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3| Shift-symmetric orbitalinflation

Abstract: We present a new class of two-field inflationary attractor mod-
els, known as ‘shift-symmetric orbital inflation’, whose behaviour is strongly
multi-field but whose predictions are remarkably close to those of single-
field inflation. In these models, the field space metric and potential are
such that the inflaton trajectory is along an ‘angular’ isometry direction
whose ‘radius’ is constant but arbitrary. As a result, the radial (isocur-
vature) perturbations away from the trajectory are exactly massless and
they freeze on superhorizon scales. These models are the first exact realiza-
tion of the ‘ultra-light isocurvature’ scenario, previously described in the
literature, where a combined shift symmetry emerges between the curva-
ture and isocurvature perturbations and results in primordial perturbation
spectra that are entirely consistent with current observations. Due to the
turning trajectory, the radial perturbation sources the tangential (curva-
ture) perturbation and makes it grow linearly in time. As a result, only
one degree of freedom (i.e. the one from isocurvature modes) is respon-
sible for the primordial observables at the end of inflation, which yields
the same phenomenology as in single-field inflation. In particular, isocur-
vature perturbations and local non-Gaussianity are highly suppressed here,
even if the inflationary dynamics is truly multi-field. We comment on the
generalization to models with more than two fields.

Keywords: multi-field inflation, cosmological perturbation theory
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3.1 Introduction

Single field slow roll inflation is the leading explanation for the observa-
tions through the CMB [7] that primordial perturbations are very close to
Gaussian and adiabatic, yet embedding it in an ultraviolet complete the-
ory such as string theory is notoriously difficult. Moduli fields arising from
string compactifications require stabilizing to realize single field inflation
[19], and large field excursions test the validity of using four dimensional
effective theories1.

One may therefore wonder whether there are multi-field inflationary sce-
narios with a phenomenology similar to that of single field inflation. Most
of the previous studies on multi-field inflation focus on the slow-roll slow-
turn regime, where the isocurvature and curvature perturbations are weakly
coupled, therefore one may get single-field like phenomenology unsurpris-
ingly. Meanwhile, models with significant multi-field turning behaviour are
commonly considered to be problematic. In the usual understanding of this
regime, light fields during inflation may lead to isocurvature perturbations
and local non-Gaussianity tightly constrained by current observations. How-
ever, it has been suggested recently that inflation with non-stabilized light
fields on an axion-dilaton system can be compatible with the latest CMB
data [75, 78, 120–124]. In particular, it was pointed out in [78] that, when
the perturbations orthogonal to the trajectory are massless but efficiently
coupled to the inflaton, the isocurvature modes are dynamically suppressed.
This is the “ultra-light isocurvature” scenario.

In this paper we provide for the first time a family of exact models of
inflation in which the multi-field effects are significant, but the phenomenol-
ogy remains similar to single field inflation. The models combine two ingre-
dients: First, the inflaton trajectory proceeds along an isometry direction
of the field space, so it is Orbital Inflation in the sense of [81, 82]. This en-
sures time independence of the coupling between the radial and tangential
inflationary perturbations. Second, the trajectory can have an arbitrary ra-
dius (within some range described below), and a constant radius is proven
to be a neutrally stable attractor. Hence, isocurvature perturbations be-
come exactly massless. The two ingredients, combined, guarantee that the
sourcing of the curvature perturbation is sustained over many e-folds of in-
flationary expansion. The action for the perturbations inherits a symmetry

1The recent swampland debate highlights the importance of finding viable scenarios
for inflation that are not strictly single-field. See, for instance, the discussion in [47] as
compared to [24, 137]
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between background solutions that is not manifest in the potential or in the
Lagrangian. We show that, at the end of inflation, only the isocurvature
degree of freedom is responsible for the generation of primordial observ-
ables, but perturbations still remain adiabatic and Gaussian. We call this
scenario shift-symmetric orbital inflation.

Crucially this scenario provides a new direction to explore inflation and
a potential resolution to some of the problems faced by the embedding
of inflation in string theory. That is, in the construction of inflationary
models wherein every modulus is stabilized except for the inflaton, one
could be missing less restrictive realizations of inflation compatible with
current observational constraints. We set ℏ = c = 1 and the reduced Planck
mass Mp ≡ (8πG)−1/2 = 1, where G is Newton’s contant.

3.2 A toy model

To illustrate the idea, we first consider the following Lagrangian in flat field
space with polar coordinates (illustrated in Fig. 3.1)

L =
1

2

[
ρ2(∂θ)2 + (∂ρ)2

]
− 1

2
m2

(
θ2 − 2

3ρ2

)
. (3.1)

The potential has a monodromy in the angular coordinate, and although it
is unbounded at ρ → 0, inflation only takes place in the physically consistent
regime where V (ρ, θ) > 0. Moreover, as shown in the perturbation analysis
below, our study is restricted to radii that cannot be too small. Therefore,
we only care about the local form of the potential close to the inflationary
trajectory, which we assume is captured well by (3.1). In general, it is
difficult to solve the background equations analytically in such a system.
However, this model has the following exact neutrally stable solutions at
any radius (see Fig. 3.1)

ρ = ρ0, θ̇ = ±
√

2

3

m

ρ20
. (3.2)

The Friedmann equation becomes H2 = m2θ2/6 on the attractor, where H
is the Hubble parameter, and the first slow-roll parameter is ϵ ≡ −Ḣ/H2 =
2

ρ20θ
2 . This trajectory is nongeodesic in field space, with turning effects that

depend on the radius κ of the trajectory. Note that here κ = ρ0 but, if the
field space geometry is curved, κ will be a more general function of ρ0.

The situation is reminiscent of circular orbits in a spherically symmetric
gravitational field, where the centripetal force stabilizes the radial direction,
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Figure 3.1: The toy model potential V (ρ, θ) given in (3.1) together with a typical inflationary
trajectory indicated with the solid black line.

and the inflaton can circle at any radius with the corresponding angular
velocity. For the field system on the cosmological background, only the
isometric circular orbits appear, and we need to break the shift symmetry
of θ in the potential to overcome the Hubble friction. We can label each
solution by a continuous parameter c with the corresponding map

ρc = ρ0 + c,
(
θ2c
)′
=

(
θ20
)′

(1 + c/κ)2
, (3.3)

where the prime ′ denotes a derivative with respect to efolds d/dN =
d/(Hdt). This transformation identifies all the trajectories in (3.2) and hints
at the existence of a shift symmetry for the perturbations. In flat gauge, the
isocurvature perturbation σ is associated with δρ and the curvature pertur-
bation R with ρ√

2ϵ
δθ, which equals 1

4ρ
2δ
(
θ2
)

in this toy model. To find the
effect of the transformation on the perturbations, we split ρ = ρ0 + σ and(
θ2
)′

=
(
θ20
)′
(1−R′). This allows us to determine how a small c changes

σ and R′. In the long wavelength limit every transformed set of perturba-
tions (σc,R′

c) provide a new solution to the equations of motion. This is
because homogeneous perturbations map background solutions onto each
other. Therefore, we expect the following symmetry for linearized pertur-
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bations
σ → σ + c, R′ → R′ +

2

κ
c. (3.4)

Given the shift symmetry of σ, the isocurvature perturbation is expected
to be massless and freeze after horizon-exit. Meanwhile, the symmetry also
indicates that R has a growing solution that is dictated by the constant σ
on superhorizon scales.

To get an intuitive notion of the perturbations behavior, we employ
the δN formalism [131–135]. From the Friedmann equation and the exact
solution (3.2), the number of efolds until the end of inflation is N = ρ2θ2/4−
1/2. The curvature perturbation at the end of inflation is

R(k∗) = δN ≃ 1√
2ϵ∗

(ρδθ)∗ +
2N∗
κ

δρ∗, (3.5)

where (ρδθ)∗ and δρ∗ are field fluctuations with typical amplitude H∗
2π at

horizon-exit of the k∗ mode. This yields the following power spectrum of
curvature perturbations

PR(k∗) ≃
H2

∗
4π2

(
1

2ϵ∗
+

4N2
∗

κ2

)
. (3.6)

Here the first contribution has an adiabatic origin, just like in the single-field
models, and the second term corresponds to the conversion from isocur-
vature to curvature modes on superhorizon scales. When the radius of
the trajectory is small enough, namely 8ϵ∗ ≪ κ2 ≪ 8ϵ∗N

2
∗ ≈ 4N∗, the

second term in (3.6) dominates. Then the final power spectrum becomes
PR(k∗) ≃ H2

∗N
2
∗ /(π

2κ2), which is generated by one single degree of freedom
– the isocurvature mode.

3.3 Shift-symmetric orbital inflation

To construct generic models with the above properties, we begin with
an axion-dilaton system in a non-trivial field manifold (θ, ρ) with kinetic
term K = −1

2 (f(ρ)∂µθ∂
µθ + ∂µρ∂

µρ). This field space, of curvature R =
f2
ρ/2f

2−fρρ/f , arises generically from UV completions of inflation in quan-
tum gravity or from an effective field theory (EFT) viewpoint. To realize
shift-symmetric orbital inflation, we assume the inflationary trajectory to
be isometric, i.e. along the θ direction at any (constant) radius in field
space. The potential can be derived by generalizing the Hamilton-Jacobi
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formalism [131, 138–140] to a two-field system. It has the general form

V = 3H2 − 2
H2

θ

f(ρ)
, (3.7)

where H is a function of θ only, Hθ ≡ dH/dθ and f(ρ) > 0. The model
(3.1) is recovered for H ∝ θ and f(ρ) = ρ2, corresponding to a flat field
space parametrized by polar coordinates. This non-linear system admits
exact solutions

θ̇ = −2
Hθ

f
, ρ = ρ0. (3.8)

Thus the inflaton moves in an orbit of constant radius, as ensured by the
Hamilton-Jacobi formalism. As in the toy model, this trajectory is not
along a geodesic. Here the tangent and normal vectors to the trajectory
are T a = 1/

√
f(1, 0) and N a = (0, 1), and the radius of the turning trajec-

tory is a constant given by κ = 2f/fρ. It follows that all these trajectories
are neutrally stable: a small perturbation orthogonal to a given orbital tra-
jectory will bring us to one of the neighbouring trajectories. The attractor
behaviour is explicitly demonstrated in the appendix of the original paper.

3.4 Analysis of perturbations

In flat gauge, the comoving curvature perturbation R is defined as the
projection of the field perturbation along the inflationary trajectory R =
1√
2ϵ
Taδϕa, and the isocurvature perturbation σ corresponds to the orthogo-

nal projection σ = Naδϕ
a. Then for generic multi-field models, the quadratic

action of perturbations takes the following form [78]

S(2) =
1

2

∫
d4xa3

[
2ϵ

(
Ṙ − 2H

κ
σ

)2

+ σ̇2 − µ2σ2 + . . .

]
, (3.9)

where ellipses stand for the gradient terms −(∂iσ)
2 − 2ϵ(∂iR)2. The in-

teraction between curvature and isocurvature modes is given by the term
a3(8ϵH/κ)Ṙσ. To guarantee perturbative analysis we require that

√
8ϵ/κ ≪

1 [78, 141]. The mass of entropy perturbations is defined as µ2 ≡ VNN +
ϵH2

(
R+ 6/κ2

)
, where the first term is obtained from the standard Hessian

of the potential VNN ≡ N aN b (Vab − Γc
abVc), the second and third terms

correspond to the field space curvature and turning contributions respec-
tively.

For shift-symmetric orbital inflation, we expect the isocurvature pertur-
bations to be exactly massless, as in the toy model, and this is confirmed by
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using (3.8) to show µ2 = 0. This implies that the quadratic action (3.9) has
the combined shift symmetry (3.4), as in the toy model. The power spectra
of perturbations in the massless limit can be directly estimated from the
coupled evolution of perturbations [78]. When µ = 0, the linearized system
simplifies in the superhorizon limit, yielding

R′
k =

2

κ
σk, σk =

H∗
2π

, (3.10)

where ∗ denotes evaluation at the time of horizon crossing. That is, on su-
perhorizon scales the isocurvature perturbation quickly becomes a constant,
and it sources the growth of R. At the end of inflation, the primordial curva-
ture perturbation can be expressed as Rk = R∗ +2N∗σk/κ, where the first
term is the curvature perturbation amplitude at horizon-exit, and the sec-
ond term comes from the isocurvature source. Thus these two contributions
are uncorrelated with each other, and the dimensionless power spectrum for
R is given by

PR =
H2

∗
8π2ϵ∗

(1 + C) , (3.11)

where C = 8ϵ∗N
2
∗ /κ

2 represents the contribution from isocurvature modes.
This result agrees with the δN calculation for the toy model given in (3.6).
The full calculation via the in-in formalism gives the same answer up to
subleading corrections [78]. Note that the power spectrum is completely
determined by the isocurvature perturbations if C ≫ 1, which corresponds
to trajectories with a small radius κ or, equivalently, significant turning
effects with 8ϵ∗ ≪ κ2 ≪ 8ϵ∗N

2
∗ . Thus at the end of inflation, curvature

perturbations are highly enhanced compared to the ones at horizon-exit.
Meanwhile, the isocurvature power spectrum for S ≡ σ/

√
2ϵ remains un-

changed as PS = H2
∗

8π2ϵ∗
. Therefore, the amplitude of the isocurvature per-

turbation is dynamically suppressed, i.e. PS/PR ≃ 1/C ≪ 1. The details
of how PS ̸= 0 can generate isocurvature components in the CMB are
rather model-dependent, and one cannot automatically claim that a sup-
pressed ratio PS/PR is compatible with observations. However, if R and S
contributed similarly to the curvature and isocurvature components in the
CMB, the result is compatible with current constraints.

3.5 Phenomenology

We now turn to the observational predictions of shift-symmetric orbital
inflation. For any positive C, from (3.11), the tensor-to-scalar ratio can be
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expressed as r = 16ϵ∗/(1 + C), and the scalar spectral index is ns − 1 ≡
d lnPR
d ln k = −2ϵ∗ − η∗ + (dC/dN)/(1 + C), where we used d ln k = dN . Note

that ∂N∗
∂N = −1, since N∗ counts the number of efolds backwards. These

predictions depend on the function H(θ). As in single field inflation, this
function determines how slow-roll parameters ϵ and η ≡ ϵ′/ϵ scale with N∗.

For concreteness, we consider models with H ∼ θp. Solving (3.8) for
θ(N) yields2 ϵ∗ ≃ p/(2N∗) and η∗ ≃ 1/N∗. The predictions for ns and r are
therefore well approximated by

ns − 1 ≃ −p+ 1

N∗
− 4p

κ2 + 4pN∗
, r ≃ 8pκ2

N∗κ2 + 4pN2
∗
. (3.12)

We plot these results against the Planck 1σ and 2σ contours [7] in Fig. 3.2.
N∗ is taken to be between 50 and 60, and the radius κ2 varies between 1
and 105. The purple region is for p = 1, corresponding to the toy model
(3.1), and we also show the predictions for p = 0.5 (red region), p = 0.2
(yellow region) and p = 0.1 (green region).

Notice that ns and r only depend on the value of κ and are therefore
insensitive to the details of the field metric. When κ → ∞ one recovers the
predictions of chaotic inflation with V ∝ ϕ2p. Meanwhile as κ decreases,
predictions are pushed downwards and to the left in this ns − r diagram.
Therefore, in the case of power-law potentials only for small p do the predic-
tions remain within the Planck contours. The interesting regime here is still
the case with significant turning (small κ or C ≫ 1), where the final power
spectrum PR ≃ H2

∗N
2
∗

π2κ2 mainly has an isocurvature origin. Then the tensor-
to-scalar ratio is given by r = 2κ2/N2

∗ = 16ϵ∗/C, which is suppressed. The
spectral index reduces to ns − 1 = −(p + 2)/N∗ which, for small p, lies in
the sweet spot ns = 0.9649± 0.0042.

Another important observable is primordial non-Gaussianity, which is
currently bounded by Planck through f loc

NL = 0.8 ± 5 [109]. There are ex-
amples in the literature of how O(1) local non-Gaussianity can arise in
multi-field models, especially when the coupling between isocurvature and
curvature modes is large [57, 142–144] - see [145] for a review. There are
also examples of how small levels of non-Gaussianity can arise in mul-
tifield models [146–148]. However, in most cases a detailed analytic un-
derstanding of the size of the non-Gaussianity is lacking because the as-
sociated dynamics is non-linear and complicated. This is not the case in

2We note that for 0 < p < 1 this toy model is not well defined as θ → 0, as can be
seen in (3.7). This is not a problem as the inflationary period we are interested in occurs
before that point is reached. The true underlying potential would have to be completed
in some way. This is similar to case with say axion monodromy.



3.5 Phenomenology 69

0.93 0.94 0.95 0.96 0.97 0.98 0.99

0.00

0.05

0.10

0.15

0.20

Figure 3.2: The analytical predictions (3.12) for (ns, r) compared to the Planck 1σ and 2σ
contours [7]. We show the predictions for wavenumbers which cross the horizon 50−60 efolds
before the end of inflation. The predictions for ns − r depend on the value of κ ∈ [1, 1000],
where the values (1, 2, 4, 8, 16, 32, 64, 128, 256) are depicted with thick lines (from bottom to
top).

shift-symmetric orbital inflation, where we find that we can both easily
satisfy the Planck constraint and crucially understand its origin analyti-
cally. The amplitude of local non-Gaussianity can be determined using the
δN formalism. In a generic multi-field inflation model with curved field
manifold, we have f loc

NL = 5
6G

abGcdNaNcNbd/(G
abNaNb)

2 [142, 149], where
Gab = diag{f(ρ), 1} is the field space metric, Na and Nab are derivatives of
N with respect to the fields (θ, ρ). To gain some analytical understanding,
here we still focus on models with H ∼ θp, where N can be expressed as
N = f(ρ)θ2/4p− p/2. The amplitude of local non-Gaussianity then follows

f loc
NL =

5

12
η∗

[
1− C2

(1 + C)2
κ2R
2

]
, (3.13)

where we used the relation C = 2p2/(ϵ∗κ
2). When κ → ∞, we have C → 0

and C2κ2 → 0. Thus the second term in (3.13) vanishes, which leads to
the single field result f loc

NL = 5η∗/12 as expected. The enhancement of non-
Gaussianity is possible in the intermediate regime C ∼ O(1), where the
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transfer from isocurvature to adiabatic modes is inefficient. In that case,
f loc

NL ∼ −5pR/12 can be large if the field space is highly curved.
For the interesting regime with C ≫ 1, the δN expansion is dominated

by Nρ and Nρρ. This then leads to what, at first sight, appears as the
counterintuitive result that f loc

NL is negligible and slow-roll suppressed

f loc
NL ≃ 5

6

Nρρ

N2
ρ

=
5

12
η∗

(
1− κ2R

2

)
. (3.14)

This is the same as happened in the calculation of the power spectrum:
the contribution to the curvature perturbation sourced by the isocurvature
modes dominates the final result. The bispectrum is found to be slow-roll
suppressed, just like in single field inflation, but there are small corrections
from the field space curvature, which violates Maldacena’s consistency rela-
tion [39, 40]. We have recently confirmed this result via a scaling symmetry
approach in [80].

3.6 Discussions

We have proposed a class of multi-field inflationary models that demon-
strate a new type of attractor trajectory along the isometry direction in field
space. Here the isocurvature modes become massless and freeze on super-
horizon scales. Moreover, when the turning effects become significant, the
curvature perturbations keep growing after horizon-exit and thus isocurva-
ture modes are dynamically suppressed. As a consequence, these multi-field
models yield the single-field-like phenomenology favored by observations.

Additional isocurvature perturbations will either decay if they are mas-
sive or freeze if they are light. Therefore, although our computations were
done in a simple two-field setting, we expect the conclusions will continue
to hold in multi-field extensions with more than two fields, provided that
the number of additional light isocurvature fields is not too large.

We have shown and explained how in shift-symmetric orbital inflation,
a negligible amount of local non-Gaussianity is produced. Here the isocur-
vature degree of freedom can be the dominant contribution to the bispec-
trum, but in such cases fNL is slow-roll suppressed. This result teaches
us a generic lesson: that in multi-field models, even if the isocurvature-
to-adiabatic conversion is very efficient, the resulting non-Gaussianity can
still be suppressed. A large coupling between curvature and isocurvature
modes enhances the transfer of non-Gaussianity, but for this transfer to
generate large non-Gaussianity, one needs sizable self-interactions affecting
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the isocurvature field during horizon crossing [57, 141]. In this class of sce-
narios, however, the shift symmetry along the radial direction (3.4) has a
role in suppressing the self-interactions of the isocurvature field (see [80]).
Therefore, it is perfectly fine to study multi-field models with significant
and sustained turning trajectories, without worrying about generating large
non-Gaussianity.

Our model has important implications on the realization of inflation in
UV-complete theories. Contrary to what is usually assumed, and as em-
phasized in [78], it is not always necessary to stabilize all compactification
moduli, or to have a large mass hierarchy between the inflaton and other
fields. The most problematic effects usually associated with multi-field ef-
fects – the generation of isocurvature perturbations and non-Gaussianity
at unacceptable levels – cancel each other in the shift-symmetric orbital
scenario 3. From an EFT point of view this can be traced back to the
effect of derivative interactions among the curvature and isocurvature per-
turbations that are absent in single-field inflation. These are unavoidable
on curved trajectories and curved field spaces and, therefore, ubiquitous in
string compactifications.

3As already emphasized, large isocurvature perturbations at the end of inflation do
not necessarily imply large isocurvature components in the CMB, the details of which
are rather model dependent. Nevertheless, in this class of models the potentially signif-
icant generation of isocurvature modes in the CMB is automatically alleviated by the
mechanism at play.




