regarding the use of their data for services and therefore for the
transparency of the data, its use, and privacy and security (Kilian et al., 2017).
Beyond that, they present a figure of the connectivity ecosystem, which describes
roughly a connectivity platform: it communicates with the data source (car)
and receives external data like weather, traffic etc. The connectivity platform is
connected to the OEM’s back-end system, as well as to third party services and
apps.

Many studies present new business models enabled by data (Seiberth and Gru-
endinger, 2018; Weill and Woerner, 2014; Kilian et al., 2017). In most cases, new
service ideas are superficially mentioned and it is only briefly discussed how to
really benefit from each individual service. Some of the studies discuss the design
of (vehicle) ecosystems, e. g. Immonen et al. (2016, 2018), but a methodology for
creating data-driven (customer) vehicle services has not been a major topic of
scientific research yet.

7.3 A Data-driven Service for Crash Damage Pre-
diction

The variety of possible data-driven services is large. A data-driven car service
often assists the customer (like a car pooling service) or the car (like predictive
maintenance services). Based on historical data and with methods of artificial
intelligence, models are trained to predict behavior, e. g. in car pooling to predict
the best possible route to carry the most passengers or if a certain part of the car
needs to be maintained in the nearby future.

Another example of a data-driven service is a crash damage prediction system
(see Chapter 7). Based on a machine learning model, such a system predicts
the damaged parts of a vehicle in a low speed crash. A low speed crash is an
accident with a velocity difference below approximately 16 km/h (RCAR, 2018).
The baseline of this service is to use only on-board data. Therefore, data from
serial car sensors are used for the prediction (e. g. acceleration). To generate an
initial data set, low speed crash tests are performed and certain on-board data are
recorded. These recordings are used together with the occurred damage on the
vehicle for training first initial models. The benefit of such a data-driven service is
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e. g. immediate transparency of the damage, which allows initiating a faster and
more convenient repair for the customer (Seiberth and Gruendinger, 2018; Koch
et al., 2018; Koch and Bäck, 2018).

However, the machine learning model itself is only one unit of the car service.
When striving to create seamless customer experiences with a data-driven service,
it is essential to consider the whole customer journey. Such a journey describes the
way how a customer experiences the whole service. The overall objective should be
creating something which is so-called convenient to the customer at all levels. This
can be achieved by designing the end-to-end service with its technical challenges
like data transfer or intuitiveness of its handling as a whole picture. Based on
this, in the following we propose a general path towards data-driven services to
tackle and consider the challenges with the one and only goal to create customer
value.

7.4 Methodology towards Data-Driven Services

In this section we propose a methodology for developing data-driven car services.
This interdisciplinary method is illustrated in Figure 7.1. The horizontal axis
shows the time of the development while the vertical one describes the level of
development, i. e. the maturity of the service. The origin presents the time of
the initial idea about the service and the beginning of its development. The
methodological approach consists of six overlapping phases:

1. Idea.

2. Potentials.

3. Modeling.

4. Deployment.

5. Process.

6. Finalization.

All phases are linked to each other. In order to allow short development times the
phases are partially executed in parallel. The phases are described in the following
sections.
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Figure 7.1: The methodological approach: From the idea to a deployed data-driven
service.

7.4.1 Idea

The first phase of Figure 7.1 is referred as idea. This pictures the timeline from
the first idea about the service to very concrete solution concepts. Principally,
there are many motivations or ideas for thinkable services, but for successful and
seamless services the business potential and customer benefits have to be evaluated
continuously in the next phase, the evaluation of the potential.

7.4.2 Potentials

Seiberth et al. state that new car services follow mainly two objectives: improvement
of the brand image or increase of profit (Seiberth and Gruendinger, 2018). This
shows that the motivation to create those is based on image or profit reasons or
a combination of both. Therefore, data-driven services can have strong impacts
on the brand and can be used for strengthening images with creating so-called
customer experience by building positive experiences followed by an emotional
bond between user and product (Glattes, 2016).

Next to retail customers other stakeholders like, e. g., fleet operators, insurance
companies or other parties can strongly support such services with their own
advantages (Seiberth and Gruendinger, 2018). Creating a service with many
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benefiting parties exploits its potentials and is key for a successful and seamless
service. Therefore, in case of promising ideas, in phase 2 of Figure 7.1, it is
important to analyze and continuously evaluate all aspects of the data-driven
service regarding the own objectives and the targets of partners. However, it is
mostly very ambitious to evaluate the real potential of a new service in an ad-hoc
manner. Therefore, it is important to quickly develop prototypes for experiments,
get customer feedback and constantly monitor the need for the service and decide
continuously to proceed or cancel the development.

In this context, after revealing an initial potential of the idea, data scientists begin
the phase of modeling with collecting data and designing first models.

7.4.3 Modeling

In the beginning of the modeling phase, data scientists have to prove the feasibility
of describing the desired relations by the available data with methods from the field
of artificial intelligence. A feasibility study helps to quickly assess the practicability
of the idea.

To start the modeling phase, an initial data set is crucial. In some cases, the data
has been already collected and is available or can be gathered quickly. However, in
most cases the data has to be generated manually. When considering the damage
prediction system, data from low speed crash tests are required. Performing large
numbers of such tests is very tedious and expensive. Therefore, in such cases only
small initial data sets are generated in order to evaluate the feasibility. Prediction
models based on small data sets are often of poor prediction quality. In order to
increase its quality and especially to have informative results for the feasibility
study, the use of optimization techniques is key.

Shearer proposed an approach to run data mining projects in industry, the CRISP-
DM (Shearer, 2000). This approach has become a very known standard process to
perform industrial data science projects. Roughly, it describes the process from
the business understanding to data understanding, data preparation, modeling,
evaluation until its deployment. We have modified parts of the CRISP-DM and
added optimization between modeling and evaluation in order to enhance the
model performance. Furthermore, we have separated the data into initial data
and field data, as well as the process streams into offline learning (black) and
online learning (yellow) (see Figure 7.2). Offline learning describes the process
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of learning models with an offline generated (initial-) data set (Service Data) to
create an (initial-) prediction model. In addition, car information data like the car
type, the equipment of the vehicle and geometry information, as well as external
data like, e. g. weather or traffic are used as additional data resource, because
such data often contain valuable information for the service. After deploying the
initial model in an offline learning process, we are updating it by online learning
(yellow stream). This means that the initial model is stabilized step by step after
deployment with newly generated field data.

Figure 7.2: The modified CRISP-DM approach with optimization and online
learning components. Note that the offline learning part follows the methodology
proposed in (Shearer, 2000).

We have developed this modified CRISP-DM approach, when we were dealing
with the modeling of the crash damage prediction system. Its required crash data
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is extremely difficult to generate at large volume, because either crash tests or
simulations have to be performed. Therefore, we only created a small test data set
containing just enough observations to verify whether it is feasible to use on-board
data to predict the damaged parts. We obtained a data set with 100 observations.
The number of damages of some parts is less than 5 among the 100 tests. This
indicates a very small and class-imbalanced data set. Due to the character of our
data set, first results with, e. g., multi-label classification methods were not leading
to promising results. More and more we have tailored our approach: we developed
a part-wise classification, i. e., we generated individual prediction models for each
part of the vehicle. This was very promising, because each model has its own set
of characterizing features and its own set of hyperparameters (see Chapter 5.2).
However, creating hand-crafted predicting models for each vehicle part is a very
time consuming process. As a result, we developed our own automatic approach for
time series classification, a so-called machine learning pipeline. The input of our
pipeline are time series with the corresponding label. The outputs are predictive
model performance measures such as accuracy or F1-score, which describe the
quality of the prediction.

In Chapter 4.3 our pipeline approach is shown in detail. This pipeline describes
the modeling and optimization part of our modified CRISP-DM approach more
in detail. Our pipeline is computational relatively cheap and shows promising
result (see Chapter 5 and 6). We developed this pipeline to efficiently generate
individual models predicting the damage for each part and, more importantly, the
pipeline can be used for automatically enhancing and stabilizing the initial model
performance after deployment by online learning following the methodology of our
modified CRISP-DM approach.

Our initial pipeline models have achieved F1-scores between 0% and 94%. This
indicates, that based on the small number of data points the predictability depends
strongly on the part, i. e., the damage of some parts can be predicted more
precisely than of others. Additional methods like frequent pattern mining could
help analyzing which parts are likely to be damaged together within one crash.
This is especially important for parts with a low prediction quality. Furthermore,
by considering, e. g., the learning curves from our results we were able to foresee
an improvement of the performance with increasing data (see Chapter 5). Among
other things, this helped us to evaluate the feasibility for practical use.
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The solution space for such modeling problems is usually large and often the
combination of different methods is leading to usable results in practice. In our
opinion automatic machine learning methods (AutoML) like our pipeline approach
are very promising, because of its practical use and due to its performance and its
efficiency (short computation times).

Modern vehicles employ many different sensors and can produce large amounts
of data. Sometimes it is not obvious what data would be promising for modeling.
Therefore, from a possibly large number of sensors, the most promising ones for
the task at hand have to be discovered.

As mentioned, after the data generation a feasibility study shows the practicability
of the data-driven service. When receiving results matching the expectations, the
models for the serial application can be developed.

In conclusion, the key of the modeling phase is to generate efficient predictive
models and to check the validity of the service model approach by assessing the
quality of the models that can be learned from the data. After the feasibility is
identified and confirmed, the deployment of the service should be prepared.

7.4.4 Ecosystem/Deployment

The deployment of a data-driven service in an automotive environment depends
mainly on whether it requires on-board or off-board running services. On-board
services are deployed on embedded systems in the car. This needs data storage and
computing power on control units of the vehicle. Off-board services are running
in back-end systems. In this case, data is transferred via the internet interface
from the car to the back-end, provided a sufficient bandwidth is available. In both
off-board and on-board running services the car needs to provide the required
data. In this regard, in the deployment phase the electronic components of the car
have to be enabled to deliver the needed data. Figure 7.3 shows a typical vehicle
network of a passenger car. Such architecture consists of different communication
systems like Ethernet and more traditional bus systems like FlexRay, CAN or
LIN. Ethernet is a local area network (LAN). It is designed to transmit data
between computers (Spurgeon, 2000). BES are bridged end stations (switches),
which can send and receive transmissions. Bridges communicate to other bridges,
to the gateway (router) and to end stations (ES), which is in an automotive
environment, e. g., the head unit (Spurgeon, 2000; Spurgeon and Zimmerman,
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2013). Bus systems like FlexRay, CAN or LIN differ in various bandwidths and
each system transfers data between components, called Electronic Control Units
(ECU). ECUs are embedded systems, which control electrical systems in the vehicle.
A car contains many ECUs like the engine control unit, the airbag control unit, the
battery management system or the telematic control unit, which sends and receives
data via the mobile network. All bus systems are connected via gateways (Robert
Bosch GmbH, 2014; Matheus and Königseder, 2015). Sensors are connected to the
ECUs, which process the sensor raw data and route it partly to the bus system.
This bus data can be used from other ECUs within the connected bus or by the
gateway. In some cases, data from one bus is required on another bus. Then, the
gateway routes this data from one bus to another. However, mostly data is only
available in the ECUs or on the initial bus system.

Figure 7.3: A typical schematic in-vehicle network.

Deploying a service on-board in an ECU demands a high effort regarding receiving
/ delivering the needed data, matching the data quality requirements and the
general deployment of the software within the automotive system. This additional
software needs to harmonize with all car systems and thus implies very costly
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technical security. In addition, the capacity of storage within the ECU and its
computing power is limited for additional services due to the fact that ECUs serve
most likely other essential vehicle functions. Furthermore, it is very challenging to
deploy on-board services in the lifetime of cars due to compatibility issues and the
additional technical security required.

A more flexible way is established by transmitting the data from the car to a
back-end system and running the data-driven system off-board. As soon as the
required data is available on a bus system, this data is routed by the gateway to
the bus where the sending unit (telematic) is located and it transfers the data from
the car to a back-end system. The back-end computes the results and transmits it
to the involved systems of the stakeholders. In this regard, the internet interface
(telematic) of the car needs to be enabled to transmit different data package sizes
in order to provide efficiently the required data. One crucial baseline is, that the
bandwidth of the mobile network allows such data transfers.

As mentioned before, the deployment of a service on-board (embedded) is complex,
time consuming and not as flexible as a data-driven service is meant to be. Some
services need to run on embedded systems like autonomous driving (Liu et al.,
2017). The functionality of most of the other services allows running outside of the
car like in case of the damage prediction system. Off-board car services provide,
next to their simpler deployment, more flexibility regarding faster model updates
and adaptations. The key for off-board services is the availability of data: The
car has to be able to send the required data on demand, according to GDPR and
any applicable regional law and after the confirmation of the customer, i. e., the
electronic architecture of the vehicle must be enabled to provide the requested
data. This is the foundation of a digital ecosystem, which can collect demanded
data and allows deploying new services and interactions with the car and other
involved parties quickly.

Figure 7.4 shows the basic principle of a vehicle ecosystem for data-driven services.
When developing a new service, the requested data is sent via mobile network from
the car to a data layer, called service data, of a protected service cloud (Security
Layer). This service cloud is a part of the whole vehicle back-end system. Next
to the service data, the back-end system receives external data from third parties
like traffic, weather and other service important information. Furthermore, the
back-end contains car information like, e. g., the car type, the equipment of the
vehicle, the drive technology, geometry information, service information. Such
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information are often very valuable for a data-driven service. Hence, using these
additional data can increase the prediction performances. The data-driven model
(AI-Unit) is deployed to the back-end system, as well as other units (Flexible Units)
like data processing. This back-end system communicates on demand with the car.
Beyond that, the architecture of the ecosystem allows training the models with
newly collected data from time to time or automatic (see Figure 7.2). Such a digital
ecosystem gives even the possibility to provide partly accesses to third parties
to create new valuable services, e. g. BMW Group (2018). Generated customer
information from the service cloud are provided to customer devices in the car
(control panel) or outside the car, e. g. mobile applications.

Figure 7.4: A digital ecosystem to run data-driven service. Note that this illustra-
tion follows partly the methodology of Kilian et al. (2017).

When considering an example like the damage prediction system, this would in
concrete terms imply the following sequence of events: after a low speed crash
event and a confirmation of the customer, a small data package is transmitted to
the data-driven prediction model in the back-end. With the data package as input
the model predicts, based on historical data, the damaged parts and the repair
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costs. This information can be provided to participants like, e. g., the customer,
the insurance companies for seamless claim settlements or the workshops for faster
repair (see Chapter 5.2).

In all cases, before any data is transmitted, the customer has to confirm the
certain service with an overview of the transmitted data. Furthermore, a general
transparency of the service and its intuitiveness in understanding and handling
must be provided within seconds to the customer. A confirmation can be canceled
anytime. In this context, recent studies show that 94 % of connected car owners
are interested in apps and services. Out of those 94 %, 84 % are willing to share
personal automotive data for new services (Otonomo, 2018).

An ecosystem with seamlessly operating data-driven services requires data exchange
from the ecosystem not only to the car but also to other stakeholders/participants.
These processes need to be designed in regards to the business processes. This is
described below.

7.4.5 Process

Running a service requires an interconnection of all stakeholders/participants.
Without data transfer to all involved parties the potential of the service cannot be
exploited. Therefore, shortly after having a rough idea about the deployment, the
business process needs to be designed with taking all necessary stakeholders into
account.

When looking at the example of the damage prediction system, the data of the
damaged parts and the cost for repair are computed in the back-end system. It
can be beneficial for the customer to send certain information to other participants
like the workshop to order the parts immediately and to prepare the workshop
visit. Beyond that, with detailed damage information the insurance company
could approve the repair immediately, which simplifies the whole insurance claim
settlement and would avoid an interaction of customer and insurance company.
Such connections are identified and designed in the process phase. Furthermore,
business architects establish customer oriented processes for running the data-
driven system with all necessary parties connected. Often, the whole potential can
be only reached when all parties are connected in a beneficial way.
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7.4.6 Finalization

Figure 7.1 indicates that the finalization phase starts approximately half-way of the
process phase. More precisely, when having first working systems, the finalization
phase starts with testing, validating and improving the service. In most cases, it is
indispensable to test the service with, e. g. defined customer groups to use this
feedback for further improvements. In this phase it is key to consider and connect
the five previous phases seamlessly with each other in order to create a customer
experience.

7.5 Conclusions and Outlook

Nowadays, the expectations regarding data-driven business models in the car indus-
try are massive. This chapter illustrates a track towards an efficient development
and deployment approach for data-driven services in vehicles. It presents the
important steps, as well as the main challenges. Through the explanation of the
methodology, examples are drawn to show precisely the key points. A flexible and
various service generation can be reached with a full integration of vehicles in a
digital ecosystem, which means that the car delivers data according to GDPR and
any applicable regional law and in cooperation with the customer to a back-end
system. The main service runs on this back-end system, processes the data and
transfers the results to the participants like the customer or other involved parties
like, e. g., fleet operators. The shown method enables generating fast data-driven
services in order to integrate cars more seamlessly into our lives.

As an outlook, we mention that data enables much more than creating data-driven
services: data is transforming car manufacturers from traditional engineering
companies to data-driven companies. This indicates that not only service creation
but also car development in general is progressively based on data.
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Conclusions and Outlooks

8.1 Conclusions

This thesis deals with several important aspects regarding automated machine
learning techniques for time series in depth, as well its end-to-end implementation
into data-driven industrial application.

To answer the research question (RQ1), Can we develop efficient time series
classification approaches by using feature-based techniques? (in terms of the trade-
off between classification quality and computation time), in this work hand-crafted
machine learning techniques for time series data are developed with the result that
feature-based methods can solve such problems in a competitive way. The use of
feature-based techniques is sometimes required by the industry because of the need
of tamper-proof techniques, i.e. a machine learning model must be explainable.
In this context feature-based techniques are very suitable due to the descriptive
nature of the features.

Next to hand-crafted approaches, in this work the practical use of state-of-the-art
AutoML methods are investigated. This leads to the next research question (RQ2),
Can AutoML methods be applied to solve time series classification tasks? with the
result that, based on an extensive comparison, especially some of those methods
are suitable for solving time series classification tasks in an efficient way.

When using generalized and feature-based approaches for time series classification,
a massive number of time series features is computed. From this feature space the
most significant features are selected in the following step. In order to generate
high performing models, it is key to find the most relevant features in the massive
feature space. Compared to common machine learning tasks, the feature space
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for such time series problems is much larger due to the massive extraction which
complicates the search problem for significant features. This leads to the next
research question (RQ3): Are state-of-the-art feature selection methods suitable for
time series classification tasks based on a massive number of extracted features?. As
result of automatically computed features, especially one method (Boruta) can cope
with this problem, even when we believe that some adaptions and optimizations of
this methods to this purpose would enhance the performance.

When approaching multivariate time series classification with feature-based meth-
ods, it is often beneficial to consider also combinations of features from different
time series. This is a challenging problem, because due to the large feature space
many different combinations are possible. This issue leads to the next research
question (RQ4): Can the classification quality be increased when combining features
with genetic programming?. To answer this question a tree-based genetic program-
ming approach was developed to combine several features to one complex feature
which results in an enhancement of the model performance measures.

Beyond the research questions related to machine learning topics, this work deals
with the application of the associated algorithms to the automotive environment.
This leads to the next research question (RQ5): Can we develop a systematic
approach for efficiently deploying data-driven services in the industry? From
experience we present the challenges and key points when developing data-driven
services and based on this, we developed a methodology to efficiently build such
services. This methodology is proposed in this work.

8.2 Outlook

Some of the developed and shown methods show solid results on several academic
and real-world data sets. When following the objectives of this work to develop
high performing methods with reasonable computation times, parts of each pipeline
can be further developed. The neural network CNN+LSTM architecture offers
an efficient approach when accepting to sacrifice explainable models. The neural
network avoids the whole feature engineering process. The architecture can be
further developed, maybe with an even deeper structure when dealing with larger
data sets.
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The combination of features from different time series is investigated in this work
with a genetic approach. Using the massive extracted feature space from the time
series is not really feasible due to overwhelming number of feature combinations.
Therefore, we reduce the initial feature space by PCA. Even when PCA is an
efficient way, information can get lost. Hence, other ways to reduce the dimensions
of the initial features without dropping critical information need to be investigated.
A promising way could be a neural network.
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Decision Tree of Case A

Figure A.1: A decision tree for estimating the vehicle point of impact of a low
speed crash event (see Chapter 5.1).
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English Summary

Machine Learning is becoming more and more a substantial technology for industry.
It allows to learn from previous experiences in an automated way to make choices
based on the learned experience. This principle can be used to optimize and /
or automatize processes in industry applications. A suitable process from the
car industry is for example the quality assessment in assembly lines. Instead
of assessing the quality in a time-consuming manual process, machine learning
based image recognition methods could be applied to detect failures. Next to
enhancing the existent, machine learning enables the development of completely
new products like autonomous driving or services which are purely driven by data.
The development of such new data-driven products is often a long procedure. Even
the application of machine learning algorithms to specific problems is mostly not
straightforward. To illustrate this, we introduce a data-driven service from the
automotive industry called Automated Damage Assessment. Based on the gained
experience from such data-driven service developments, we propose a methodology
to develop data-driven services in an accurate and fast manner.

Especially data-driven services in the automotive domain could be based on sensor
data, i.e. data which is recorded from on-board sensors over time in a so-called time
series. In many cases, time series from more than one sensor can be used which is
a so-called multivariate time series. The existent methods to solve multivariate
time series classification-problems are often complex and developed to solve a
specific problem without being scalable to solve various problems. To overcome
this, suitable approaches with different complexities, applied on multiple publicly
available data sets, as well as medical and industrial data sets are proposed in this
work. As starting point, we have designed a plain feature-based pipeline and applied
and enhanced it on several real-world data sets from the automotive and medical
domains. Recently, numerous AutoML methods have been proposed. AutoML
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English Summary

aims at building optimized models in an automatized way. We have empowered
those promising AutoML methods with another method to solve multivariate time
series problems with the result that some of those techniques are suitable for this
task. We have compared all those approaches on several publicly available data
set with the results that especially two AutoML approaches, namely GAMA and
ATM, as well as our PHCP approach are most suitable to solve this particular
multivariate time series problems.

In order to consider the interaction of features from different time series, an
approach is developed based on the evolutionary algorithm technique called genetic
programming. It uses the principle of biological evolution to compute combination
of features. Based on our results we can state, that the assumption, that combining
several features can improve the performance instead of using the pure features, is
true.
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Samenvatting

Machine Learning wordt steeds meer een belangrijke technologie voor de industrie.
Het biedt de mogelijkheid om te leren van voorgaande ervaringen op een geau-
tomatiseerde wijze om zo beslissingen te maken die gebaseerd zijn op aangeleerde
ervaring. Dit principe kan worden gebruikt op processen te optimaliseren en / of
te automatiseren voor industriële doeleinden. Een dergelijk geschikt proces binnen
de auto-industrie is bijvoorbeeld de kwaliteitsbepaling bij de lopende band. In
plaats van deze kwaliteitsbepaling te verrichten in een tijdrovend, handmatig pro-
ces, kunnen beeldherkenningsmethoden gebaseerd op machine learning toegepast
worden om storingen te detecteren.

Naast het verbeteren van de huidige situatie kan machine learning ook bijdragen
aan de ontwikkeling van volledige nieuwe producten, zoals autonoom rijden of het
aanbieden van diensten die volledig aangestuurd worden door data. De ontwikkeling
van deze nieuwe data-gedreven producten is veelal een lange procedure en zelfs
de toepassing van machine learning algoritmes voor specifieke problemen is vaak
niet eenvoudig. Om dit te illustreren introduceren wij een data-gedreven dienst
vanuit de auto-industrie genaamd Automated Damage Assessment. Gebaseerd
op reeds vergaarde ervaringen van deze data-gedreven ontwikkeling van diensten,
beschrijven wij hier een methodologie om data-gedreven diensten nauwkeurig en
snel te ontwikkelen.

Met name data-gedreven diensten binnen het domein van de auto-industrie kun-
nen gebaseerd worden op sensor data, d.w.z. data welke wordt geregistreerd
door sensoren binnenin de auto door de tijd heen, in zogenaamde tijdreeksen.
In veel gevallen kunnen tijdreeksen van meer dan één sensor worden gebruikt,
resulterende in zogenaamde multivariate tijdreeksen. De bestaande methoden
om classificatie-problemen met multivariate tijdreeksen te verhelpen zijn vaak
complex en ontwikkeld voor een specifiek probleem, zonder schaalbaar te zijn om
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verschillende problemen op te lossen. Om dit te verhelpen demonstreren wij in
dit proefschrift benaderingen van verschillende complexiteit, toepast op meerdere
algemeen-verkrijgbare datasets, medische- en industriéle datasets. Als startpunt
hebben wij een algemene pijplijn ontwikkeld, gebaseerd op tijdreeks-features en
toepast en verbeterd binnen verschillende bestaande datasets uit de auto-industrie
en medische domeinen.

Recent zijn een aantal AutoML methoden beschreven, welke er naar streven om
geoptimaliseerde modellen op een automatische wijze te ontwikkelen. Wij hebben
deze veelbelovende AutoML methoden versterkt met een andere methode om
multivariate tijdreeks-problemen te verhelpen, met als resultaat dat enkele van
deze technieken geschikt blijken te zijn voor dit doeleinde. We hebben al deze
technieken toegepast op algemeen-verkrijgbare datasets, waaruit blijkt dat met
name twee AutoML methodes, namelijk GAMA en ATM, evenals onze eigen
PHCP methode het beste geschikt zijn om deze multivariate tijdreeks-problemen
te verhelpen.

Om rekening te houden met de interactie van features uit verschillende tijdreeksen
is een methode ontwikkeld, gebaseerd op de evolutionaire algoritmen techniek
genaamd genetisch programmeren. Het gebruikt het principe van biologische
evolutie om combinaties van features te berekenen. Gebaseerd op onze resultaten
kunnen wij stellen dat de aanname dat de combinatie van verschillende features
betere prestaties levert dan bij het gebruik van de pure features, waar is.
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