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Tuberculosis (TB) and type 2 diabetes mellitus (DM), a major TB risk factor, are both 

accompanied by marked alterations in metabolic processes. Dissecting the specific 

metabolic changes induced by disease through metabolomics has shown potential 

to improve our understanding of relevant pathophysiological mechanisms of disease, 

which could lead to improved treatment. Targeted tandem liquid chromatography–

mass spectrometry (LC-MS/MS) was used to compare amine and acylcarnitine levels 

in plasma samples of patients with TB or TB-DM from Indonesia at time of diagnosis 

and during antibiotic treatment. Partial least squares discrimination analysis (PLS-

DA) showed good separation of patient groups. Amine levels were strongly altered 

in both disease groups compared to healthy controls, including low concentrations 

of citrulline and ornithine. Several amino acid ratios discriminated TB from controls 

(phenylalanine/histidine; citrulline/arginine; kynurenine/tryptophan), possibly 

reflecting changes in indoleamine-pyrrole 2,3-dioxygenase (IDO) and nitric oxide 

synthase (NOS) activity. Choline, glycine, serine, threonine and homoserine levels 

were lower in TB-DM compared to TB, and, in contrast to other analytes, did not 

normalize to healthy control levels during antibiotic treatment. Our results not only 

provide important validation of previous studies but also identify novel biomarkers, 

and significantly enhance our understanding of metabolic changes in human TB and 

TB-DM. A
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Introduction
Tuberculosis (TB) is a severe infectious disease which mostly affects the lungs and is caused 
by Mycobacterium tuberculosis. In 2016, 10.4 million people were newly diagnosed with TB 
and 1.7 million individuals died as a result of TB, ranking TB as the 10th leading cause of 
death worldwide(1). Over recent years, type 2 diabetes mellitus (DM) has been recognized 
as an important risk factor for TB development and reduced success of TB treatment(2-4). 
It is currently estimated that 15% of global TB cases can be attributed to concurrent 
TB-DM(5). The number of people living with DM worldwide is estimated to increase by 
48% in 2045, especially in low- and middle-income countries, where TB is endemic, 
due to changes in lifestyle associated with economic development and urbanization(6). 
Therefore a better understanding of the characteristics governing TB in the context of DM 
comorbidity is crucial for deciphering their combined pathophysiology and ultimately 
improved treatment.
 Both TB and DM are accompanied by marked metabolic changes: TB progression 
is associated with the development of wasting syndrome, a nutritional state during which 
the combination of increased energy expenditure necessary to combat the infection and 
decreased food-intake leads to severe weight loss and wasting of muscle tissue, whereas 
hyperglycemia and hyperlipidemia are major hallmarks of DM. We recently showed that 
TB-DM patients display metabolic characteristics of both diseases as determined by 
1H-Nuclear Magnetic Resonance (NMR) plasma lipid profiling(7). Metabolomics, defined 
as the comprehensive analysis of small molecule intermediates of metabolism within a 
biological system which together form the metabolome, has developed into a powerful 
approach to study potential perturbations of metabolic homeostasis caused by disease. 
The use of metabolomics has resulted in the successful identification of small molecule 
metabolite biomarkers for various illnesses, including Alzheimer’s disease(8), various forms 
of cancer(9), and diabetes(10). A number of studies have used metabolomics to identify 
biomarkers for TB in both serum and urine(11). More recently, a prognostic metabolic 
biosignature with good predictive power for TB progression was developed(12). However, 
further validation of many of these biomarker candidates has not been performed in 
independent studies or in the presence of clinically relevant comorbidities such as DM.
 Here, we performed targeted metabolomics to investigate amine and 
acylcarnitine levels in plasma samples of TB patients with or without DM and healthy 
endemic controls. Acylcarnitines are intermediates of fatty acid and amino acid oxidation 
which may be involved in early insulin resistance(10). Furthermore, the metabolic profiles 
of both TB and TB-DM patients were followed longitudinally during TB treatment to 
analyze possible effects of antibiotic TB treatment on metabolite biomarkers. We find 
that TB and TB-DM have both shared and unique effects on patient plasma metabolic 
profiles, including marked changes in metabolites involved in the urea cycle, indoleamine 
2,3-dioxygenase (IDO) signaling and liver function, of which the majority normalized to 
healthy control levels during the course of antibiotic treatment. The results of this study 
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not only confirm and validate key findings from previous metabolomics studies on TB in 
a geographically and genetically distinct population, but also propose novel biomarker 
candidates for TB and TB-DM.

Results
Study population
In total, metabolite concentrations were measured in plasma samples from 48 TB patients, 
20 TB-DM patients and 48 healthy controls (HC). HC had a similar age but higher body 
weight compared to TB patients without DM; diabetic TB patients were older and had a 
higher BMI compared with non-diabetic TB patients (Table 1). No significant differences 
were present between the groups based on sex, ethnicity, current smoking status or 
severity of TB scored on chest x-rays (CXR).

 First, a principal component analysis (PCA) model was built to visualize differences 
between disease groups based on the entire dataset, which consisted of four components 
explaining 54% of total variance. The score plot of the first two components (explaining 
25% and 13% of total variance, respectively) is displayed in Figure 1A. While disease status 
(HC, TB or TB-DM) accounted for a proportion of the total variance, no complete separation 
was observed between the three groups. However, sex differences also comprised a 
considerable source of data variance (Figure S1A). These results were corroborated by 
hierarchical clustering analysis which showed incomplete clustering based on either 

Table 1: Patients’ clinical characteristics according to disease group (n = 116).

HC
n=48

HC
n=48

TB-DM
n=19 p-value

Sex (male/female) 24/24 23/26 13/6 0.269

Age (years) 29.0 ± 9.1 29.4 ± 9.1 48.3 ± 8.5 < 0.001

BMI (kg/m2) 22.9 ± 4.0 17.3 ± 2.1 20.5 ± 2.9 < 0.001

Fasting blood glucose (mg/dl) 80.2 ± 9.1 80.7 ± 13.6 218.5 ± 76.8 < 0.001

Smoking (currently) 20/48 (41.7%) 19/49 (38.8%) 9/19 (47.4%) 0.811

CXR score (mild/advanced) na 21/28 10/9 0.468

Ethnicity: 0.650

    Betawi 10/48 (20.8%) 11/49 (22.4%) 3/19 (15.8%)

    Jawa 17/48 (35.4%) 13/49 (26.5%) 6/19 (31.6%)

    Sunda 8/48 (16.7%) 12/49 (24.5%) 4/19 (21.1%)

    Mixed 10/48 (20.8%) 11/49 (22.4%) 3/19 (15.8%)

    Other 3/48 (6.3%) 2/49 (4.1%) 3/19 (15.8%)

Data is presented as percentage of total (%) or mean ± SD. BMI = Body Mass Index, CXR = Chest X-ray 
Radiograph. 
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Figure 1: TB/TB-DM status result in distinct metabolic profiles.

(A) Score plot of the first two principal components of a PCA model built on the entire dataset 
and color coded by group with confidence ellipses. HC are displayed as red dots, TB patients as 
blue triangles and TB-DM patients as green squares. (B) Two-way hierarchical clustering analysis by 
Euclidean distance with Ward's method. Samples are annotated by disease group and sex: HC (red), 
TB patients (blue) and TB-DM patients (green), male (cyan), female (orange). (C-E) Score plots of PLS-
DA models for TB vs HC (C), TB-DM vs HC (D) and TB-DM vs TB (E). HC are displayed as red dots, TB 
patients as blue triangles and TB-DM patients as green squares. PLS-DA evaluation criteria (R2X, R2Y, 
Q2) are displayed for each model.

sex or disease group status (Figure 1B). To correct for the effect of sex, a multilevel PCA 
model was built13 to separate the “within-sex” from the “between-sex” data variation. The 
multilevel model improved the discriminatory capacity based on disease group (Figure 
S1B), while neither sex nor smoking status contributed to data variance. Finally, partial-
least squares discrimination analysis (PLS-DA) models were fitted for each disease group 
comparison and the resulting score plots and cross-validated quality metrics for model 
predictive ability (Q2) and explained variance (R2X & R2Y) are displayed in Figure 1C-E. 
All models showed high goodness of fit and predictive ability as indicated by R2Y and 
Q2 scores of >0.5, and the resulting score plots showed relatively good clustering and 
separation of samples based on disease group. Taken together, TB and TB-DM status were 
found to be major contributors to data variance based on the entire metabolomic dataset, 
and adjusting for differences in sex was of importance for further analysis.
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Patients with TB and TB-DM have distinct metabolic profiles
In total, levels of 31/53 amines (58.5%) and 5/21 acylcarnitines (23.8%) were significantly 
different in TB patients compared to HC based on a linear regression model (Figure 2A). 
Medians with interquartile ranges of all measurements and their resulting q-values can 
be found in Supplementary Table 1. Volcano plots of regression model statistics versus 
metabolite log2-transformed fold changes are depicted in Figure S2. TB was strongly 
associated with low levels of citrulline and ornithine, both central amino acids of the 
urea cycle (Figure 2D), whereas levels of arginine and aspartic acid, two other important 
intermediates in the urea cycle, were higher in TB patients. Furthermore, levels of histidine 
were significantly reduced, while those for phenylalanine were increased in TB patients, 
a finding which is congruent with previous metabolomics analyses(7). The metabolite 
with the strongest positive association with TB was 3-methoxytyrosine, a metabolite of 
levodopa which is mostly associated with aromatic L-amino acid decarboxylase (AADC) 
deficiency. Other notable changes included significantly lower levels of tryptophan and 
higher plasma concentrations of kynurenine, two metabolites which are part of the 
immunoregulatory enzyme IDO pathway. 
 The metabolite profile of TB-DM patients (Figure 2B) was mostly characterized by 
low levels of amines when compared to HC, while only two metabolites, putrescine and 
glycylglycine, were significantly elevated. Similar to TB patients, TB-DM was associated 
with low levels of citrulline, histidine, ornithine and tryptophan, among others. However, 
the most notable difference was the exceptionally low average concentration of choline 
compared to HC (q = 6.45E-19), an effect which was magnitudes stronger than observed 
in TB patients without DM (Figure 2C). Similarly, levels of serine, homoserine, glycine and 
threonine, were significantly lower in TB-DM patient plasma compared to TB patients, 
as well as to HC. These results are congruent with earlier studies describing decreased 
glycine, serine and threonine levels during DM(14,15).
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Figure 2: TB and TB-DM greatly impact patient plasma metabolite levels.

Multiple linear regression models were fitted for each between disease group comparison, and 
resulting -log-transformed p-values (q-values) are plotted against the regression coefficient estimate 
for each metabolite: TB vs HC (A), TB-DM vs HC (B), TB-DM vs TB (C). Each dot represents an individual 
metabolite. Dot color represents direction and size of the regression coefficient. The significance 
threshold (q = 0.05) is displayed as a horizontal dotted line. (D) Absolute abundance of individual 
metabolites per group displayed as Tukey’s boxplots. Significance differences between HC (n = 48), 
TB (n = 48) and TB-DM (n = 20) groups were determined by Kruskal-Wallis test with post-hoc Dunn's 
test. * p = 0.05, ** p = 0.01, *** p = 0.001, **** p = 0.0001.



160   |   Chapter 6

Metabolite ratios show potential for TB and TB-DM classification
In order to evaluate their potential as metabolic biomarkers for TB or TB-DM, receiver 
operating characteristic (ROC) curves were plotted per metabolite for each disease 
group comparison and the resulting AUC values were calculated (Supplementary Table 
1). The three metabolites with the highest AUC values were subsequently incorporated 
into multivariate signatures and their classification effectiveness was tested by a linear 
support vector machines (SVM) machine learning algorithm (Figure 3A). Citrulline, 
3-methoxytyrosine and arginine were the individual metabolites with the best 
classification capacity for TB versus HC, which was further improved by their inclusion in a 
multivariate signature (AUC: 0.913 [0.818 – 0.978]). As expected, choline was the superior 
biomarker for TB-DM versus HC from our dataset (AUC: 0.991 [0.977 – 1.000]), followed 
by histidine and glycine. Choline, serine and putrescine showed the highest potential for 
discriminating TB-DM from TB patients. Incorporation into cross-validated multivariate 
models in these cases resulted in similar AUC values (TB-DM vs HC: 0.995 [0.981 – 1.000]; 
TB-DM vs TB: 0.967 [0.940 – 0.998]). While some of our data validate published findings 
from African cohorts in an Asian cohort, the new TB-DM biomarker results reported here 
for the first time will need to be validated, including in age-matched cohorts as this was 
not corrected for in this analysis.
 We previously identified the ratio of phenylalanine over histidine (Phe/His) as 
a promising biomarker for TB classification and diagnosis irrespective of DM-status in a 
South-African patient cohort (7). This finding is corroborated independently in the current 
study in a genetically and geographically completely different cohort (Figure 3B): the Phe/
His ratio demonstrated a superior classification capacity for TB versus HC compared to any 
individual metabolite (AUC: 0.912 [0.850 – 0.974]), and similar values were obtained for 
TB-DM patients vs HC (AUC: 0.908 [0.807 – 1.000]). Furthermore, multiple linear regression 
analyses showed a relative increase in kynurenine accompanied with decreased 
tryptophan in TB patients. The ratio between these amino acids (Kyn/Trp) reflects the 
activity of IDO, which catalyzes the rate-limiting step in the kynurenine pathway of 
tryptophan catabolism. The results (Figure 3C) showed that both TB and TB-DM were 
associated with an increased Kyn/Trp ratio (AUC: 0.838 [0.755 – 0.922]; AUC: 0.802 [0.682 – 
0.921] respectively), indicative of increased IDO activity. Finally, various amino acids from 
the urea cycle were found to be divergently affected during TB, including citrulline and 
arginine (Cit/Arg) which are essential for nitric oxide (NO) production by NO synthase 
(NOS). TB but not TB-DM was associated with a decreased Cit/Arg ratio compared to HC 
(AUC: 0.895 [0.834 – 0.955]), possibly reflecting diminished NO production through NOS 
in these patients. 
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Figure 3: Biomarker analysis.

ROC curves and AUCs were determined for each metabolite and disease group comparison: TB vs 
HC (blue), TB-DM vs HC (red) and TB-DM vs TB (green). (A) The three metabolites with the highest 
AUCs per comparison were combined in a 3-feature model and corresponding multivariate ROC 
curves were fitted by linear support vector machine algorithm. (B-D) ROC curves and boxplots of the 
following metabolite ratios are shown: phenylalanine/histidine (Phe/His) (B), kynurenine/tryptophan 
(Kyn/Trp) (C) and citrulline/arginine (Cit/Arg) (D). Each dot represents an individual patient and the 
optimal cut-off as determined by Youden’s statistic is displayed as a horizontal dotted line.
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Anti-TB treatment resulted in normalization of diverging metabolites to healthy 
levels
Next, we sought to investigate the effect of anti-TB treatment on the metabolic profiles of 
TB and TB-DM patients. Plasma samples collected at both ~8 weeks and ~26 weeks after 
initiation of antibiotic treatment were available and measured for 45/49 TB and 18/19 TB-
DM patients, respectively. Successful TB treatment was associated with a significant linear 
positive effect for 29 metabolites in TB patients (Figure 4A), while 4 metabolites were 
downregulated during anti-TB therapy. Many metabolites which were lower in TB patients 
at diagnosis normalized to HC levels during treatment duration, including citrulline, 
glutamine, tryptophan, histidine and ornithine, while glycylglycine and phenylalanine 
were decreased as a result of therapy after previously being upregulated in TB patients’ 
plasma. Interestingly, 3-methoxytyrosine did not normalize to HC levels during treatment 
(q = 0.928), and could therefore represent a long-lasting TB-associated biomarker. 
 The metabolic effects of treatment in TB and TB-DM patients showed strong 
similarities (Figure 4B-C) as demonstrated by significant positive correlations of metabolite 
regression coefficients (r2: 0.528, p = 2.35E-13). Metabolites with significant treatment-
associated effects in both groups were glutamine, gamma-glutamylglutamine, gamma-
glutamylalanine, histidine, citrulline, proline, O-acetylserine and glutamate. Interestingly, 
the levels of glutamine and gamma-glutamylglutamine were significantly higher in TB-
DM patients compared to HC at the end of treatment (p < 0.01), while glutamate was 
simultaneously decreased (p < 0.0001) (Figure 4D). Although treatment resulted in 
normalization of choline to HC levels in TB patients (q = 9.40E-3), choline concentrations 
remained very low in TB-DM patients (q = 0.756). In addition, levels of glycine, serine, 
threonine and homoserine did not increase with treatment, further establishing their 
association with DM in these patients.
 As the 2HRZE/4H3R3 treatment regimen is more intensive during the first two 
months compared to the last four, it is reasonable to expect that a subset of metabolites 
would react to treatment in a non-linear fashion. Therefore, separate mixed models were 
fitted for time periods 0 to 8 weeks and 8 to 26 weeks in both disease groups (Figure S3A-B).  
Similar to the general linear treatment model, the effects of treatment in TB and TB-DM 
patients were positively correlated during both 0 to 8 weeks (r2: 0.739, p = 1.04E-22) and 8 to 
26 weeks (r2: 0.532, p = 1.67E-13). When comparing changes in metabolite levels between 
both time periods, some inverse relationships were observed in both TB and TB-DM 
patients (Figure S3C-E). Two metabolites were strongly increased during the first 8 weeks 
of treatment in both patient populations, namely methionine sulfone and putrescine, 
while their levels had significantly receded at the end of treatment. In TB patients, 7 
metabolites followed an opposite trend with decreased levels at 8 weeks followed by a 
rise at 26 weeks post-treatment (Figure S3C), i.e. methionine, glycylproline, asparagine, 
octenoylcarnitine, lysine, phenylalanine and serine; similar effects were observed in TB-
DM patients for all but the latter (Figure S3D). 
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Figure 4: Anti-TB treatment leads to normalization of patient plasma metabolic profiles to 
HC levels.

Linear mixed models were fitted for the effect of antibiotic treatment on metabolite levels in TB 
patients (A) and TB-DM patients (B) separately. Resulting -log-transformed p-values (q-values) 
are plotted against the regression coefficient estimate for each metabolite. Each dot represents 
an individual metabolite. Dot color represents direction and size of the regression coefficient. 
The significance threshold (q = 0.05) is displayed as a horizontal dotted line. (C) Beta-beta plot of 
metabolite regression coefficients for the effect of anti-TB treatment in TB patients (x-axis) versus TB-
DM patients (y-axis). Each dot represents an individual metabolite. Dot color represents whether the 
metabolite was significantly affected by anti-TB treatment in TB patients (blue), TB-DM patients (red), 
both (purple) or not at all (grey). Regression line is displayed as a dashed line with 95% confidence 
interval. (D) Absolute abundance of individual metabolites per group displayed as Tukey’s boxplots. 
For TB and TB-DM patients metabolite levels are displayed at 0, 8 and 26 weeks post-treatment. 
Significance differences between HC (n = 48) versus TB (n = 44) or TB-DM (n = 19) patients were 
determined by Kruskal-Wallis test with post-hoc Dunn's test. * p = 0.05, ** p = 0.01, *** p = 0.001, 
**** p = 0.0001.
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Metabolite associations with TB severity
Finally, we wondered whether some metabolites could be related to TB severity as 
quantified by CXR score (mild or advanced lesions). To investigate this, CXR was added as 
a covariate to our initial regression model which was subsequently fitted on TB and TB-DM 
patients combined. Eleven metabolites showed a significant association with CXR score, 
however none of these survived FDR-correction, indicating that the statistical power of 
this dataset was insufficient to accurately assess this question. Nonetheless, to highlight 
possible trends of metabolic associations with TB severity, we performed classical 
biomarker analysis using CXR score as identifier and only selected metabolites with 
univariate t-test statistic p-values < 0.01. This resulted in five metabolites with a potential 
positive association with advanced CXR lesions (Figure S4), including four acylcarnitines 
(hexanoylcarnitine, 3-methoxytyrosine, hexadecenoylcarnitine, dodecenoylcarnitine, 
tetradecenoylcarnitine). These results suggest that while acylcarnitine levels were 
not strongly associated with TB or TB-DM in the initial regression analysis, some could 
specifically be affected in individuals with severe disease. These results will have to be 
validated in studies with more statistical power. 

Discussion
Here, we applied plasma metabolomics to identify differences in amine and acylcarnitine 
levels associated with TB or TB-DM in a cohort of Indonesian patients at the time of 
diagnosis as well as during longitudinal follow-up over the course of antibiotic treatment. 
We identified several potential biomarkers with high AUC values for TB and/or TB-DM 
diagnosis, which included ratios of citrulline, arginine, phenylalanine and histidine among 
others. Overall, levels of many amines were decreased in both TB and TB-DM patients at 
diagnosis compared to HC, while relatively few acylcarnitines were affected. TB patients 
were further characterized by relatively high levels of several metabolites including the 
L-DOPA metabolite 3-methoxytyrosine, whereas only putrescine, a polyamine associated 
with DM(16), was found to be specifically elevated in TB-DM. This lack of positively correlated 
metabolites in the TB-DM group was surprising to some extent, as DM is often linked to 
overnutrition and our previous results have demonstrated that TB-DM patients from a 
South-African cohort displayed major hallmarks of DM, e.g. hyperglycemia, dyslipidemia 
and elevated branched-chain amino acids(7). TB-DM patients were further characterized 
by lower levels of glycine, serine, threonine and homoserine compared to TB patients, 
which were similarly unaffected by TB treatment. These amino acids are part of the same 
biosynthetic pathway and have been implicated in the development of non-alcoholic 
fatty liver disease (NAFLD)(17,18), a liver disorder commonly associated with DM and insulin 
resistance(19).
 Importantly, the majority of TB-related metabolites normalized towards HC 
levels during antibiotic treatment, substantiating their association with active disease. 
Exceptions to this included choline, which was dramatically lowered in plasma of patients 
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with TB-DM compared to both HC and TB patients and did not change in response to 
treatment in these patients. We consider it unlikely that this effect is an artifact introduced 
during measurement or blood collection, as all samples were randomized and blinded 
before technical analysis and the results were very consistent over multiple independent 
time points. Decreased choline bioavailability due to reduced intake or gut microbiome 
dysbiosis have been linked to NAFLD(20,21) and therefore align with the detected low levels 
of glycine, serine, threonine and homoserine, all of which similarly did not normalize to HC 
levels during treatment. However, this result should be interpreted with some caution as 
similar levels of choline deficiency during either TB or DM have not been reported before 
to the best of our knowledge. 
 Our results are in concordance with -and independently validate- earlier 
metabolic biomarker studies for TB, currently in a cohort from Indonesia. We previously 
found reduced concentrations of histidine, glutamine, alanine and valine in TB patients 
from South-Africa combined with high phenylalanine levels(7), and the described high 
predictive capacity of the Phe/His ratio as a biomarker for TB regardless of DM-status 
was confirmed in this current cohort. Similarly, Weiner et al. reported lower serum levels 
of histidine, citrulline, glutamine, gamma-glutamylglutamine, alanine and threonine 
in active TB patients, while phenylalanine, 3-methoxytyrosine and aspartic acid were 
elevated(12, 22). Low levels of tryptophan and/or high concentrations of kynurenine have 
been demonstrated in both TB patients’ sera(22-24) and pleural fluids(25). An increased 
Kyn/Trp ratio is an estimate of enhanced activity of the immunoregulatory enzyme 
IDO, which was found to benefit Mtb infection both in vitro and in vivo(26), and showed 
potential as a biomarker for TB diagnosis in our analysis. This striking agreement between 
TB metabolomics studies performed using diverse technical platforms as well as patient 
cohorts from different geographical regions confirms and highlights the robustness of the 
platforms and resulting data, as well as its potential for diagnosis and prognosis of TB(12).
 TB patients showed decreased levels of citrulline and ornithine, whereas arginine 
and aspartic acid concentrations were elevated. Furthermore, the Cit/Arg ratio displayed 
good predictive capacity for TB vs HC, but not for TB-DM vs HC. Citrulline, ornithine, arginine 
and aspartic acid are important intermediates of the urea cycle, which is responsible for 
the majority of nitrogen excretion through conversion of toxic ammonia to urea in the 
liver (27). At the beginning of the cycle, citrulline is formed from ornithine and ammonia, 
which subsequently reacts with aspartic acid to form arginine through arginosuccinate. 
Arginine can then be hydrolyzed by arginase to form urea and ornithine, or be used by NOS 
leading to the production of NO and citrulline, a balance which has shifted in TB patients 
as reflected by their relatively decreased Cit/Arg ratio. In mouse models of TB disease, 
arginase 1 (Arg1) expression in myeloid cells from TB granulomas has been demonstrated 
to exacerbate disease through substrate competition with NOS(28,29). Citrulline, however, 
was shown to fuel antimycobacterial mechanisms of murine macrophages(30,31) and 
T-cells(23)as an alternative source of intracellular arginine, implying that decreased citrulline 
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levels could be detrimental for TB patients. Although the importance of arginase and NO 
production for the antimycobacterial response in humans remains controversial, ARG1 
was found to be expressed in granulomatous tissue of TB patients(33,34) and could therefore 
play a role in TB pathophysiology. Whether the observed changes in arginine, citrulline 
and ornithine are caused by changes in expression or activity of these enzymes cannot be 
ascertained from these results, and will have to be addressed in future studies. 
 Antibiotic treatment led to normalization to HC levels for the majority of TB-
associated metabolites in both TB and TB-DM patients, including citrulline, ornithine, 
histidine and phenylalanine. In contrast, a subset of metabolites specifically changed 
during the first 2 months of intensive treatment, of which the strongly increased 
concentrations of methionine sulfone and putrescine were especially striking. Methionine 
is susceptible to oxidative modification by reactive oxygen species (ROS), and high levels of 
oxidized methionine are therefore regarded as a marker of oxidative stress(35). While initial 
oxidation of methionine leads to the reversible formation of methionine sulfoxide, the 
second oxidation step to form methionine sulfone is effectively irreversible. Methionine 
oxidation was found to be associated with drug-induced liver injury(36), which could be 
the cause of the observed elevation of methionine sulfone during intensive antibiotic 
treatment. Surprisingly, although plasma methionine concentrations were appropriately 
decreased, levels of methionine sulfoxide were not affected by antibiotic treatment in 
either TB or TB-DM patients. In addition to oxidized methionine, the authors reported 
elevated levels of gamma-glutamyl dipeptides during various types of liver injury(36). 
Gamma-glutamyl dipeptides are formed by gamma-glutamyltransferase (GGT) as 
byproducts of anti-oxidative glutathione synthesis and therefore reflect oxidative stress. 
GGT is widely used as a diagnostic marker for hepatic disease and alcohol consumption(37), 
and high circulating GGT levels are a risk factor for DM development(38). Correspondingly, 
we found that gamma-glutamylalanine and gamma-glutamylglutamine increased with 
antibiotic treatment, even to levels above HC in TB-DM patients for the latter, which could 
be indicative of enhanced GGT activity as a result of treatment. Additionally, high levels 
of putrescine were similarly shown to be associated with hepatotoxicity and antibiotic 
treatment in animal models(39,40). Taken together, anti-TB therapy correlated with increased 
levels of metabolic biomarkers associated with liver injury and oxidative stress, especially 
during early intensive antibiotic treatment, emphasizing the necessity of liver function 
monitoring during this period. Since the final blood samples were collected at the end 
of treatment, it would be informative to measure the abundance of these metabolites 
sometime after end of therapy in the future to possibly study liver function recovery. 
 As a result of limitations in patient sampling, several possible confounders of 
the study need to be discussed. Firstly, TB-DM patients were significantly older compared 
to both HC and TB patients. Although we attempted to correct for this by including age 
as a covariate in the regression analyses, it cannot be fully excluded that differences in 
age explain a proportion of the data variance in TB-DM patients, as levels of threonine, 
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histidine, glycine and serine, for instance, have been demonstrated to decrease with age(41). 
Secondly, the average BMI was significantly different between the three groups, which 
could be correlated with changes in metabolite levels. However, we purposefully chose 
not to adjust for BMI in our analysis as it is intrinsically associated with the pathophysiology 
of both TB and DM and consequently its possible effect on patients’ metabolic profiles. 
Similarly, we could not control for differences in factors such as nutrition and microbiome 
composition which could also have caused certain specific metabolite alterations. Thirdly, 
as these measurements were performed on a historic patient cohort no additional control 
groups could be included. In order to confirm the specificity of the reported metabolic 
changes for disease, future studies should include DM patients without TB and compare 
TB to other respiratory or infectious diseases. A recent paper which compared circulating 
amine and acylcarnitines levels of lung cancer patients to healthy controls reported 
increased plasma arginine levels while citrulline and glycine were decreased, similar to 
what we observed for TB, indicating that these could potentially be a reflection of general 
lung pathology(42). In contrast, no consistent changes were observed for the other TB-
associated amines such as histidine and phenylalanine that we identified. Additionally, 
a metabolomics study on chronic obstructive pulmonary disease (COPD) showed little 
overlap with our observations(43), supporting the specificity of these results for TB. 
Finally, the use of anti-diabetic medication could have influenced the concentrations of 
metabolites in the TB-DM group. 
 In conclusion, TB and TB-DM are associated with marked changes in plasma 
levels of amine metabolites, which normalize during anti-TB therapy. The presence of 
TB-DM-specific changes indicates that this comorbidity needs to be considered for the 
development of diagnostic tests for TB based on levels of metabolic intermediates. This 
study supports the use of relevant metabolite ratios as potential biomarkers for TB, and it 
would be of great interest to investigate their possible relation with TB disease progression, 
severity and treatment outcome in future studies. 

Materials & Methods
Study subjects
Patients plasma samples included in this study were randomly selected, based on 
sample availability, from a previously described cohort from Indonesia(44). In brief, 
newly diagnosed active pulmonary TB patients were recruited from January 2002 
to December 2004 at an outpatient TB treatment center in Jakarta. TB diagnosis was 
established according to World Health Organization (WHO) criteria, on the basis of 
clinical presentation and a chest X-ray radiograph (CXR) and confirmed by microscopic 
detection of acid-fast bacilli in Ziehl-Nielsen-stained sputum smears and positive culture 
of Mtb. Human immunodeficiency virus (HIV)-seropositive patients, patients with cardiac 
diseases and patients with incomplete data records were excluded. TB patients were 
classified as having mild-to-moderate TB or advanced TB on the basis of the extent of 
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lesions on CXR. CXR results were divided into lower, middle and upper lung regions, left 
and right, and abnormalities were scored as ‘mild’ (1 of 6 areas involved), ‘moderate (2 or 
3 out of 6 areas) or advanced (more than 3 areas involved)(45). Diabetes was diagnosed if 
fasting blood glucose (FBG) was >126 mg/dl, in accordance with WHO criteria at time of 
recruitment, or by self-reported diabetes. In the same period, healthy individuals matched 
for sex and age (±10%) and living within the same rukun tetangga (consisting of 15-30 
households) were included as control subjects. Controls with diabetes, signs, symptoms, 
and CXR results suggestive of active TB, a history of anti-TB treatment or incomplete data 
entry were excluded. HIV status was not tested in the control group, however Indonesia 
was classified as a country with a low HIV prevalence of ≤0.1% at time of study subject 
recruitment. Free anti-TB drug treatment was provided to all patients, which consisted of 
a standard regimen of isoniazid, rifampin, pyrazinamide, and ethambutol (2HRZE/4H3R3) 
according to the Indonesian national TB program guideline. A subgroup of patients was 
followed longitudinally, from which blood samples were collected at two and six months 
after start of treatment. This study was approved by the Ethical Committee of the Faculty 
of Medicine, University of Indonesia, Jakarta, and by the Eijkman Institute Research Ethics 
Committee, Jakarta, and written informed consent was voluntarily signed by all patients 
and control subjects. All research was performed in accordance with relevant guidelines 
and regulations at time of recruitment.

LC-MS/MS
Metabolite levels in plasma were measured in individual replicates using two targeted LC-
MS/MS platforms. Subject numbers were randomized and run in 5 batches which included 
a calibration line, QC samples and blanks. QC samples were analyzed every 10 samples, 
they are used to assess data quality and to correct for instrument response. Blanks are 
used to check for blank effects.
 The amine platform covers amino acids and biogenic amines employing an Accq-
Tag derivatization strategy adapted from the protocol supplied by Waters(46). 5.0 µL of each 
sample was spiked with an internal standard solution. Then proteins were precipitated by 
the addition of MeOH. The supernatant was taken to dryness in a speedvac. The residue 
was reconstituted in borate buffer (pH 8.5) with AQC reagent. 1.0 μL of the reaction mixture 
was injected into the UPLC-MS/MS system. Chromatographic separation was achieved by 
an Agilent 1290 Infinity II LC System on an Accq-Tag Ultra column (Waters). The UPLC was 
coupled to electrospray ionization on a triple quadrupole mass spectrometer (AB SCIEX 
Qtrap 6500). Analytes were detected in the positive ion mode and monitored in Multiple 
Reaction Monitoring (MRM) using nominal mass resolution. Acquired data were evaluated 
using MultiQuant Software for Quantitative Analysis (AB SCIEX, Version 3.0.2). 
 The acylcarnitine platform covers acylcarnitines as well as Trimethylamine-N-
oxide, Choline, Betaine, Deoxycarnitine and Carnitine. 10 µL of each sample was spiked 
with an internal standard solution. Then proteins were precipitated by the addition 
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of MeOH. 1.0 μL of the reaction mixture was injected into the UPLC-MS/MS system. 
Chromatographic separation was achieved by UPLC (Agilent 1290, San Jose, CA, USA) on 
an Accq-Tag Ultra column (Waters). The UPLC was coupled to electrospray ionization on 
a triple quadrupole mass spectrometer (Agilent 6460, San Jose, CA, USA). Analytes were 
detected in the positive ion mode and monitored in Multiple Reaction Monitoring (MRM) 
using nominal mass resolution. Acquired data were evaluated using Agilent MassHunter 
Quantitative Analysis software (Agilent, Version B.05.01).
 The data are expressed as relative response ratios (target area/ISTD area; unit free) 
using proper internal standards. For analysis of amino acids their 13C15N-labeled analogs 
were used. For other metabolites, the closest-eluting internal standard was employed. All 
internal standards are listed in Supplementary Table 2. In-house developed algorithms 
were applied using the pooled QC samples to compensate for shifts in the sensitivity 
of the mass spectrometer over the batches. After quality control correction, metabolite 
targets complied with the acceptance criteria of RSDqc <15%. 

Statistical analysis
For multivariate analysis, metabolite measurements were log transformed, mean 
centered and scaled to standard deviation units. After preprocessing, the data variance 
associated with disease or sex were investigated by principal component analysis (PCA) 
and hierarchical clustering. Differences between disease groups were further visualized 
by fitting three component partial least squares discriminant analysis (PLS-DA) models 
for each disease group comparison. PLS-DA model evaluation criteria (Q2, R2X, R2Y) were 
determined after leave-one-out cross validation. 
 To identify significant differences in metabolite levels between the three groups 
at diagnosis while correcting for age and sex, the following multiple linear regression 
model was fitted for each metabolite in separate two-level disease group comparisons 
(TB vs HC, TB-DM vs HC and TB-DM vs TB):

Metabolite= β0 + β1 Disease + β2 Age + β3 Sex + ε

where Disease = disease group (HC, TB or TB-DM), Age = age (years) and Sex = sex (male/
female).
 
CXR score was consequently added to the model as a covariate to investigate possible 
metabolite associations with TB severity.
 To analyze and compare the effect of anti-TB treatment on metabolite levels in 
TB and TB-DM patients, the following linear mixed effect model with random intercept 
for each individual study participant (u0 Subject) was fitted for the TB and TB-DM groups 
separately:
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Metabolite =  (β0 + u0 Subject) + β1 Treatment + β2 Age + β3 Sex + ε

where Treatment = duration of treatment (weeks), Age = age (years) and Sex = sex (male/
female).

Resulting p-values were corrected by False Discovery Rate (FDR) using the Benjamini–
Hochberg procedure to obtain q-values, which were subsequently -log transformed and 
plotted versus the regression coefficient estimate (β1) to generate metabolite volcano 
plots. Alternatively, regression coefficient estimates of two comparisons were plotted 
against each other (beta-beta plots). 
 For univariate biomarker analysis, metabolite receiver operating characteristic 
(ROC) plots and area under the curves (AUCs) were generated for each disease group 
comparison based on the optimal cut-off as calculated by Youden’s J statistic47, defined 
as the value for which the distance to the diagonal line is maximal. AUC 95% confidence 
intervals (CI) were computed using 2000 stratified bootstrapping samples. Furthermore, 
for each group comparison the three metabolites with the highest univariate AUCs were 
combined in a three parameter metabolic signature. Multivariate ROC curves and AUCs 
were calculated using a linear SVM algorithm included in the MetaboAnalyst R package 
(version 1.01.)(48) after hundredfold repeated random sub-sampling cross validation, 
during which 2/3 of the samples were used for model training and the remaining 1/3 for 
model testing.
 Statistical analysis of clinical characteristics was performed in SPSS 23 (IBM) by 
one-way ANOVA (reported p-values are the outcome of the F-test) or chi-squared test. 
Analysis of absolute metabolite concentrations was done in Graphpad Prism 7 by Kruskal-
Wallis test with post-hoc Dunn’s test. PCA, PLS-DA, hierarchical clustering, multiple linear 
regression and linear mixed modeling were performed using R version 3.5.0. and the 
following packages: mixOmics version 6.3.2(49), lme4 version 1.1.17(50), lmerTest version 
3.0.1(51) and ggplot2 version 3.1.0(52)
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Figure S1: Multilevel PCA for metabolomics data variance within subjects with the same sex 
improves disease group separation.

(A) Score plot of the first two principal components of a PCA model built on the entire dataset 
and colored for sex with confidence ellipses. Females are displayed as red dots and males as blue 
triangles. (B-E) Score plots of the first two principal components of a multilevel PCA model for data 
variance within “Sex”, colored for disease group membership (B), sex (C) or smoking status (D).
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Figure S2: Volcano plots of linear regression models versus metabolite fold changes.

Multiple linear regression models were fitted for each between disease group comparison, and 
resulting -log-transformed p-values (q-values) are plotted against log2-transformed fold changes for 
each metabolite: TB vs. HC (A), TB-DM vs. HC (B), TB-DM vs. TB (C). Each dot represents an individual 
metabolite. Dot color represents direction and size of the fold change. The significance threshold  
(q = 0.05) is displayed as a horizontal dotted line.
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Figure S3

Figure S3: Differences between the effect of early (0-8 weeks) versus late (8-26 weeks) anti-
TB treatment on patient plasma metabolic profiles.

Linear mixed models were fitted for the effect of 0-8 weeks or 8-26 weeks of anti-TB treatment 
on metabolite levels in TB patients and TB-DM patients separately. (A-B) Beta-beta plots of 
metabolite regression coefficients for the effect of anti-TB treatment in TB patients (x-axis) versus 
TB-DM patients (y-axis) for 0-8 weeks (A) and 8-26 weeks (B) of treatment. Each dot represents 
an individual metabolite. Dot color indicates whether the metabolite was significantly affected 
by anti-TB treatment in TB patients (blue), TB-DM patients (red), both (purple) or not at all (grey). 
Regression line with is displayed as a dashed line with 95% confidence interval. (C-D) Beta-beta plots 
of metabolite regression coefficients for the effect of anti-TB treatment during 0-8 weeks (x-axis) 
versus 8-26 weeks of anti-TB treatment (y-axis) in TB patients (C) and TB-DM patients (D). Each dot 
represent an individual metabolite. Dot color represents whether the metabolite was significantly 
affected by anti-TB treatment during weeks 0-8 (blue), 8-26 (red), both (purple) or not at all (grey). 
(E) Absolute abundance of individual metabolites per group displayed as Tukey’s boxplots. For TB 
and TB-DM patients metabolite levels are displayed at 0, 8 and 26 weeks post-treatment. Significant 
differences between HC (n = 48) versus TB (n = 44) or TB-DM (n = 19) patients were determined by 
Kruskal-Wallis test with post-hoc Dunn's test. * p = 0.05, *** p = 0.001, **** p = 0.0001.
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Figure S4

Figure S4: Metabolite association with CXR score.

ROC curves and AUCs of CXR score classification (mild/advanced lesions) for hexanoylcarnitine, 
3-methoxytyrosine, hexadecenoylcarnitine, dodecenoylcarnitine and tertradecenoylcarnitine. Log-
transformed and standard deviation unit scaled metabolite abundances are displayed in boxplots. 
Each dot represents an individual patient (black = TB, red = TB-DM) and the optimal cut-off as 
determined by Youden’s statistic is displayed as a horizontal dotted line.
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Supplementary Table 2:

Internal standards: amines

Asn_C13N15

Asp_C13N15

L-ornithine-3,3,4,4,5,5,-d6

L-NT-methyl-d3-L-histidine

Glu_C13N15

Lys C13N15

Ser_C13N15

Beta-alanine-2,2,3,3,-d4

Tyr_C13N15

Gln_C13N15

Thr_C13N15

L-Methionine_C13N15

Arg_C13N15

Ala_C13N15

Val_C13N15

Gly_C13N15

Phe_C13N15

Trp_C13N15

Histamine-α,α,β,β-d4 2HCl

L-2-aminobutyric acid-d6 acid

2-(4-hydroxy-3-methoxyphenyl) ethyl-1,1,2,2-d4-amine

L-Ile_C13N15

Leu_C13N15

Internal standards: acylcarnitines

Carnitine-d3 HCl 

Betaine-d3 HCl 

Deoxycarnitine-d9 HCl 

Acetyl-L-carnitine-d3 HCl 

Butyryl-L-carnitine-d3 HCl 

Octanoyl-L-carnitine-d3 HCl 

Octadecanoyl-L-carnitine-d3 HCl 


