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Mycobacterium tuberculosis: an ancient but agile microbe
Tuberculosis (TB) is an infectious disease of the lungs which is caused by infection with 
Mycobacterium tuberculosis (Mtb). Even though the first evidence of human TB infection 
can be traced back many millennia to the Neolithic era (~9,000 years ago)(1], it remains 
a major and  important threat to global health to date. In 2017, an estimated 10 million 
people fell ill with TB and 1.6 million died as a result of the disease, making TB the leading 
cause of death by a single infectious agent worldwide(2). TB ranks among the global top 
10 causes of overall mortality. In total, 87% of the global TB burden is accounted for by 30 
countries, of which India (27%), China (9%) and Indonesia (8%) encompass the top three 
of estimated new cases. The recommended TB treatment regimen consists of four first-line 
antibiotics (isoniazid, rifampicin, ethambutol and pyrazinamide) for a period of 6 months. 
However, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) 
comprise a major global health challenge due to a global rise in resistance to first-line 
drugs. Although treatment success rates of drug-susceptible TB are approximately 85% 
at an estimated cost of 40 US$ per person, they drop to 55% for treatment of MDR-TB 
using second-line drugs with higher toxicity at significantly increased costs (>1000 US$ 
per person). Furthermore, while vaccination with Bacille Calmette-Guérin (BCG), a live-
attenuated Mycobacterium bovis vaccine which has been administered to humans since 
1921, shows limited efficacy in preventing disease in children, a vaccine which induces 
adequate protection in adolescents and adults is still lacking(3). Recently, the efficacy of 
two candidate subunit vaccines (M72/AS01E and H4:IC31) for prevention of TB disease 
resp. infection in adults resp. adolescents was examined in phase 2 trials. Administration 
of M72/AS01E to Mtb-infected adults resulted in 54.0% protection against TB(4). Although 
H4:IC31 vaccination did not lead to prevention of primary QuantiFERON-TB Gold In-tube 
assay (QFT) conversion in adolescents from a high TB risk setting, it did show a trend 
towards reduced sustained QFT conversion for 3-6 months after initial measurement(5). 
Importantly, a similar but significant effect was reported for revaccination with BCG in this 
trial, warranting further studies into the benefits of BCG revaccination for prevention of 
sustained QFT conversion(5).
	 TB is spread through inhalation of mycobacteria-containing aerosols produced 
by sneezing or coughing, leading to Mtb infection of resident alveolar macrophages. 
The immune response to Mtb is characterized by formation of granulomas, complex 
immunological structures which shield the host from bacterial dissemination but 
simultaneously provide a niche for Mtb persistence(6). First, additional mononuclear cells 
are recruited to the site of primary infection from neighboring blood vessels, which 
subsequently become infected by the expanding mycobacterial population and together 
form the early granuloma. After an initial delay (14-21 days) in the onset of adaptive 
immune responses, B and T lymphocytes are recruited to the granuloma, eventually 
leading to arrested Mtb growth but not to complete bacterial elimination. During this 
time of immunological deadlock the granuloma matures, which involves differentiation of 
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macrophages into lipid-loaded foamy, epithelioid and multinucleated giant cells and the 
formation of a fibrous cuff around the macrophage-rich layer. Whereas the early granuloma 
was adequately vascularized, Mtb now has to adapt to conditions of local hypoxia and 
nutrient-scarcity and consequently enters a state of dormancy, ensuing in a clinically 
asymptomatic period of latent TB infection (LTBI). It is estimated that approximately one 
quarter of the world’s population is latently infected with Mtb(7), 5-10% of which will 
reactivate and develop active disease during their life-time. The factors which determine 
granuloma outcome and TB reactivation are not clearly defined, but immune components 
appear key players. Induction of immune mediators on opposite sides of the inflammation 
spectrum result in a delicate immune balance. Pro-inflammatory cytokines such as tumor 
necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are major contributors to 
TB immunity. Treatment with TNF-α neutralizing antibodies led to reactivation of TB 
in humans(8) and cynomolgus macaques(9). Mutations in the IFN-γ gene(10), the IFN-γ 
receptor(11) or the interleukin (IL)-12/-23 axis(12), which governs IFN-γ production(13), impair 
anti-mycobacterial immunity. However, high levels of pro-inflammatory factors can also 
lead to extensive tissue damage, resulting in liquefying caseous necrosis, pulmonary 
cavitation and ultimately bacterial dissemination(14). 
	 As stated above, Mtb primarily infects macrophages, phagocytic cells of the myeloid 
lineage which play pivotal roles in immunity by direct microbe qal killing and presenting 
antigen to naïve T cells to induce adaptive responses. The primary route of killing or 
controlling intracellular bacteria is through the phagolysosomal pathway (Figure 1). After 
receptor-mediated uptake, bacteria are contained in compartments called phagosomes 
which rapidly mature by fusing with lysosomes, leading to vesicle acidification and the 
acquisition of antimicrobial peptides and hydrolases. To circumvent its eradication, 
Mtb inhibits phagosome maturation by manipulating the activity of GTP-binding Rab 
proteins which coordinate intracellular vesicle trafficking(15,16), through targeting Vacuolar-
type H+-ATPase for degradation to prevent phagosomal acidification(17), and through 
blocking the function of the NADPH oxidase complex(18), an important phagosomal 
component which produces antibacterial superoxide. Furthermore, Mtb induces 
perforation of the phagosome through expression of the ESX-1 secretion system(19, 20),  
an important virulence factor which is absent in the non-virulent BCG strain. ESX-1 
effector proteins ESAT6 and CFP10 have been shown to induce phagosomal membrane 
damage in macrophages(19-22), simultaneously halting vesicle maturation and providing 
access for Mtb to release important effectors in the cytosol. An unwanted consequence 
of phagosomal escape from the perspective of Mtb is the induction of autophagy which 
serves as an auxiliary host pathway for bacterial clearance, although its importance 
for TB outcome is still a topic of debate(23). Multiple autophagy pathways have been 
implicated in Mtb killing, including the detection of mycobacterial DNA by the STING-
cGAS cytosolic surveillance pathway(24,25), the recruitment of host galectins to damaged 
phagosomes(26, 27) and ubiquitination of escaped mycobacteria by ubiquitin ligases such 
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as Parkin and Smurf1(28, 29), among others(30). These pathways culminate in the recruitment 
of autophagy adaptors such as NDP52 and p62, which consecutively bind to membrane 
protein LC3 leading to the formation of degradative double membrane vesicles named 
autophagosomes. Again, Mtb has developed mechanisms to actively inhibit these 
clearance mechanisms, for instance by inducing expression of miR-33(31), miR-155(32)  
and IL-10(33), all negative regulators of autophagy. Collectively, these strategies of Mtb to 
survive the hostile intracellular environment of the macrophage are major contributors to 
its pathogenic success.

Mtb

Lysosome

Phagolysosome

Mtb
clearance

Membrane
disruption

Phagosomal
Escape

Autophagolysosome

EESSAATT66
CCFFPP1100

Early
Phagosome

RRaabb55

Late
Phagosome

RRaabb77

VV--AATTPPaassee

CCIISSHH

Phagophore

LLCC33

Autophagosome

pp6622
NNDDPP5522

mmiiRR--3333
mmiiRR--115555

IILL--1100

↓↓RRaabb  rreeccrruuiittmmeenntt

NNAADDPPHH
ooxxiiddaassee

OO22
--

OO22
--

OO22
--

CCppssAA

Figure 1: Overview of macrophage central energy metabolism.

After receptor-mediated uptake, Mtb-containing phagosomes mature by fusing with lysosomes, 
leading to vesicle acidification and ultimately mycobacterial eradication. Mtb can interfere 
phagosome maturation at multiple steps, including: 1) inhibition of Rab activity and recruitment, 2) 
induction of cytokine-inducible SH2-containing protein (CISH) to degrade Vacuolar-type H+-ATPase 
(V-ATPase), 3) inhibition of NADPH oxidase complex by Cold shock protein A (CspA), 4) phagosomal 
membrane disruption by ESX-1 effector proteins ESAT6 and CFP10 leading to Mtb escape. Autophagy 
can serve as an auxiliary pathway for Mtb killing, leading to autophagosome formation after binding 
of autophagy adaptors such as p62 and NDP52 to LC3. Mtb can negatively affect autophagy through 
induction of host microRNAs (miR-33 and miR-155) and IL-10.
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Macrophage biology and immunometabolism during Mtb infection
While their importance in Mtb pathogenesis is undisputed, referring to macrophages 
as a single uniform cell type would be inaccurate. Macrophages exist in many different 
forms and functional states, and their significant plasticity has been the topic of many 
studies over the last decades. Initially, a dichotomic model of macrophage activation was 
proposed, spanning from pro-inflammatory ‘classically activated’ (34) to anti-inflammatory 
‘alternatively activated’ (35) macrophages, which were later respectively labeled M1 and M2 
macrophages, the myeloid equivalent of the classical Th1/Th2 paradigm(36). M1 polarization 
can be induced by Th1 cytokines (IFN-γ and TNF-α) and LPS, while M2 macrophages can 
be generated by Th2 cytokines IL-4 and IL-13. Alternatively, macrophage differentiation of 
monocytes using either M-CSF or GM-CSF also results in diametrically opposed functional 
phenotypes (termed Mφ1 and Mφ2)(37,38). In analogy to the over simplistic Th1/Th2 
paradigm (following the discovery of Th17, Th22, Tfh and other T cell subsets), the initial 
M1/M2 dichotomy soon became challenged, and variations in differentiating stimuli 
were shown to result in phenotypically distinct macrophage subsets not conforming 
to classical M1/M2(39). An extensive transcriptomics study on macrophage polarization 
under 29 differentiating conditions revealed a spectrum of macrophage activation which 
was far beyond what could be explained by the M1/M2 model, including distinct gene 
expression modules involved in granulomatous inflammation after stimulation with 
TNF-α, prostaglandin E2 and Pam3Cys(40). Moreover, it has become clear that many tissue-
resident macrophage populations consist of self-renewing cells derived from embryonic 
precursors, such as Kupffer (liver) and Langerhans cells (skin), which do not rely on 
circulating blood monocytes during steady-state(41), suggesting different lineages within 
the macrophage “compartment”. Combined, these findings have led to the rejection of the 
original binary view of macrophage polarization, and have given way to multidimensional 
models which take into account the effects of macrophage ontogeny and local tissue 
microenvironment(42, 43).
	 An important factor which is interconnected with the outcome of macrophage 
activation is their metabolic state. The interplay between immune cell function and 
metabolism has taken a prominent place in immunological studies over recent years, 
leading to the emergence of a new field of research: immunometabolism. Conceptually, 
functional immune cell activation demands recalibration of cellular metabolism to provide 
energy in the form of adenosine triphosphate (ATP) and other necessary biosynthetic 
intermediates. One of the pioneers of cellular physiology was Otto Warburg, who 
discovered that cancer cell metabolism is skewed towards energy production by glycolysis 
instead of mitochondrial respiration, even under aerobic conditions(44,45), a process which 
is since referred to as the ‘Warburg effect’. During glycolysis, one molecule of glucose is 
sequentially converted to two molecules of pyruvate, leading to a net energy production 
of two ATP (Figure 2). Pyruvate is then either used to recycle oxidized nicotinamide 
adenine dinucleotide (NAD+) by conversion to lactate, or imported into mitochondria to 
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form acetyl coenzyme A (acetyl-CoA). Acetyl-CoA subsequently enters the tricarboxylic 
acid (TCA) cycle, a series of biochemical reactions resulting in the formation of NADH and 
succinate which are used to produce ~30-32 ATP per glucose molecule during oxidative 
phosphorylation (OXPHOS). In macrophages and dendritic cells (DCs), a similar metabolic 
switch towards increased glycolysis was observed after stimulation with TLR ligands(46,47), 
leading to the hypothesis that induction of the Warburg effect was important for pro-
inflammatory activation. Indeed, stimulation with LPS was shown to induce expression 
of the glycolytic enzyme pyruvate kinase M2 (PKM2)(48), leading to the accumulation 
of the TCA intermediate succinate, stabilization of hypoxia-inducible factor 1α (HIF-1α) 
and production of IL-1β, all of which could be abrogated by inhibiting glycolysis using 
2-deoxyglucose (2DG)(49). Due to this redirection of mitochondrial metabolic flux, the TCA 
cycle has since referred to as being ‘broken’ in M1 macrophages. In addition to succinate, 
a second break in the TCA cycle occurs after citrate in these cells(50), which supports 
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Figure 2: Interference of Mycobacterium tuberculosis with phagolysosomal clearance.

Glycolysis yields two molecules of ATP per molecule of glucose. Pyruvate formed after glycolysis 
is then either converted to lactate (regenerating NAD+) or shuttled to mitochondria to fuel the 
TCA cycle. Oxidative phosphorylation of pyruvate yields 30-32 ATP per molecule of glucose. Two 
breaks in the TCA cycle have been reported to occur in pro-inflammatory M1 macrophages: 1) 
accumulation of succinate was shown to stabilize HIF-1α, leading to IL-1β production; 2) citrate 
accumulation supports inflammatory action through synthesis of fatty acids and the anti-microbial 
metabolite itaconate.
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pro-inflammatory M1 macrophage function through synthesis of fatty acids(51) and the 
immunomodulatory metabolite itaconate (52). IL-4-induced M2 macrophage polarization, in 
contrast, is associated with increased OXPHOS and fatty acid oxidation (53)  through activation 
of pathways downstream of signal transducer and activator of transcription 6 (STAT6) 
and peroxisome proliferator-activated receptor γ (PPAR-γ) coactivator 1β (PGC-1β)(54).  
However, metabolic rewiring during myeloid cell activation cannot simply be reduced 
to glycolysis versus oxidative phosphorylation as it strongly depends on the specific 
immunogenic stimuli which were used (55,56).  
	 A Warburg-like shift towards glycolysis with associated HIF-1α stabilization 
and IL-1β production was also observed after in vitro Mtb infection in both murine and 
human macrophages(57,58). In mice, alveolar macrophages utilizing fatty acid oxidation 
(FAO) were shown to be more permissive to Mtb replication compared to glycolytic 
interstitial macrophages(59). Treatment with 2DG, an inhibitor of glycolysis, or etomoxir, 
an inhibitor of FAO, respectively increased and decreased bacterial growth, functionally 
linking glycolysis to improved Mtb control(57,59). Interestingly, MDR W-Beijing Mtb strains 
were reported to overexpress phthiocerol dimycocerosate cell wall lipids (PDIMs) which 
dampen the glycolytic response and IL-1β secretion through induction of IFN-β(60), 
demonstrating direct mycobacterial modulation of macrophage immunometabolic 
pathways. In contrast, live Mtb infection was reported to result in an overall decreased 
bioenergetic phenotype in both THP-1 cells and primary human macrophages based on 
extensive metabolic flux analysis, including a diminished glycolytic rate, reduced lactate 
production and an increased mitochondrial dependency on fatty acids(61). It has been 
proposed that these differences could be the result of a biphasic metabolic response of 
macrophages to Mtb infection, consisting of an early phase characterized by increased 
glycolysis and production of pro-inflammatory antimicrobial effector molecules, followed 
by a later phase of adaptation/resolution with intensified oxidative metabolism and 
decreased antimicrobial responses(62). However, more definitive evidence for this model 
will require additional longitudinal studies on the cellular metabolic dynamics during Mtb 
infection.
	 In addition to glycolysis, Mtb infection was found to be associated with other 
immunometabolic effects, including catabolism of amino acids. Arginine is an important 
metabolite involved in the antimicrobial response to Mtb as it fuels nitric oxide (NO) synthesis 
through inducible NO synthase (iNOS) in M1 macrophages(63-65), a response which is limited 
by arginase 1 (Arg1) activity in murine M2 macrophages (66). In the absence of adequate 
levels of arginine, citrulline was shown to provide an alternative source of arginine for NO 
synthesis in response to Mtb infection (67-69). Another key immunomodulatory amino acid 
is glutamine, the most abundant circulating free amino acid. Glutamine can be directly 
used as a substrate for the TCA cycle through glutaminolysis, which plays a major role 
in M2 macrophage polarization(50,70). Both glutamine depletion and pharmacological 
inhibition of glutaminolysis decreased in vitro cytokine production of PBMCs in response 
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to Mtb lysate, and the transcriptional profile of TB patients and Mtb-infected macrophages 
showed marked changes in glutamine metabolism genes(71), indicating a potential role 
for glutamine in the response to Mtb. Finally, tryptophan conversion to kynurenine by 
the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO1/IDO2) was reported 
to support Mtb infection in a rhesus macaque infection model, as well as in isolated 
macrophages cocultured with CD4+ T cells (72), possibly by downregulating effector T cell 
functions (73-75).
	 In conclusion, it has been unequivocally demonstrated that the functional 
outcome of macrophage activation is tightly interwoven with cellular metabolic state, 
and that the latter greatly impacts the outcome of Mtb infection. This raises the important 
question whether dysregulation of these processes as a consequences of metabolic 
diseases such as type 2 diabetes, a well-known risk factor for TB disease and TB severity, 
could be related to development TB. 

Tuberculosis and diabetes: a reason for concern
The global burden of TB is heavily affected by several serious comorbidities which 
increase the risk of developing active disease, of which human immunodeficiency virus 
(HIV) co-infection has been the most prominent during the past decades. HIV infection 
leads to a 20-fold increased risk of disease reactivation (76). 920,000 people living with HIV 
developed TB in 2017, and 300,000 people died due to TB-HIV coinfection (2). Other major 
TB-associated comorbidities include smoking, alcohol use, exposure to biomass duel and 
malnourishment (77). However, an important TB risk factor which has only recently  caught 
the public eye, despite having been previously described centuries ago(78), is diabetes 
mellitus (DM) (79). DM has been demonstrated to triple the risk of developing active TB 
disease (80), and approximately 15% of global TB cases can be attributed to concurrent 
TB-DM. While the number of TB deaths among HIV-infected patients has declined by 44% 
since 2000, the number of patients with concurrent TB-DM is predicted to rise dramatically 
as the number of people living with DM worldwide is estimated to increase by 48% during 
the coming 25 years, from 425 million people in 2017 to 629 million people in 2045 (81). The 
vast majority of this increase is expected to take place in TB-endemic low- and middle-
income countries due to changes in lifestyle associated with economic development and 
urbanization. Furthermore, DM is associated with TB treatment failure and increased drug 
resistance, while active TB hampers management of glucose control (82). An international 
consortium, EC-FP7 supported TANDEM (www.tandem-fp7.eu), was initiated to unravel 
the relationships and potential mechanisms underlying concurrent TB-DM, and to 
optimize current treatment regimens and diagnosis (83).
	 DM is a metabolic disorder which is caused by either a lack of production of 
the glucose-regulating hormone insulin (type 1/T1DM) or the development of insulin 
resistance (type 2/T2DM), of which the latter comprises approximately 90% of global cases 
(81). Both disease types are characterized by hyperglycemia due to the patient’s inability 
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to control blood glucose levels. Clinical symptoms of DM include recurrent infections, 
weight gain, polyuria accompanied with excessive thirst, and impaired wound healing. 
Whereas T1DM is caused by an auto-immune reaction to pancreatic insulin-producing 
β-cells, the precise mechanisms underlying T2DM are not as clearly defined. Obesity and 
increasing weight are important risk factors for T2DM development, linking the disease 
with poor quality nutrition and physical inactivity, as well as family history (84). This clinical 
appearance is in stark contrast with the metabolic phenotype of TB patients, which is often 
accompanied by undernutrition and wasting syndrome (85). Through its association with 
obesity, many T2DM patients are also at high risk of cardiovascular complications such 
as atherosclerosis due to the presence of aberrations in blood lipid levels (dyslipidemia), 
including hypertriglyceridemia, hypertension and reduced levels high-density lipoprotein 
(HDL) cholesterol (86). 
	 Insulin resistance does not only occur in the liver and skeletal muscle, the 
major organs involved in glucose metabolism, but also in the adipose tissue, kidneys, 
pancreas, gastrointestinal tract, vasculature and brain (87). Generally, the development 
of insulin resistance precedes T2DM by some time, placing increasing levels of stress 
on the pancreatic β-cells to produce more insulin which ultimately culminates in 
β-cell dysfunction(88-90). Multiple molecular mechanisms of insulin resistance have 
been described, most of which are related to the phosphatidylinositol 3‑kinase (PI3K) 
pathway (91), a downstream signaling molecule of the insulin receptor. Binding of insulin 
to its receptor induces phosphorylation of insulin receptor substrates (IRS1 and IRS2), 
which bind to and activate PI3K (92), subsequently promoting translocation of glucose 
transporter 4 (GLUT4) protein to the cell surface. It has been demonstrated that increased 
serine phosphorylation of IRS proteins leads to insulin resistance by inhibiting tyrosine 
phosphorylation (93) and  enhanced IRS protein degradation (94). Several factors contribute 
to this increased serine phosphorylation, including activation of protein kinase C (PKC) 
by accumulating diacylglycerol (DAG) due to ectopic lipid deposition in insulin-sensitive 
tissues(95), mitochondrial dysfunction(96) and systemic inflammation(97). Increased infiltration 
of immune cells and production of pro-inflammatory factors such as TNF-α have been 
linked to the development of insulin resistance in adipose tissue and in the liver, both 
in humans and in mice (98). Specifically, pro-inflammatory M1 macrophages and Th1 cells 
accumulate in adipose tissue during obesity, while numbers of anti-inflammatory M2 
macrophages, Th2 and regulatory T cells (Treg) are reduced (99-101). Infiltrating macrophages 
induce adipocyte lipolysis, leading to high local levels of free saturated fatty acids (SFAs) 
which also contribute to local inflammation and insulin resistance (102), although the causal 
molecular mechanisms are still a topic of debate (103). 
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Potential mechanisms responsible for TB-DM disease interactions
While the association between TB and DM has been thoroughly established, the factors 
underlying this association remain largely unclear. From the above, it is evident that 
both diseases evoke distinct immunological and metabolic effects. Several studies have 
examined this interplay by exposing human immune cells to DM-associated conditions 
such as hyperglycemia, to analyze whether these conditions would disrupt immune 
responses to Mtb infection, while others compared the functional phenotypes of 
circulating leukocytes in diabetic TB patients or LTBI to normoglycemic controls.
	 Innate immunity: Monocytes from patients with poorly controlled DM displayed a 
reduced phagocytic capacity (104, 105). A similar effect was observed in alveolar macrophages 
from mice with streptozotocin- or diet-induced diabetes, which showed reduced uptake 
of mycolic acid-coated beads as well as mycobacteria (106, 107). This reduced phagocytic 
potential could negatively impact the capacity of antigen-presenting cells to control 
bacterial infection and to induce adaptive responses. Furthermore, TB-DM patients had 
decreased frequencies of circulating intermediate and classical monocytes as well as 
plasmacytoid and myeloid DCs compared to non-diabetic pulmonary TB patients, which 
normalized after anti-TB treatment (108, 109). Other cells of the innate immune system with 
potentially compromised functions during DM are neutrophils and natural killer (NK) cells. 
The precise role of neutrophils during TB remains ambivalent, as they potentially contribute 
to disease protection through mycobacterial killing during early infection, but can also 
induce tissue damage though release of cytotoxic agents in later stages (110). Increased 
neutrophil counts have been reported during TB-DM (111), however isolated neutrophils 
from DM patients displayed impaired mycobacterial phagocytosis (112). Moreover, Prada-
Medina et al. suggested a central role for neutrophilic inflammation in TB-DM based on 
Bayesian network analysis of cytokine and transcriptomics measurements from Indian 
patients (113). NK cells regulate the anti-TB response in several ways, including supporting 
CD8+ effector T  cell responses, enhancing phagocyte bactericidal function through 
secretion of IFN-γ and IL-22 and releasing antimicrobial effectors such as perforin and 
granulysin (114). Importantly, peripheral NK cell numbers negatively correlated with lung 
inflammation at TB diagnosis, indicative of a relation between circulating NK levels and 
Mtb burden (115). One study reported expansion of type 1 and type 17 cytokine-producing 
NK cell populations during TB-DM (116), while others found reduced levels of circulating NK 
cells in these patients (117). Interestingly, hyperactive NK cells contributed to inflammation 
and mortality in a mouse model of TB-DM by inducing IL-6 production in CD11c+ cells (118). 
	 Adaptive immunity: If innate immunity is indeed impaired as a result of TB-DM, this 
should also profoundly impact the induction of an ensuing adaptive immune response. 
Indeed, the adaptive response to Mtb was described to be further delayed in diabetic 
mice (119), resulting in increased lung inflammation and bacterial burden (120).  Th1, Th2 and 
Th17 cytokines were found to be decreased in LTBI with DM compared to normoglycemic 
controls with LTBI (121). In contrast, several studies reported hyperinflammatory T cell 
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response in active TB patients with DM, including elevated TNF-α and IFN-γ production 
after whole blood stimulation (122), increased circulating levels of pro-inflammatory Th1 
and Th17 cytokines (123) and elevated frequencies of central memory CD4+ and CD8+ T 
cells (124). While circulating regulatory T cells were reportedly decreased during TB-DM (123), 
Treg counts were found to be elevated in bronchoalveolar lavage fluid samples of TB-
DM patients and associated with increased IL-10 but decreased IFN-γ concentrations (125). 
Furthermore, T cells from hyperglycemic mice produced elevated levels of Th1, Th2 and 
Th17 cytokines due to hyperresponsiveness following T cell receptor ligation (126). It has 
been suggested that these elevated inflammatory responses in TB-DM patients could be 
the result of an increased Mtb burden and be responsible for exacerbated lung pathology. 
Taken together, even though evidence in literature is somewhat conflicting, it can be 
clearly concluded that concurrent DM is associated with perturbations of both the innate 
and adaptive response during TB disease.
	 DM-induced metabolic changes: Mechanistically, several DM-associated factors 
have been suggested to contribute to dysfunctional immunity. High glucose levels were 
shown to reduce the phagocytic capacity of but to increase Mtb burden in macrophages 
(127). In addition, hyperglycemia can lead to the formation of advanced glycation end-
products (AGEs), which are pathologically glycated proteins or lipids that can modify 
cellular functions through binding to the AGE receptor (RAGE) (128). Podell et al. e.g. reported 
that Mtb infection increased serum levels of AGEs in guinea pigs (129). AGEs been shown to 
induce oxidative stress and ROS production (130, 131), inhibit NO synthesis (132) and increase the 
expression of scavenger receptors such as CD36 by macrophages. CD36 is involved in the 
formation of lipid-loaded foam cells through uptake of oxidized low-density lipoprotein 
(oxLDL) (133, 134). In resemblance to AGEs, oxLDL is a pathologically modified lipoprotein 
which is elevated in patients with T2DM as a result of oxidative stress (135, 136). Interestingly, 
Mtb infection of guinea pigs was associated with oxLDL accumulation in granulomas and 
increased macrophage scavenger receptor expression, with enhanced mycobacterial 
replication in macrophages loaded with oxLDL in vitro (137). A major contributor to oxidative 
stress in DM is reduced synthesis of glutathione (GSH), a tripeptide of glutamate, cysteine 
and glycine with strong antioxidative properties. GSH levels were found to be reduced 
in TB patients and infected guinea pigs (138, 139). As GSH has been demonstrated to have 
direct antimicrobial effects and to support macrophage control of Mtb (140-142), decreased 
levels of GSH could potentially contribute to TB-DM pathogenesis (143, 144). Finally, DM and 
obesity are associated with dysbiosis of the gut microbiome leading to alterations in 
species which produce short-chain fatty acids (SCFAs) (145, 146), bacterial metabolites with 
immunomodulatory capacities (147). TB patients showed increased frequencies of butyrate- 
and propionate-producing bacteria in the gut (148), and butyrate treatment decreased the 
production of pro-inflammatory cytokines while increasing IL-10 secretion in PBMCs 
stimulated with Mtb lysate (149), warranting further research into possible dysregulation of 
gut microbiota during TB-DM.
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	 Specific metabolites: An alternative method which could illuminate potential 
metabolic components of TB-DM pathophysiology is the use of metabolomics to identify 
specific alterations in patients associated with disease. Metabolomics is defined as the 
study of the metabolome, which constitutes the complete collection of small molecule 
intermediates of metabolism, commonly known as metabolites, within biological samples. 
The value of this approach is clearly demonstrated by a recent study from Weiner et al. 
that described a prognostic metabolite signature with good predictive power within 5 
months of TB diagnosis (150). Remarkably, specific changes could already be detected at 12 
months before onset of disease, which included elevated levels of cortisol. Several studies 
reported that TB is associated with elevated kynurenine and decreased tryptophan levels 
(151-153) indicative of increased IDO activity, illustrating how metabolomics measurements 
can reflect the involvement of relevant immunological mechanisms. However, studies 
which have analyzed the combined effect of TB and DM on patient metabolic profiles are 
currently lacking. It would especially be of interest to study measures of lipid metabolism 
in these patients, as DM and obesity are often associated increased circulating levels of 
lipids and cholesterol while hypercholesterolemia and dysregulated lipid metabolism are 
associated with hampered TB immunity and granuloma progression (154-157). 
	 Taken together, concurrent TB-DM and DM-associated metabolic changes are 
clearly related to alterations in both the innate and the adaptive immune response, 
although their respective contributions to increased risk of active disease is unclear at 
present. Extensive analysis of patient materials and in vitro infection experiments are 
required to elucidate the innerworkings of TB-DM comorbidity, which brings us to the 
outline of this thesis.

Thesis outline
The aim of this thesis was to unravel the pathophysiological mechanisms underlying TB-
DM comorbidity, for which we employed several approaches. For the majority of our in 
vitro experiments, we utilized a primary human macrophage model of Mtb infection. In 
Chapter 2, we first performed a comparative phenotypic, innate and adaptive functional 
analysis of various forms/subsets of Mφ2 macrophage polarization. We identify Mφ2b 
macrophages (polarized in the presence of LPS and immune complexes) as a subset with 
potent antimycobacterial capabilities. Mφ2b differentiation could be a target for host-
directed therapy in intracellular infections.
	 Secondly, we investigated whether metabolic conditions associated with DM 
could modulate macrophage activation and function in the context of Mtb infection. 
In Chapter 3, we investigated the effect of hyperglycemia on cytokine secretion and 
Mtb infection. We report that PBMCs and macrophages cultured under high glucose 
conditions showed increased production of several cytokines after stimulation (TNF-α, IL-
1β, IL-6 and IL-10). However, Mtb survival or outgrowth was not affected by high glucose 
levels in vitro. In Chapter 4, we studied the impact of oxLDL on macrophage function and 
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infection with Mtb. We show that oxLDL treatment induced foamy macrophage formation 
which supported mycobacterial survival through lysosomal cholesterol accumulation and 
subsequent dysfunction.
	 Thirdly, we used metabolomics to dissect the relative impact of TB and TB-
DM on patients’ ex vivo metabolic profiles. In Chapter 5, we utilized a NMR biomarker 
profiling platform to analyze circulating levels of amongst others lipids and amino acids 
in plasma samples of TB, TB-DM and DM patients from South Africa. We find that TB-DM 
patients possess metabolic characteristics of both diseases and that these are associated 
with an overall pro-atherogenic plasma lipid profile. We further expand upon the current 
knowledge of TB metabolomics in Chapter 6 by measuring plasma concentrations of 
amines and acylcarnitines in TB and TB-DM patients from Indonesia.
	 Fourthly, we studied the direct effects of Mtb infection on macrophage metabolism 
to identify new and relevant host metabolic pathways modulated by infection. Chapter 7  
describes the combined results of Seahorse metabolic flux analyses, RNA-seq and (un)
targeted cellular metabolomics of Mtb-stimulated/-infected macrophages. We find that 
Mtb greatly impacts macrophage metabolism, and highlight specific cellular pathways 
and metabolic intermediates which are altered as a result of infection.
	 Finally, the overall results and conclusions of this thesis are summarized and 
discussed in the concluding Chapter 8.
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