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The endothelium has emerged as the key regulator of vascular homeostasis and integrity. As a barrier 

between blood flow and organs, It is optimally placed and is able to respond to physical and chemical 

signals by production of a wide range of factors that regulate vascular tone, cellular adhesion, 

thromboresistance, smooth muscle cell proliferation and vessel wall inflammation 1.  

The endothelial cell is surrounded by a negative-charged gel like layer, the glycocalyx, which serves as a 

barrier between blood and vessel wall. This membrane bound part of the endothelial glycocalyx consists 

of proteoglycans, glycosaminoglycans (GAGs), glycoproteins and glycolipids. GAGs are the main 

contributors to the endothelial glycocalyx structure and function, of which, heparan sulfate (HS) and 

hyaluronan (HA) constitute up to 90% 2-4. Plasma proteins such as albumin, orosomucoid, antithrombin 

III, extracellular superoxide dismutase, lipases, growth factors and chemokines associate with the 

glycocalyx 4, thus constituting a very bio- active surface layer. Its thickness ranges from 0.2-0.5 µm to 2-3 

µm in small arteries and 4.5 µm in carotid arteries 4.  Previous studies, especially when specific approaches 

were applied to stabilize anionic carbohydrate structures to prevent loss and or collapse of these 

structures, gave evidence for a thick endothelial surface layer throughout the whole vascular tree 5. (figure 

1) Injection of hyaluronidase, heparinase and chondroitinase into rat mesenteric postcapillary venules 

reduced glycocalyx thickness by 26.1%, 43.3% and 34.1% respectively, and 89.7% with a mixture of all 

three enzymes analyzed by intravital microscopy 6. 

The endothelial glycocalyx is critically involved in vascular integrity and homeostasis, where it regulates 

endothelial cell mechanotransduction, vascular permeability, coagulation and inflammation 4, 7. The 

binding capacity of glycocalyx, and in particular its HS component, to various growth factors and 

chemokines regulates endothelial activation state and cross communication with neighboring cells 4, 8. In 

a physiological state, glycocalyx synthesis and degradation are dynamically regulated to maintain and 

adapt endothelial function. During chronic disease conditions, such as diabetes, atherosclerosis, 

hypertension and sepsis, the endothelial glycocalyx may lose its structure or become compositionally 

modified. Both modification and degradation of the endothelial glycocalyx can further result in endothelial 

dysfunction, vascular inflammation, coagulation and transendothelial protein leakage and thus contribute 

to the development of (micro)vascular disease 4, 9, 10. 

Endothelial cell surface hyaluronan (HA) appears to be key in many of the glycocalyx functions. In the 

current thesis we will specifically discuss how this particular endothelial glycocalyx component is 

regulated and how it plays a role in regulation of vessel function and in disease conditions such as diabetes 

and tumor angiogenesis. 
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Figure 1. Removing endothelial glycocalyx hyaluronan by hyaluronidase treatment leads to loss of the 

endothelial glycocalyx structure. A. Upon perfusion staining of rat left ventricular vasculature with Alcian 

blue 8GX, capillary endothelial cell surfaces are stained with a thick layer varying in dimension as shown 

in the transmission electron microscopic overviews (bar = 1 µm). B, Detail of normal capillary glycocalyx 

(bar = 0.5 µm). C. Degrading hyaluronan from the endothelial surface reveal a residual staining with loss 

of the hair-like structures resulting in a different appearance and smaller dimension (bar = 1 µm). D, Detail 

of remaining capillary glycocalyx after hyaluronidase treatment (bar = 20 nm). The experiments setting 

and staining protocol were published previously by BM van den Berg, et al. 50 

 

Hyaluronan biosynthesis 

HA is a linear polysaccharide that is composed of repeating units of glucuronic acid (GlcA) and N-acetyl-

glucosamine (GlcNAc) linked together through glycosidic bonds 11 (Figure 2). In contrast to synthesis of 

the other GAGs, which takes place in the Golgi apparatus, HA is synthesized at the inner plasma membrane 

and subsequently secreted into the extracellular space by membrane protruding hyaluronan synthases 

(HAS1, HAS2 and HAS3). Following its synthesis, HA interacts with specific surface proteins (hyaladherins) 

such as CD44, or is assembled into the pericellular extracellular matrix 9, 12. In mammalian cells, the three 
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HAS isoenzymes differ in distribution, functional properties and respond to different stimuli 11, 13, 14. Among 

the three HASs, HAS1 expression is the lowest in healthy cells 15, it requires higher substrate 

concentrations 16 and production of HA is slowest 16. Upon stimulation, HAS3 can produce large amounts 

of HA but of a lower molecular weight 11. HAS2 is the most widespread isoform which is also correlated to 

HA distribution 13. HAS2 knockout mice die early in gestation due to major defects in cardiovascular 

development, suggesting that HA may function as molecular platform for vascular signaling 17. All three 

HAS’ have been shown to produce extracellular HA, while HAS1 also produces intracellular HA 15.  

 

Figure 2. Structure model of hyaluronan. Chemical and 3D ribbon structure of the disaccharide repeats 

of glucuronic acid (GlcA) and N-acetyl-glucosamine (GlcNAc). In the 3D ribbon structure the carbon 

backbone (brown), oxygen (red), hydrogen (white) and nitrogen (blue) are depicted. 

 

The HA biosynthesis rate in vitro is 10-30 monosaccharides/s for recombinant streptococcal HAS 18. In 

optimal conditions (pH 6.5-10.5), purified streptococcal HAS could polymerize HA in at a rate of ~240 

monosaccharides/s 19. This very high synthesis rate raises the point that the cytosolic availability of uridine 

diphospho-glucuronic acid (UDP-GlcA) and uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the 

two substrates for HA synthesis, could be critical for HA synthesis 20-23. Due to the high affinity of 

transporters located on the Golgi membrane for sugar nucleotides, UDP-sugars are quickly pumped into 

the Golgi to keep levels at saturation in the Golgi but at the same time may result in low cytosolic 

availability of UDP-GlcA and UDP-GlcNAc levels for HA biosynthesis. Furthermore, cytosolic UDP-GlcA 

concentration is also lower than UDP-GlcNAc 16, which makes it a potential rate-limiting factor for HA 

production by HAS. In agreement, overexpression of UGDH induces HA production without changing the 

synthesis of the other GAGs 21, further underscoring the dependency of glycocalyx HA synthesis upon the 

substrate UDP-GlcA. UDP-GlcNAc, the other component of the polysaccharide HA is more abundant in the 

cytosol. Besides acting as a substrate for HA synthesis, it also directly regulates HAS2 protein stability and 

mRNA expression through O-GlcNAcylation 24, 25.  

The synthesis rate of HA also depends upon the activity of the HAS2 enzyme. HAS2 protein has a very 

rapid turnover with a half-life of 17 min in the absence of O-GlcNAcylated serine 221 while O-
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GlcNAcylation of serine 221 on HAS2, regulated by UDP-GlcNAc, greatly increases its stability at the 

membrane 24. This allows for a substantial increase in HA production. Other factors are also involved in 

the modulation of HAS2 gene expression, HAS2 activity and thus HA synthesis (Figure 3). HAS2 forms 

dimers or oligomers to form the pores in the membrane, necessary for protruding the newly synthesized 

HA. This pore formation is regulated by ubiquitination 26. For example, mutation of the ubiquitin site on 

lysine 190 of HAS2 leads to inactivation of its enzymatic activity 26. HAS2 is the sole GAG producing enzyme 

that can be regulated by the main energy sensor, AMP activated protein kinase (AMPK), where 

phosphorylation of threonine 110 of HAS2 by AMPK inhibits HAS2 enzymatic activity 27. The AMPK 

mediated inhibition of HA production probably serves cellular energy homeostasis as HA production is a 

high energy consuming process given the very high synthesis rate: the biosynthesis of UDP-GlcA and UDP-

GlcNAc require 1 ATP and 2 ATP respectively 20. The subsequent translocation of one HA disaccharide unit 

across the membrane costs energy equivalent to 1 ATP 28.  

Figure 3. Schematic overview of hyaluronan biosynthesis regulation. Hyaluronan synthase 2 (Has2) is the 

main enzyme involved in endothelial homeostasis and HA production. The availability of UDP-GlcA and 

UDP-GlcNAc determine HA synthesis by HAS2. UDP-GlcNAc formation also leads to O-GlcNAcylation of 
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serine 221 on HAS2 protein, which greatly increases HAS2 stability on the membrane and reduces its 

endocytosis. Ubiquitination of HAS2 protein activates its enzymatic activity through forming HAS2 dimers 

or oligomers. As an ATP homeostasis sensor, AMP activated protein kinase (AMPK) inhibits HAS2 activity 

by regulating the phosphorylation of threonine 110 of HAS2. Upon endoplasmic reticulum (ER) stress 

triggered by hyperglycemia induced PKC pathway in dividing cells or proinflammatory cytokines, HAS2 can 

be activated on the ER membrane to produce cable-like HA structure embedded in aggresomes 

intracellularly. Proinflammatory cytokines such as TNFα, TNFβ and IL1β can induce HAS2 expression 

through NFκB pathway activation. Normal HA increases CD44 clustering and promotes cell survival. 

 

Hyaluronan degradation 

In the vasculature, HA is mainly incorporated into the glycocalyx and extracellular matrix, while the plasma 

level of HA is low in healthy people, due to the rapid removal of HA from the circulation by liver and kidney 
29.  Degradation of HA is very efficient, with a half-life of 2-6 min and a total normal turnover of 10-100 

mg/day in the blood of adult human 30. This process is greatly dependent on the activity of hyaluronidases, 

which are a family of enzymes that can degrade HA into HA fragments by hydrolyzing the disaccharides at 

hexosaminidic β (1–4) linkages. Six hyaluronidases have been identified in man: HYAL1, HYAL2, HYAL3, 

HYAL4, SPAM1 (PH-20) and HYAL6P 31, of which HYAL1 and HYAL2 are the predominant isoforms in most 

tissues. HYAL2 is at the cell surface and anchored to the plasma membrane by a 

glycosylphosphatidylinositol (GPI) link. It can cleave high molecular weight HA (HMW-HA) to a product of 

approximately 20 kDa (≈ 50 disaccharide units) 7, 32. These fragments functionally enhance inflammatory 

and angiogenic signaling 33, 34. HA fragments, bound to CD44, e.g. promote endothelial cell proliferation 

and migration 33, and stimulate  monocyte activation in a TLR4 dependent manner 34. The HYAL2 

generated HA fragments are hypothesized to subsequently become internalized and delivered to 

endosomes and lysosomes, where intracellular HYAL1 degrades the 20-kDa fragments to small HA 

oligosaccharides 32. Interestingly, it is has been proposed that HYAL1 can also be taken up from the 

circulation and subsequently become activated in the endosome, as it requires a low pH (3-4) to be 

functional 7. In support for this model of HA degradation, HYAL2 deficient mice show a thicker endothelial 

glycocalyx than control mice 35. While no human HYAL2 deficiency has been reported, knockdown of 

HYAL2 in mice showed extremely high HA plasma levels, underpinning the role of HYAL2  in HA 

homeostasis 35, 36. HYAL1-deficient mice likewise display a thicker glycocalyx and are also protected from 

endothelial dysfunction in early diabetes mellitus 37, underscoring the relevance of this enzyme system in 
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regulating glycocalyx function. Injection of active bovine testes HYAL, which is active at a higher pH, in the 

circulation of rats also greatly reduces the endothelial HA surface presence and damage the endothelial 

glycocalyx structure (Figure 1). Finally, a rare case of genetic HYAL1 deficiency in turn also showed a 

dramatic elevation of plasma HA 38.  

Cell migration inducing hyaluronidase 1 (CEMIP) and cell migration inducing hyaluronidase 2 (CEMIP2) are 

the most recent identified HA binding proteins exhibiting HA degrading activity 39, 40. CEMIP, which is 

present in various organs 41, is a secreted protein that contains a N-terminal signal sequence 42,and 

requires participation of the clathrin-coated pit pathway to degrade HA 39. CEMIP2, also known as 

transmembrane protein 2 (TMEM2), is expressed on the cell surface as a transmembrane structure. It can 

specifically degrade HMW-HA into ~5 kDa fragments at pH 6-7 in a contact-dependent manner. CEMIP2  

is thought to be involved in the initial step of HA catabolism before internalization and degradation in the 

lysosome. 40, 42 

Except for enzymatic degradation by hyaluronidase, HA can also be directly chemically degraded. 

Especially reactive oxygen species (ROS), derived from superoxide anion radicals (O2
-) and nitrogen 

monoxide (•NO), including hydrogen peroxide, peroxynitrite, and hypochlorous acid have been shown to 

cause direct depolymerization of HA 43,44,45,46.  

 

Hyaluronan function in the endothelial glycocalyx 

As a main component of the endothelial glycocalyx, HA contributes to its structure and gel-like properties. 

The nonsulfated HA is not covalently linked to any core protein, unlike e.g. HS, but instead it deeply 

penetrates the glycocalyx, attached to endothelial membrane bound proteins, such as CD44 4. Various 

techniques have been used to visualize the polysaccharide composition of the endothelial glycocalyx 3, 47. 

Recently, using super-resolution optical microscopy, HA was shown as long molecules that form a 

hexagonal network covering the endothelial luminal surface, while HS is a shorter molecule  

perpendicular to the cell surface 48. This HA network is critical to the integrity and function of the 

endothelial glycocalyx. Permeation of the luminal capillary glycocalyx is by and large determined by its HA 

component. Treatment of the endothelium with hyaluronidase leads to loss of the capillary filtration 

barrier to plasma proteins and results in edema formation and proteinuria 49,6,50. Furthermore, the 

presence of HA at the endothelial surface is required for endothelial mechanosensing and maintenance 

of endothelial quiescence 51, 52. The endothelial glycocalyx has long been recognized as a molecular 
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scaffold critical for growth factor binding, generation of chemokine gradients and surface-receptor 

organization 8.  While this research has been mostly focused on the HS component, where the negatively 

charged sulfate groups and iduronic acid (IdoA) residues in the HS chain are critical for presentation and 

concentration of protein ligands 53, more data is becoming available that shows a role for HA as well in 

modulation of growth factor and chemokine gradients at the endothelial surface. For example, binding of 

tumor necrosis factor (TNF) α induced protein 6 (TSG-6) to HA inhibits chemokine-stimulated trans-

endothelial migration of neutrophils via a direct interaction between TSG-6 and the HA-binding site of 

CXCL8 54. HA and HA fragments can also interact with the CD44 and the receptor for HA-mediated motility 

(RHAMM) to co-regulate endothelial activation. CD44 is a classical transmembrane receptor that is 

present on various cell types and is regulated by inflammation 55. For example, T lymphocytes use CD44 

to bind to HA and start engaging with the endothelium 55. The endothelium itself can also express CD44 

which then stimulates angiogenic signaling events in the endothelium 56, 57. RHAMM functions on the one 

hand as an intracellular receptor where it associates with microtubules in the cell and is involved in 

endothelial cell migration 58. It can, however, also be exported to the extracellular surface during cytokine 

exposure where it binds both HA and CD44, and further induces endothelial cell activation and 

angiogenesis 59.  Finally, glycocalyx components, including HA, have also been shown to regulate plasma 

membrane shape, increasing membrane extensions that can further serve communication between cells 

and the extracellular matrix 60.  

 

Endothelial hyaluronan in diabetes 

Endothelial cells play an essential role in glucose and insulin delivery from blood to organs. Impaired 

insulin signaling in the endothelial cells, with reduction of insulin receptor substrate 2 (Irs2) expression 

and insulin-induced eNOS phosphorylation, reduces insulin-induced glucose uptake by the skeletal muscle 

via decreased capillary recruitment and decreased interstitial insulin concentrations in the skeletal muscle 
61. Insulin rapidly increases glycocalyx accessibility for circulating blood in muscle, and this is associated 

with an increased blood volume in individual capillaries 62. Hyaluronidase treatment of the glycocalyx 

abolishes the effects of insulin on capillary blood volume and impairs insulin-mediated glucose disposal 
62,63. These studies suggest that endothelial HA in the glycocalyx is related to insulin homeostasis. 

Endothelial dysfunction is not only associated with insulin resistance but also one of the major causes of 

diabetic vascular complications including macro- and microangiopathies. However, the role of endothelial 

HA in the development of diabetic vascular complications is still not clear. 
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In type 1 diabetic patients, using glycocalyx permeable and impermeable tracers and orthogonal 

polarization spectral microscopy, systemic glycocalyx volume was reported to be decreased while 

microvascular sublingual glycocalyx properties were affected allowing more red blood cells to penetrate 

this layer 64. Furthermore, plasma HA and HYAL1 levels were also elevated 64, 65. Similarly, these changes 

have also been reported for type 2 diabetic patients, in which also retinal glycocalyx dimensions were 

reduced and the transcapillary escape rate of albumin was increased 66. 

 

Regulation of endothelial glycocalyx hyaluronan in diabetes. 

As diabetes is associated with altered cellular glucobiosynthesis and redox state 67, it may perhaps not 

come as a surprise that endothelial HA homeostasis, which is so closely interconnected with these 

processes becomes dysregulated as well. Impaired biosynthesis secondary to reprioritization of glucose 

metabolism away from the HA glucobiosynthetic pathways appears, however, a less likely explanation for 

the loss of endothelial glycocalyx HA. During hyperglycemia, excess glucose uptake activates the metabolic 

hexosamine pathway resulting in increased production of UDP-GlcNAc 68. Increased UDP-GlcNAc 

concentrations enable, as discussed above, the increase of both HAS2 gene expression and enzyme 

stability through O-GlcNAcylation, which should result in elevated HA production. It is on the other hand 

still not clear how the UDP-GlcA pool, which is regarded the rate-limiting factor for HA biosynthesis, 

changes in diabetes. Interestingly, UDP-GlcA also functions as a substrate for the glucuronidation reaction 

to decrease the intracellular lipid and fatty acid toxicity 69, 70, which could limit its availability for HA 

synthesis in diabetic conditions.  

ROS production has been well established as a cause of endothelial dysfunction in diabetes 71. Under 

diabetic conditions, endothelial cells produces large amounts of ROS both in cytosol and mitochondria, 

mainly caused by activation of the PKC, polyol and hexosamine pathways as well as reduction of the 

pentose phosphate pathway (PPP) flux 72. Besides changing cellular metabolic pathways, ROS induced 

excess formation of advanced glycation end products (AGEs), which cause photo-induced HA degradation 
73. Proinflammatory cytokines, such as TNFα, TNFβ and IL1β, in diabetes also can induce HAS2 expression 

through NFκB pathway activation 74. Furthermore, diabetes-induced endothelial activation, via induced 

PKC activation, has been shown to induce the formation of intracellular HA-cable like structures that are 

secreted as HA aggregates and have been shown to trigger monocyte adhesion 75, 76.  

Upon endothelial cell activation, platelet derived HYAL2 degrades HA from the surface of endothelial cells 

into fragments, capable of further inducing immune responses by monocytes 77. HYAL2 has been shown 
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to induce glycocalyx impairment in cultured endothelial cells under low shear stress 78. Both ROS and pro-

inflammatory cytokines have been reported to induce HYAL2 expression in epithelial cells 79, 80. How 

endothelial HYAL2 activity changes in response to diabetes has not been investigated thus far. HYAL1 is 

found to be elevated in the blood of type 1 diabetes, both in human and animal models, as well as in type 

2 diabetic patients 37, 64, 66, 81, which is correlated with the plasma HA content 65. Pro-inflammatory 

cytokines, such as TNFα and IL1β, have been shown to increase HYAL1 expression and activity in multiple 

cell types via activation of NFκB pathway 79, 82, 83.  Moreover, early growth response 1 (EGR1), a master 

transcription factor that coordinates endothelial activation and which has been reported to be 

upregulated in diabetic endothelium, binds to the promoter in HYAL-1-expressing cells 83, including 

endothelial cells 84, 85. Is therefore likely that the altered redox state and ensuing microinflammation are 

directly related to the induction of hyaluronidases and loss of the glycocalyx. As discussed before, 

circulating plasma HYAL1 can possibly be endocytosed and activated by endothelial cells 7, which may 

contribute to the generalized glycocalyx dysfunction induced by diabetes. In addition, in concert with 

HYAL2, CEMIP2 could also play a role in endothelial surface HA loss although its regulation in diabetes is 

still unknown 42.  

 

Endothelial hyaluronan as a pharmacological target 

Preserving and restoring the endothelial glycocalyx HA could be a potent drug target to prevent diabetic 

organ complications. Druggable targets may include the biosynthesis of HA as well its degradation through 

hyaluronidases. 

Increased vascular endothelial growth factor (VEGF) A levels have been demonstrated in the development 

of diabetic retinopathy and early diabetic nephropathy. By counteracting the VEGFA effect, VEGFC 

treatment reduces the development of early diabetic nephropathy and protects against albuminuria in an 

endothelial glycocalyx dependent manner by increasing  glomerular endothelial HA synthesis 86, 87. 

Interestingly as a hypoglycemic drug, metformin improves the endothelial glycocalyx in db/db mice 88. It 

is also shown to protect endothelial function in diet-induced obese mice by inhibition of ER stress through 

activating AMPK 89. The metformin regulated ER stress inhibition and AMPK activation could be postulated 

to also have a beneficial effect on endothelial HA biosynthesis. 

Activation of hyaluronidases is one of the main causes of HA shedding in diabetes. Inhibition of HYAL1 

activity has also been considered as another strategy to prevent the endothelial glycocalyx damage in 

diabetes. HYAL1 deficiency dramatically increases HA incorporation into the endothelial glycocalyx and 
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results in a thicker glycocalyx layer in 4 week STZ-induced diabetic mice 37. It also prevents diabetes 

induced endothelial dysfunction and glomerular barrier dysfunction 37. HYAL1 deficiency also potentially 

decrease the local accumulation HA fragments in lesion area of diabetes 37. In this aspect, HYAL1 inhibitors 

could be developed and used as a therapeutic approach to prevent the early stage of vascular 

complication in diabetes. However, complete HYAL1 deficiency causes pathologic storage of 

mucopolysaccharide in lysosomes of histiocytes and fibroblasts, named as mucopolysaccharidosis IX, in 

both human and mouse 38, 90, although a gene dose dependency of this severe phenotype has been 

described as well 38. HYAL2 deficient mice show increased markers of endothelial damage and 

microvascular fibrin deposition, which induces thrombotic microangiopathy with hemolytic anemia 35. 

These phenotypes point to the complexity of hyaluronidase inhibition, particularly with respect to the 

therapeutic window. Sulodexide, a mix of HS and dermatan sulfate supplied as GAG precursor, increases 

the endothelial glycocalyx and also reduces the plasma HYAL1 activity in type 2 diabetic patients 66. 

However, it failed to demonstrate renoprotection in overt type 2 diabetic nephropathy patients 91.  

The use of antioxidants has been shown to effectively increase the endothelial glycocalyx and preserve 

endothelial function upon stimulation in human and animal models 92-94. Infusion of the antioxidant N-

acetylcysteine could prevent the acute hyperglycemia induced reduction of endothelial HA and increase 

the endothelial glycocalyx volume in healthy people 92.  

 

Summary and open questions 

Endothelial HA plays a critical role in glycocalyx integrity and endothelial homeostasis. In physiological 

circumstances, the balance between HA biosynthesis and catabolism is in a dynamic equilibrium where 

glycocalyx functions are maintained. The presence of HA in the glycocalyx is a prerequisite for 

(micro)vascular stability both through its mechanosensitive properties as well as through its role as a 

matrix for vascular stability factors. In diabetes, the metabolic changes in endothelial cells lead to 

increased HA degradation, potentially increased intracellular HA-cable structures and loss of glycocalyx 

function (Figure 4).  

Despite these results, how exactly endothelial cells regulate their surface HA expression, with processes 

involved, still needs to be further explored. In addition, what role can endothelial HA play in relation to 

interaction with growth factors, stabilizing factors, necessary for endothelial integrity and vascular 

function. 
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Figure 4. Schematic overview of hyaluronan metabolism disorder results in the endothelial glycocalyx 

dysfunction in diabetes. In a physiological state (left panel), the dynamic metabolism of HA regulated by 

laminar shear stress keeps the endothelial glycocalyx integrity and protects against endothelial 

dysfunction. Long polymeric hyaluronan is interwoven with proteoglycan-bound polysaccharides such as 

heparan sulfate. Direct access to the cell membrane for circulating factors and cells is shielded, and 

specific binding domains in the polysaccharides create gradients of growth factors and chemokines that 

together with the shear-sensing properties of this layer determine endothelial cell behavior. In diabetes 

(right panel), the glycocalyx layer is degraded by heparanase and hyaluronidases. HA biosynthesis in 

activated endothelial cells but now leads to increased intracellularly HA-cabled structures. Together with 

increased HYAL2 activity this could lead to excess HA degradation and accumulation of longer HA 

fragments extracellularly. These can also be further degraded into small HA oligosaccharides by HYAL1 in 

lysosomes. These fragments can increase inflammation and angiogenesis through association with TLR4 

and CD44 respectively. In addition, the released HA aggresomes on the membrane attract monocytes 

adhesion. This generalized HA metabolism dysregulation leads to the endothelial glycocalyx damage and 

vascular destabilization, which can contribute to the develop of vascular complications in diabetes. 
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Outline of this thesis 

In this thesis, we address the role of endothelial HA/glycocalyx in vascular function in health and disease.   

In Chapter 2, we focus on the roles of endothelial HA in vascular integrity in different organs, especially 

kidney. This chapter presents new insights how the endothelial HA is critical in preservation of vascular 

and glomerular stability using a new inducible endothelium specific HAS2 deletion mouse model. We also 

investigate the link with vessel destabilization such as can be observed in diabetes.  

Chapter 3 continues with a same endothelial HA deletion mouse model further studying the role of 

endothelial HA in microvascular perfusion and adaptation to ischemic insults. We use vascular ischemia 

after a single ligation of the common femoral artery, and  we put forward a possible mechanistic 

explanation of failed angiogenic therapy in diabetic patients with critical limb ischemia.  

Loss of endothelial HA and very high expression of HA (formation of HA cable structures and LMW-HA 

fragments) are both detrimental for endothelial integrity ( see above) . It is therefore key that HA synthesis 

is regulated in a very tight way. In Chapter 4, we study the regulation of HA synthesis under physiological 

adaptation to shear. We show that endothelial HA biosynthesis is closely linked to glucose metabolism, 

and in particular the glycolytic flux This new physiological concept is not only relevant to our fundamental 

understanding of vascular biology in general, but is also important for the field of cardiovascular diseases 

(diabetic nephropathy, retinopathy, atherosclerosis) and cancer biology where disturbances in shear 

regulation of endothelial cells have been demonstrated. 

In Chapter 5, we finally explored the metabolic regulation of endothelial HA biosynthesis in a known 

hyperglycolytic melanoma liver metastasis model, and its effects on endothelial integrity. In this chapter, 

we show a direct link between glucose flux, glycocalyx synthesis and vessel stability in tumor endothelium, 

and further suggest that restoration of endothelial glycocalyx function by manipulating the endothelial 

glycolysis rate could be a target to achieve vessel normalization.   

Chapter 6 provides a summary and discussion of the observations in this thesis, including future 

perspectives. 
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