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4| Inflationary massive fieldswith a curved field manifold

Abstract: Massive fields during inflation provide an interesting opportu-
nity to test new physics at very high energy scales. Meanwhile in fundamen-
tal realizations, the inflationary field space typically has a curved geometry,
which may leave detectable imprints in primordial observables. In this pa-
per we study an extension of quasi-single field inflation where the inflaton
and the massive field belong to a curved field manifold. Because of the non-
trivial field space curvature, the massive field here can get significant mass
corrections of order the Hubble scale, thus the quasi-single field predictions
on primordial non-Gaussianity are affected. We derive the same result in
an equivalent approach by using the background effective field theory of
inflation, where a dimension-6 operator is identified to play an important
role and its cutoff scale is associated with the curvature scale of the field
space. In addition, due to the slow-roll evolution of the inflaton, this type of
mass correction has intrinsic time-dependence. Consequently, the running
mass modifies the scaling behaviour in the squeezed limit of the scalar bis-
pectrum, while the resulting running index measures the curvature of the
internal field space. Therefore the minimal setup of a massive field within
curved field space during inflation may naturally lead to new observational
signatures of the field space geometry.

Keywords: Inflation, primordial non-Gaussianity, effective field theory

Based on:
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4.1 Introduction

Cosmic inflation, which provides a good description of the very early Uni-
verse [7, 8], can also be seen as a physics laboratory at extremely high
energy scales. Through primordial perturbations, we can trace the imprints
left by fundamental physics during inflation in astronomical observations,
such as the cosmic microwave background (CMB) and large scale structure
(LSS) surveys. Moreover primordial non-Gaussianity, which encodes the
field interactions during inflation, is believed to be one of the most pow-
erful tools for testing new physics effects [35, 37, 150, 151]. Therefore it is
phenomenologically interesting to work out various non-Gaussian templates
from inflation theories for future observations. From this point of view, one
well-studied example is quasi-single field inflation (QSFI) [56–58, 152–154],
where the extra fields during inflation with mass of O(H) can leave unique
signatures in the primordial bispectrum of curvature perturbation. This
idea has been further developed into model-independent frameworks for
probing primordial physics, such as the proposals of cosmological collider
physics [59, 102, 155–161] and primordial standard clocks [162–165].

Meanwhile, another important question in the primordial cosmology is
the physical realizations of inflation in more fundamental theories. From
this theoretical perspective, one common observation is that the result-
ing low-energy effective theories of inflation are typically associated with a
curved field manifold. For instance, it could be the moduli field space arising
in string compactifications, or the coset field space of (pseudo-)Goldstones
after spontaneous symmetry breaking. This theoretical consideration leads
to the studies on inflation with curved field space. Recently there has been
a revival of interest in this direction, and the representative works include
α-attractors [17, 18, 73, 74] and their multi-field extensions [75–77, 166–
168], geometrical destabilization [63–67, 83], ultra-light isocurvature sce-
nario [78, 80] and orbital inflation [79, 81, 82], hyperinflation [68–72], the
two-field regime of axion monodromy [169], and the analysis of new multi-
field attractors [84–86]. Usually in the curved field manifold the inflaton tra-
jectory may demonstrate turning dynamics (or equivalently non-geodesic
motion in the field space). It has also been suggested that such kind of
multi-field behaviour may be free from some possible problems faced by
single field inflation [47, 48, 170]. Moreover, richer phenomenology emerges
in this class of multi-field models, which could be interesting for future
observational detections.

Having various models of inflation with curved field space, now one may



4.1 Introduction 75

ask a more generic question: considering that the field space curvature is
associated to a new energy scale during inflation, then what are the obser-
vational signatures of this curvature scale? One attempt in this direction
was lately performed in Ref. [171], where the generic cubic action is derived
for the multi-field system with curved field space, and after a heavy field
is integrated out, the geometrical effects manifest in the effective cubic ac-
tion of curvature perturbations. The question remains, if there are other
observable imprints uniquely left by the geometry of the internal space
during inflation.

In this paper, we attack the above question in the context of QSFI, by
focusing on the behaviour of a massive field living in a curved field manifold
of inflation. The main results are summarized as follows:

• We extend the QSFI model to the case where the inflaton and the
massive field span a curved field space with a nontrivial metric. Using
the covariant formalism of multi-field inflation, we perform the back-
ground and perturbation analysis of this two-field system. Due to the
presence of the non-trivial field space curvature, the massive field gets
mass corrections which can be comparable to (or even larger than)
the “bare” mass. Then we provide one simple realization of QSFI with
significant curved field space effects. Furthermore, through this con-
crete case study, we explicitly demonstrate how the curvature of the
field space is related to an energy scale during inflation.

• Next, we investigate the background effective field theory (EFT) of
inflation with the dimension-five (dim-5) and dimension-six (dim-6)
mixing operators. This EFT approach, which has been widely adopted
in the studies of massive fields, provides an alternative description for
the curved field space system. We explicitly bridge the gap between
these two languages. In particular, the dim-6 operator in the EFT can
give a significant contribution to the mass of the extra field, thus has
the same effects as the curved field space. Moreover, this correction to
the “bare” mass is essentially time-dependent, and we further consider
the running behaviour of the final isocurvature mass.

• Finally, we study the phenomenological consequences of the curved
field space on QSFI predictions. As is known, the mass of the ad-
ditional field leaves a unique scaling signature in the squeezed limit
of the scalar bispectrum. Here the curved field space may result in
two modifications: i) the field space curvature contribution corrects
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the original “bare” mass, thus changes the predictions in the scaling
index; ii) the time-dependence of this mass correction leads to the
running of the scaling in the squeezed bispectrum. Therefore through
the phenomenology of the running isocurvature mass, we can find the
observational signatures left by the field space curvature.
The time dependence of the isocurvature mass µ is divided into three
different regimes: running within µ < 3H/2 and µ > 3H/2, and
also running through µ = 3H/2. To search for new predictions, we
work out the modified scaling behaviour of the squeezed bispectrum
caused by them one by one. In the first two cases, the modification
corresponds to the running of the scaling index in the power-law and
oscillatory signals respectively, while the third case demonstrates a
transition behaviour between these two types of signals. Implications
for non-Gaussianity observations are discussed.

Some of the results, for instance the field space curvature contribution
to the mass of the extra field, have been noticed in different setups, such as
geometrical destabilization [63] (for negative correction, also see the early
discussion in Ref. [53]) and spontaneous symmetry probing [100] (for posi-
tive correction). Here we look into more generic cases of this contribution,
and find it illuminating to further interpret the curved field space effects
from the perspective of inflationary massive fields. In addition, the corre-
spondences among several different research topics are clarified. Other re-
sults, such as the curved field space modifications to QSFI and the running
phenomenology of µ2, were not discussed in the previous studies.

The outline of the paper is as follows. In Section 4.2 we study the
massive field within a curved field space during inflation via the multi-
field analysis, and demonstrate the effects of the field space curvature in a
concrete example. In Section 4.3 we take the background EFT approach to
reexamine QSFI, and identify the role of a dim-6 operator and its connection
with curved field space. Section 4.4 focuses on the phenomenology, where
the consequences of the running isocurvature mass are investigated in detail.
We summarize in Section 4.5 with discussions on future works .

4.2 When quasi-single field inflation meets a curved field space

QSFI corresponds to one particular regime of inflation models, where the
extra fields besides the inflaton are massive and thus generate isocurvature
pertubations with a mass around the Hubble scale H. The original model
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of QSFI in Ref. [56, 57] is described by the following matter Lagrangian

Lm = −1

2
ρ2(∂θ)2 − 1

2
(∂ρ)2 − V (ρ)− Vsr(θ) , (4.1)

where the radial field ρ is taken to be massive and stabilized around ρ = ρ0,
with V ′′(ρ0) ∼ O(H2). Meanwhile the angular field θ plays the role of the
inflaton, which is slowly rolling on a nearly flat potential along the angular
direction. In this section, we shall extend this model, and consider the
situation while the inflaton and the massive field are living in a curved field
manifold.

The curved field space generically arises in the low-energy effective the-
ory of inflation, whose action with a scalar sector and Einstein gravity can
be formulated as

S =

∫
d4x

√
−g

[
M2

pl
2

R − 1

2
Gab(ϕ)g

µν∂µϕ
a∂νϕ

b − V(ϕ)

]
. (4.2)

Notice that besides the spacetime metric gµν , an internal field space metric
Gab(ϕ) of a non-linear sigma model also appears. Generally speaking, the
inflaton field here corresponds to one particular trajectory in the multi-
dimensional field space. Thus in addition to the adiabatic perturbations
along this inflaton trajectory, the isocurvature perturbations in the orthog-
onal direction are also present. To be specific, we consider an axion-dilaton
system spanned by ϕa = (θ, ρ) with the field space metric

Gab =

(
f(ρ) 0
0 1

)
, (4.3)

which yields a non-trivial kinetic mixing for the two scalar fields. Here
the axion θ can be seen as an “angular” field, while the dilaton field ρ
corresponds to the “radial” direction in this internal space. The non-trivial
geometry of this internal manifold is characterized by the Ricci curvature
scalar

R =
f ′(ρ)2

2f(ρ)2
− f ′′(ρ)

f(ρ)
, (4.4)

which is of mass dimension −2. With the choice of the potential, QSFI can
be easily realized in this multi-field system1. One direct extension of the

1One can construct exact models of QSFI with curved field space by using the extended
Hamilton-Jacobi formalism, as done in orbital inflation [81, 82]. This approach is not
adopted here.
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original model yields the following two-field Lagrangian

Lm = −1

2
f(ρ)(∂θ)2 − 1

2
(∂ρ)2 − V (ρ)− Vsr(θ) , (4.5)

where again θ is the inflaton and ρ is the massive field. Thus the original
model can be seen as a special case of the above setup with f(ρ) = ρ2,
where the field space is flat and described by the polar coordinate. Next,
with the help of multi-field techniques, we shall investigate the QSFI with
a general metric function f(ρ).

4.2.1 The multi-field analysis of the massive field

For inflaton trajectories in a curved field space, the covariant formalism of
multi-field inflation [49–53] provides a powerful tool to describe the back-
ground dynamics and perturbations. Consider a turning trajectory with
ρ = ρ0, then the field velocity of the canonically normalized inflation is
given by ϕ̇2 = Gabϕ̇

aϕ̇b = f(ρ)θ̇2 , where the dot denotes the derivative
with respect to the cosmic time. Thus we can build the tangent and normal
unit vectors of this trajectory

T a ≡ ϕ̇a

ϕ̇
=

1√
f(ρ0)

(1, 0) , Na = (0, 1) . (4.6)

Also the turning rate is defined as

Ω ≡ −NaDtT
a =

f ′(ρ0)

2
√
f(ρ0)

θ̇ , (4.7)

where Dt is the covariant derivative of the field space with respect to cosmic
time. In general a geodesic trajectory in the field space yields Ω = 0, thus
the turning parameter measures the deviation from a geodesic [52]. For the
flat field metric f(ρ) = ρ2, it simply yields Ω = θ̇. With these notations, the
background equations of motion (EoMs) Dtϕ̇

a + 3Hϕ̇a + V a = 0 become

ϕ̈+ 3Hϕ̇+ VT = 0 , Ωϕ̇ = VN , (4.8)

where VT = T a∇aVsr and VN = Na∇aV , with ∇a being the covariant
derivative of the field space. The first equation captures the slow-roll dy-
namics, while the second one describes the balance between the turning and
the centrifugal force. Meanwhile the slow-roll parameters here are given by

ϵ ≡ − Ḣ

H2
=

ϕ̇2

2M2
plH

2
=

f(ρ0)θ̇
2

2M2
plH

2
, η ≡ ϵ̇

Hϵ
= 2ϵ . (4.9)
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Now let us describe the behaviour of perturbations using the background
parameters above. At the linear level, we can define the curvature pertur-
bation ζ and the isocurvature modes σ as δϕa =

√
2ϵζT a+σNa. Expanding

(4.2) to the second order, we get the general form of the quadratic action

S2 =

∫
d4xa3

[
ϵ

(
ζ̇ − 2Ω√

2ϵ
σ

)2

− ϵ

a2
(∂iζ)

2 +
1

2

(
σ̇2 − 1

a2
(∂iσ)

2

)
− 1

2
µ2σ2

]
.

(4.10)
Here notice that at the quadratic level, the interaction between ζ and σ is
given by the turning parameter Ω. From the EoM of perturbations, this cou-
pling corresponds to the conversion from isocurvature to curvature modes
on superhorizon scales. For a geodesic trajectory (Ω = 0), the curvature and
isocurvature perturbations are decoupled. In this work we mainly focus on
the weakly coupled regime, i.e. Ω/H ≪ 1. Another interesting result of
the covariant formalism is the isocurvature mass, which in general can be
expressed as

µ2 = VNN +
1

2
ϕ̇2R+ 3Ω2 . (4.11)

Here the first term is the Hessian of the potential in the normal direction
VNN = NaN b∇a∇bV . For the turning trajectory along the θ direction, we
simply get VNN = V ′′(ρ0), which can be seen as the “bare” mass of the
radial field, and is the one usually considered in QSFI. The second and
third terms are the contributions from field space curvature and turning
rate. Since we work in the weakly coupled regime with Ω ≪ H, thus the
last term contribution can be neglected for µ2 ∼ O(H2).

The main focus of this paper is the second term in (4.11). This field
space curvature contribution can be tracked back to the kinetic term of
the the two-field system in (4.5). Naively speaking, when we derive the
perturbed Lagrangian, the σ field mass has contributions from the second
order expansion of f(ρ), which is related to the Ricci scalar in (4.4). This is
a unique correction in the quantum field theory with time-dependent back-
ground. Thus for inflation, it is always accompanied by the inflaton field
velocity ϕ̇2, whose magnitude can be estimated from the current observa-
tions2: ϕ̇2 ≃ 107H4. Therefore unless the field space curvature is extremely
small, the second term in (4.11) should not be neglected.

In the following we shall demonstrate in a case study that the field
space curvature is typically associated with a new energy scale during in-

2In the weakly coupled regime of QSFI, since the massive field correction to the final
power spectrum of ζ is small, the single field prediction Pζ = H4/(4π2ϕ̇2) remains valid
approximately. Then from the observational result Pζ ≃ 2×10−9 [7], one gets ϕ̇2 ≃ 107H4.
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flation, and for natural choices of this scale, the curvature term in µ2 can
be comparable to or even larger than the V ′′ term.

4.2.2 A concrete example: inflation in coset space

In order to avoid the η-problem [20], the low-energy effective theories of in-
flation are usually supposed to be described by (pseudo-)Goldstone bosons
protected by an (approximate) internal symmetry, such that the slow-roll
potential is free from quantum corrections. Consequently the inflaton may
roll in a non-abelian coset space G/H defined by the symmetry breaking
pattern. While the details of a relevant project will be presented in a fu-
ture paper [101], here let us look at two simplest cases of coset space with
nontrivial geometries which have been considered before in Ref. [172, 173].

Figure 4.1: The SO(3)/SO(2) (left) and SO(2, 1)/SO(2) (right) coset spaces, with the
corresponding geodesic trajectories (blue curves) and examples of possible deviations (orange
curves).

• SO(3)/SO(2). This coset space is a 2d-sphere defined by ϕ2
1+ϕ2

2+ϕ2
3 =

R2 in the three-dimensional Euclidean space, where the constant R
is the radius of the spherical surface. Thus it is convenient to use the
spherical coordinates

ϕ1 = R cos ϱ cos θ , ϕ2 = R cos ϱ sin θ , ϕ3 = R sin ϱ , (4.12)

where θ and ϱ are two Goldstone fields in the coset. As a result, the
line element of this field space becomes ds2 = R2

(
dϱ2 + cos2 ϱdθ2

)
.

If we canonically normalize ϱ by redefining ρ = Rϱ, then the kinetic
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term of the two Goldstones is expressed as

K = −1

2
(∂ρ)2 − 1

2
R2 cos2

( ρ

R

)
(∂θ)2 , (4.13)

which corresponds to the system in (4.5) with f(ρ) = R2 cos2(ρ/R).
This field space has a positive constant curvature with R = 2/R2.

• SO(2, 1)/SO(2). This non-compact coset yields a 2d-hyperbola de-
fined by ϕ2

1+ϕ2
2−ϕ2

3 = R2 in the three-dimensional Minkowski space,
as shown in Fig. 4.1. We use the following field coordinates

ϕ1 = R cosh ϱ cos θ , ϕ2 = R cosh ϱ sin θ , ϕ3 = R sinh ϱ . (4.14)

Again the coset space is spanned by the Goldstone fields θ and ϱ,
with the line element ds2 = R2

(
dϱ2 + cosh2 ϱdθ2

)
. Using the field

redefinition ρ = Rϱ, we get the Goldstone kinetic term as

K = −1

2
(∂ρ)2 − 1

2
R2 cosh2

( ρ

R

)
(∂θ)2 , (4.15)

which has f(ρ) = R2 cosh2(ρ/R). This is a hyperbolic space3 with a
negative constant curvature given by R = −2/R2.

As we see from these two examples, the Ricci scalar is determined by the
radius R of the field space, which corresponds to the symmetry breaking
scale in this setup. Now we take into account the motion of the inflaton
by assuming a slow-roll potential which softly breaks the shift symmetry.
Let us first consider the geodesic trajectories in these field spaces, which
can be related to the spontaneous symmetry probing solutions discussed in
Ref. [100].

In the SO(3)/SO(2) coset, the geodesic is a trajectory along the max-
imal circle, as shown by the blue curve in the left panel of Fig. 4.1. Here
without losing generality we take it to be the equator with ρ = 0, and the
canonically normalized inflaton ϕ is driven by a slow-roll potential in the θ
direction, with ϕ = Rθ. If there is no explicit symmetry breaking for the ρ
field, naively this Goldstone is supposed to be massless. However, because
of the rolling of another Goldstone θ, the “not-rolling” Goldstone ρ acquires
a mass [100]

m2
ρ = θ̇2 =

ϕ̇2

R2
, (4.16)

3One can connect this with the hyperbolic field space in α-attractors with R =
−2/(3α), and there α is related to the radius of curvature by α = R2/3.
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which is exactly the second term in (4.11). From here we can explicitly
see that, the curved field space contribution to the isocurvature mass is
associated with the internal curvature scale. For R ∼ ϕ̇/H ≃ 3600H, this
contribution is O(H2); while for R ∼ Mpl it becomes slow-roll suppressed
as ∼ ϵH2.

For the non-compact coset SO(2, 1)/SO(2), let us consider the inflaton
trajectory that is also along the θ direction, then for the field space in (4.15)
the geodesic motion is given by ρ = 0, which is the blue curve in the right
panel of Fig. 4.1. Here the ρ field also acquires a similar mass correction
from the rolling of the inflaton in the hyperbolic field space. But this is a
tachyonic contribution −ϕ̇2/R2, since the field space curvature is negative.
Thus to stabilize the isocurvature perturbation during inflation, one needs
to break the shift symmetry and engineer a potential in the ρ direction.

Now we consider small deviations from the geodesics, for which Ω/H ≪
1 and thus the curvature and isocurvature perturbations are weakly cou-
pled. This can be easily achieved by perturbing the above geodesics away
from the equator4, such as the orange trajectories in Fig. 4.1. For the spher-
ical space case, the trajectory is taken to be the latitude line ρ = δ, where
δ parametrizes the deviation. Then (4.7) yields Ω ≃ −(δ/R)θ̇ which can be
much smaller than H for δ ≪ R. Similarly in the hyperbolic field space,
a non-geodesic trajectory with ρ = δ yields Ω ≃ (δ/R)θ̇. Since these de-
viations from the geodesics are kept to be small, the field space curvature
contribution to µ2 discussed above remains valid. Therefore these isome-
try trajectories in the coset space provide simple realizations of QSFI with
curved field manifold.

In summary, from the above example we identify that R ∼ 1/R2, where
the curvature radius R can be seen as the energy scale describing the curved
field space geometry. Moreover, it may lead to significant contribution to
the isocurvature mass

µ2 ≃ V ′′(ρ0) +
ϕ̇2

2
R = V ′′(ρ0)±

ϕ̇2

R2
, (4.17)

which should not be neglected. For certain ranges of the curvature scale,
this correction could be comparable to or even larger than the Hubble scale,
which may dominate µ2 in QSFI. As a result, the model predictions of QSFI

4A potential in the ρ direction is needed for this type of toy model trajectories. Here
we keep agnostic about the specific form of the potential, and consider the consequences
of this non-geodesics motion directly.
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for primordial non-Gaussianities would be affected, which we shall explore
in detail in Section 4.4.

Before concluding this section, we would like to mention another in-
teresting observation: in (4.11) the second term ϕ̇2R/2 is time-dependent
during inflation, since the inflaton field velocity ϕ̇2 = 2ϵH2M2

pl is evolving.
Although it is a small effect, when the field space curvature contribution is
non-negligible, we may expect running behaviour for the isocurvature mass,
which we shall describe in detail at the end of the next section.

4.3 The EFT of background fields revisited

In this section we reexamine QSFI via the background EFT of inflation.
Usually to achieve the slow-roll evolution and the nearly scale-invariant pri-
mordial perturbations, the inflaton field is believed to be protected by an
(approximate) shift-symmetry. Based on this argument, one can construct
the EFT of background fields for inflation without the knowledge of micro-
physical realizations [90], which provides a model-independent framework
for studying physics in the primordial Universe.

Here we are mainly interested in the coupling between the extra-fields
and the inflaton (denoted as φ in this section). Since the massive field ρ
does not respect the shift symmetry, the leading contribution to the mixing
between the inflaton and ρ is given by a dimension-five (dim-5) operator in
the EFT expansion

L5
int = − 1

2Λ1
(∂φ)2ρ , (4.18)

where Λ1 is the cutoff scale. This operator, which has been elaborately
investigated in the studies of QSFI and related topics [59, 93, 174, 175],
is the leading order term in the EFT expansion. Realistically higher order
terms should also be present. In the following we shall show how one could
connect the background EFT with the curved field space in QSFI, and then
focus on the role of a dimension-six (dim-6) operator

L6
int = ± 1

2Λ2
2

(∂φ)2ρ2 , (4.19)

which can introduce the same effects as the field space curvature. The con-
nection has also been noticed in geometrical destabilization [63], while in
the current work we bridge the gap explicitly and highlight the generic
effects for massive fields.
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4.3.1 Bridging the background EFT with curved field spaces

Let us begin with the following EFT Lagrangian of two background fields

Lm = −1

2

(
1 + c1

ρ

Λ
+ c2

ρ2

Λ2

)
(∂φ)2 − 1

2
(∂ρ)2 − 1

2
m2ρ2 − Vsr(φ) . (4.20)

where Λ is an overall cutoff for the dim-5 and dim-6 operators. The di-
mensionless coefficients c1 and c2 with |c1,2| ⩽ 1 are introduced to rep-
resent their relative size and signs, thus Λ1 = Λ/c1 and Λ2 = Λ/

√
|c2|.

Furthermore these two mixing operators are considered to be perturbative
corrections to the single field slow-roll inflation, i.e. ρ/Λ ≪ 1. Notice that
the system has the same form with (4.5), while in the curved field space
language these two operators yield a non-trivial field space metric function

f(ρ) = 1 + c1
ρ

Λ
+ c2

ρ2

Λ2
. (4.21)

Thus the EFT in (4.20) can be seen as the expansion of a curved manifold
Lagrangian around a fixed trajectory with constant ρ. From (4.4) we also
get the Ricci curvature as

R ≃ −2c2 − c21/2

Λ2
+O

( ρ
Λ

)
. (4.22)

As we see, since the curvature contains the second order derivative of the
metric, the dim-6 operator will play a role here in general.

First let us look at the background dynamics. The EoM of the ρ field,
which is the centrifugal force equation in (4.8), yields the stabilized value
for the massive field at ρ = ρ0

5

1

2

(
c1

1

Λ
+ 2c2

ρ0
Λ2

)
φ̇2 = m2ρ0 ⇒ ρ0

Λ
=

c1
2

φ̇2/Λ2

m2 − c2 (φ̇2/Λ2)
. (4.23)

To ensure the validity of EFT, one needs ρ0/Λ ≪ 1. Then the canonically
normalized inflaton is just ϕ = f(ρ0)φ with f(ρ0) ≃ 1. Also there is a
turning rate given by6

Ω2 ≃ 1

4

(
c1 + 2c2

ρ0
Λ

)2 φ̇2

Λ2
+O

(ρ0
Λ

)
, (4.24)

5Note here ρ0 depends on the inflaton velocity, thus strictly speaking it is not a
constant. See Ref. [81, 82] for models with exactly constant ρ0.

6In the expansion we also consider the possibility for a hierarchy between c1 and c2,
such as c1 ∼ c2(ρ0/Λ).
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thus the curvature and isocurvature perturbations are coupled at the lin-
ear level. The weak coupling condition Ω/H ≪ 1 here implies that |c1 +
2c2(ρ0/Λ)|(φ̇/Λ) ≪ 2H. The isocurvature mass follows from (4.11) as

µ2 ≃ m2 +

[
c21 − c2 + 3c22

(ρ0
Λ

)2
+ 3c1c2

(ρ0
Λ

)]( φ̇

Λ

)2

≃ m2 +

(
c21
4

− c2

)(
φ̇

Λ

)2

, (4.25)

where in the second approximation the weak coupling condition is used.
Here the ρ field “bare” mass m2 gets corrections from the mixing operators
due to the time-dependent background of the inflaton field.

Now we comment on the role of the dim-5 operator. At the background
level, this operator contains a tadpole for ρ which contributes to stabilize
the massive field . If we switch it off by setting c1 = 0, the centrifugal
force equation (4.23) yields ρ0 = 0 and the trajectory becomes a geodesic
with Ω = 0. Thus this operator is important for the non-geodesic motion of
the inflaton, and leads to the mixing between curvature and isocurvature
perturbations. Also it contributes to the left diagram in Fig. 4.2 for the
scalar bispectrum in QSFI, thus its size can be related to the amplitude
of the non-Gaussian signals. Meanwhile the cutoff scale of this operator is
constrained in the weakly coupled regime. If we turn off the dim-6 operator
by setting c2 = 0, the weak coupling condition |c1|(φ̇/Λ) ≪ 2H yields a
lower bound on Λ1 = Λ/c1. As a result, the dim-5 operator itself gives
negligible corrections to the isocurvature mass which simply reduces to the
“bare” one µ2 ≃ m2.

Figure 4.2: Different roles of dim-5 and dim-6 operators shown in Feynman diagrams.

4.3.2 On the role of the dimension-6 operator

As a next-to-leading order correction, usually the dim-6 operator in (4.19) is
supposed to be sub-dominant. For instance, it contributes to the scalar bis-
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pectrum through loop diagrams, which turns out to be negligible [59, 160].
But as discussed above (and also pointed out in Ref. [63, 160, 176] pre-
viously), this operator may give nontrivial corrections to the isocurvature
mass. One can interpret this effect by the right diagram in Fig. 4.2, where
the two inflaton legs are taken to be the background, and then the extra
field get mass corrections through this operator.

To show its effects explicitly, let us consider the situation where the
massive field enjoys an approximate Z2 symmetry, such that the coefficients
of two mixing operators satisfy

|c1| ≪ |c2| = 1. (4.26)

Thus the overall cutoff scale Λ coincides with the one for the dim-6 operator
Λ2, and there is a hierarchy: Λ1 ≫ Λ2. The Ricci scalar becomes R ≃
−2c2/Λ

2. In the curved field space analogy, this case corresponds to the
small deviations from the equator (ρ = 0) in the coset space discussed
in Section 4.2.2. For instance, in the SO(3)/SO(2) system (4.13), suppose
the massive field is stabilized around ρ = ρb ≪ R by a potential V (ρ) =
m2(ρ − ρb)

2/2. If we look at a local patch of the spherical surface around
the latitude ρ = ρb, then the metric function there can be expanded as

R2 cos2
( ρ

R

)
= R2

[
1− 2

ρb
R

ρ− ρb
R

− (ρ− ρb)
2

R2

]
+ ... (4.27)

By redefining ρ− ρb → ρ and Rθ → φ, we recover the EFT Lagrangian in
(4.20) with Λ = R, c1 = −2ρb/R and c2 = −1. Similarly the SO(2, 1)/SO(2)
example can also be formulated into the Background EFT language, with
Λ = R as well, but c1 = 2ρb/R and c2 = 1 instead. As we see here, the
cutoff scale Λ of the dim-6 operator plays the role of the curvature scale of
the field space, while the sign of c2 denotes if it is positively or negatively
curved.

The background dynamics of this hierarchical system follows directly.
Because of the small but nonzero dim-5 operator, the massive field gets
deviated from the potential minimum by the centrifugal force (4.23). Since
|c1| ≪ 1, we find it easy to guarantee ρ0/Λ ≪ 1, and thus the EFT descrip-
tion is justified. Notice that, while the size of the dim-5 operator is still
constrained by the weak coupling condition, there is more freedom for the
cutoff scale of the dim-6 operator. One particularly interesting regime for
QSFI is for φ̇2/Λ2 ∼ H2, which corresponds to Λ ∼ 3000H by considering
φ̇2 ≃ ϕ̇2 ≃ 107H4. The isocurvature mass becomes
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µ2 ≃ m2 − c2

(
φ̇

Λ

)2

= m2 − 2c2ϵH
2

(
Mpl
Λ

)2

, (4.28)

where in the second equality we introduced the slow-roll parameter ϵ. The
second term, which represents the contribution from the dim-6 operator,
can be comparable with (or even larger than) the “bare” mass m2, and thus
should not be neglected. This expression has the same form with (4.17)
in terms of the field space curvature. Thus for c2 = 1, this correction is
negative, which is equivalent to the hyperbolic field space case; while c2 =
−1 makes the massive field heavier and corresponds to the positively curved
field space.

Moreover, as we briefly mentioned at the end of Section 4.2, this correc-
tion to µ2 is time-dependent due to the rolling behaviour of the inflaton7.
Now let us formulate the running behaviour of the isocurvature mass more
specifically. If we consider the evolution of ϵ from the time denoted by the
number of e-folds Nl, then as long as N −Nl is not too big we have

ϵ(N) ≃ ϵ(Nl) + ϵ′(Nl)(N −Nl) = ϵl [1 + ηl(N −Nl)] , (4.29)

with ϵl = ϵ(Nl) and ηl = η(Nl). Correspondingly the time dependence of
µ2 in (4.28) can be parametrized as

µ2(N) = µ2
l + λ(N −Nl)H

2 , (4.30)

where µ2
l = m2 − 2c2ϵlH

2(Mpl/Λ)
2 is the isocurvature mass at the time of

Nl, and λ is the running parameter expressed in both the curved field space
and the EFT languages as

λ = ηl
ϕ̇2

2H2
R = −ηl

c2
H2

φ̇2

Λ2
. (4.31)

As expected, typically the time-dependence is small and suppressed by ηl.
We estimate the size of λ in the conformal limit of inflation ϵ ≪ η [177]. This
hierarchy between slow-roll parameters8 is indicated by the observational

7This is similar to what happens for geometrical destabilization [63], where the running
isocurvature mass with negative R may lead to tachyonic instability, which ends inflation
prematurely or initiates a sidetracked phase [66, 83]. Here instead of µ2 < 0, we are
interested in both the positive- and negative-running behaviour in the stable (QSFI)
regime with µ2 ∼ O(H2), and mainly focus on its effects on the large-scale modes which
can be probed by CMB or LSS surveys.

8It can be achieved by taking Vsr(φ) to be the plateau-like potentials, such as Starobin-
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upper bound on the tensor-to-scalar ratio r = 16ϵ < 0.064 and the observed
value of the scalar tilt ns = 1 − η − 2ϵ = 0.9649 ± 0.0042 [7], which also
yields η ≃ 0.035. Then the running parameter in (4.31) is mainly controlled
by the cutoff scale Λ. For Λ ∼ 3000H, and thus φ̇2/(H2Λ2) ∼ O(1), we
get |λ| ≲ 0.1. In principle a larger running can be achieved by lowering Λ,
but then for the interest of QSFI one may need fine tune the correction in
(4.28) against the “bare” mass such that µ2 ∼ O(H2).

4.4 Phenomenology of the running isocurvature mass

With the above analysis of massive fields living in curved field space, the
goal of this section is to investigate the phenomenological consequences of
a nontrivial field space curvature in QSFI, and focus on the effects of the
running isocurvature mass.

First of all, let us briefly review the phenomenology of QSFI. To charac-
terize primordial non-Gaussianity, the bispectrum of curvature perturbation
is usually defined as

⟨ζk1ζk2ζk3⟩ ≡ (2π)3δ(3)(k1 + k2 + k3)Bζ(k1, k2, k3) . (4.32)

We are particularly interested in the squeezed configurations of the momen-
tum triangles formed by two short modes k1 = k2 = ks and one long mode
k3 = kl, with kl ≪ ks. One of the most interesting results in QSFI is that,
the scaling behaviour of the bispectrum in this squeezed limit is uniquely
determined by the isocurvature mass as follows [57, 58, 154]

lim
kl≪ks

Bζ ∝ 1

k3l k
3
s

(
kl
ks

)3/2−ν

for µ <
3H

2
,(4.33)

lim
kl≪ks

Bζ ∝ 1

k3l k
3
s

(
kl
ks

)3/2

cos
[
iν ln

(
kl
ks

)
+ δν

]
for µ >

3H

2
.(4.34)

where the scaling index ν is a function of the isocurvature mass

ν =

√
9

4
− µ2

H2
, (4.35)

and δν is a phase factor depending on ν. Here µ = 3H/2 is the critical mass
which divides the isocurvature mass spectrum into light and heavy regimes.

sky inflation [3] and α-attractors [17, 18, 73, 74], where the slow-roll parameters evolve
as ϵ ∼ 1/N2 and η ≃ 2/N .
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Notice that in our notation, 0 < ν < 3/2 for µ < 3H/2, and it becomes
imaginary when µ > 3H/2. Therefore through this observational channel
of non-Gaussianities, one can measure the mass of the additional field in a
model-independent manner.

Intuitively, the above scaling can be understood from the superhori-
zon behaviour of the massive field [58]. During inflation, the EoM of the
isocurvature mode is

σ′′
k +

k2

a2H2
σk + 3σ′

k +
µ2

H2
σk = 0 , (4.36)

where primes denote derivatives with respect to the number of e-folds N .
For QSFI, we are mainly interested in the regime µ/H ∼ O(1). Thus on the
superhorizon scales (k ≪ aH), the second term is sub-dominant compared
with the mass term. Approximately the EoM above becomes the one for a
damped oscillator σ′′

k + 3σ′
k + (µ2/H2)σk ≃ 0, and for a constant µ2 it has

two decaying solutions

σk(N) ∝ e−(3/2±ν)(N−Nk) . (4.37)

Here Nk is the e-folds when σk mode exits the horizon. For the light field
case (µ < 3H/2), the solution with minus sign dominates, and it corre-
sponds to the underdamped decay. For the heavy field case (µ > 3H/2),
the imaginary ν leads to the overdamped oscillations. Now we consider the
modulation of a long wavelength mode (kl) on the short wavelength modes
(ks). Suppose that the kl-mode exits the horizon at Nl, then later when
the ks-modes exit the horizon at Ns, the amplitude of the kl-mode already
decays by

σkl(Ns) = σkl(Nl)e
−(3/2±ν)(Ns−Nf ) = σkl(Nl)

(
kl
ks

)3/2±ν

, (4.38)

where in the second equality eNs−Nf = ks/kl is used. As a result, the
modulation of the long wavelength mode on the ks modes will inherit this
decayed amplitude. When µ < 3H/2, the decaying solution with minus sign
gives the power-law scaling in (4.33). While for µ > 3H/2, ν is imaginary
and the scaling can be written into the oscillatory form in (4.34).

For QSFI with curved field space, we first notice that the scaling be-
haviour of the squeezed bispectrum is determined by the full isocurvature
mass. Thus when the field space curvature contribution to µ2 is significant,
what we measure in the non-Gaussianity observation is no longer the “bare”
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mass of the additional field, since the scaling index ν in (4.35) is changed
by this nontrivial mass correction9. It is also possible that in µ2 the domi-
nant contribution comes from the field space curvature term. For instance,
in the example of inflation in coset space discussed in Section 4.2.2, the
Goldstone field in the normal direction of the inflaton trajectory has a zero
“bare” mass, but can still become massive due to the curved field space
effect. In this sense the QSFI predictions based on the “bare” mass will be
corrected, though it is difficult to distinguish these two mass contributions
from each other. However, the time-dependence of the field space curvature
term may break the degeneracy, which we shall study in the rest of this
section.

Let us take the parametrization in (4.30) as our starting point. Before
horizon-exit, since in (4.36) the second term dominates, the evolution of
σk is barely affected by the running mass. Thus the conventional mode
function with a Bunch-Davies initial condition provides a good description.
This is also shown in the shaded regions of Figs. 4.3 and 4.4, where the full
numerical solutions with running mass agree with dashed grey curves very
well in the subhorizon regime. But the superhorzion evolution of σk differs
from the conventional case with a constant mass. For simplicity, we define
a rescaled mode function as

σ̃k = e3N/2σk . (4.39)

Then for the kl mode which exits the horizon at e-folds Nl, the superhorizon
EoM can be approximately written into the following form

σ̃′′
kl
−
[
ν2l − λ(N −Nl)

]
σ̃kl = 0 , (4.40)

where the scaling index at Nl is given by the isocurvatue mass at that time
ν2l = 9/4−µ2

l /H
2. This equation has the following analytical solution with

two Airy functions

σ̃kl = C1Ai
[
ν2l − λ(N −Nl)

(−λ)2/3

]
+ C2Bi

[
ν2l − λ(N −Nl)

(−λ)2/3

]
, (4.41)

where C1 and C2 are two integration constants determined by the initial
condition. In the following we shall explore the behaviour of this solution in
three different regimes, and their modification on the scaling of the squeezed
bispectrum.

9Similar correction has been noticed in the context of cosmological colliders as a
contamination [157, 158].
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4.4.1 Running in the µ < 3H/2 regime

First, let us look at the situation where the isocurvature mass is running
in the µ < 3H/2 regime, which means ν2l − λ(N − Nl) > 0. Since µ2

varies slowly, in most cases the EoM (4.40) can be solved by the WKB
approximation. More specifically the adiabatic condition here is given by

ν2l − λ(N −Nl) ≫ (| − λ|)2/3 . (4.42)

This breaks down when the isocurvature mass is running close to 3H/2,
which we leave for consideration in Section 4.4.3. Then the first order WKB
solution of the rescaled mode function follows as

σ̃k
l

(N) =
σ̃k

l

(Nl)[
1− λ

ν 2

l

(N −N1)
]1/4 exp

(∫ N

N
l

√
ν2l − λ(N ′ −Nl) dN

′

)
, (4.43)

where∫ N

N
l

√
ν2l − λ(N ′ −Nl) dN

′ =
2

3

1

λ
ν3l − 2

3

1

λ

[
ν2l − λ(N −Nl)

]3/2
. (4.44)

We can get the same solution by taking the asymptotic expansion of Airy
functions in Eq. (4.41). The evolution of the rescaled mode function is shown
in the left panel of Fig. 4.3 for the negative running case, and in the left
panel of Fig. 4.4 (the first 10 e-folds there) for λ > 0. We see that, the WKB
solutions agree with the full numerical results of Eq. (4.36). Moreover, on
superhorizon scales, they deviate from the results with constant masses,
and thus are expected to modify the scaling behaviour in the squeezed
bispectrum.

To show the phenomenological effects more explicitly, we further con-
sider the situation with ν2l ≫ |λ(N − Nl)|, then the series expansion of
(4.44) yields

νl · (N −Nl)−
1

4νl
λ(N −Nl)

2 + ... (4.45)

Then the superhorizon decay of the isocurvature mode function is approx-
imately given by

σkl(N) = σkl(Nl)e
−(3/2−νl)(N−Nl)− 1

4νl
λ(N−Nl)

2

. (4.46)

Therefore one can easily get its amplitude at Ns when the short wavelength
modes exit the horizon. Similar with the situation in (4.38), the long mode
modulation yields the squeezed limit accordingly, and here the scaling is
modified to be
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lim
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≪k
s

Bζ ∝ 1

k3l k
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s
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/k
l

)

, with αν ≡ λ

4νl
=

1

4νl
ϵlM

2
plR · ηl.

(4.47)

We notice that the running index αν leads the bispectrum to interpolate
between the scalings given by the mass µl and the mass µ(Ns). When the
curvature is positive, µ2 increases and αν > 0. If we fix kl, then for small
ks the bispectrum is closer to the local shape, and it moves towards the
equilateral scaling when ks increases. For negative R, the running of the
scaling index with ks would be the opposite.
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Figure 4.3: The evolution of the rescaled isocurvature mode function for cases with: negative-
running mass in the µ < 3H/2 regime (left panel) and positive-running mass in the µ > 3H/2
regime (right panel). In both figures, the blue curves are the full numerical solutions of σ̃k,
the orange dotted lines are the WKB approximation on superhorizon scales, and the dashed
grey lines are the solutions with constant masses (λ = 0). The shaded parts correspond to
the subhorizon regime.

4.4.2 Running in the µ > 3H/2 regime

Next we turn to study the heavy field case. In this regime, νl is imaginary
and the running isocurvature mass satisfies ν2l − λ(N − Nl) < 0. Simi-
larly we take the WKB approximation and leave its violations for the next
subsection, while here the adiabatic condition becomes

|ν2l − λ(N −Nl)| ≫ (| − λ|)2/3 . (4.48)
Under this, (4.40) yields the following oscillating WKB solutions

σ̃k
l

(N) → C±

|ν2l − λ(N −N1)|
1/4

exp
(
±i

∫ N

N
l

√
|ν2l − λ(N −Nl)| dN

)
, (4.49)
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whose real part can be further simplified into

Re σ̃k
l

(N) ∝ 1

|ν2l − λ(N −N1)|
1/4

cos
[
i
2

3λ

∣∣ν2l − λ(N −Nl)
∣∣3/2 − i

2ν3l
3λ

+ δl

]
.

(4.50)
Here δl depends on νl and the initial conditions. Again this can also be

obtained by taking the asymptotic expansion of Eq. (4.41). The result of
the positive running mass is in the right panel of Fig. 4.3, and the right
panel of Fig. 4.4 (the first 7 e-folds there) shows the ones for the negative
running mass. We find good agreement with numerical results. As we can
see, the positive running decreases the oscillation period while the negative
running increases it. This can be shown more clearly if we take |νl|2 ≫
|λ(N −Nl)| and expand the above solution. The superhorizon isocurvature
mode function follows as

Re σk
l

(N) ∝ e−
3

2

(N−N
l

) cos
[
iνl(N −Nl)

(
1− λ

4ν2l
(N −Nl)

)
+ δl

]
. (4.51)

Again considering its modulation on the ks-mode at Ns, we get the follow-
ing scaling behaviour in the squeezed bispectrum

lim
k

l

≪k
s

Bζ ∝ 1

k3l k
3
s

(
kl
ks

)3/2

cos
[
iνl ln
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)
− iαν ln2

(
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)
+ δl

]
, with αν ≡ λ

4νl
.

(4.52)

Notice here like νl, the running index αν is also imaginary and can be
expressed as αν = −iϵlM

2
plR · ηl/(4|νl|). Therefore due to the field space

curvature, the oscillatory signal in the heavy field regime of QSFI would
also be modified.

4.4.3 Running through µ = 3H/2

Now we consider the situation where the WKB approximation breaks down.
This corresponds to the cases when the isocurvature mass runs through
µ = 3H/2, and thus ν2l − λ(N −Nl) ≃ 0.

Let us first take a look at the numerical results in Fig. 4.4. For a posi-
tive λ, the isocurvature field runs from the light field regime to the heavy
field regime, and the superhorizon behaviour of σk demonstrates a smooth
transition from the overdamped decay to the underdamped oscillation (left
panel). On the other hand, for the negative running, µ2 drops below the
critical mass, and then the mode function transits from the oscillatory form
to the exponential decay (right panel).
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Figure 4.4: The evolution of the rescaled isocurvature mode function for cases with: positive-
running mass from µ < 3H/2 to µ > 3H/2 (left panel) and negative-running mass from
µ > 3H/2 to µ < 3H/2 (right panel). In both figures, the blue curves are the full numerical
solutions of σ̃k, the orange dotted lines are the superhorizon solutions using Airy functions,
the WKB approximations are given by the green curves, and the dashed grey lines describe
the evolution with constant masses (λ = 0). The shaded parts correspond to the subhorizon
regime.

We can clearly see that the WKB solution becomes invalid when the
mass runs close to 3H/2. However, the analytical solutions (4.41) with two
Airy functions still holds true in this transition regime, and provides a good
description for the mode function. It is also interesting to notice that, the
mathematics describing the transition between underdamped decay and
overdamped oscillation is the same with the semi-classical approximation
in quantum mechanics [178], where the wave function is oscillating in the
classically allowed region and decaying in the tunnelling regime. Therefore
the critical mass µ = 3H/2 here can be seen as a “turning point” where
the WKB approximation cannot be valid.

For the squeezed limit of the bispectrum, this transition behaviour of the
superhorizon mode function may leave distinct imprints, with a combination
of power-law and oscillatory signals. Thus in this case, the deviation from
the standard QSFI predictions could be large, and can be seen as a new
template for the squeezed bispectrum. But for detectability, we need to be
lucky such that the transition behaviour just occurs for the perturbation
modes that correspond to our observational window. Or it is also possible
that, future observations for different scales may help us to find the hint
of this signature. For instance, if an oscillatory signal is detected by large
scale experiments (such as CMB), while we observe power-law scaling of the
squeezed bispectrum on small scales (such as LSS and CMB distortions),
then it would indicate a negative running isocurvature mass caused by a
hyperbolic-type field space.
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In summary, the running of the isocurvature mass leads to the running in
the scaling of the squeezed bispectrum, and the running index αν measures
the curvature of the field space. With the above analysis, we close this
section by giving two final remarks:

Figure 4.5: Two types of squeezed configurations of momentum triangles. The bispectrum
may only depend on the shapes (left), or there is dependence on the size as well (right).

Shape-dependence & scale-dependence. In the standard QSFI with con-
stant mass, one interesting fact is that, although the squeezed limit depends
on the ratio of kl/ks, the full bispectrum is still scale-invariant. That is to
say, if we rescale three momenta but keep their ratio fixed, which corre-
sponds to the transformation to a similar triangle, then the bispectrum
remains unchanged. Meanwhile the nontrivial scaling behaviour in (4.33)
and (4.34) can be seen as a function of the various squeezed configurations.
For instance, if we fix the long wavelength mode kl, and let ks vary, the
bispcetrum becomes different. Thus this result is shape-dependent. For a
running isocurvature mass, as we can see from (4.47) and (4.52) the shape
dependence remains. Furthermore the bispectrum here also becomes scale-
dependent. If we rescale three wavenumbers together, for instance kl → κkl
and ks → κks, then the new scaling index νκ should be determined by the
µ2
κ when the rescaled long wavelength mode κkl exits the horizon

νκ =

√
9

4
− µ2

κ

H2
≃ νl −

λ

2νl
(Nκ −Nl) . (4.53)

Notice that the scale-dependent running index here α̃ν ≡ dνl/(dN) =
−λ/(2νl) differs from the ones parametrizing shape-dependence in (4.47)
and (4.52). This is because, a running isocurvature mass would continu-
ously affect the superhorizon evolution of σkl , which plays an important
role for the shape-dependence; while the scale-dependence is controlled by
the mass at different times, thus the running can be simply obtained by
taking derivative of µ2.

Implications on the scale-dependent bias. In the LSS observations, the
halo overdensity δh tracing galaxy distribution and the dark matter density
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contrast δm are related by the bias b through δh = bδm. It has been shown
that, signals in the squeezed limit of the primordial scalar bispectrum can
lead to a scale-dependent component in the bias bNG, which becomes dom-
inant on large scales [179, 180] (see Ref. [181] for a recent review). Thus
this scale-dependent halo bias provides an observational opportunity for
the detection of the modified scaling behaviour studied above. In the con-
ventional QSFI models, the scaling signals in (4.33) and (4.34) respectively
imply bNG(k) ∝ k−1/2−ν and bNG(k) ∝ k−1/2 cos(iν ln k). Accordingly the
squeezed bispectra with running in (4.47) and (4.52) yield

bNG(k) ∝ k−1/2−ν
l

−α
ν

ln k and bNG(k) ∝ k−1/2 cos(iνl ln k − iαν ln2 k) , (4.54)

which suggests that, besides ν, the running index αν can also be set as a
free parameter for the data analysis of future LSS surveys.

4.5 Conclusion and discussion

In this paper we explore the implications of nontrivial internal spaces in the
context of inflationary massive fields. Here QSFI is generalized to curved
field manifold, and then analyzed by using both the multi-field techniques
and the background EFT approach. Through the multi-field analysis, we
show that the field space curvature could contribute significantly to the
isocurvature mass in QSFI, thus modify its predictions on non-Gaussianity.
Meanwhile the same result is also derived in the EFT of the background
fields, where a dim-6 operator is identified to generate the same effects as
the curved field space. We build the connection between these two different
but equivalent approaches, and further demonstrate that the cutoff scale of
the dim-6 operator is associated with the curvature scale of the field space.

Moreover, as a result of the slow-roll dynamics of the inflaton field,
the field space curvature contribution to the isocurvature mass is time-
dependent in nature. We perform the first analysis on phenomenological
consequences of the running isocurvature mass, and find new features in
the scaling of the squeezed scalar bispectrum. Besides the power-law and
oscillatory signals of QSFI in the light and heavy mass regimes, the time-
dependence of the isocurvature mass leads to running behaviour in the
squeezed scaling. If the field space is positively curved, the isocurvature
mass increases, which leads to the positive running in the squeezed scal-
ing. While for the field space with negative curvature, the running becomes
negative. Also a transition signal between the power-law and oscillatory
scalings is discovered when the mass runs through µ = 3H/2. These modi-
fications to the previous results of QSFI provide new templates for detecting
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primordial non-Gaussianity. Therefore in future observations, through the
precise measurement of running behaviours in the squeezed bispectrum,
we may be able to probe the geometry of the internal field space during
inflation.

This work can also be seen as the first step towards several possible
directions for future research. First of all, it is interesting to study the im-
plications on cosmological collider physics [59]. Our results indicate that,
due to the time-dependent background of the inflaton field, higher dimen-
sion operators may become non-negligible for the collider signals. While the
current work can be directly applied to heavy scalar particles, it is worth
investigating similar effects of particles with spins, whose “bare” mass may
also be corrected by higher order EFT operators mixing with the inflaton.

Next, considering that one of our main motivations is to probe field
space curvature during inflation model-independently, the current results
are not sufficiently general and unique yet. For instance, in principle it is
possible to engineer other models of QSFI with running isocurvature mass,
which would lead to similar phenomenology degenerate with the geometrical
effects10. Thus we are encouraged to explore the truly unique signatures of
the curved field space with more generalities.

Finally, the running scaling signals in the squeezed limit of the scalar
bispectrum have implications for observations, which deserve a closer look.
For example, the observability of these signals and the fitting of the running
index using CMB and LSS data remain to be investigated.

10The analysis of the time-dependent isocurvature mass starting from the parametriza-
tion (4.30) can be seen as an independent part of this paper, which is also of phenomeno-
logical interest in contexts beyond curved field space. Though one may wonder if other
constructions are as simple and natural as the one considered here.




