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Excursion in curved field spaces





2| Universality of multi-fieldα-attractors

Abstract: We study a particular version of the theory of cosmological α-
attractors with α = 1/3, in which both the dilaton (inflaton) field and the
axion field are light during inflation. The kinetic terms in this theory origi-
nated from supergravity has a hyperbolic geometry. We show that because
of the underlying negatively curved moduli space in this theory, it exhibits
double attractor behavior: their cosmological predictions are stable not only
with respect to significant modifications of the dilaton potential, but also
with respect to significant modifications of the axion potential: ns ≃ 1− 2

N ,
r ≃ 4

N2 . We also show that the universality of predictions extends to other
values of α ≲ O(1) with general two-field potentials. Our results support
the idea that inflation involving multiple, not stabilized, light fields on a hy-
perbolic manifold may be compatible with current observational constraints
for a broad class of potentials.

Keywords: inflation, supersymmetry and cosmology

Based on1:

A. Achúcarro, R. Kallosh, A. Linde, D.-G. Wang, Y. Welling
Universality of multi-field α-attractors

JCAP 1804 (2018), no. 04 028, [arXiv:1711.09478].

1Here section 2.2 has been trimmed, while a new appendix 2.C on the stabilization of
the “rolling on the ridge” trajectories is added.
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2.1 Introduction

UV embeddings of inflation typically contain multiple scalar fields beside
the inflaton. If the additional fields are stabilized, we can integrate them
out to find effectively single field inflation. On the other hand, if the addi-
tional fields remain light during inflation, we should take into account the
full multi-field dynamics. Planck [108, 109] puts tight constraints on these
inflationary models, therefore we should understand which model-building
ingredients are important to ensure compatibility with the data. In partic-
ular, both the geometry of field space and the curvature of the inflationary
trajectory play a very important role in determining the observables. In
this paper we focus on the special role played by hyperbolic geometry.

A notable example are the α-attractor models, a relatively simple class
of inflationary models that have a single scalar field driving inflation. In the
simplest supergravity embedding of these models, the potential depends on
the complex scalar Z = ρ eiθ, where Z belongs to the Poincaré disk with
|Z| = ρ < 1 and the kinetic terms read2

3α
∂µZ̄∂µZ

(1− ZZ̄)2
+ ... (2.1)

In many versions of these models, the field θ is heavy and stabilized at
θ = 0, so that the inflationary trajectory corresponds to the evolution of the
single field ρ. An important property of these models is that their cosmolog-
ical predictions are stable with respect to considerable deformations of the
choice of the potential of the field ρ: ns ≈ 1− 2

N , r ≈ 12α
N2 [17, 18, 74, 110–

115]. These predictions are consistent with the latest observational data for
α < O(10).

In the single-field realizations, the universality of these predictions can
be ultimately traced back to the radial stretching introduced by the geom-
etry (2.1) as we approach the boundary ρ ∼ 1. On the other hand it is clear
that, in the two-field embedding in terms of Z, the stretching also affects
the “angular” θ-direction and this begs the question whether perhaps there
is a regime where the predictions for the inflationary observables are also
fairly insensitive to the details of the angular dependence of the potential.
In this paper we answer this question in the affirmative for sufficiently small
α ≲ O(1).

A particularly interesting case is α = 1/3, where a class of supergravity
embeddings are known to possess an additional symmetry, which makes

2Alternatively, 3α ∂T∂T̄
(T+T̄ )2

, where T = 1+Z
1−Z

.
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both ρ and θ light [74]. This means we cannot integrate out the angular
field and we have to take into account the full multi-field dynamics. We
will show that, in contrast with the naive expectation, the cosmological
predictions of the simplest class of such models are very stable not only
with respect to modifications of the potential of the field ρ, but also with
respect to strong modifications of the potential of the field θ. Importantly,
we have to account for the full multi-field dynamics [49–52, 61, 116–118]
in order to obtain the right results3. The predictions coincide with the
predictions of the single-field α-attractors for α = 1/3: ns ≈ 1− 2

N , r ≈ 4
N2 .

It was emphasized in [74] that for 3α = 1, the geometric kinetic term

dZdZ̄

(1− ZZ̄)2
(2.2)

has a fundamental origin from maximal N = 4 superconformal symme-
try and from maximal N = 8 supergravity. Also the single unit size disk,
3α = 1, leads to the lowest B-mode target which can be associated with
the maximal supersymmetry models, M-theory, string theory and N=8 su-
pergravity, see [113, 114] and [115].

More generally, we will also show that, for sufficiently small values of
α < O(1), the class of potentials exhibiting universal behaviour becomes
very broad, and in particular it includes potentials with 1

ρVθ ∼ Vρ ∼ V .
Our results lend support to the tantalizing idea, recently explored in

some detail in [78] and building on earlier works in [120–124], that multi-
field inflation on a hyperbolic manifold may be compatible with current
observational constraints without the need to stabilize all other fields be-
sides the inflaton. Since axion-dilaton moduli systems with the geometry
(2.1) are ubiquitous in string compactifications, this observation could have
important implications for inflationary model building.

Although at first sight the universality found here resembles a similar
result obtained in the theory of multi-field conformal attractors [125] for
α = 1, the reason for our new result is entirely different. In the model
studied in [125], the light field θ evolved faster than the inflaton field, so
it rapidly rolled down to the minimum of the potential with respect to
the field θ, and the subsequent evolution became the single-field evolution
driven by the inflaton field. The observable e-folds are in the latter, single-
field regime. On the other hand, in the class of models to be discussed in
our paper, the angular velocity θ̇ is exponentially suppressed, due to the
hyperbolic geometry, and inflation proceeds (almost) in the radial direction.

3See [119] for a recent review and references there.
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The angular field will not roll down to its minimum, but instead it is ”rolling
on the ridge”. This is illustrated in Figures 2.3 and 2.4. Nevertheless, the
trajectory is curved and the inflationary dynamics is truly multi-field.

Multi-field models of slow-roll inflation based on axion-dilaton systems
have been studied for some time [126, 127]. However, it is only fairly recently
that the very important role played by the hyperbolic geometry for multi-
field inflation is being recognized (see, e.g. [63, 68, 69, 74, 78, 80, 121, 128]).
Unlike in previous works, here we choose to be agnostic about the potential,
and derive the conditions that will guarantee universality of the inflationary
predictions for the two-field system.

The paper is organized as follows. In Section 2.2 we present a new
supergravity embedding of the α = 1/3 two-field model with a light, non-
stabilized, angular field, as an anti-D3 brane induced geometric inflationary
model. We study its inflationary dynamics, and elaborate on the ”rolling
on the ridge” behaviour in Section 2.3. Next, we work out the universal
predictions for primordial perturbations in Section 2.4, and leave the details
of the full multi-field analysis for Appendix 2.B. We extend this result to
general values of α and work out the constraints on the potential to ensure
the universality of the predictions in Section 2.5 and Appendix 2.A. Section
2.6 is for summary and conclusions.

2.2 α-attractors and their supergravity implementations

There are several different formulations of α-attractors in supergravity. One
of the first formulations [18] was based on the theory of a chiral superfield
Z with the Kähler potential corresponding to the Poincaré disk of size 3α,

K = −3α ln(1− ZZ̄ − SS̄) , (2.3)

and superpotential
W = S f(Z)(1− Z2)

3α−1
2 , (2.4)

where f(Z) is a real holomorphic function. It is possible to make the field
S vanish during inflation, either by stabilizing it, or by making it nilpotent
[129]. Either way, the kinetic term for Z is

3α
dZdZ̄

(1− ZZ̄)2
. (2.5)

The field Z can be represented as ei θ tanh φ√
6α

, where φ is a canonically
normalized inflaton field. In the simplest models of this class, the mass of
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Figure 2.1: The θ-independent 3α = 1 T-model potential V (φ) = m2 tanh2 φ√
2

.

the field θ in the vicinity of θ = 0 during inflation is given by

m2
θ = 2V

(
1− 1

3α

)
, (2.6)

up to small corrections proportional to slow roll parameters. In particular,
for the simplest models with α > 1/3 one finds m2

θ > 0, which means
that the field θ is stabilized at θ = 0. Meanwhile for α > 2/5 one has
m2

θ = V /3 ⩾ H2 where H is the Hubble constant. This means that the
field θ for α ⩾ 2/5 is strongly stabilized, and the only dynamical field
during inflation is the inflaton field φ with the potential

V =
∣∣f(tanh φ√

6α
)
∣∣2. (2.7)

Meanwhile for 3α ≈ 1 one finds that during inflation |m2
θ| ≪ H2. As an

example, the potential V for f(Z) = mZ does not depend on θ at all:

V = m2 tanh2 φ√
6α

, (2.8)

see Figure 2.1.
These specific models with 3α = 1 with light, non-stabilized fields θ have

drawn a lot of attention recently. Therefore it would be interesting to revisit
all versions of these models, including the extensions with θ-dependence of
the potential. While the details of a supergravity construction are presented
in the original paper [75], in general the resulting scalar potential V (Z, Z̄)
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is a function of Z and Z̄ which is regular at the boundary ZZ̄ = 1 and
which vanishes at the minimum at Z = 0.

In the simplest cases, where V is a function of ZZ̄, it does not depend
on the angular variable θ, just as the potential in the theory (2.3) (2.4) for
3α = 1 shown in Figure 2.1. For more general potentials, V may depend on
θ, and the potentials can be quite steep with respect to ρ and θ.

The key feature of this class of models, as well as of the models (2.3) (2.4)
for 3α = 1, is that they describe hyperbolic moduli space corresponding
to the Kähler potential K = − ln(1 − ZZ̄), with the metric of the type
encountered in the description of an open universe, see Equation (2.12)
below. As we will see, the slow roll regime is possible for these two classes of
theories even for very steep potentials, because of the hyperbolic geometry
of the moduli space.

2.3 Dynamics of multi-field α-attractors

Now we come to study inflation with the above theoretical construction.
Our starting point is

g−1L =
dZdZ̄

(1− ZZ̄)2
− V (Z, Z̄) . (2.9)

The complex variable on the disk can be expressed as

Z = ρ eiθ , (2.10)

where ρ is the radial field and θ is the angular field. In general, the potential
V (ρ, θ) in these variables can be quite complicated and steep. For simplicity,
in the following we assume the potential vanishes at the origin Z = 0 and
is monotonic along the radial direction of the unit disk4, i.e. Vρ ⩾ 0. One
natural possibility is Vρ ∼ Vθ/ρ ∼ V , which at first glance cannot yield
sufficient inflation. However, the hyperbolic geometry of the moduli space
makes slow roll inflation possible even if the potential is quite steep.

To see this, and to connect this to a more familiar canonical field φ in
3α = 1 attractor models where the tanh argument is φ/

√
6α, we can use

the following relation
ρ = tanh φ√

2
. (2.11)

4We study other interesting cases with non-monotonic potential, such as the Mexican
hat potential and natural inflation with hyperbolic geometry in another work [77].
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Figure 2.2: A stretched potential with angular dependence

Therefore, our cosmological models with geometric kinetic terms are based
on the following Lagrangian of the axion-dilaton system

g−1L =
1

2
(∂φ)2 +

1

4
sinh2(

√
2φ)(∂θ)2 − V (φ, θ) , (2.12)

where some choice of the potentials V (φ, θ) will be made depending on both
moduli fields. In terms of this new field φ, the corresponding potential near
the boundary ρ = 1 is exponentially stretched to form a plateau, where
φ field becomes light and slow-roll inflation naturally occurs. If we further
assume the potential is a function of the radial field only, then we recover
the T-model as shown in Figure 2.1. Generally speaking, the potential may
also depend on θ, and have ridges and valleys along the radial direction.
One simple example is shown in Figure 2.2. Although the θ field can appear
heavy in the unit disk coordinates, after stretching in the radial direction,
the effective mass in the angular direction is also exponentially suppressed
for φ ≫ 1.

For a cosmological spacetime, the background dynamics is described by
equations of motion of two scalar fields

φ̈+ 3Hφ̇+ Vφ − 1

2
√
2

sinh
(
2
√
2φ
)
θ̇2 = 0 , (2.13)

θ̈ + 3Hθ̇ +
Vθ

1
2 sinh2(

√
2φ)

+
2θ̇φ̇

1√
2

tanh(
√
2φ)

= 0 , (2.14)

and the Friedmann equation

3H2 =
1

2
(φ̇2 +

1

2
sinh2

√
2φ θ̇2) + V (φ, θ) , (2.15)
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where H ≡ ȧ/a is the Hubble parameter. In such a two-field system with
potential as shown in Figure 2.2, one may expect that the inflaton will first
roll down from the ridge to the valley, and then slowly rolls down to the
minimum along the valley. In the following we will demonstrate, due to
the magic of hyperbolic geometry, the dynamics of moduli fields is totally
different from this naive picture.

2.3.1 Rolling on the ridge

In single-field α-attractor models, inflation takes place near the edge of the
Poincaré disk with ρ → 1 (or equivalently φ ≫ 1). Here we also focus on
the large-φ regime where the potential in the radial direction is stretched
to be very flat. As a consequence, the radial derivative of the potential is
exponentially suppressed

Vφ ≃ 2
√
2Vρe

−
√
2φ . (2.16)

After a quick relaxation, the fields can reach the slow-roll regime with the
Hubble slow-roll parameters

ϵ ≡ − Ḣ

H2
=

φ̇2 + 1
2 sinh2(

√
2φ)θ̇2

2H2
≪ 1 , η ≡ ϵ̇

Hϵ
≪ 1. (2.17)

Thus the kinetic energy of fields is much smaller than the potential, and the
θ̇φ̇ term in (2.13) is subdominant. Moreover, we assume that the field ac-
celerations φ̈ and θ̈ can be neglected with respect to the potential gradient.
The equation of motion for θ is then simplified to

θ̇

H
≃ −8

Vθ

V
e−2

√
2φ. (2.18)

This gives us the velocity in the angular direction, which is highly sup-
pressed in the large-φ regime. Substituting the above result in the equation
of motion for φ (2.13), we can see that the centrifugal term proportional to
θ̇2 is also suppressed by e−2

√
2φ. Thus for φ ≫ 1 this term can be neglected

compared to Vφ. Therefore the equation of motion for φ is approximately

3Hφ̇+ Vφ ≃ 0 , (2.19)

which is the same as the single field case with slow-roll conditions. Similarly
we get the field velocity in the radial direction φ̇ ∼ e−

√
2φ, which is much

larger than the angular velocity θ̇. This is the main reason for the difference
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Figure 2.3: The stream of φ and θ fields on the potential with random angular dependence
shown in Figure 2.2. The dashed gray lines show the radial directions, while the blue arrows
correspond to the field flow, starting at φi = 10.

between the slow-roll regime in the present set of models, and in the multi-
field conformal attractors studied in [125]. In the conformal attractors, the
field θ was rapidly rolling down, whereas here instead of rolling down to the
valley first, the scalar fields are rolling on the ridge with almost constant θ.

To see this counter-intuitive behaviour clearly, we can look at the flow
(φ̇, θ̇) in the polar coordinate system. The numerical result of the flow of
the fields is shown in Figure 2.3 for the potential from Figure 2.2. As we
see, although the potential looks chaotic in the angular direction, the fields
always roll to the minimum along the ridge, no matter where they start.

However, it is crucial to emphasize that, although θ̇ is highly suppressed
and θ is nearly constant, the angular motion is still quite important. In the
curved field manifold, since the angular distance is also stretched for large
φ, the proper velocity in the angular direction is given by 1√

2
sinh(

√
2φ)θ̇.

We are encouraged to define a new parameter γ as the ratio between the
physical angular and radial velocity

γ ≡ sinh(
√
2φ) θ̇√

2 φ̇
≃ Vθ

Vρ
, (2.20)

where in the last step we have used large-φ and slow-roll approximations.
Since θ hardly evolves and ρ ≃ 1 for φ ≫ 1, γ is nearly constant during most
period of inflation. This parameter captures the deviation from the single
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field scenario. For instance, let us look at the potential slow-roll parameter
in the radial direction

ϵφ ≡ 1

2

(
Vφ

V

)2

≃ φ̇2

2H2
, (2.21)

which is the same with the single field one. Then in our model the full
Hubble slow-roll parameter (2.17) is approximately given by

ϵ = (1 + γ2)ϵφ . (2.22)

Thus a nonzero γ demonstrates the contribution of the angular motion in
the evolution of the two-field system. Furthermore, depending on the form
of the potential, γ can be O(1) as we shall show in a toy model later. In
such cases, the physical angular motion is comparable to the radial one,
and the multi-field effects is particularly important5.

In summary, for multi-field α-attractors, there are two subtleties caused
by the hyperbolic field space. First of all, the two-field evolution looks like
the single field case without turning behaviour in the field space. On the
other hand, the straight trajectory is an illusion, and the multi-field effect
can still be significant. In Section 2.4, we will show how these surprising
behaviours lead us to the universal predictions for primordial perturbations.

Concluding this subsection, we wish to further explain why ”rolling on
the ridge” is a quite general behaviour in multi-field α-attractors. Besides
the aforementioned approximations, importantly we also neglect the cen-
trifugal term in (2.13). Strictly speaking, this requires

Vφ ≫ 1

2
√
2

sinh
(
2
√
2φ
)
θ̇2, (2.23)

which in the large-φ regime is equivalent to the following condition of the
potential

Vρ

V
≫ 4

3

(
Vθ

V

)2

e−
√
2φ . (2.24)

Now we can see, near the boundary of the disk, unless the angular depen-
dence of the potential is exponentially stronger than the radial one, the
above condition always holds true and the system evolves as we describe
above. Finally let us stress that we have to ensure all our approximations
are valid. We collect all conditions on the potential in Appendix 2.A. A
natural choice of the potential with Vρ ∼ Vθ/ρ ∼ V certainly satisfies these
conditions.

5To see the importance of multi-field behaviour, another way is to look at the nonzero
turning parameter, which we will discuss in Appendix 2.B.
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Figure 2.4: Rolling on the ridge: the form of the potential is given by the toy model (2.26)
with A = 0.2, n = 4 and initial angle θi = π/8; the orange dots show a typical background
trajectory, while the interval between the neighboring dots corresponds to one e-folding time.

2.3.2 A toy model

Before moving to the calculation of perturbations, let us work out a toy
model to further confirm the above analysis. Consider the following poten-
tial on the unit disk

V (Z, Z̄) = V0

[
ZZ̄ +A(Zn + Z̄n)

]
. (2.25)

To ensure that it is monotonic in the radial direction of the unit disk we
need A ⩽ 1

n . Then the condition (2.24) is certainly satisfied. In terms of φ
and θ, the potential is given by

V (φ, θ) = V0 tanh2

(
φ√
2

)[
1 + 2A cos(nθ) tanhn−2

(
φ√
2

)]
. (2.26)

For demonstration, in the following we take n = 4, A = 0.2 and the initial
angle θi = π/8. We solve the background evolution of this two field system
numerically. Figure 2.4 shows the field trajectory on the toy model potential.
We can see that the inflaton is rolling on the ridge with nearly constant θ.

Using the full numerical solution, we can check the validity of the large-
φ and slow-roll approximations by looking at the evolution of background
parameters. For example, within our analytical treatment, the γ parameter
is given by (2.20) as

γ ≃ − nA sin(nθ)
1 + nA cos(nθ) . (2.27)

It is nearly constant, since θ ≃ θi during inflation. And the above choice of
parameter values gives us γ ≃ −0.8, which agrees well with the numerical
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Numerical result

Analytical approximation
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Figure 2.5: The evolution of γ and ϵ in the toy model (2.26) with A = 0.2, n = 4 and initial
angle θi = π/8.

result as shown in Figure 2.5. Next, let us look at the slow-roll parameter
ϵ. Solving (2.19) gives us its behaviour in terms of e-folding number as

ϵ ≃ 1 + γ2

4N2
, (2.28)

where (2.22) is used. As shown in Figure 2.5, this provides a good approxi-
mation until the last several e-foldings of inflation, where φ ≫ 1 is not valid
any more. It is interesting to notice that, during inflation the scalar field
mainly rolls in the large-φ region, outside of which inflation would end very
quickly. Therefore, the approximation φ ≫ 1 does give a good description
for the background dynamics. In the following section and in Appendix
2.B, we will come back to this toy model, and use it as an example to
demonstrate other aspects of multi-field α-attractors.

2.4 Universal predictions of α-attractors

One of the most important properties of single field α-attractor inflation is
the universal prediction for observations. For α ≲ O(1) and a broad class
of potentials, as long as V (ρ) is non-singular and rising near the bound-
ary of the Poincaré disk, the resulting scalar tilt and tensor-to-scalar ratio
converge to

ns = 1− 2

N
and r =

12α

N2
, (2.29)

where N ∼ 50 − 60 is the number of e-folds for modes we observe in the
CMB.

One interesting question is whether the universal predictions are still
valid in the multi-field regime. In multi-field scenarios the curvature pertur-
bation is sourced by the isocurvature modes on superhorizon scales, thus



2.4 Universal predictions of α-attractors 45

numerical Pζ

numerical PS

analytical Pζ

analytical PS

50 40 30 20 10 0

5.×10-10

1.×10-9

2.×10-9

N

P

Figure 2.6: The evolution of curvature power spectrum Pζ and isocurvature power spectrum
PS for perturbation modes which exit the horizon at N = 55. We use the toy model (2.26)
with A = 0.2, n = 4 and initial angle θi = π/8. The analytical solutions here are based on
calculations in Appendix 2.B.

their evolution is typically non-trivial and yields totally different results for
ns and r. As we show above, the angular dependence in the α-attractor
potentials indeed leads to multi-field evolution. For the toy model we stud-
ied, the behaviour of perturbations can be computed using the numerical
code mTransport [130]. We focus on one single k mode for curvature and
isocurvature perturbations, and show their evolution in Figure 2.6. As ex-
pected, the curvature perturbation is enhanced during inflation, while the
isocurvature modes decay. Therefore, naively one expects there would be
corrections to the single field α-attractor predictions due to the multi-field
effects.

In the following we will show that, surprisingly, the universal predictions
are still valid in the multi-field regime. We use the δN formalism to derive
the inflationary predictions for the multi-field α-attractor models studied
in this paper. A full analysis of the perturbations is left for Appendix 2.B,
where the evolution of the coupled system of curvature and isocurvature
modes is solved via the first principle calculation .

The δN formalism [131–135] is an intuitive and simple approach to solve
for the curvature perturbation in multi-field models. At the end of infla-
tion, regardless of the various field trajectories, the amplitude of curvature
perturbations is only determined by the perturbation of the e-folding num-
ber N , which is caused by the initial field fluctuations. Therefore, without
studying details of the coupled system of curvature and isocurvature modes,
as long as we know how the number of e-foldings N depends on the initial
value of the two fields, the curvature perturbation can be calculated.
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Let us therefore consider how the initial φ and θ determine N . In this
paper, we define the e-folding number as the one counted backwards from
the end of inflation, thus dN = −Hdt. In terms of N , the slow-roll equation
(2.19) becomes

dφ

dN
≃ 2

√
2e−

√
2φVρ

V
. (2.30)

Since in the large φ regime ρ → 1 and Vρ/V is nearly constant for a given
trajectory, the equation above yields the e-foldings from the end of inflation
as

N =
1

B
e
√
2φ + C(θ) , (2.31)

where B ≡ 4Vρ/V and C(θ) is an O(1) integration constant which can
be fixed by setting N = 0 at the end of inflation. Thus, both two fields
affect the duration of inflation as expected in multi-field models. By this
expression, we can use the δN formalism to find curvature perturbation at
the end of inflation

ζ = δN =
∂N

∂φ
δφ+

∂N

∂θ
δθ =

√
2e

√
2φ

B
δφ+

(
Cθ −

Bθ

B2
e
√
2φ

)
δθ . (2.32)

As we see here, ∂N
∂φ and ∂N

∂θ can be comparable to each other. However, one
should keep in mind that θ field is non-canonical, thus to estimate the field
fluctuation amplitudes at horizon-exit, one should consider the canonically
normalized ones: δφ and 1√

2
sinh(

√
2φ)δθ. Approximately in the large-φ

region we have the following relation

δφ ≃ e
√
2φ

2
√
2
δθ ≃ H

2π
. (2.33)

From here, we find that the field fluctuation δθ is exponentially suppressed,
compared to the one from δφ. So we only need to take into account the
first term in equation (2.32). In addition, equation (2.21) yields ϵφ =

B2e−2
√
2φ/4, which further simplifies the δN formula to ζ ≃ δφ/

√
2ϵφ.

In the end, the power spectrum of curvature perturbation can be expressed
as

Pζ ≡
k3

2π2
|ζk|2 ≃

H2

8π2ϵφ
. (2.34)

It is interesting to note that this result does not depend on any parameters
related to the multi-field effects (such as γ). Using (2.21) and (2.31), we
also get ϵφ ≃ 1/(4N2), which has the same behaviour with the single-
field potential slow-roll parameter ϵV . Thus the power spectrum above is
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coincident with the single-field one. Then the predictions of scalar tilt and
tensor-to-scalar ratio follow directly

ns − 1 ≃ − 2

N
and r ≃ 4

N2
. (2.35)

These results are further confirmed by solving the full evolution of pertur-
bations as shown in Appendix 2.B.

The δN calculation above also demonstrates the counter-intuitive prop-
erties of multi-field α-attractors. As we show in Section 2.3, the stretching
effects of hyperbolic geometry not only flattens the potential in the radial
direction, but also suppresses the angular velocity θ̇. At the level of per-
turbations, the similar effect occurs to the field fluctuations in the angular
direction. While the canonically normalized angular field fluctuation has
the same amplitude with δφ, the original field perturbation δθ is exponen-
tially suppressed. Therefore, only the radial field fluctuation δφ contributes
to the final result.

Furthermore, the above results do not depend on the initial values of
θ, which correspond to different field trajectories as shown in Figure 2.3.
Certainly their respective e-folding number N and ϵφ can be different from
each other. However, the N -dependence of ϵφ is the same for all the ”rolling
on the ridge” trajectories. Thus regardless of various initial values of θ, the
multi-field α-attractors yield the same universal predictions for ns and r.

Typically, another prediction in multi-field inflation is large local non-
Gaussianity, which is disfavoured by the latest data [109]. Therefore it is
also worthwhile to estimate the size of the bispectrum in our model. Here
we expand the δN formula to the second order in field fluctuations

ζ = δN =
∂N

∂φ
δφ+

∂N

∂θ
δθ +

1

2

∂2N

∂φ2
δφ2 +

1

2

∂2N

∂θ2
δθ2 +

∂2N

∂θ∂φ
δθδφ . (2.36)

In principle, there are two contributions here: one captured by the δN ex-
pansion, and another one caused by field interactions of δφ and δθ. However,
for the same reason shown in (2.33), the δθ-related terms in the expansion
(2.36) are highly suppressed. Moreover, since there is no large coupling
between field fluctuations, we expect that the second contribution to the
bispectrum will also be negligible. As a result, the local non-Gaussianity is
approximately given by δφ terms in (2.36)

fNL ≃ 5

6

∂2N

∂φ2

/(
∂N

∂φ

)2

≃ 5

6N
, (2.37)
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which is coincident with the single field consistency relation fNL = − 5
12(ns−

1) [39, 40]. Again, we find the multi-field α-attractor prediction returns to
the single field one, which further demonstrates the scope of universality.

2.5 Universality conditions for more general α

Our investigation was stimulated by the realization that α-attractors have
particularly interesting interpretation in supergravity models with α = 1/3.
A significant deviation from α = 1/3 typically either makes the field θ
tachyonic, or strongly stabilizes it at θ = 0, which results in a single-field
inflation driven by the field φ, see e.g. (2.6). One may wonder, however,
what happens if we consider a more general class of two-field α-attractors,
which may or may not have supergravity embedding6, and concentrate on
their general features related to the underlying hyperbolic geometry.

For general α, the canonically normalized field in the radial direction is
defined by ρ = tanh(φ/

√
6α), which leads to the following kinetic term

1

2
(∂φ)2 +

3α

4
sinh2

(√
2

3α
φ

)
(∂θ)2 . (2.38)

The equations of motion (2.13) and (2.14) also change accordingly, see
(2.47) and (2.48). Similarly as in Section 2.4, in the slow-roll and large-φ
approximations these equations reduce to

θ̇

H
≃ − 8

3α

Vθ

V
e
−2

√
2
3α

φ
, 3Hφ̇ ≃ − 2

√
2√

3α
Vρe

−
√

2
3α

φ
. (2.39)

As we see, the angular motion is also exponentially suppressed, compared
to the radial one. So the rolling on the ridge behaviour is not unique for
α = 1/3, but quite general for any α ≲ O(1). Similarly to (2.24), we get
the following condition to ensure its validity

Vρ

V
≫ 4

9α

(
Vθ

V

)2

e
−
√

2
3α

φ
, (2.40)

which can be satisfied easily by many choices of potential, generalizing the
bound (2.24) to other values of α. Therefore, the results follow directly just
like we find in Section 2.3. For example, the ratio of proper velocities

γ =

√
3α
2 sinh

(√
2
3αφ

)
θ̇

φ̇
(2.41)

6Ref. [136] provides a supergravity embedding for the more general α < 1 models.
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is still nearly constant, while ϵφ evolves as

ϵφ ≃ 3α

4N2
. (2.42)

Repeating the same δN calculation for perturbations, we get N ≃ 3αe
√

2/3αφ/B
and

ζ = δN ≃ 1√
2ϵφ

δφ, (2.43)

which lead to the universal predictions (2.29) for generic α. Therefore in a
broader class of α-attractors without supersymmetry, adding angular de-
pendence to the potential will not modify the universal predictions either.
Importantly, in order to validate the various assumptions we make to obtain
the universal predictions, we need the potential to satisfy certain conditions.
The most non-trivial condition is already given in (2.40). The additional
constraints on the potential come from assuming the slow-roll, ‘slow-turn’
and large φ approximation. We give more detail about these approxima-
tions and collect the constraints on the potential in Appendix 2.A. Some
of the conditions should also be satisfied for single field α-attractors. The
smaller α becomes, the more pronounced the stretching of the hyperbolic
field metric gets and it will be more likely to be within the large φ regime
φ ≳

√
3α
2 and the slow-roll regime at the same time. Finally, there are

some additional constraints on the potential because of the multi-field na-
ture of our class of models. In particular, if we want to have suppressed
field accelerations, we need to satisfy the slow-roll and the slow-turn con-
ditions given in (2.49d) - (2.49f). A natural choice of the potential with
Vθ
ρV ∼ Vρ

V ∼ Vθθ
ρ2V

∼ Vθρ

ρV ∼ Vρρ

V ∼ 1, evaluated at the boundary ρ ∼ 1 amply
satisfies all conditions for α ≲ O(1).

2.6 Summary and Conclusions

In this paper we have studied the inflationary dynamics and predictions of
a class of α-attractor models where both the radial and the angular com-
ponent of the complex scalar field Z = ρ eiθ are light during inflation. We
concentrated on the special case α = 1/3, where the model has a supergrav-
ity embedding with a high degree of symmetry from N = 4 superconformal
or N = 8 supergravity. However, our results may have more general validity
under the conditions specified in Appendix A. Under the weak assumptions
that the potential is monotonic in the radial coordinate, and the angular
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gradient is not exponentially larger than the radial gradient (2.24), we find
exactly the same predictions as in the theory of the single field α-attractors:

ns − 1 ≃ − 2

N
and r ≃ 12α

N2
. (2.44)

Universality of these predictions may make it difficult to distinguish be-
tween different versions of α-attractors by measuring ns. However, from
our perspective this universality is not a problem but an advantage of α-
attractors, resembling universality of several other general predictions of
inflationary cosmology, such as the flatness, homogeneity and isotropy of
the universe, and the flatness, adiabaticity and gaussianity of inflationary
perturbations in single field inflationary models.

The hyperbolic field metric plays a key role in finding these universal
results. Let us summarize how we arrived at our new result and stress how
the hyperbolic geometry dictates the analysis.

• First, the hyperbolic geometry effectively stretches and flattens the
potential in the radial direction to a shape independent of the original
radial potential. Independent - as long as the potential obeys the
condition (2.24). The amplitude of this shape, however, varies along
the angular direction.

• Next, the angular velocity θ̇ is exponentially suppressed, due to the
hyperbolic geometry, and inflation proceeds (almost) in the radial
direction. The inflaton is ”rolling on the ridge” in the (φ, θ) plane.
This is illustrated in Figures 2.3 and 2.4.

• The straight radial trajectory is an illusion, since the physical velocity
in the axion θ direction is typically of the same order as the radial
velocity. The angle between the inflationary trajectory and the radial
direction is nonzero and practically constant in this regime. More-
over, although the field is following the gradient flow, the trajectory
is curved in the hyperbolic geometry. Therefore, the perturbations
are coupled and the multi-field effects have to be taken into account.

• Then, we use the δN formalism to compute the power spectrum of
curvature perturbations (confirmed by a fully multi-field analysis in
Appendix 2.B). The typical initial θ perturbations are very small and
have a negligible effect on the number of efolds. However, the initial
value of θ of a given trajectory determines how much a perturbation in
the radial direction affects the number of efolds, since the trajectory
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is curved. At the same time the initial value of θ determines the
renormalization of the slow-roll parameter ϵ. These two effects cancel
exactly, leaving us with the same predictions as the single field α-
attractors. Also the non-Gaussianity calculation recovers the single
field result fNL ≃ − 5

12(ns − 1).

• Finally, in Section 2.5 and Appendix 2.A, we relax the condition α =
1/3 and simply assume the hyperbolic geometry (2.1) with smooth
potentials. We identify the conditions on the potential in order to
exhibit the universal behaviour discussed in our paper, see (2.49).
For α ≲ O(1) these conditions are amply satisfied by a broad class
of potentials V (ρ, θ), including natural ones without a hierarchy of
scales: Vθ

ρV ∼ Vρ

V ∼ Vθθ
ρ2V

∼ Vθρ

ρV ∼ Vρρ

V ∼ 1, evaluated at the boundary
ρ ∼ 1.

In conclusion, the main result of our investigation is the stability of pre-
dictions of the cosmological α-attractors with respect to significant mod-
ifications of the potential in terms of the original geometric variables Z.
Whereas the stability with respect to the dependence of the potential on
the radial component of the field Z is well known [18], the stability with
respect to the angular component of the field Z is a novel result which we
did not anticipate when we began this investigation.

Our results could have important implications for constructing UV com-
pletions of inflation. We have confirmed again that multi-field models of
inflation can be perfectly compatible with the current data, in particular
when the additional fields are very light. This lends support to the idea
that it is not always necessary to stabilize all moduli fields in order to have
a successful model of inflation.

Appendix

2.A Constraints on the potential

In this Appendix we collect the conditions the potential has to obey in
order to validate our approximations for any value of α. Let us first recap
some relevant definitions and equation for general α. First of all, our three
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radial variables are given by φ and

R(φ) ≡
√

3α

2
sinh

(√
2

3α
φ

)
, ρ ≡ tanh

(
φ√
6α

)
. (2.45)

We introduced the radial variable R(φ) because it appears naturally in the
physical angular velocity R(φ)θ̇. The kinetic term can now be written in
three equivalent ways

1

2

(∂ρ)2 + ρ2(∂θ)2

(1− ρ2)2
=

1

2
(∂φ)2 +

3α

4
sinh2

(√
2

3α
φ

)
(∂θ)2

=
1

2
(∂φ)2 +

1

2
R(φ)2(∂θ)2. (2.46)

The equations of motion are generalized to

φ̈+ 3Hφ̇+ Vφ − 1

2

√
3α

2
sinh

(
2

√
2

3α
φ

)
θ̇2 = 0 , (2.47)

θ̈ + 3Hθ̇ +
Vθ

3α
2 sinh2

(√
2
3αφ

) +
2θ̇φ̇√

3α
2 tanh

(√
2
3αφ

) = 0 . (2.48)

Now we are ready to collect all constraints on the potential. In our deriva-
tion we assume that we can neglect φ̈ and that we can take the large-φ
approximation. Moreover, it is important that we can neglect the centrifu-
gal term proportional to θ̇2 in Equation (2.47). We use the gradient flow
to estimate the size of θ̇, and this leads to the first constraint (2.49a). For
consistency, we have to ensure the validity of: ncy, we have to ensure the
validity of:

• The slow-roll approximation, which gives rise to the next four con-
straints (2.49b) - (2.49e). This approximation ensures that the field
velocities are small and that we can neglect their acceleration pointing
along the corresponding field direction as well.

• The slow-turn approximation, which allows us to neglect the field
accelerations pointing along the other field direction. If we can assume
gradient flow for θ this leads to the condition (2.49f).

• The large-φ approximation, which requires us not to go to the extreme
limit of a very shallow radial potential. We want to inflate sufficiently



2.B Full analysis of perturbations 53

far from the origin in order to obtain enough efolds of inflation, such
that we can use the large-φ approximation. In our analysis we work
for simplicity with potentials

(
Vρ

V

)2
≳ α

4 so this is automatically
satisfied.

Vρ

V
≫ 4

9α

(
Vθ

V

)2

e−
√

2/3αφ,

ϵφ ≡ 1

2

(
Vφ

V

)2

=
4

3α

(
Vρ

V

)2

e−2
√

2/3αφ ≪ 1,

ϵθ ≡
1

2

(
Vθ

RV

)2

=
4

3α

(
Vθ

V

)2

e−2
√

2/3αφ ≪ 1,

ηφ ≡ 1

3

Vφφ

V
=

8

9α

Vρρ

V
e−2

√
2/3αφ ≪ 1

ηθ ≡
1

3

Vθθ

R2V
=

8

9α

Vθθ

V
e−2

√
2/3αφ ≪ 1,

ωϕ ≡
Vθφ

3RV

Vθ

RVφ
=

Vθρ

V

Vθ

Vρ

8

9α
e−2

√
2/3αφ ≪ 1.

(2.49a)

(2.49b)

(2.49c)

(2.49d)

(2.49e)

(2.49f)

Please note that all constraints have to be evaluated at ρ ∼ 1, i.e. at
φ ≫ 6α. Our conditions are satisfied for simplest potentials, because in
the large-φ regime all slow-roll and slow-turn parameters are exponentially
suppressed. For instance, natural potentials which satisfy Vθ

ρV ∼ Vρ

V ∼ Vθθ
ρ2V

∼
Vθρ

ρV ∼ Vρρ

V ∼ 1 at the boundary ρ ∼ 1, amply obey the conditions.

2.B Full analysis of perturbations

In this Appendix, we give a detailed study of turning trajectories in multi-
field α-attractors and work out the full evolution of curvature and isocur-
vature perturbations.

2.B.1 Covariant formalism and large-φ approximations

For a general multi-field system spanned by coordinate ϕa with field metric
Gab, the equations of motion in the FRW background can be simply written
as

Dtϕ̇
a + 3Hϕ̇a + V a = 0 , 3H2 =

1

2
Φ̇2 + V (2.50)

where Dt is the covariant derivative respect to cosmic time and Φ̇2 ≡
Gabϕ̇

aϕ̇b. To describe the multi-field effects, it is convenient to define the
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tangent and orthogonal unit vectors along the trajectory as

T a ≡ ϕ̇a

Φ̇
, Na ≡

√
detGϵabT

b , (2.51)

where ϵab is the Levi-Civita symbol with ϵ12 = 1. The rate of turning for
the background trajectory is defined as

Ω ≡ −NaDtT
a =

VN

Φ̇
, (2.52)

where for the second equality we have used the background equations of
motion and VN = Na∇aV is the gradient of the potential along the normal
direction of the trajectory. This quantity, which vanishes in single field
models, is particularly important for the multi-field behaviour and evolution
of perturbations. A dimensionless turning parameter is introduced as

λ ≡ −2Ω

H
. (2.53)

Another important parameter is the field mass along the orthogonal direc-
tion defined as

VNN ≡ NaN b∇a∇bV . (2.54)

Now let us come back to our model with coordinates ϕa = (φ, θ) and
hyperbolic field metric

Gab =

(
1 0

0 1
2 sinh2(

√
2φ)

)
. (2.55)

The Ricci scalar of this manifold is a negative constant R = −2. By the
definitions above, after some algebra, λ and VNN here can be written into
the following form

λ =
1

ϵH3

1√
2

sinh(
√
2φ)

[
φ̈θ̇ − θ̈φ̇− 2θ̇φ̇2

1√
2

tanh(
√
2φ)

− 1

2
√
2

sinh
(
2
√
2φ
)
θ̇3

]
,

(2.56)

VNN =
1

Φ̇2

(
Vθθφ̇

2 +
√
2
4 sinh(2

√
2φ)Vφφ̇

2

1
2 sinh2(

√
2φ)

+ 2θ̇φ̇

[ √
2Vθ

tanh(
√
2φ)

− Vθφ

]

+
1

2
sinh2(

√
2φ)Vφφθ̇

2

)
. (2.57)
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Numerical result

analytical approximation
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Figure 2.7: The evolution of the dimensionless turning parameter λ√
2ϵ

and entropy masses.
Here we use the toy model potential (2.26) with n = 4, A = 0.2 and θi = 8/π.

These expressions look very complicated, but in the large-φ regime they can
be efficiently simplified. First of all, since γ in (2.20) is nearly constant, we
can use this parameter to replace θ̇ by φ̇ in these expressions, for example
Φ̇2 = (1 + γ2)φ̇2. Then we can use the relations of background quantities
presented in Section 2.4 to further simplify the result. Finally the turning
parameter λ can be expressed as

λ =
−1

ϵH3
(1 + γ2)

√
2γφ̇3

tanh(
√
2φ)

≃ 2
√
2γ

(1 + γ2)1/2
·
√
2ϵ , (2.58)

where the large φ approximation is used in the last step. Therefore, at φ ≫
1, λ/

√
2ϵ is nearly constant. Similarly, we can work out the approximated

expression for VNN . Here we use the toy model potential for demonstration,
which yields

VNN ≈ V0Be−
√
2φ. (2.59)

Therefore, VNN is nearly zero at the beginning of inflation, but then grows
up as φ rolls to the center. These analytical approximations are checked
by using numerical solution of the toy model. In Figure 2.7 we show the
numerical results versus the analytical ones for n = 4, A = 0.2 and θi = 8/π.
Indeed we see that λ√

2ϵ
remains constant until the very end of inflation,

where the large-φ approximation breaks down.

2.B.2 Primordial Perturbations

With the analytical approximations developed above, now we can move to
study the behaviour of perturbations. In particular, we would like to derive
the analytical expression for the power spectrum of curvature perturbations.
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At the linear level, the curvature perturbation ζ and the isocurvature modes
σ are defined as

δϕa =
√
2ϵζT a + σNa (2.60)

And their full equations of motion in terms of e-foldings are given by

d

dN

(
dζ

dN
− λ√

2ϵ
σ

)
+ (3− ϵ+ η)

(
dζ

dN
− λ√

2ϵ
σ

)
+

k2

a2H2
ζ = 0, (2.61)

d2σ

dN2
+ (3− ϵ)

dσ

dN
+
√
2ϵλ

(
dζ

dN
− λ√

2ϵ
σ

)
+

k2

a2H2
σ +

µ2

H2
σ = 0 , (2.62)

where µ2 is the entropy mass of the isocurvature perturbations given by

µ2 ≡ VNN + ϵH2R+ 3Ω2 . (2.63)

Thus besides VNN , the turning effects and the curvature of the field man-
ifold also contribute to the entropy mass. But in multi-field α-attractors
here, as shown in Figure 2.7, µ2 is mainly controlled by the VNN term.
Then by (2.59) and the solution of φ in (2.31), we get

µ2

H2
≈ VNN

H2
≈ 3Be−

√
2φ ≈ 3

N
, (2.64)

which provides a good analytical approximation as shown in Figure 2.7.
The exact solutions of the full equations (2.61) and (2.62) can be ob-

tained only through numerical method, as we have shown in Figure 2.6.
But notice that the leading effect here comes from the coupled evolution
of curvature and isocurvature modes after horizon-exit. Thus for the an-
alytical approximations, we can focus on super-horizon scales. There the
isocurvature equation of motion reduces to

3
dσ

dN
+

µ2

H2
σ ≃ 0. (2.65)

If we focus on the mode that exits horizon at N∗ with amplitude σ∗, then
we get the following solution for its evolution

σ(N) ≈ σ∗
N

N∗
. (2.66)

Remember that e-folding number is counted backwards from the end of
inflation. Thus this solution shows the decay of the isocurvature perturba-
tion outside of the horizon. The evolution of the normalized isocurvature
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power spectrum PS is shown in Figure 2.6, where S = σ/
√
2ϵ. As we see,

the analytical approximation above successfully captures the super-horizon
decay, compared with the numerical result.

Next, we look at the curvature perturbation, which after horizon-exit is
sourced by the the isocurvature modes in the following way

dζ

dN
=

λ√
2ϵ

σ. (2.67)

Also for the mode exits horizon at N∗ with amplitude ζ∗, we get the solution

ζ(N) = ζ∗ +

∫ N

N∗

dN ′ λ√
2ϵ

σ(N ′). (2.68)

As we noticed in (2.58), λ/
√
2ϵ is nearly constant, thus it can be seen as

unchanged after horizon-exit λ/
√
2ϵ = λ∗/

√
2ϵ∗. Meanwhile, notice that

since σ is almost massless in the large-φ regime, one has the relation√
2ϵ∗ζ∗ ≃ σ∗ ≃ H/(2π). Then the evolution of ζ is given by

ζ(N) = ζ∗ +
λ∗
2

N2 −N2
∗

N∗
ζ∗. (2.69)

These two contributions are uncorrelated with each other, since they come
from the different parts of the quantized fluctuations. Thus finally we can
write down the power spectrum at the end of inflation (N = 0)

Pζ = P
(1)
ζ + P

(2)
ζ =

H2

4π2

1

2ϵ∗

(
1 +

λ2
∗N

2
∗

4

)
=

H2

8π2ϵ∗

(
1 + γ2

)
=

H2

8π2ϵφ∗
, (2.70)

where we used the relation (2.22), the expression of λ (2.58), and ϵφ ≃
1/(4N2). Therefore, we recover the same result as we got in δN calculation.

It is interesting to note that, although the turning effects play an im-
portant role in the intermediate calculation, they vanish in the final an-
swer. There are two effects on the curvature perturbation in multi-field
α-attractors: first, the growth on super-horizon scales gives an enhance-
ment factor

(
1 + γ2

)
; secondly, due to the motion in the θ direction, the

slow-roll parameter ϵ is also enhanced by the same amount. Thus as a conse-
quence, these two changes cancel each other, and the final power spectrum
of curvature perturbation here becomes the same as the single field result.
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2.C Geometrical stabilization of α-attractors

Now let us look at the three contributions to the isocurvature mass. For
field spaces with a Ricci scalar R < 0, the second term in (2.63) is negative.
As inflation goes on, ϵ increases and thus the second term may become
dominant, which leads to a negative entropy mass. As a result one gets a
tachyonic instability here and the inflaton direction is destabilized. This
effect of a negatively curved field space is dubbed as geometrical destabi-
lization [63]. This phenomenon can end inflation prematurely, or separate
inflation into two stages, in both cases modifying the standard predictions
of single field models.

For α-attractors with unstabilized extra fields, at first sight, geometrical
destabilization seems to be a problem. For instance, in the U(1)-symmetric
potential without angular dependence, one has Vθθ = 0 and thus it looks
like the Ricci curvature term would contribute a negative µ2. However, in
the following we shall show that this naive guess fails since the Christoffel
symbol term in VNN is always positive and larger than the negative Ricci
term. To be more specific, let us look at the field space metric in (2.55).
The Ricci scalar of this manifold is a negative constant R = − 4

3α , while we
also get the following Christoffel symbol term

Γφ
θθ = −1

2

√
3α

2
sinh

(
2

√
2

3α
φ

)
. (2.71)

Now we take the simplest case as an example, where inflaton only rolls in
the radial direction, i.e. θ̇ = 0. In this case we have Ω = 0 and

T a = (1, 0), Na = (0,
1√

3α
2 sinh

(√
2
3αφ

)). (2.72)

Therefore, the entropy mass can be expressed as

µ2 =
Vθθ − Γφ

θθVφ

3α
2 sinh2(

√
2
3αφ)

− 2φ̇2

3α

≃ Vθθ

3α
2 sinh2(

√
2
3αφ)

+

√
4ϵ

3α
V − 4ϵ

α
V

≃ Vθθ

3α
2 sinh2(

√
2
3αφ)

+
1

N
V − 3

N2
V . (2.73)
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In the second step, we used slow-roll and large-φ approximations, and ϵ ≃
3α/(4N2) was used in the last step. These approximations are valid as long
as inflation is not close to the end, i.e. N ≫ 1. As we see, for the situation
where the angular direction of the potential is not stabilized, e.g. Vθθ = 0
in the U(1)-symmetric case, the second term from the Christoffel symbol is
still larger than the negative curvature term. Thus the entropy direction is
automatically stabilized during inflation.

Even if we consider a tachyonic mass in the angular direction Vθθ <
0, which is the case on the top of the ridges in multi-field α-attractors,
we find that the Christoffel terms from the hyperbolic manifold always
give leading and positive contributions to the entropy mass. This further
confirms the observation in Fig. 2.7, where VNN is always the dominating
contribution in µ2. Therefore, instead of geometrical destabilization, the
hyperbolic geometry of α-attractors helps us stabilize the “rolling on the
ridge” trajectories.




