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5| Revisiting non-Gaussianityfrom non-attractor inflation

Abstract: Non-attractor inflation is known as the only single field inflationary sce-
nario that can violate non-Gaussianity consistency relation with the Bunch-Davies
vacuum state and generate large local non-Gaussianity. However, it is also known
that the non-attractor inflation by itself is incomplete and should be followed by a
phase of slow-roll attractor. Moreover, there is a transition process between these
two phases. In the past literature, this transition was approximated as instant and
the evolution of non-Gaussianity in this phase was not fully studied. In this pa-
per, we follow the detailed evolution of the non-Gaussianity through the transition
phase into the slow-roll attractor phase, considering different types of transition.
We find that the transition process has important effect on the size of the local non-
Gaussianity. We first compute the net contribution of the non-Gaussianities at the
end of inflation in canonical non-attractor models. If the curvature perturbations
keep evolving during the transition - such as in the case of smooth transition or
some sharp transition scenarios - the O(1) non-Gaussianity generated in the non-
attractor phase can be completely erased by the subsequent evolution, although
the consistency relation remains violated. In extremal cases of sharp transition
where the super-horizon modes freeze immediately right after the end of the non-
attractor phase, the original non-attractor result can be recovered. We also study
models with non-canonical kinetic terms, and find that the transition can typ-
ically contribute a suppression factor in the squeezed bispectrum, but the final
local non-Gaussianity can still be made parametrically large.

Keywords: Inflation, primordial non-Gaussianity, cosmological perturbation the-
ory
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5.1 Introduction

Inflationary cosmology is the leading paradigm of the very early universe
[1–6], in which the universe has experienced a primordial phase of quasi-
de Sitter expansion. The simplest inflation model is realized by a canoni-
cal scalar field slowly rolling along a sufficiently flat potential. The asso-
ciated perturbation theory successfully predicted a nearly scale-invariant
power spectrum of primordial curvature perturbation, which is favoured
by the latest cosmic microwave background (CMB) observations [108, 182].
Moreover, it is widely acknowledged that the primordial non-Gaussianity,
which encodes information about the very early universe, could be a pow-
erful tool to discriminate different inflation models or alternative scenarios
[35–38]. Remarkably, there is a consistency relation for non-Gaussianity in
single-field slow-roll inflation models pointed out by Maldacena [39, 40].
The consistency relation states that the amplitude of the primordial non-
Gaussianity in squeezed configuration - where the wavelength of one mode
is much larger than the other two in the three point correlation fucntion - is
proportional to the spectral index of the power spectrum of scalar pertur-
bations, i.e. fNL = 5(1−ns)/12. Accordingly, the observation of the almost
scale invariant power spectrum of linear perturbation indicates extremely
small amount of nonlinear correlations in squeezed limit. As a result, one
expects that the simplest inflation model in terms of single slow-roll scalar
field would be ruled out if any squeezed limit non-Gaussianity could be
detected.

It is, however, interesting to notice that there exists a nontrivial infla-
tionary scenario, dubbed as non-attractor inflation [41–43, 183–185], that
can violate Maldecena’s consistency relation even in the framework of sin-
gle scalar field with Bunch-Davies initial states. This is due to the fact
that curvature perturbations generated from quantum fluctuations during
the non-attractor phase are dominated by the growing modes at super-
Hubble scales, of which the behaviour is much similar to the matter bounce
cosmology [28–30] rather than the cosmology of slow-roll inflation. Accord-
ingly, similar to the matter bounce cosmology [107, 186], large amount
of local non-Gaussianity - which contributes dominantly to the squeezed
limit bispectrum - can be achieved in non-attractor inflation models. Ref.
[42] considers a simple model with canonical kinetic term which predicts
fNL ≃ 5/2. The idea is then further generalized to the models with non-
canonical kinetic terms in [43, 184, 185] where it has been shown that the
non-Gaussianity can be arbitrarily large. Inspired by this unconventional
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behaviour of primordial perturbations, many studies have been devoted to
understand the possible violation of the consistency relation during the non-
attractor phase from a variety of theoretical perspectives [103, 187–189].

Furthermore, it is important to notice that the non-attractor inflation
alone is not phenomenologically viable [190]. Namely, without a conven-
tional attractor phase, the non-attractor inflation does not provide enough
e-folds or cannot fit the COBE normalization of the density perturbations.
For a more realistic consideration, the phase of non-attractor inflation shall
be regarded as some initial stage of the whole inflationary era, and a phase
transition from non-attractor to the slow-roll attractor evolution becomes
essential for this class of models. Therefore, the non-attractor inflation
model consists of at least three different kinds of phases: the non-attractor
phase, the transition phase, and the slow-roll phase. We shall define these
phases more explicitly in models we study. During the transition phase,
modes that exited the horizon may not freeze, the main focus of this pa-
per is to understand how the transition process would influence primordial
non-Gaussianities generated in the non-attractor phase.

In this work, we revisit primordial non-Gaussianities from non-attractor
inflation by focusing on the impact of the non-attractor to attractor transi-
tion. We begin with a detailed analysis of the non-attractor inflation model
with a canonical scalar field, which was previously studied in Ref. [42, 190].
Here the transition processes are classified into two different cases, depend-
ing on whether the background evolution around the transition is smooth
or sharp. We first apply the in-in formalism to study the bispectrum in
these two cases separately. For the smooth transition, our calculation shows
that the non-Gaussianity generated in the non-attractor phase cannot sur-
vive through the transition to the slow-roll attractor phase. So the value
fNL = 5/2 generated during the non-attractor phase returns to ∼ 0 (slow-
roll-suppressed) in the slow-roll phase, and the net contribution to the local
fNL is negligible as in the slow-roll attractor case. The situation is more com-
plicated in the sharp transition. After a detailed analysis on the background
and perturbations, we find that, in general the non-Gaussianity generated
in the non-attractor phase is also suppressed after the transition. But in
extremal cases where the curvature perturbations freeze out immediately
at the transition time, the original result fNL ≃ 5/2 can be recovered. We
confirm all these results by employing the simple and intuitive calculation
of the δN formalism. Note that despite the non-trivial evolution of non-
Gaussianity during the transition phase, the consistency relation is still
violated even though the amplitude of non-Gaussianity might be slow-roll
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suppressed. This is a consequence of the fact that the curvature perturba-
tion modes keep evolving after they crossed the Hubble horizon; in con-
trast with the conventional, slow-roll models where curvature perturbation
is conserved on super-horizon scales.

We further study the transition process in the non-attractor inflation
model driven by a non-canonical scalar field, as constructed in [43, 184]. The
background evolution shows that, the inflaton field first becomes canonical
before the cosmological system enters into the phase of slow-roll attractor
through a smooth transition phase. The difference between these models
and the above canonical model is that now we have two types of terms
in the non-canonical models. The first type behaves very similarly to the
interaction term in the canonical model, and it does not contribute to large
local non-Gaussianity either when a smooth transition is taken into ac-
count. However, the non-canonical models have another set of qualitatively
different terms. These second type of terms are unique due to the pres-
ence of the non-canonical kinetic terms. The contribution to large local
non-Gaussianity from these terms do not get exactly erased by the smooth
transition period, but instead gets an additional suppression factor. Since
the suppression factor and the amplitude of primordial non-Gaussianity
generated in the non-attractor phase are independent of each other, the
large local non-Gaussianity is still possible for certain model parameters.
So the main conclusions of [43, 184] remain unchanged.

The paper is organized as follows. In Section 5.2 we study the canon-
ical model of non-attractor inflation. After reviewing previous works, we
focus on the detailed transition process from the initial non-attractor phase
to the subsequent phase of slow-roll attractor. Then we elaborate on the
behaviour of local non-Gaussianity in two different cases – smooth transi-
tion and sharp transition, via both in-in formalism and δN formalism. In
Section 5.3 we generalize the study of the non-attractor inflation to models
with non-canonical kinetic terms, where we only consider smooth transition
case. The detailed transition process in these models is shown by full anal-
ysis of the background dynamics. After that, we estimate the size of the
non-Gaussianity and find a suppression effect caused by the background
evolution of the transition process. We summarize our conclusions with a
discussion in Section 5.4. Throughout the paper we take the convention of
the reduced Planck mass to be M2

pl = 1/8πG = 1.
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5.2 The canonical model

In this section we revisit the calculation of primordial non-Gaussianities in
the model of canonical non-attractor inflation, and show how the different
transition processes may change the non-Gaussianity generated in the non-
attractor phase.

5.2.1 The non-attractor phase and local non-Gaussianity

The canonical non-attractor model is constructed by assuming that the
inflaton’s potential is almost a constant, i.e. for sufficiently large regime
one has V (ϕ) ≃ V0 [41, 42]. Accordingly, the background equations in this
model are given by

ϕ̈+ 3Hϕ̇ ≃ 0 , 3H2 =
1

2
ϕ̇2 + V ≃ V0 , (5.1)

where a dot denotes the derivative with respect to cosmic time t, and H ≡
ȧ/a is the Hubble parameter. This leads to the following behaviour for the
slow-roll parameters

ϵ ≡ − Ḣ

H2
=

ϕ̇2

2H2
∝ a−6 , η ≡ ϵ̇

Hϵ
= −6 . (5.2)

As shown in the above equation, the slow-roll parameter ϵ decays very
quickly during the non-attractor phase, and thus, one can take the limit
ϵ → 0 as a good approximation here. As a result, the Hubble parameter H
is nearly constant during the non-attractor phase and in terms of conformal
time τ the scale factor takes a ≃ −1/(Hτ). In addition, the second slow-roll
parameter η is of order O(1).

For the primordial curvature perturbation R, we define z ≡ a
√
2ϵ and

uk ≡ zRk. Then at the linear level, the perturbation variable uk is governed
by the Mukhanov-Sasaki equation

u′′k +

(
k2 − z′′

z

)
uk = 0 , (5.3)

where the prime denotes the derivative to conformal time τ . Following the
standard treatment, the effective mass can be written as z′′/z ≃ (ν2 −
1/4)/τ2, where for ϵ ≪ 1, ν is given by

ν2 =
9

4
+

3

2
η +

1

4
η2 +

η̇

2H
+O(ϵ) . (5.4)
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In the non-attractor stage, η = −6, and thus, ν = 3/2. Consequently, Eq.
(5.3) yields the mode function of curvature perturbation as follows,

Rk(τ) =
uk
z

=
H√
4ϵk3

(1 + ikτ)e−ikτ , (5.5)

which looks the same as the one in the lowest order slow-roll approxima-
tion. But notice that ϵ is rapidly evolving here in contrary to the slow-roll
case. After Hubble-exit, one can get a scale-invariant power spectrum of
primordial curvature perturbation, of which the form takes PR(k) ≡ H2

8π2ϵ
.

However, since ϵ ∝ a−6, the amplitude of curvature perturbation grows as
Rk ∝ a3 at super-Hubble scales. As a result, the final form of the power
spectrum ought to be evaluated after the end of the non-attractor phase.

In order to calculate the non-Gaussianity, one needs to study the three-
point correlation function of primordial curvature perturbation

⟨Rk1Rk2Rk3⟩ ≡ (2π)3δ(3)(k1 + k2 + k3)BR(k1, k2, k3) . (5.6)

At the squeezed limit k1 ≃ k2 ≫ k3, the bispectrum BR can be expressed
as

BR(k1, k2, k3) = (2π)4
1

k31k
3
3

PR(k1)PR(k3)
3

5
fNL , (5.7)

where fNL is the amplitude of non-Gaussianity in squeezed limit. The con-
sistency relation, predicts fNL ≃ 5

12(1 − ns) which we will see is violated
in non-attractor models. Notice that the local shape has the same scaling
behaviour in squeezed limit, although it is well defined in any configuration
[37]. The non-Gaussianity that is generated during the non-attractor phase
is indeed in the local shape but we are only interested in the squeezed limit
(which tells us whether the consistency relation is violated or not); therefore
we will not discuss non-Gaussianities in general configurations.

Ref. [42] uses two methods to compute the size of local non-Gaussianity.
The first method focuses on the non-attractor phase alone. Because the
contributions from the terms in cubic Lagrangian are slow-roll suppressed
in this phase, Ref. [42] focuses on the contribution from a field-redefinition
term in

R = Rn +
η

4
R2

n +
1

H
RnṘn , (5.8)

which yields
fNL = −5

4
(η + 4) =

5

2
(5.9)

at the end of the non-attractor phase τe. If these perturbations got frozen
immediately at the end of this phase and were carried along to the attractor



5.2 The canonical model 107

slow-roll phase, we would end up with this order-one non-Gaussianity. How-
ever, the transition from the non-attractor phase to the slow-roll phase may
not be an instant process and the process is not generically an attractor so-
lution either. It turns out that the evolution of modes at the super-horizon
scales can be non-negligible during this transition period.

The second method used in Ref. [42] indeed considers this transition, but
treating it as an instant process. In this method, the field redefinition term
no longer contributes because the parameter η should now be evaluated
at the end of inflation instead of at the end of the non-attractor phase.
This value of η is negligible. The corresponding contribution should now,
equivalently, come from an interaction term in the cubic Lagrangian,

S3 ⊃
∫

dtd3x
a3ϵ

2
η̇R2Ṙ . (5.10)

as correctly considered in Ref. [42]. The bispectrum coming from this in-
teraction term is

BR(k1, k2, k3) = −2ℑRk1(τ0)Rk2(τ0)Rk3(τ0)

∫ τ0

−∞
dτa2ϵη′

×
[
R∗

k1(τ)R
∗
k2(τ)R

∗′
k3(τ) + perm.

]
, (5.11)

where τ0 is the conformal time after which the super-horizon curvature
perturbation as well as the corresponding bispectrum cease evolving. We
also remind that τe denotes the end of the non-attractor phase. The η
parameter goes from −6 to nearly zero and then the coefficient η′ can be
comparably large. If the transition is approximated as an instant process
that takes place suddenly at the time τe when the non-attractor phase
ends [42], then one may expect τ0 = τe and the behaviour of η during the
transition period can be approximated by a step function

η = −6 [1− θ(τ − τe)] . (5.12)

As a result, the interaction term (5.10) leads to

lim
k3/k1→0

BR(k1, k2, k3) = (2π)4
1

4k31k
3
3

PR(k1)PR(k3)

∫
dτη′ , (5.13)

and the value fNL = 5/2 will be recovered. However, one may still wonder
whether this conclusion holds true if we consider a complete transition
process. In the next subsections, we will study various transition cases in
details, and show that, for a smooth transition the actual contribution from
(5.10) is negligible; while the O(1) local non-Gaussianity can be recovered
from a sharp transition.
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5.2.2 The non-attractor to slow-roll transitions

The reason that the ultra-slow-roll inflation with a constant potential can-
not be a complete model (even if we impose an abrupt cutoff and start
the reheating instantly in the non-attractor phase) is that, after 40 ∼ 60
efolds, the density perturbation cannot produce the observed value.1 So a
transition to a slow-roll phase is needed. In the following, we construct a
model that describes such a transition. The advantage of our model is that
the exact analytical solutions can be obtained, in which the inflaton field
begins the evolution in the non-attractor phase and then joins the slow-roll
phase gradually.

Figure 5.1: A sketch plot of the potentials of non-attractor inflation with smooth and sharp
transitions. Note that the inflaton rolls from right to left, i.e. ϕ is decreasing during the
evolution.

Suppose that the non-attractor phase ends at ϕe = ϕ(τe), and after
that, a slow-roll potential V (ϕ) is attached to the constant one. Since the
transition process is very short and the inflaton field excursion is very tiny,
during this period, the attached slow-roll potential can be expanded as
follows,

V (ϕ) = V (ϕe) +
√
2ϵV V (ϕe)(ϕ− ϕe) +

1

2
ηV V (ϕe)(ϕ− ϕe)

2 + . . . . (5.14)

1If we require only the non-attractor inflation to solve the flatness and horizon prob-
lems, the total number of efolds of the non-attractor phase should be 40 ∼ 60 efolds, at the
end of which the value of ϵ would be diminishingly small. To fit the COBE normalization,
H would be diminishingly small and ruled out already.
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Here we have introduced the potential slow-roll parameters

ϵV ≡ 1/2(V ′(ϕe)/V (ϕe))
2 and ηV ≡ V ′′(ϕe)/V (ϕe),

which are expected to be small constants such that the slow-roll dynamics
can be triggered after the transition. Accordingly, one can sketch the pos-
sible form of potentials depending on different values of parameters which
correspond to different types of transition, as shown in Figure 5.1. We may
distinguish two extreme possibilities: if we require the derivative of the po-
tential to be continuous, then ϵV = 0 and thus the transition is smooth;
whereas for other cases, such as

√
2ϵV ≳ |ηV |, we get sharp transition.

Note that by considering the above potential we restricted ourselves to the
case with continuous potential and the positivity of the second term also
implies that the inflaton rolls-down instead of jumping up. By the end of
this section, however, we will discuss how the results may change by con-
sidering non-standard cases of discontinuous potential or negative slope.
Finally, notice that the above additional potential in a single field model of
inflation, breaks the internal shift symmetry explicitly; therefore even the
generalized consistency relations [103, 189] are not applicable, unless if the
bispectrum does not evolve when the potential (5.14) switches on.

In this type of inflation model, initially the inflaton field rolls along the
constant potential V = V0 for ϕ > ϕe, which we define as the non-attractor
phase. After the inflaton field reaches ϕe, the potential becomes (5.14), on
which inflation transits to the slow-roll attractor. We define this period
as the transition phase, as shown by the light green region in Figure 5.1.
Using e-folding number N as variable (with the convention dN = Hdt), the
background equations become

d2ϕ

dN2
+ 3

dϕ

dN
+ 3

√
2ϵV + 3ηV (ϕ− ϕe) ≃ 0 , and 3H2 ≃ V (ϕe) , (5.15)

where we have assumed that the Hubble parameter is a constant. Without
losing generality, we can set N = 0 at ϕe and the field velocity at the
same moment is introduced to be πe, then we have the following analytical
solution

ϕ =
s− 3− h

s(s− 3)
πee

1
2
(s−3)N − s+ 3 + h

s(s+ 3)
πee

− 1
2
(s+3)N +

2πeh

s2 − 9
+ ϕe , (5.16)

π ≡ dϕ

dN
= e−3N/2

[
πe cosh

(s
2
N
)
− 3 + h

s
sinh

(s
2
N
)]

, (5.17)
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with the parameters

s ≡
√

9− 12ηV ≃ 3− 2ηV , h ≡ 6
√
2ϵV /πe , (5.18)

being introduced. Notice that in our convention πe < 0 (because ϕ is de-
creasing throughout the evolution) and hence h < 0. After some simple
algebra, the slow-roll parameters defined in (5.2) during the transition are
given by

ϵ(N) =
π2
e

2
e−3N

[
cosh

(s
2
N
)
− 3 + h

s
sinh

(s
2
N
)]2

, (5.19)

η(N) = s− 3− 2s(3 + s+ h)

esN (s− 3− h) + 3 + s+ h
. (5.20)

We can see from the above that, as N increases, η goes from −6 − h to
−2ηV during the transition.

Non-attractor initial condition

Slow-roll attractor

5.0 5.2 5.4 5.6 5.8
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

ϕ

ϕ
'(N

)

0 1 2 3 4 5

-6

-4

-2

0

N

η

Figure 5.2: Smooth transition. Left Panel: the phase space diagram of non-attractor to slow-
roll transition on a plateau-like potential. Right Panel: the evolution of η parameter during
the transition.

Note that, the background evolutions in smooth and sharp transitions
behave manifestly different, and h is a crucial parameter to characterize
their difference. For the smooth transition, h → 0, and thus at the beginning
of the transition phase η = −6, which continuously follows the non-attractor
phase and then smoothly evolves to the slow-roll attractor. Figure 5.2 shows
this behaviour via the phase space diagram and the evolution of η, where the
smooth transition is depicted by the numerical solution of the non-attractor
initial condition on a plateau-like potential2.

2See Section 5.2.3.1 for more discussions about this implementation.
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For the sharp transition, h is a negative constant determined by the field
velocity πe at the end of the non-attractor phase. From (5.19) we see that,
when the attractor is reached after the sharp transition, we have ϵ0 ≃ ϵV
with ϵ0 = π2

0/2, where π0 is the field velocity dϕ
dN during the slow-roll phase.

Therefore, the parameter h can be described also by the ratio between π0
and πe

h ≡ 6
√
2ϵV /πe ≃ 6

√
2ϵ0/πe = −6π0/πe . (5.21)

From the relative magnitudes of πe and π0, it is straightforward to see that,
the value of |h| can be of order unity or even bigger, and there are three
possible cases in sharp transition: h < −6, h = −6 and −6 < h < 0,
as shown in the phase space diagram in Figure 5.3. Consequently at the
beginning of the transition η = −6 − h can be quite large, which differs
from its value during the non-attractor phase (where it is η = −6). Thus
there is a sudden change of η at the transition time, from −6 to −6− h, as
shown by the numerical examples in the right panel of Figure 5.3. For the
later convenience, we formulate the evolution of η around τe as

η = −6− hθ(τ − τe) , τe− < τ < τe+ . (5.22)

Therefore, typically a sharp transition process consists of an instant tran-
sition at the beginning and a following period of relaxation described by
(5.16) – (5.20). One special case is h = −6+2ηV ≃ −6, where inflaton joins
the slow-roll attractor immediately after the instant transition and there is
no relaxation process. However, it still differs from the oversimplified case
in (5.12). As we shall show in Section 5.2.4, this realistic instant transi-
tion does not imply immediate freezing of the curvature perturbation (i.e.
τ0 ̸= τe), and the evolving super-horizon mode after the instant transition
can still modify the non-Gaussianity generated during the non-attractor
phase.

With these background solutions of transitions, in the following we shall
perform a detailed study of non-Gaussianities. The in-in formalism is ap-
plied in Section 5.2.3 and 5.2.4, for smooth and sharp transitions respec-
tively. In Section 5.2.5, we further confirm the in-in results in both cases
via δN formalism.

5.2.3 Non-Gaussianity in a smooth transition

In this subsestion, we focus on in-in calculation of the smooth transition
case, which corresponds to the limit ϵV → 0 in the potential (5.14), and
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Figure 5.3: Sharp transition. Left Panel: the phase space diagram of sharp transition for three
different cases. Right Panel: the evolution of η parameter during the sharp transition.

demonstrate that there is a cancellation for the local non-Gaussianity gen-
erated during the non-attractor stage. Then in Section 5.2.3.1, we confirm
this conclusion by the numerical study of a realistic model. At last, in Sec-
tion 5.2.3.2, we perform an extended analysis to show that this conclusion
holds true for smooth transition in general.

Before the in-in calculation, we should first check the behaviour of the
mode function during the transition, which is governed by the Mukhanov-
Sasaki equation (5.3) and the index ν in (5.4). Even though η and η̇ varies
dramatically during the transition, surprisingly the exact solution (5.19)
and (5.20) gives us ν2 = 9/4− 3ηV , which is constant and the same as the
result in slow-roll attractors3. Therefore, the mode function in (5.5) still
applies here as the leading order approximation, and the resulting power
spectrum in this period is still nearly scale-invariant. We should further
remark that, the curvature perturbation still evolves during the transition,
and should be fixed after the slow-roll attractor is reached. That is to say
the final amplitude of the power spectrum is PR(k) ≡ H2

8π2ϵ0
, where ϵ0 is the

ϵ in the slow-roll stage.
With this analytical description of the smooth transition, now let us

look at the bispectrum caused by the cubic interaction term (5.10). We can
substitute the mode function (5.5) into the in-in integral in (5.11). Notice
that, even though ϵ is small, it varies fast during the transition, thus

R′
k(τ) =

H√
4ϵk3

k2τe−ikτ − η

2
aH

H√
4ϵk3

(1 + ikτ)e−ikτ , (5.23)

3In Section 5.2.3.2, we shall show that the cancellation giving this result of ν2 is not
a coincidence.
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where the second term is due to the ϵ’s evolution4. Taking the squeezed
limit k1 = k2 = k ≫ k3, we get

BR(k1, k2, k3) = − (2π)4

4k31k
3
3

P 2
Rℑ

∫ τ0

−∞
dτ

η′√
ϵ/ϵ0

e2ik(τ−τ0)

×
[
1− ikτ

kτ
+

3η

4

(1− ikτ)2

k3τ3

]
(1 + ikτ0)

2 .(5.24)

Since η′ is negligible during the non-attractor and slow-roll phase, we only
need to compute this integral during the transition process (from τe to τ0).
As mentioned earlier, the evolution of the bispectrum after τ0 is suppressed,
as is well-known in the attractor case where the super-horizon curvature
perturbation freezes out. Since we are mainly interested in the perturbation
modes which exit the Hubble radius during the non-attractor phase, we can
use |kτe| < |kτ0| ≪ 1. Thus the leading order contribution of the above
bispectrum becomes

BR(k1, k2, k3) = − (2π)4

4k31k
3
3

P 2
R

∫ τ0

τe

dτ
η′√
ϵ/ϵ0

[
1 +

η

2
− η

2

(τ0
τ

)3]
. (5.25)

Plugging in the analytical expressions for ϵ and η in (5.19) and (5.20), we
find after the transition

3

5
fNL ≃ −

√
2ϵ0
πe

ηV
2

. (5.26)

Here
√
2ϵ0 can be expressed as the field velocity dϕ

dN at the beginning of the
slow-roll phase τ0, thus

√
2ϵ0 ≪ |πe|. As a result, the local non-Gaussianity

becomes negligible after the transition.
If we compare this calculation with the result (5.13) in the instant tran-

sition approximation, we can just identify τ = τ0 and ϵ = ϵ0 in (5.25)
using the step function (5.12) for η. However, here when we compute the
smooth transition explicitly, the third term in the bracket becomes negli-
gible, since τ0/τ < 1 during the transition. And we have seen that there
is a cancellation between the first two terms, in contrast with the instant
transition approximation which gives order one result. This cancellation is
also demonstrated numerically as follows.

4This contribution was neglected in the calculation of [190], see Eq.(4.15) there.
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5.2.3.1 Numerical study on a plateau-like potential

In a realistic case, non-attractor inflation can be seen as imposing the
ultra-slow-roll initial condition on a plateau-like inflaton potential (such
as Starobinsky inflation [3] and α-attractors [17, 18]). In such a situation,
the smooth transition to slow-roll attractor occurs automatically. In ad-
dition, due to the scale-invariant power spectrum generated in the initial
non-attractor phase, the primordial perturbations can be suppressed on
large scales, which is favored by current CMB observations [190].

Now we study the background evolution of this realistic model numer-
ically, and then further check the analytical results above. Consider the
following potential of Starobinsky inflation [3]

V (ϕ) = V0

(
1− e−

√
2/3ϕ

)2
, (5.27)

which is very flat for large ϕ. In the slow-roll attractor, the field velocity
satisfies ϕ̇sr = −V ′/(3H). However, if inflation starts with a much larger
velocity |ϕ̇| ≫ |ϕ̇sr| on this very flat potential, initially it would be in the
non-attractor phase. Solving the background equations numerically, we get
the results shown in Figure 5.2. As we can see from the phase space diagram
and the evolution of η, this realistic model indeed has a non-attractor initial
phase, and then it will join the slow-roll attractor very quickly.

With this numerical solution, we can go back to do the full computation
for the integral in (5.24), not only for the perturbation which exit the Hub-
ble radius before the transition (non-attractor modes), but also for those
small scale modes (slow-roll modes). The final bispectrum receives contri-
butions from both terms in (5.24). The numerical result of local fNL as a
function of k is shown in Figure 5.4. As we see, if we only consider one con-
tribution, the local non-Gaussianity is O(1) for the non-attractor modes,
and then it vanishes for the slow-roll modes. However, when we combine
these two contributions together, they cancel each other and yield vanish-
ing fNL even for non-attractor modes. This result confirms the analytical
calculation above.

In summary, both analytical and numerical calculation of the smooth
transition process show that, there is a mysterious cancellation happening
during this transition period. In the following subsection, we shall under-
stand this cancellation in a more general way.
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Figure 5.4: The cancellation in the in-in integral (5.24).

5.2.3.2 A more general analysis:

To understand what is going on during a smooth transition, we present a
more general analysis as follows. First of all, let us remind of the background
equations

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , 3H2 =
1

2
ϕ̇2 + V (ϕ) , (5.28)

Here the potential is required to have a slow-roll attractor, but for now we do
not assume any slow-roll conditions. Then using the background equations
and the Hubble ”slow-roll” parameters defined in (5.2), the second and third
order derivatives of the slow-roll potential can be exactly expressed as

V ′′ =

(
6ϵ− 3

2
η − η2

4
+

5

2
ϵη − 2ϵ2 − η̇

2H

)
H2 ,

V ′′′ =
1√
2ϵ

(
9ϵη − 3η̇

2H
− ηη̇

2H
+ 3ϵη2 +

3ϵη̇

H
− 9ϵ2η

− η̈

2H2
− 12ϵ2 + 4ϵ3

)
H2 , (5.29)

which respectively correspond to the inflaton mass and self-coupling. Note
that these derivatives of the potential should be suppressed so that the slow-
roll attractor is possible. Due to this requirement, some useful combinations
of η and η̇, that we will soon encounter, should be much smaller than unity,
even though η and η̇ can be individually large during the non-attractor and
transition stages. One consequence of this observation is the behaviour of
the effective mass in the Mukhanov-Sasaki equation (5.3). As we mentioned
in the last subsection, the coefficient ν2 − 9/4 there is always small, even
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during the transition where η and η̇ are big. Now we see this parameter is
directly related to inflaton mass

ν2 − 9

4
= −V ′′

H2
+O(ϵ) , (5.30)

which does not care if inflation is in the attractor or not.
With this knowledge, let us look at the cubic interaction term (5.10)

again. In our in-in calculation above, one subtlety is caused by the evolution
behaviour of Ṙ. We can remove it via integration by part, and express (5.10)
as

−
∫

dtd3x
d

dt

(
a3ϵη̇

6

)
R3 + surface term . (5.31)

Since there is no more time derivative on R, the only important effect lies
in the cubic coupling. Here we are encouraged to introduce the effective
coupling as

1

6a3ϵ

d

dt

(
a3ϵη̇

)
=

H2

3

(
3η̇

2H
+

ηη̇

2H
+

η̈

2H2

)
. (5.32)

Again it looks like due to the drastic variation of η, these terms could
be large during the transition. However, if we plug in our analytical and
numerical solutions in the last section, this combination is shown to be
negligible. Interestingly, they are also present in V ′′′, and can be written as

1

6a3ϵ

d

dt

(
a3ϵη̇

)
= −1

3

√
2ϵV ′′′ +O(ϵ)H2 . (5.33)

Therefore the contribution from this term is always small, no matter how
big η and η̇ are during the transition. The presence of V ′′′ is not a coinci-
dence here. In the flat gauge, the operator which contributes to the cubic
Lagrangian (5.10) comes from the self-interaction of field fluctuations

L3 ⊂
a3

6
V ′′′δϕ3 =

a3ϵ

3

√
2ϵV ′′′R3 . (5.34)

Taking the decoupling limit, we have

V ′′′ =
1√
2ϵ

(
− 3η̇

2H
− ηη̇

2H
− η̈

2H2
+O(ϵ)

)
H2 . (5.35)

And after integration by parts, the self-interaction term exactly gives us
the cubic term (5.10).
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In summary, for a smooth non-attractor to slow-roll transition, as long
as we have a slow-roll potential (V ′′′ is small), the non-Gaussianities would
be always small. The cubic interaction term (5.10), which was previously
thought to contribute sizable fNL in the instant transition approximation,
actually never contributes in the realistic smooth transition case. However,
this argument may not work in sharp transition cases. There the potential
is unsmooth around the transition, which may yield large V ′′′. Furthermore,
the unconventional behaviour of the mode function will add extra compli-
cations. These issues of the sharp transition will be addressed in the next
subsection.

5.2.4 Non-Gaussianity in a sharp transition

As we discussed previously, the background of sharp transition differs from
the smooth transition case. Now we come to study the effect of a sharp
transition on the evolution of perturbations, especially on the local non-
Gaussianity. The sharp transition corresponds to the case where the second
term in the potential (5.14) is also important. In this subsection, we shall
study the case

√
2ϵV ≳ |ηV |. The form of the potential (5.14) can be invalid

after the inflaton field evolves to sufficiently large distances from the tran-
sition point. But we can assume that the slow-roll limit is already reached
before that happens so that we do not need to keep track of perturbations
any more.

First of all, unlike the smooth transition case, the behaviour of the
mode function in the sharp transition is more complicated. If we look at the
Mukhanov-Sasaki equation and the index ν in (5.4), the analytical solution
of the sharp transition (5.19) and (5.20) still gives us ν2 = 9/4 − 3ηV .
However, due to the sudden change of η at the transition time τe, one
cannot simply continue using the initial mode function (5.5) after τe. Here
when the transition happens, the matching condition requires the mode
function and its first derivative to be continuous, i.e. R(τe−) = R(τe+)
and R′(τe−) = R′(τe+). This gives us the following behaviour of curvature
perturbation after τe

Rk(τ) = αk
H√
4ϵk3

(1 + ikτ)e−ikτ + βk
H√
4ϵk3

(1− ikτ)eikτ , (5.36)

R′
k(τ) = αk

[
H√
4ϵk3

k2τe−ikτ +
η

2τ

H√
4ϵk3

(1 + ikτ)e−ikτ

]
+βk

[
H√
4ϵk3

k2τeikτ +
η

2τ

H√
4ϵk3

(1− ikτ)eikτ
]

, (5.37)
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where

αk = 1 + i
h

4k3τ3e
(1 + k2τ2e ) , βk = −ih(1 + ikτe)

2 e
−2ikτe

4k3τ3e
. (5.38)

We can easily check the long wavelength behaviour of the mode function
after τe

Rk(τ) ≃
6− h

6

H√
4ϵk3

+
τ3

6τ3e

H√
4ϵk3

for k → 0 . (5.39)

This solution satisfies the super-horizon EoM: R̈+ (3 + η)HṘ = 0. At the
time τ0 of the slow-roll stage, we get the freezed amplitude

Rk(τ0) ≃
6− h

6

H√
4ϵ0k3

=

(
1 +

√
ϵ0
ϵe

)
H√
4ϵ0k3

. (5.40)

For large values of |h| the above relation reduces to Rk(τ0) ≃ H√
4ϵek3

which
is similar to the mode function at the transition time τe. Thus, for |h| ≫ 1,
the final power spectrum does not change much by the transition and we
have PR ≃ H2

8π2ϵe
. Therefore, we expect to recover the previously calculated

non-Gaussianity fNL = 5/2 in the |h| ≫ 1 limit where the mode function is
assumed to freeze instantly after transition. We will confirm this expecta-
tion explicitly below. Note also that, in the h = −6 case with only instant
transition, the super-horizon modes still evolve from τe to τ0, as can be
seen from (5.39). This shows that a realistic instant transition to the slow-
roll evolution (which corresponds to h = −6) does not imply an instant
freezing of the mode function, thus we do not expect to recover fNL = 5/2
after this transition. On the other hand, for |h| ≫ 1, the adiabatic limit is
reached instantly and the mode function freezes out immediately whereas
the background evolution experiences a transition period before it relaxes
to the slow-roll dynamics.

For the sharp transition, the in-in integral in the bispectrum (5.11) can
be divided into two nontrivial pieces : one is the contribution from the
instant transition at τe, where η can be approximated by the step function
as in (5.22); and the other one is the relaxation period from τe to τ0, which
is described by the analytical solution in Section 5.2.2.

For the first piece, the integral goes from τe− to τe+ . At τe− , the mode
function is described by (5.5), and η = −6. At τe+ , the mode function
is given by (5.36), and η = −6 − h. Thus taking the squeezed limit and
focusing on perturbation modes which exit the Hubble radius during the
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non-attractor phase, we can write this contribution to the bispectrum as

lim
k3/k→0

Ba
R(k, k, k3) = −ℑRk(τ0)

2Rk3(τ0)

∫ τe+

τe−

dτa2ϵη′

×
[
R∗

k(τe−)R∗
k(τe−)R∗′

k3(τe−)θ(τe − τ)

+R∗
k(τe+)R∗

k(τe+)R∗′
k3(τe+)θ(τ − τe) + perm.

]
=

(2π)4

k31k
3
3

P 2
R

∫ τe+

τe−

dτ
−η′

4

h (h+ 12)

(h− 6)2

× [θ(τe − τ) + θ(τ − τe)] . (5.41)

Then via (5.22), the integral above yields∫ τe+

τe−

dτ
h

4

h (h+ 12)

(h− 6)2
θ′(τ − τe) [θ(τe − τ) + θ(τ − τe)]

=
h2

4

h+ 12

(h− 6)2
, (5.42)

where in the last step we took an integration by parts to reduce the integral
to boundary terms.

The second part of the integral corresponds to the relaxation process
after τe. Substituting the mode function (5.36) and (5.37) into (5.11), its
contribution to the squeezed bispectrum is given by

lim
k3/k→0

Bb
R(k, k, k3) =

(2π)4

k31k
3
3

P 2
R

∫ τ0

τe

dτ
−η′

8

√
ϵ0
ϵ

[
2 + η

+
2h

6− h

τ3

τ3e
(4 + η) +

h2

(6− h)2
τ6

τ6e
(6 + η)

]
.(5.43)

Using the analytical solution during the relaxation (5.16) and (5.17), the
above integral becomes∫ τ0

τe

dτ
−η′

8

√
ϵV
ϵ

[
2 + η +

2h

6− h

τ3

τ3e
(4 + η) +

h2

(6− h)2
τ6

τ6e
(6 + η)

]
= −h

4

6h+ h2 + 12ηV
(6− h)2

, (5.44)

where we used ϵ0 ≃ ϵV which holds in the sharp transition with
√
2ϵV ≳

|ηV |.
Adding these two contributions together, we get

3

5
fNL =

3h(h− 2ηV )

2(h− 6)2
. (5.45)
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As we see, the amplitude of local non-Gaussianity is mainly determined
by the h parameter in sharp transition case. For |h| ≫ 1, it yields the
maximum value fNL ≃ 5/2, which recovers the result in the initial non-
attractor phase. For the instant transition (h = −6), we get a reduced value
fNL = 5/8. In general, the sharp transition suppresses the amount of local
non-Gaussianity generated during the non-attractor phase. The extremal
case is h → 0, where we have negligible contribution 3

5fNL = −hηV /12,
similar to the smooth transition result.

Concluding the subsection, we remark that the sharp transition of non-
attractor inflation is different from the inflationary feature models, where
due to the kink or step on the potential, one may have a short non-slow-
roll period which connects two slow-roll stages before and after the local
feature. Since initially inflation is on the slow-roll attractor, long wavelength
modes will remain constant during the non-slow-roll period. Therefore these
feature models cannot result in nontrivial local non-Gaussianity for large
scale perturbations, and the consistency relation is still valid. The reason is
that once the mode is frozen in the adiabatic limit it remains so regardless of
what may happen after, because a constant is a solution of the EoM for the
super-horizon mode function. However, in the sharp transition here, because
of the initial non-attractor phase, long wavelength modes may continue to
evolve on super-horizon scales. As a consequence, local non-Gaussianity can
be modified on large scales due to the transition.

Related to this issue, it is also known that the presence of sharp fea-
ture on potential will generate scale-dependent oscillatory signals in power
spectrum and non-Gaussianities (See e.g. [37] for a review). The argument
is very general and should apply here as well. However, this sinusoidal os-
cillation starts to appear around the scale k ∼ 1/τe and has a wavelength
∆k ∼ 1/τe. So they appear at much shorter scales than what we are inter-
ested in in this paper.

5.2.5 δN calculation

The δN formalism [131–135, 142, 191] is a simple and intuitive approach to
the non-linear behaviour of curvature perturbations. Based on the separate
universe assumption, it mainly captures the super-horizon effects of the
perturbation modes, thus it just provides what we need for the calculation
of local non-Gaussianity. For non-attractor inflation, one extra subtlety one
should take care of is that the number of e-folds N does not only depend
on the initial field value ϕ, but also on the initial field velocity π [42]. In
the following, via δN formalism we give a unified calculation of local non-
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Gaussianity that captures both smooth and sharp transition cases, and
recovers the in-in results in Section 5.2.3 and 5.2.4 in two extreme limits.

For the non-attractor phase, the number of e-folds N can be easily
worked out. As in Section 5.2.2, we set N = 0, ϕ = ϕe and dϕ/dN = πe
at the end of the non-attractor phase, then the background equations (5.1)
yield the following non-attractor solution in terms of e-folding number N

ϕ(N) = ϕe +
πe
3

(
1− e−3N

)
, π(N) ≡ dϕ

dN
= πee

−3N . (5.46)

Next we can invert this solution and obtain the e-folds of the non-attractor
phase in terms of the initial ϕ and π

Ni = −1

3
ln
[

π

π + 3 (ϕ− ϕe)

]
= −1

3
ln π

πe
, (5.47)

where in the second equality we used the following relation of the non-
attractor phase

3 [ϕ(N)− ϕe] + π(N) = πe. (5.48)

For the subsequent transition and slow-roll stages, the analytical solu-
tions are already worked out in (5.16) and (5.17). Here we need to study
the evolution until the end of the transition, where the slow-roll attractor
is reached. Let us set N = Nf and ϕ = ϕf at that time. Then Nf is big,
and (5.16) yields the following approximation

ϕf ≃ s− 3− h

s(s− 3)
πee

1
2
(s−3)Nf +

2πeh

s2 − 9
+ ϕe , (5.49)

which gives us

Nf ≃ 2

s− 3
ln
[
s(s− 3)

s− 3− h

(
ϕf − ϕe

πe
− 2h

s2 − 9

)]
=

2

s− 3
ln
[

1

−2ηV πe − 6
√
2ϵV

]
+ const. (5.50)

In the second equality, we separate out the parts unrelated with initial
condition (ϕ, π) as a constant. Note here, due to the relation (5.48), πe and
also h are determined by the initial ϕ and π in the non-attractor phase.

Finally, the total e-folding number from the non-attractor phase to the
slow-roll stage counted backward in time is given by

N(ϕ, π) = Nf−Ni =
2

s− 3
ln
[

1

−2ηV πe − 6
√
2ϵV

]
+
1

3
ln π

πe
+const. (5.51)
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The δN formula is simply given by

δN =
∂N

∂ϕ
δϕ+

∂N

∂π
δπ +

1

2

∂2N

∂ϕ2
δϕ2 +

∂2N

∂ϕ∂π
δϕδπ +

1

2

∂2N

∂π2
δπ2 . (5.52)

Since δϕ is approximately constant on super-horizon scales, δπ is exponen-
tially suppressed and thus can be neglected. As a result, from (5.51) we
get

δN =

(
∂Nf

∂ϕ
− ∂Ni

∂ϕ

)
δϕ+

1

2

(
∂2Nf

∂ϕ2
− ∂2Ni

∂ϕ2

)
δϕ2 (5.53)

=

(
− 1

πe
+

3

3
√
2ϵV + ηV πe

)
δϕ

+

[
3

2π2
e

− 9ηV
2(3

√
2ϵV + ηV πe)2

]
δϕ2 , (5.54)

where again we used the initial condition dependence of πe(ϕ, π) from (5.48).
And the local non-Gaussianity directly follows

3

5
fNL =

1

2

∂2N

∂ϕ2

/(
∂N

∂ϕ

)2

=
3
[
4(ηV − 3)ηV + h2 + 4ηV h

]
2(2ηV + h− 6)2

(5.55)

This calculation is valid for both smooth transition (h → 0) and sharp
transition (h ̸= 0). As we discussed previously, ηV is always small, but |h|
can be large for the sharp transition. Thus similar with the in-in result
(5.45), when |h| ≫ 1, we recover fNL = 5/2. For the smooth transition or
sharp transition with small h, we get fNL ≃ −5ηV /6 = 5η0/12, where η0
is the second Hubble slow-roll parameter in the slow-roll stage. Note that
this also agrees with the full in-in calculation. In such cases, the in-in result
from cubic interaction term (5.10) is sub-dominant, and thus the leading
contribution comes from the field redefinition (5.8), which yields the same
result as above.

We close this section by some concluding remarks. It is interesting to
discuss the implications of our results on the consistency relation violation
in canonical non-attractor inflation. As we know, the power spectrum gener-
ated in the non-attractor phase is scale-invariant with ns−1 = 0. However,
the final result (5.55) yields nonzero value for fNL after the transition. Even
in the smooth transition case where fNL is slow-roll suppressed, we do not
have fNL = 5

12(1−ns). Therefore, the consistency relation is still violated in
the non-attractor inflation with full consideration of the transition process.
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It is also interesting to notice that fNL = 5/2 is the maximum non-
Gaussianity that one can obtain from such a model irrespective of the de-
tails of the transition period. This upper bound holds true even if one
considers either a bump potential (where the slope at the transition point
is negative) or a step potential (where the potential is discontinuous). That
is, although the final fNL as a function of parameters is clearly different for
these cases, its value cannot exceed the fNL that is generated purely during
the non-attractor phase. In terms of δN formalism, there can be two con-
tributions to the final non-Gaussianity: one from the non-attractor e-folds
Ni in (5.51), another one from Nf . When Ni terms are the dominant con-
tribution in the δN expansion (5.53), we recover the O(1) non-Gaussianity
of the non-attractor phase. In the opposite limit, where Nf terms are domi-
nating, it turns out that the non-Gaussianity is small. This is an interesting
observation without rigorous proof. But we remark that the Nf part of the
evolution is basically the case with non-slow-roll initial condition on a slow-
roll potential, which is generically expected to yield small non-Gaussianity,
as we argued in Section 5.2.3.2. Thus if Nf terms dominate in δN expan-
sion (5.53), we expect a slow-roll suppressed fNL. As a consequence, the
upper bound is given by the non-attractor result fNL = 5/2 when Ni terms
contribute.

5.3 Models with non-canonical kinetic terms

After studying the transition in the canonical ultra-slow-roll inflation, it
is also interesting to re-examine the non-canonical model presented in [43,
184]. We will discuss the background evolution in details. However, since
this model cannot be considered as a realistic model of inflation due to the
fine tuning of its initial conditions, we study the perturbations only in a
specific limit where the analytic calculation is still tractable.

In this model the non-attractor inflation is realized by a k-essence field
with the following Lagrangian

L = P (X,ϕ) = X +
Xα

M4α−4
− V (ϕ) , V (ϕ) = V0 + vϕβ , (5.56)

where X = −1
2(∂ϕ)

2, and α, M , V0, v, β are free parameters. In this model,
the sound speed cs is given by

c2s ≡
P,X

P,X + 2XP,XX
=

1 + α
(

X
M4

)α−1

1 + α(2α− 1)
(

X
M4

)α−1 . (5.57)
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The following variables are also defined here for future reference:

Σ ≡ XP,X + 2X2P,XX =
XP,X

c2s
, (5.58)

λ ≡ X2P,XX +
2

3
X3P,XXX =

XP,X

c2s
(1− c2s)

2α− 1

6
. (5.59)

To the best of our knowledge, so far this is the only model which can
give us f local

NL ≫ 1 in single-field inflation with Bunch-Davies initial state.
In this section, we will give a detailed analysis for the transition process
in this model, and perform the full calculation to test whether large non-
Gaussianity remains or not.

5.3.1 Background evolution of k-essence non-attractor model

First of all, let us focus on the background dynamics of this model. The
equation of motion for inflaton can be written as(

ϕ̈

c2s
+ 3Hϕ̇

)[
1 + α

(
X

M4

)α−1
]
+ Vϕ = 0 . (5.60)

From the above equation and (5.57) we can see that one important param-
eter here for the evolution is the ratio X/M4. For X ≫ M4, this model
is non-canonical with c2s ≃ 1/(2α − 1); but for X ≪ M4, it returns to
the canonical case. In this model initially the inflaton field climbs up the
hilltop potential, with the kinetic energy dominated by the non-canonical
term. Later on, as X decreases dramatically in the non-attractor phase, the
system would go from the non-canonical regime to the canonical regime.

For k-essence field, the slow-roll parameters are expressed as

ϵ ≡ − Ḣ

H2
=

XP,X

H2
, (5.61)

η ≡ ϵ̇

Hϵ
≃ ϕ̈

Hϕ̇

(
1 +

1

c2s

)
. (5.62)

As we know, a non-attractor phase happens when ϵ ∝ a−6 and η ≃ −6. In
the original papers [43, 184], an ansatz ϕ(t) ∝ aκ was used to get the initial
non-attractor stage. This was achieved by letting the Vϕ term compete
with the ϕ̈ and ϕ̇ terms in the equation of motion (5.60). And the following
conditions for parameter choices are required

β = 2α , κ =
η

2α
, v = −M4

c2s

(
V0κ

2

6M4

)α(
1 +

3c2s
κ

)
. (5.63)
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However, it is still not clear how the system transits to the attractor
phase in details. In the following we perform a full numerical study of the
”non-attractor to slow-roll” transition in the k-essence model. Before that,
we summarize the generic behaviour for the evolution first:

The main results of the numerical solution are shown in Figure 5.5.
At the beginning, since the potential is tuned to accommodate with the
ansatz as shown in (5.63), inflation occurs in the phase with η = −6, while
X ≫ M4 gives a small sound speed. We call this initial stage the non-
attractor I. Then as the inflaton approaches the hilltop, the Vϕ term in
(5.60) becomes subdominant, and thus the equation of motion becomes
ϕ̈+ 3Hc2sϕ̇ ≃ 0, which according to (5.62) yields

η = −3(c2s + 1) . (5.64)

Since the inflaton field is still non-canonical (cs ≪ 1), we have η ≃ −3. We
dub this period as the non-attractor II phase. Next, X continues decreasing
and becomes smaller than M4, then the canonical term in P (X,ϕ) begins to
dominate the kinetic energy of inflaton. After that, the scalar field becomes
canonical, and we call this moment the canonical transition. And from
(5.64), we see the system goes to the canonical non-attractor regime with
η = −6. This stage has the same behaviour with the canonical non-attractor
model, and is called non-attractor III here. Finally, the following transition
to the slow-roll attractor is the same as what we discussed in Section 5.2. As
we see, the ”non-attractor to slow-roll” transition is much more complicated
in the non-canonical model. One important feature is that there is also a
canonical transition prior to the slow-roll attractor phase. This qualitative
description is confirmed by the numerical analysis below.

Numerical Study.
Following the choice of parameter values in [43, 184], here we take α =

Figure 5.5: The transition process in the k-essence non-attractor model.
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) for the k-essence non-attractor model.

Undershoot

Overshoot

Critical

2 4 6 8 10 12
N

-8

-6

-4

-2

2

4

η

Undershoot

Overshoot

Critical

0 2 4 6 8 10 12
N

0.2

0.4

0.6

0.8

1.0

cs

Figure 5.7: The evolution of η and cs in the k-essence non-attractor model.

10, M = 5×10−5, V0 = 6.25×10−4, while v and β are given by the relation
in (5.63). Initially inflaton field is set to roll up the hilltop potential from
ϕi = 2 × 10−6. Then via varying the initial field velocity, we find different
transition behaviours. The numerical solutions of background dynamics are
shown here. Figure 5.6 gives us the phase space diagram. In Figure 5.7, we
focus on the evolution of two parameters: the second slow-roll parameter η,
which is important for the non-attractor behaviour, and the sound speed
cs, which tells if inflaton field is canonical or not.

From these figures, we can see a generic pattern for the transition pro-
cess: after the non-attractor I stage (η ≃ −6), inflation first enters the
non-attractor II phase (η ≃ −3), and later as shown by the evolution of cs,
the canonical transition happens. Here we introduce a critical field velocity
ϕ̇c, for which inflaton can just reach the top of the potential and will stay
there forever. Then accordingly the numerical analysis can be classified into
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three representative cases:

• Undershoot (blue curves). This corresponds to the case where the ini-
tial field velocity is smaller than |ϕ̇c|. After a very short non-attractor
II phase, in the canonical non-attractor regime, inflaton stops some-
where before reaching the top of the potential and then rolls backward
to initiate the slow-roll phase. At the turning point, since ϕ̇ = 0, we
have ϵ = 0 and η = ∞.

• Critical case (red curves). The initial field velocity is set to be the
critical value. In this case, after the canonical transition, the system
reaches an eternal non-attractor stage with η = −6 and cs = 1.

• Overshoot (orange curves). This is the case where the initial field
velocity is larger than |ϕ̇c|. As we see, here the non-attractor I stage
is very short, while the non-attractor II phase lasts for a longer time,
during which the inflaton field rolls over the top of the potential. After
this, inflation goes into the canonical non-attractor regime and then
transits to the slow-roll stage as we discussed before.

In these three cases, only undershoot and overshoot can give us successful
”non-attractor to slow-roll” transition. Although the details can be very
different, both these two numerical results verify the evolution in Figure
5.5 and the qualitative description there, i.e. in these non-canonical models
the canonical transition always occurs before the relaxation to slow-roll.
This holds true at least for our choice of parameters which are consistent
with [43]. It would be interesting to see whether it is also true for other
values of the parameters; however, we do not go further in this direction
here. In the following rough calculation of non-Gaussianity, we shall use
this general transition behaviour as the basic setup and refer to these two
cases (overshoot and undershoot) for details.

5.3.2 Non-Gaussianities

With the above background analysis, we are ready to study the primordial
perturbations. At first glance, a full calculation could be very difficult, since
the transition behaviour is quite complicated. Numerical calculation also
faces a technical UV-convergence problem because the non-attractor phase
is rather short.

However, the problem can be simplified if we focus on the generic pattern
of the transition. As we see, the main difficulty comes from the occurrence
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of the non-attractor II phase, during which we have η = −3. If this period
lasts for a long time (as in the overshoot case), we cannot get a scale-
invariant power spectrum for curvature modes that are leaving the horizon
during this period. This can be interesting for the research of features in
the primordial perturbations, but in this paper we keep focusing on the
behaviour of non-Gaussianity during the transition. And for the analysis of
the bispectrum, it is the canonical transition that plays a crucial role here.

Therefore we propose the following limit case for analytical study: The
non-attractor II phase is so short such that its effect can be neglected. In
this approximation, before the slow-roll attractor, η can always be seen
as −6 and the canonical transition occurs at some time in this stage. In
principle this does not agree with the numerical results since it breaks the
relation (5.64), but it can be seen as an approximated description of the
undershoot case.

Based on the qualitative analysis above, next we focus on the modes
which exit the Hubble radius during the non-attractor I stage, and do the
back-of-the-envelope estimates for the non-Gaussianities. The starting point
is the cubic action for a general k-essence field in the comoving gauge [192,
193]. Since ϵ ≪ 1 always holds true during the whole transition process,
again we can focus on the decoupling limit with only three operators left

S3 ⊃
∫

dtd3x

[
−a3ϵ

c2s
Ξ
Ṙ3

H
− 3

a3ϵ

c4s
(1− c2s)RṘ2 +

a3ϵ

2c2s

d

dt

(
η

c2s

)
R2Ṙ

]
. (5.65)

The coefficient of the Ṙ3 term is given by

Ξ ≡ 1− 1

c2s
+

2λ

Σ
=

(
2α− 1

3
− 1

c2s

)
(1− c2s) , (5.66)

where (5.57), (5.58), (5.59), (5.61) and (5.62) are used for the second equal-
ity. Before the canonical transition we have Ξ = 2(c2s − 1)/3c2s. This co-
efficient and the one for the second term in (5.65) both vanish after the
canonical transition. At the same time, the following field redefinition is
also considered in [184]

R = Rn +
η

4c2s
R2

n +
1

c2sH
RnṘn , (5.67)

which can give large non-Gaussianity in the non-attractor I phase. However,
since this term should be evaluated in the slow-roll stage where η ≃ 0 and
Ṙ ≃ 0, its contribution can be neglected. For the last operator in (5.65),
again we re-express it via integration by part

−
∫

dtd3x
d

dt

[
a3ϵ

6c2s

d

dt

(
η̇

c2s

)]
R3 + surface term . (5.68)
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Plugging in the numerical solution, we confirm that the effective coupling
here is also negligible during the transitions as in the canonical case.

The difference from the canonical case arises due to a couple of in-
teraction terms in the Lagrangian that are unique for the non-canonical
models. Let us estimate their contributions. The first term in (5.65) gives
the bispectrum of

BṘ3(k1, k2, k3) = 12ℑ
[
Rk1(τ0)Rk2(τ0)Rk3(τ0)

×
∫ τc

−∞

aϵdτ

c2sH
Ξ(τ)R′∗

k1(τ)R
′∗
k2(τ)R

′∗
k3(τ)

]
,(5.69)

where τc is the conformal time at the canonical transition, and τ0 is the one
at the beginning of the slow-roll phase. Since Ξ vanishes after the canon-
ical transition, the in-in integral stops at τc. Another subtlety here is the
mode function Rk. Since there is a sudden change of cs around the transi-
tion, in principle one has to use the general slow-roll formalism to solve its
behaviour, taking into account the discontinuity around the canonical tran-
sition. However, since the integral above vanishes right after the canonical
transition, the mode function after transition becomes irrelevant for that
integral; and it is easy to check that it does not affect the prefactors Rki(τ0)
in (5.69) at leading order either. Therefore, for a rough estimate, here we
take the following zeroth order approximation

Rk =
H√

4ϵcsk3
(1 + icskτ)e

−ic
s

kτ R′
k =

H√
4ϵcsk3

c2sk
2τe−ic

s

kτ − 3

τ
Rk (5.70)

Since we mainly care about the modes crossing the Hubble radius during
the initial non-attractor phase, we have −kτ0 ≪ −kτc ≪ 1. Meanwhile in
this limited case we assume η = −6 before the time τ0, which means for
this whole period ϵ(τ) = ϵ0τ

6/τ60 . As a result, the bispectrum becomes

BṘ3(k1, k2, k3) = (2π)4
(

H2

8π2ϵ0cs

)2
3(c2s − 1)

4c2s

(
τ0
τc

)6 k31 + k32 + k33
k31k

3
2k

3
3

,(5.71)

which is in the local shape. As we see, when τ0 = τc it returns to the previous
result in [184]. However, if the canonical transition occurs ∆N e-folds be-
fore the slow-roll phase, (τ0/τc)6 would give a suppression factor ∼ e−6∆N .
Correspondingly in the squeezed limit, we get the following amplitude of
non-Gaussianity

3

5
f Ṙ3

NL =
3

2c2s
(c2s − 1)

(
τ0
τc

)6

∼ − 3

2c2s
(1− c2s)e

−6∆N . (5.72)
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This suppression is caused by the super-Hubble evolution of the curvature
perturbation after the canonical transition. Since R keeps growing until
the end of the non-attractor phase, the difference between R(τc) and R(τ0)
yields the suppression factor above.

With a similar procedure, the second term in (5.65) gives

BRṘ2(k1, k2, k3) = (2π)4
( H2

8π2ϵ0cs

)2(τ0
τc

)3
×
[
3

(
τ0
τc

)3

− 2
]3(1− c2s)

8c2s

k31 + k32 + k33
k31k

3
2k

3
3

, (5.73)

Therefore, it is still in the local form and the final amplitude of non-
Gaussianity is given by

3

5
fRṘ2

NL =
3

4c2s
(1− c2s)

(τ0
τc

)3[
3

(
τ0
τc

)3

− 2
]
∼ − 3

2c2s
(1− c2s)e

−3∆N , (5.74)

where in the last step we ignored the e−6∆N suppression term. Again, the
above result agrees with the one in [184] when τ0 = τc. In general, the
duration of the non-attractor stage after the canonical transition can be
∆N ∼ O(1), thus the large non-Gaussianity generated in the non-attractor
stage can be suppressed a lot. Summing up the leading terms of two con-
tributions above, we get the following overall amplitude

3

5
fNL ∼ − 3

2c2s
e−3∆N . (5.75)

This estimate shows us how the non-Gaussianity generated in the initial
non-attractor stage is suppressed after the canonical transition. Notice that
the sound speed is determined by the model parameters, while the duration
of the non-attractor III stage is related to the choice of initial conditions,
thus cs and ∆N are two independent parameters. Thus, we conclude that,
it is still possible to have large non-Gaussianity in single field inflation.

5.4 Conclusion and discussion

In this paper, we investigated the production of primordial non-Gaussianities
from models of non-attractor inflation. We revisited various non-attractor
models constructed in the literature in order to understand the evolution of
large local non-Gaussianity when the models undergo the transition from
the non-attractor phase to slow-roll phase. The purpose of this study is



5.4 Conclusion and discussion 131

less of trying to present these fine-tuned toy-models as phenomenological
candidates for data fitting, rather trying to understand more precisely the
physical implications of Maldacena’s single field consistency relation and
various counter-examples that have been constructed.

Comparing with previous studies, we pay special attention to the tran-
sition period from the non-attractor phase to the conventional slow-roll
phase. Such a transition is necessary for these models to have sufficient
efolds or have the correct amplitude of density perturbations. We consid-
ered two types of non-attractor inflation, which are driven by a canonical
scalar field and a non-canonical k-essence field, respectively.

For models with canonical kinetic terms, we consider two different evo-
lutionary processes after the non-attractor phase: smooth transition and
sharp transition. Through the calculation of both in-in and δN formal-
ism, we find that a full consideration of the transition process generically
suppresses the local non-Gaussianity generated in the non-attractor phase,
but Maldacena’s consistency condition is still violated. In the smooth tran-
sition, the super-horizon modes continue evolving after the non-attractor
phase, and the O(1) non-Gaussian signals are completely erased during the
transition period and the final fNL at the end of inflation is slow-roll sup-
pressed. Meanwhile for sharp transition, the final amplitude of the local
non-Gaussianity generated in the non-attractor phase depends on the de-
tails of the transition process. In the extremal cases where the curvature
perturbation freezes immediately right after the non-attractor phase, we
get the maximum possibility of local non-Gaussianity, which recovers the
original result in the non-attractor phase fNL = 5/2.

For models with non-canonical kinetic terms, although similar situa-
tion applies to one of the terms in the Lagrangian, the non-Gaussianities
coming from two other terms, which are unique to non-canonical models,
survive. Nonetheless, our rough estimations of this case show that the effect
of smooth transition is still non-negligible. In addition to the contribution
∼ 1/c2s obtained in the previous studies, the transition period contributes
to an extra suppression factor due to mode evolution outside the horizon
during the transition phase. Since these two contributions are independent
of each other, the conclusion, that the large local non-Gaussianity can be
obtained in such single field models, remains the same; but the expression
of fNL should be revised.

As a final remark, we note that, recently, Ref. [194] argued that the
O(1) local bispectrum generated from the canonical non-attractor inflation
model, as calculated in Ref. [42], is not locally observable. The study of
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Ref. [194] focuses on the non-attractor phase. Here we will not analyze their
argument in detail which is beyond the scope of this paper. For our purpose,
we simply point out that one of the main differences between their work and
ours is that we have analyzed in details the subsequent transition process
from the non-attractor phase to the standard single field slow-roll inflation,
in order to be able to discuss the observability at all. As we have concluded,
the final fNL can range anywhere between zero and a value much larger than
1. If the value of fNL is much larger than 1−ns, these local bispectra should
be in principle observable. At the reheating surface, these local bispectra
are indistinguishable from those arising from models in which we replace
the single field non-attractor phase with a multifield phase and use the
multifield phase to generate the same amount of primordial local bispectra.


