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Basics of the immune system

The immune system is a collection of organs, tissues, cells and molecules that 

protects against microorganisms trying to infect the human body. Microorganisms 

can reproduce and evolve very rapidly during the course of an infection, and they 

can cause disease if not controlled by the human immune system. Defense against 

these microorganisms is mediated by early reactions of the innate immune system 

and later responses of the adaptive immune system. 

When pathogens gain entry to the human body the innate immune system can 

react quickly, because it consists of defense mechanisms that are in place even 

before infection. These mechanisms are specific for structures that are common to 

groups of related microbes and remain essentially the same in repeated infections. 

When cells of the innate immune system sense the presence of pathogens or 

products from an injured cell, they start to secrete proteins called cytokines that 

interact with other cells to trigger the innate immune response. Cells that can 

engulf the invading microorganism or kill infected cells are brought rapidly and in 

large numbers into the infected tissue. This induces a state of inflammation in the 

infected tissue, causing symptoms like heat, pain, redness, and swelling. 

Sometimes pathogens are able to withstand innate immunity and their elimination 

requires the more powerful and more specific mechanisms of adaptive immunity. 

When this happens, the innate immune response helps to slow the spread of the 

infection while lymphocytes become activated that vastly increase the power and 

focus of the immune response. Lymphocytes and their secreted products are the 

main components of the adaptive immune response. They express membrane 

receptors that have an extraordinary capacity to distinguish between different 

microbes and molecules. When a pathogen is recognized, lymphocytes start to 

proliferate and differentiate, producing large numbers of effector cells specific 

for that pathogen. Some of the lymphocytes that recognize the pathogen persist 
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in the body and provide long-term immunological memory. These memory cells 

respond more rapidly and vigorously upon a subsequent encounter with the same 

pathogen. 

Cells of the immune system

The cells of the immune system consist mainly of white blood cells or leukocytes. 

Different types of cells with different characteristic morphological features and 

functions exist. The main immune cells covered in this thesis are explained here:

Innate immune system:

• Monocytes circulate in the blood and travel to tissues, where they mature into 

macrophages or dendritic cells and take up residence. 

• Macrophages are large, irregularly shaped cells, which can capture,  

engulf, and kill microorganisms. Macrophages are characterized by an extensive 

cytoplasm with numerous vacuoles often containing engulfed material. 

• Dendritic cells (DC) are resident in the body’s tissues and have a distinctive 

star shaped morphology. They can act as cellular messengers mediating 

an adaptive immune response when it is needed. For this, they will capture 

microbial antigens, transport these antigens to lymphoid organs, and present 

the antigens to naïve T lymphocytes to initiate immune responses.

• Natural killer (NK) cells are the killer lymphocytes of the innate immune 

response. They migrate from the blood into infected tissues, where they 

prevent the spread of infection by killing virus-infected cells and secrete 

cytokines that slow the progress of viral replication in infected cells. 

Adaptive immune system:

• B lymphocytes or B cells: small lymphocytes with cell-surface receptors 

called immunoglobulins. B cells can be activated to become plasma cells, 

which are effector cells that secrete soluble forms of immunoglobulin called 

antibodies that bind to pathogens.

• T lymphocytes or T cells: small lymphocytes that have membrane-bound 

receptors for the recognition of peptides derived from foreign proteins. T 

cells can be subdivided into CD8+ cytotoxic T cells and CD4+ helper T cells 

according to their effector functions. Cytotoxic T cells kill cells that produce 

foreign antigens, such as virus infected cells, whereas helper T cells secrete 

cytokines that help other cells of the immune system to become fully activated 

effector cells. CD4+ cells can be subdivided again into Th1, Th2, Th17 or 

regulatory T cells.

These immune cells can produce cytokines, which mediate and regulate aspects 

of the immune response. One cell can synthesize different kinds of cytokines and 

one cytokine can be produced by different kinds of cells. These cytokines can 

have multiple biologic effects, thereby stimulating or inhibiting the production of 

others. Therefore, the function of a cytokine can be greatly influenced by other 

cytokines secreted together with it. These are the main cytokines covered in this 

thesis:

• IL-2 drives the growth, survival and differentiation of T cells and is involved 

in the maintenance of regulatory T cells. IL-2 is mainly produced by activated 

CD4+ T cells, but also by activated CD8+ T cells , NK cells and DC. 

• IL-12 is a pro-inflammatory cytokine that promotes the differentiation of 

Th1 cells. It is produced by DC, macrophages and B cells. IL-12 induces the 
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production of IFN-γ by NK cells and T cells, which stimulates additional antigen 

presenting cells (APC) to produce IL-12.

• IFN-γ is a major pro-inflammatory cytokine, functioning mainly as an activator 

of effector cells of the immune system. It is produced by CD4+ Th1 cells, CD8+ 

T cells and NK cells and it is an important mediator of macrophage activation 

and effector function, resulting in increased ingestion of microbes and the 

destruction of the ingested pathogens. 

• TNF-α is a powerful inducer of inflammation. It is mainly produced by 

macrophages, but can also be produced by many other cell types, such as T 

cells, NK cells and DC. TNF-α helps recruiting immune cells to the inflammation 

site and promotes macrophage differentiation.

• IL-10 is involved in controlling the immune response. It is produced by many 

immune cell populations, including activated macrophages and DC, B cells, 

regulatory T cells, and Th1 and Th2 cells. IL-10 inhibits the expression of co-

stimulatory molecules and class II major histocompatibility complex (MHC) 

molecules on DC and macrophages, and it inhibits their production of IL-12. 

• TGF-β inhibits proliferation and effector functions of T cells to provide 

regulation of cellular immunity. It is produced by various cell types, including 

T cells and monocytes. It can inhibit the development of Th1 and Th2 subsets 

and is involved in the development of regulatory T cells.

Development of lymphocytes

Lymphocytes develop and mature to the stage at which they are able to respond 

to a pathogen in the primary lymphoid tissues, i.e. the bone marrow and the 

thymus. B and T lymphocytes both arise from stem cells in the bone marrow, but 

whereas B cells complete their maturation here, T cells leave the bone marrow 

at an immature stage to mature in the thymus. After maturation, these naïve 

lymphocytes migrate to the secondary lymphoid tissues, where they may respond 

to invading pathogens. Here, the few B and T cells expressing receptors that bind 

to the foreign antigen will be activated to proliferate and differentiate into effector 

cells and memory cells. DC are the most effective APC for activating naïve T cells 

and initiating T cell responses. They are specialized in the uptake and breakdown 

of pathogens. Resting DC capture microbial antigens and transform into mobile 

cells, migrating from the infected tissue to the secondary lymphoid tissue that 

drains the infected site. Here they present the antigens to the T cells and activate 

them. Following activation, effector cells then migrate to the infected tissues, where 

they collaborate with cells of the innate immune system to control the infection.

Generation of T cell subsets

Precursors that express both CD4 and CD8 differentiate into either CD4+ or CD8+ 

T cells within the thymus. CD8+ T cells can differentiate into cytotoxic T lymphocytes 

whose major effector function is to kill infected target cells. Naïve CD4+ T cells 

can be activated by antigens to differentiate into helper T cells, synthesizing cell 

surface molecules and soluble cytokines that activate and help other types of cells 

– mostly macrophages and B cells – to participate in the immune response. 

The differentiation pathway that an activated naïve T cell will take is decided at an 

early stage of activation. T cell activation requires signals provided by molecules 

on APC, called co-stimulatory molecules, in addition to antigen-induced signals. 

Co-stimulation is called the second signal for T cell activation, because it functions 

together with antigen, the first signal, to stimulate T cells. The best characterized 

co-stimulatory pathway involves the T cell surface receptor CD28 and the co-

stimulatory molecules CD80 (B7-1) and CD86 (B7-2) expressed on APC. Interaction 
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of these receptor-ligand pairs mainly results in T cell proliferation and the secretion 

of cytokines, such as IL-2. Receptors homologous to CD28 and their ligands 

homologous to B7 have been identified. Some of these, e.g. CTLA-4 and PD1, 

have inhibitory effects, whereas others provide activating signals. The balance 

between stimulation of activating and inhibitory receptors of the CD28 family 

influences the outcome of T cell activation. The third signal for T cell activation 

is provided by the cytokines produced by APC and other immune cells present 

at the site of the immune response. These cytokines make the differentiating T 

cell become gradually committed to one specific pathway (Figure 1). Naïve T cells 

activated in the presence of IL-12 and IFN-γ will become Th1 effector T cells, which 

induce macrophage activation and inflammation. T cells that become activated in 

the presence of IL-4 will differentiate into Th2 effector cells, which induce B cell 

differentiation and eosinophil activation by the production of IL-4 and IL-5. Naïve 

T cells activated in the presence of IL-23 will differentiate into a third subset of 

effector cells: Th17 cells. These cells secrete cytokines, such as IL-17, that lead to 

the recruitment of neutrophils to the site of infection.  All three subsets produce 

cytokines that promote the development of this subset and inhibit differentiation 

toward other CD4+ subpopulations. 

 

 
 
Figure 1. Naïve T cells get activated and differentiate into one of several T helper cell lineages, 
including Th1, T2, Th17, and regulatory T cells, as defined by the secretion of a specific set of cytokines 
and function, that subsequently modulates the immune response. Created with BioRender.com

Regulatory T cells are another distinct population of T cells. These can be 

subdivided into natural and induced regulatory T cells: natural regulatory T cells 

develop in the thymus and then migrate elsewhere, whereas inducible regulatory 

T cells are generated from naïve T cells in the periphery under various tolerogenic 

conditions. Regulatory T cells are involved in preventing an active immune response 

by restricting the function of effector T cells, immunoglobulin production by B 

cells, cytotoxic activity of NK cells and maturation of DC. They do so by secreting 

cytokines, such as IL-10 and TGF-β, and expressing molecules, such as CTLA-4, all 

of which are hallmark mediators of regulatory T cell suppression.  In this way, they 

modulate the immune system and maintain immune homeostasis in the body. 

This active form of tolerance mediated by regulatory T cells is very important for 

maintaining self tolerance and protecting the integrity of the body’s tissues and 

organs. 

 

Major histocompatibility complex (MHC) 

T cells can only recognize antigen peptides when they are bound by major 

histocompatibility complex (MHC) molecules. There are two types of MHC 

molecules, MHC class I and MHC class II. MHC class I is expressed on virtually 

all nucleated cells and presents antigens from intracellular pathogens to CD8+ T 

cells, whereas MHC class II is expressed by professional APC that present antigens 

from extracellular pathogens to CD4+ helper T cells. 

To increase the efficiency of antigen presentation, APC express several forms of 

MHC class I and II molecules, each with a different peptide-binding specificity. In 

addition, there are many different genetic variants, or alleles, for each of these 

genes within the human population. Each individual expresses the alleles that 

are inherited as haplotypes from each of the two parents. This means that most 

people carry two different alleles of each MHC gene, being heterozygous. This 
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maximizes the number of MHC molecules available to bind pathogen-derived 

peptides for presentation to T cells and enables greater variety than would be 

possible in homozygous individuals, who carry two identical alleles of a given 

gene. Another word for this allelic variation is polymorphism, and MHC genes are 

known to be highly polymorphic genes. This variability is maintained in human 

populations through the need to successfully display a wide range of processed 

foreign peptides to the T cell antigen receptor. MHC genes that have little or no 

genetic variation are described as monomorphic and genes having a few alleles 

are described as oligomorphic. 

The human MHC is called the human leukocyte antigen (HLA) complex. There 

are six HLA class I genes, namely the classical, highly polymorphic HLA-A, HLA-B 

and HLA-C, and the non-classical HLA-E, HLA-F and HLA-G, which exhibit limited 

polymorphism. The highly polymorphic HLA-DR, HLA-DQ, and HLA-DP genes 

reside within the class II region.

Allogeneic immune response 

T cells should only recognize foreign peptides presented by that individual’s HLA 

molecules. During thymic T cell development, immature T cells that recognize and 

bind to HLA molecules will get a survival signal. If these immature cells do not 

interact strongly enough they will not get the survival signal and die. This is called 

positive selection. Any cells having T cell receptors that bind with high affinity to 

HLA molecules with self peptide are eliminated, which is called negative selection. 

This mechanism prevents a person’s T cells from attacking their own healthy tissue 

and triggering autoimmunity. An extraordinary situation in which foreign HLA 

molecules are introduced in an individual is transplantation. In the case of organ 

transplantation it is important that the graft is accepted by the immune system of 

the receiving party. Transplants of most tissues between any pair of individuals in 

the absence of pharmacological immunosuppression, except identical twins, will 

be rejected due to HLA disparity. Alloreactive T cells in the recipient’s circulation 

can be activated by these allogeneic HLA molecules expressed by the graft. This 

is called direct allorecognition and would lead to a potent T cell response that 

attacks the graft. Donor HLA molecules can also be captured and processed by 

recipient APC that enter grafts. This is called indirect allorecognition. Peptides 

derived from the allogeneic HLA molecules are presented in association with self 

MHC molecules and recognized by the host’s T cells. 

To reduce the probability of graft rejection, donor and recipient are matched for 

HLA. However, even fully HLA matched individuals undergoing transplantation 

can experience rejection of the graft, indicating that non-HLA immunity can also 

contribute substantially to transplant failure. Above all, the recipient needs to be 

on lifelong immunosuppressants, to prevent that the immune system will mount 

an immune response and reject the graft. 

Immunological paradox of pregnancy

A situation in which there is natural tolerance against a foreign tissue is pregnancy. 

In case of a successful pregnancy, the maternal immune system does not reject 

the semi-allogeneic fetus, but lets it peacefully exist in the uterus. In the 1950s, 

Medawar was already intrigued by this phenomenon and came up with three 

possible explanations for this immunological paradox: (1) the fetus is physically 

separated from the maternal periphery, therefore the maternal immune system 

does not detect the fetus and will not react to it; (2) fetal antigens are not mature and 

therefore cannot be recognized by the maternal immune system; (3) the maternal 

immune system is inactive at the time of pregnancy and therefore it will not mount 

an immune response against the fetus [1]. In the past few decades it became clear 

that all three hypotheses were incorrect. In contrast to Medawar’s first hypothesis, 
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there is direct contact between maternal blood and fetal trophoblast tissue during 

pregnancy, and fetal cells can persist in the maternal circulation for decades after 

pregnancy [2], which is called microchimerism. Furthermore, we know that the 

maternal immune system can recognize and react to fetal cells. The mother can 

develop antibodies directed against fetal HLA antigens [3], and in vitro tests show 

that maternal CD4+ and CD8+ T cells can respond to fetal cells [4, 5], ruling out 

Medawar’s second and third hypotheses. However, all of these observations were 

done with peripheral blood cells of the (pregnant) woman. More locally, at the 

fetal-maternal interface, cells of the maternal immune system were shown to have 

a more tolerant phenotype [6, 7]. 

Mechanisms supporting acceptation of the semi-allogeneic fetus 

Increasing evidence suggests that the maternal immune response towards the 

fetus plays a determinative role in the success of pregnancy. Several mechanisms 

are involved in the induction of maternal tolerance and immunologic acceptance 

of the semi-allogeneic fetus during pregnancy (Figure 2). Mechanisms for the 

evasion of the maternal immune response by the fetus include the absence of the 

HLA class I antigens A and B and HLA class II on fetal trophoblast cells, preventing 

allorecognition by T cells and B cells. The fetal trophoblasts do contain HLA-C, 

HLA-E, HLA-F, and HLA-G to control maternal immune responses, by modulating 

the activity of decidual natural killer (NK) cells, macrophages, and T cells [8-11]. 

HLA-G acts on multiple immune subsets by interaction with immunoglobulin-like 

transcript (ILT) receptors. ILT2/LILRB1 is expressed on monocytes, DC, B cells, and 

subsets of NK and T cells [12], whereas ILT4/LILRB2 is almost exclusively expressed 

by cells of the myelomonocytic lineage [13]. Through interaction with ILT receptors, 

HLA-G can inhibit proliferation and activation of different immune subsets [14-16], 

preventing a maternal immune response against paternal antigens. By alternative 

 
Figure 2. Several mechanisms at both maternal and fetal side are involved to prevent the maternal 
immune system from rejecting the fetus. Fetal cells express and produce immune regulatory molecules 
to prevent an attack by maternal immune cells. Maternal immune cells interact to suppress an active 
immune response towards fetal antigens. Created with BioRender.com

splicing, HLA-G pre-mRNA can give rise to seven different isoforms, of which four 

are membrane-bound (HLA-G1, -G2, -G3 and -G4) and three are soluble (HLA-G5, 

-G6 and -G7) [17]. Whereas in healthy tissue membrane-bound HLA-G is only 

expressed on trophoblasts, the soluble form of HLA-G can be detected in various 

body fluids, such as amniotic fluid, blood and seminal plasma [18, 19]. Several 

polymorphisms are present in the 3 prime untranslated region (3’UTR) of the 

HLA-G gene. Since the 3’UTR is targeted by miRNA that can negatively influence 

expression, polymorphisms in this region may have an influence on the efficiency 

of miRNA binding, and consequently on the level of HLA-G expression and on 

pregnancy outcome. 

Another mechanism by which the trophoblast cells may escape attack from maternal 

immune cells is via the expression of apoptosis-inducing ligands, such as Fas Ligand 

(FasL) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) 

[20, 21]. Expression of Fas is found on decidual leukocytes, suggesting that FasL 

expression and production by trophoblast cells may be a mechanism protecting 

the trophoblast against activated leukocytes [22, 23]. Also the programmed 

death/programmed death ligand (PD1/PDL1) coinhibitory pathway plays a role 
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in fetomaternal tolerance, by limiting the expansion of alloreactive T cells [24]. 

Furthermore, trophoblasts display high levels of complement regulatory proteins, 

such as decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, 

CD46) and MAC-inhibitory protein (MAC-IP, membrane inhibitor of reactive lysis 

(MIRL), CD59) [25, 26]. These proteins are important for protecting the fetal cells 

from potential destruction by complement components. 

In addition, soluble immunomodulators are present at the maternal-fetal interface. 

Trophoblasts synthesize indoleamine 2,3-dioxygenase (IDO) [27, 28], a tryptophan 

catabolizing immunomodulatory enzyme that prevents maternal T cell activation. 

Also transforming growth factor beta (TGF-β), prostaglandin E2 (PGE2), galectin-1, 

and IL-10 are produced by the human placenta [29-32], all of which can promote 

the generation of tolerogenic immune cells. 

Trophoblast cells can also produce and secrete extracellular vesicles of different 

size, morphology, and function, which may participate in the maternal–fetal 

cross-talk during pregnancy [33]. These placenta-derived microparticles, such 

as nanovesicles and exosomes, can also enter the maternal circulation [33]. The 

concentration of placenta-derived exosomes increases with gestational age and 

they are thought to play a role in regulating the maternal immune system during 

pregnancy [34]. Their composition comprises of placental proteins, mRNA, and 

microRNAs and reflects the cell type from which the vesicle originates. Previous 

studies have shown that trophoblast cells secrete functional FasL and TRAIL via 

exosomes [35]. Also PDL1 and HLA-G can be released from the placenta via 

exosomes [36]. 

Taken together, these findings suggest there are multiple mechanisms to 

prevent maternal immune rejection of the semi-allogeneic fetus. It is possible 

that a disbalance in the immunological environment in the placenta can lead to 

pregnancy related problems, such as pregnancy loss. 

Recurrent miscarriage

Approximately 15% of pregnant women experience spontaneous loss of a clinically 

recognized pregnancy. About 1–2% of couples trying to conceive are confronted 

with recurrent miscarriage (RM) [Unpublished data][37]. Various definitions of RM 

are being used. Some consider RM as two or more failed clinical pregnancies 

defined by ultrasonography or histopathologic examination [38]. Others define 

RM as three consecutive pregnancy losses within the first 24 weeks of gestation, 

including biochemical pregnancies and non-visualized pregnancies [38]. This 

discrepancy makes it hard to study underlying causes for this phenomenon and to 

compare the outcome of different studies.

Several factors influence the risk of miscarriage such as maternal age and previous 

pregnancy loss. Etiological categories for RM include chromosomal abnormalities, 

uterine anatomic abnormalities, and antiphospholipid syndrome. However, in a 

significant proportion of the couples trying to conceive the underlying cause for 

this recurring problem is unknown (Figure 3) [unpublished data][39]. This burden 

of continuous uncertainty has a major impact on the lives of these women and 

their partners.

Figure 3. Several etiological factors for recurrent miscarriage have been identified. However, more 
than half of the couples experiencing recurrent miscarriage do not know the underlying cause.

No cause identified 66.7%
Antiphospholipid syndrome 7.3%
Thrombofilia  16.8%
Anti-TPO 6.6%
Uterine anomaly 5.2%
Genetics 1.8%
Hyperhomocyteinemia 1.3%
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It has been postulated that immunologic aberrations may be the cause in many of 

these unexplained cases of RM. Several immune factors have been investigated in 

women with RM. Defects in complement-inhibitory proteins, maternal regulatory 

T-cells, tryptophan catabolizing enzymes, and immunoregulatory cytokines at the 

fetomaternal interface have been implicated to play a role in RM [40-43]. In order 

to prepare the immune system of a woman against the ’foreign’ cells of a future 

pregnancy, several immunologic treatments have been suggested to induce a 

proper immunomodulation such as transfusion of paternal leukocytes prior to 

conception or passive immunization with intravenous immunoglobulin (IVIG) 

during pregnancy. In 2014 the effect of these immunological treatments on the 

chance of live births in women with a history of RM was determined in a Cochrane 

review [44]. It was concluded that immunotherapy did not lower the risk of future 

miscarriage in women who repeatedly miscarry, and that these therapies should 

no longer be offered as a treatment.

Paternal factors

Programming of the uterine environment for successful implantation in a semi-

allogeneic pregnancy may be effectuated by the presence of semen in the 

woman’s genital tract. Semen contains not only paternal HLA antigen but also 

immunomodulatory factors, such as chemokines, cytokines and prostaglandins 

[45, 46]. The introduction of seminal plasma at intercourse elicits recruitment of 

macrophages, DC, and, memory T cells in the female reproductive tract [47].

Besides the classical HLA antigens, seminal plasma contains soluble HLA-G 

(sHLA-G) [48, 49]. Additionally, seminal plasma contains immunomodulatory 

factors TGF-β and PGE2. Seminal TGF-β has been shown to be a principal 

stimulating agent in the post-coital inflammatory response, and could be essential 

for induction of immune tolerance to paternal antigens [46]. Removal of seminal 

prostaglandins resulted in a dramatic decrease in immune suppressive activity 

[50].

Immune recognition of paternal antigens may play a role in pregnancy 

complications: change of partner is a risk factor for intrauterine growth restriction, 

preterm birth, low birth weight and infant mortality, and it counteracts the 

protective effect of multiparity against preeclampsia [51-53]. Additionally, the 

length of unprotected sexual cohabitation affects the incidence of pregnancy-

induced hypertensive disorders [54, 55], and oral exposure to semen is correlated 

with a diminished occurrence of preeclampsia [45]. Furthermore, preeclampsia 

occurs more frequently in pregnancies induced by artificial insemination with 

donor semen [56]. Combined, these findings indicate that exposure to paternal 

antigens prior to gestation may have a beneficial effect on pregnancy outcome. 

Study of reproductive immunology in mice

In mouse models it has been shown that the lack of certain immune cell subsets, 

e.g. Tregs specific for paternal antigens, leads to a higher incidence of failed 

pregnancies [57]. Furthermore, injection of interferon (IFN)-γ or IL-2 in mice 

results in increased abortion rates, whereas injection of IL-10 results in decreased 

abortion rates [58, 59]. However, murine pregnancies are very different from the 

human situation [60]. The most remarkable difference is a second placenta type 

in mice, the inverted yolk sac placenta, which is completely absent in humans. 

Furthermore, human trophoblast cells show deep interstitial and endovascular 

invasion, reaching the human myometrium (Figure 4), whereas the murine 

labyrinth only shows shallow trophoblast invasion. 

Additionally, the time of gestation in mice is only three weeks and many of the 

developmental processes that occur in humans during intrauterine life are 
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postnatal events in mice. Direct extrapolation from animal models to humans 

has led to assumptions of mechanisms for which the evidence is incomplete. 

Therefore, in our research we only use human pregnancies to study parameters, 

which affect the induction of maternal tolerance towards the fetus.

Figure 4. Immediately after implantation, cells forming the outermost layer of the blastocyst give rise 
to diverse trophoblast cell types. Invasive trophoblasts migrate into the maternal endometrium. Fetal 
villi will be generated by proliferation and invasion, and throughout pregnancy there will be villous 
branching and vascularization. Through these villi, nutrients and oxygen can be exchanged ensuring 
appropriate fetal development and growth. Adapted from V.B. Zeldovich. PLOS Pathogens. 2011.

Aims of this thesis

With the studies described in this thesis, we want to get more insight in the 

immunologic mechanisms that play a role in pregnancy. The results of this research 

can help to identify underlying etiologies in patients with unexplained pregnancy 

complications, such as recurrent miscarriage. Identifying these causes is important 

for providing answers and taking away anxiety in these couples, and eventually for 

the development of effective therapies. Furthermore, elucidating the mechanism 

leading to survival or rejection of the fetal allograft is not only essential for our 

understanding of processes leading to normal and abnormal pregnancies, but may 

also result in important concepts in the field of transplantation and autoimmunity. 

We start with a literature study to answer the question: what is wrong with regulatory 

T cells in recurrent miscarriage (Chapter 2)? Regulatory T cells play a pivotal 

role in controlling adaptive immune responses and maintaining self-tolerance. 

This unique subpopulation of T cells has shown to be involved in preventing 

autoimmunity, and tolerance to allogeneic organ grafts after transplantation [61, 

62]. The suppressive activity of Tregs is mediated either in a cell-cell contact-

mediated fashion via cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or by 

the secretion of cytokines such as TGF-β or IL-10. Dynamic changes in circulating 

Treg frequencies during pregnancy have been found: a marked increase during 

early pregnancy, peaking during the second trimester, and a progressive decrease 

to levels comparable with non-pregnant conditions at term [63-66]. Because data 

suggest that regulatory T cells (Treg) are involved in the maternal acceptance of 

the allogeneic foetus, RM could possibly be explained by a disturbance of the 

Treg network.

In a retrospective observational study, we investigated the role of HLA-DR 

sharing between mother and child in pregnancy outcome. Children inherit one 

HLA haplotype from each parent (Figure 5), so a mother will always share one 

HLA haplotype with her child. Paternally-inherited fetal HLA antigens can induce 

maternal immune activation to secure and promote the pregnancy. Does HLA-DR 

incompatibility between mother and child have a positive influence on pregnancy 

outcome parameters (Chapter 3)?

Next, we study HLA-G expression in placentas of women with a history of 

RM and controls. We study whether HLA-G expression in term placenta 

is different in women with a history of RM compared to healthy controls 
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Figure 5. HLA is inherited as a set, which is known as a haplotype. A child inherits one HLA haplotype 
from each parent. Therefore, there is a 25% chance siblings inherit the same set of HLA. 

and analyze whether this is related to HLA-G genotype (Chapter 4). In 

soluble form, HLA-G is also present body fluids. We investigate the role 

of the man by analyzing their HLA-G genotype and examine whether 

there is an association with sHLA-G levels in seminal plasma (Chapter 5). 

To analyze the effect of seminal plasma on the phenotype and function of 

certain immune cell subsets in vitro tests with human cells are commonly used. 

However, it is very important to take into account under which circumstances these 

experiments are performed. In Chapter 6 we study the effect of seminal plasma 

on human DC, which we culture in the presence of different protein sources (fetal 

calf serum/human serum). Previous studies suggestive for an immune modulating 

role of seminal plasma had been performed in the presence of FCS, which is 

known to affect the vitality of human immune cells in the presence of seminal 

fluid. We questioned whether the presence of seminal plasma indeed leads to 

the differentiation of anti-inflammatory DC, when these are cultured with human 

serum instead of fetal calf serum?

Finally, Chapter 7 provides a summary of and general discussion of the results 

found in this thesis. 
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Abstract

Couples of whom the woman has had a miscarriage have two major concerns: 

the cause and possible risk of recurrence. Unfortunately, a significant proportion 

of cases of recurrent miscarriage (RM) remain unexplained despite detailed 

investigation. Since data suggest that regulatory T cells (Treg) are involved in the 

maternal acceptance of the allogeneic foetus, RM could possibly be explained by 

a disturbance of the Treg network. The possible role of Tregs in RM is described 

in this review, as well as their potential application in diagnostics and therapeutic 

intervention trials.

Introduction

Approximately 15% of pregnant women experience spontaneous loss of a clinically 

recognized pregnancy. About 1-2% of couples trying to conceive are confronted 

with recurrent miscarriage (RM), which is defined as three or more consecutive 

miscarriages before the 20th week of gestation [1-8]. Several factors influence the 

risk of miscarriage such as maternal age and previous pregnancy loss. The major 

known causes include antiphospholipid syndrome, abnormal parental karyotype, 

endocrine disorders and uterine anomalies [1-7, 9, 10]. However, the cause of 

RM can only be determined in half of the patients. This burden of continuous 

uncertainty has a major impact on the lives of women and their partners. 

Increasing evidence suggests that the maternal immune response towards the 

foetus plays a determinative role in the success of pregnancy [9, 11, 12]. Several 

mechanisms are involved in the induction of maternal tolerance and immunologic 

acceptance of the semi-allogeneic foetus during pregnancy. Besides the 

immunological changes occurring locally at the foetal-maternal interface, peripheral 

immune responses are also altered during pregnancy [9, 13]. Mechanisms for 

the evasion of the maternal immune response by the foetus include the absence 

of the classical major histocompatibility complex (MHC) class I antigens human 

leukocyte antigen (HLA)-A and HLA-B and MHC class II on foetal trophoblast cells 

preventing allorecognition by T cells and the presence of HLA-C, HLA-E, HLA-F and 

HLA-G [14-18], preventing allorecognition by natural killer (NK) cells. Furthermore, 

HLA-G facilitates semi-allogeneic pregnancy by inhibiting maternal immune 

responses to foreign (paternal) antigens [19]. Another mechanism contributing to 

immune protection of the foetus is complement inhibition by regulatory proteins 

decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) 

and MAC-inhibitory protein (MAC-IP, CD59), and soluble regulators. In addition, 

trophoblast tissue synthesizes indoleamine 2,3-dioxygenase (IDO), a tryptophan 

catabolizing enzyme that prevents maternal T cell activation, while galectin-1 
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(Gal-1) is also expressed at implantation sites, which promotes the generation of 

tolerogenic dendritic cells [20]. Also the PD1/PDL1 coinhibitory pathway plays a 

role in foetomaternal tolerance, by limiting the expansion of alloreactive T cells 

[21]. Other tolerance-inducing cell types highly prevalent in the decidua are 

CD163+ M2 type macrophages and CD56brightCD16- dNK cells [22]. Another 

important player in this field is the regulatory T cell (Treg). This heterogeneous 

subset of T cells suppresses the induction and proliferation of effector T cells 

and plays an essential role in the sustainability of peripheral immune tolerance 

[23-26]. The mother’s acceptance of the foetus, which can be seen as an allograft 

expressing paternally inherited alloantigens, during pregnancy is a unique 

example of how the immune system reshapes a destructive alloimmune response 

to a state of tolerance. Therefore, knowledge on the role of Tregs in successful 

and aberrant pregnancy may also be relevant for cell and organ transplantation as 

acceptance of the allograft is a desirable goal in both reproductive immunology 

and transplantation.

In this review, the role of Tregs in foetal-maternal immune tolerance as well as 

in recurrent miscarriage will be discussed. The subject of preeclampsia will 

not be addressed in this review, because of the difference in pathophysiology. 

Understanding the complex mechanisms of foetomaternal tolerance has 

important implications for developing novel strategies to induce immunologic 

tolerance in humans in general and for prevention of spontaneous abortion in 

high-risk populations in particular. 

Regulatory T cells: Phenotype and function

Regulatory T cells play a pivotal role in controlling adaptive immune responses 

and maintaining self-tolerance. This unique subpopulation of T cells has shown 

to be involved in preventing autoimmunity, and tolerating allogeneic organ 

grafts in rodent models. The suppressive activity of Tregs is mediated either in a 

cell-cell contact mediated fashion via cytotoxic T lymphocyte-associated protein 

4 (CTLA-4) or by the secretion of cytokines such as transforming growth factor 

beta (TGF-β) or interleukin (IL)-10 [27-31]. In 1995, Sakaguchi characterized a 

subpopulation of T cells with suppressive capacity [32]. These regulatory T cells 

were then described as being CD4+CD25+ T cells, a phenotype definitely not 

unique to Tregs. Ever since, a major obstacle to the study and application of Tregs 

in the human setting has been the lack of specific cell surface markers to define 

Tregs and separate them from other T cell subsets [33, 34]. The transcription factor 

forkhead box P3 (FoxP3) was considered as a specific marker for Tregs essential 

for their thymic development, phenotype, and function [35-37]. Although Foxp3 

is expressed exclusively by Tregs in mice, Foxp3 expression in humans occurs 

in immunosuppressive Tregs as well as in recently activated effector T cells, and 

thus does not specifically identify human regulatory T cells [38-40]. To address 

this limitation, high expression of CD25 and downregulation of the IL-7 receptor 

(CD127), along with intracellular Foxp3 expression, have been used as phenotypic 

markers for regulatory T cells. Several investigators confirmed that isolation of T 

cells with high expression of CD25 and low expression of CD127 will result in a 

highly purified population of Tregs with suppressive capacities in functional assays 

[33, 35, 41-43]. Other markers that have been associated with (certain subsets of) 

Tregs are Helios, CTLA-4, CD45RA/RO, CD62L, C-C chemokine receptor type 

6 (CCR6) and CD39 [28, 43, 44]. Tregs are comprised of two main populations: 

thymus-derived natural Tregs and peripherally generated induced Tregs [45]. 

However, in most studies concerning Tregs in recurrent miscarriages no distinction 

was made between both populations. 
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Tregs in normal pregnancy

Tregs in rodent models of pregnancy

In 2004, Aluvihare and colleagues were the first to report that Tregs are required 

for the maternal immune system to tolerate a foetal allograft in mice [46]. They 

showed an unusually high proportion of CD4+CD25+ Tregs in almost all tissues 

of pregnant mice compared to non-pregnant mice, independent of the presence 

of a paternal MHC difference. Treg frequencies in blood of mice increased during 

early pregnancy, progressively decreased from mid-gestation onwards, and at 

term returned to levels that are comparable to non-pregnant conditions [47]. This 

indicates that the maternal immune system undergoes a systemic change during 

pregnancy. In addition to the expansion of Tregs in pregnant compared to non-

pregnant mice, a diminished number and function of Tregs was found in abortion-

prone animals [48-50]. These animals expressed even lower levels of CD4+CD25+ 

Tregs than age-matched non-pregnant control mice. The abovementioned results 

suggest a crucial role for Tregs in avoiding immunological rejection of the foetus. 

To test whether Tregs are indispensable for maternal immune tolerance toward 

the foetus, adoptive transfer experiments in mice were performed [46, 51]. 

Transfer of lymphocytes depleted of CD4+CD25+ Tregs into pregnant T-cell-

deficient mice led to gestation failure. Additionally, the adoptive transfer of 

pregnancy-induced Tregs into abortion-prone mice prior to mating significantly 

increased IL-10 and TGF-β mRNA expression in decidua and lowered the foetal 

resorption rates [48, 51]. This suggests an active and essential role for Tregs in 

mediating maternal tolerance to the foetus. Importantly, this treatment was only 

successful if applied at an early stage of pregnancy, and transfer of Tregs from 

non-pregnant mice to the abortion-prone mice was ineffective [50, 52]. Blocking 

regulatory T cell function by an anti-CD25 monoclonal antibody (mAb) on day 0 of 

pregnancy in normal pregnant mice inhibited implantation, while anti-CD25 mAb 

treatment later in pregnancy reduced Treg cell numbers, but did not induce any 

parameters reflecting abnormal pregnancy [48, 50, 53]. These findings suggest 

that Tregs are important to mediate maternal tolerance to the allogeneic foetus 

in the implantation phase and early stages of pregnancy, while Tregs may not be 

required for maintenance of the late stage of allogeneic pregnancy.

Although Aluvihare and colleagues argued that expansion of Tregs during 

pregnancy is alloantigen-independent [46], Zhao and colleagues reported that 

frequencies of CD4+CD25+ Tregs increase to greater extent in allogeneic than 

in syngeneic pregnancies in mice [47]. In addition, Shima et al. showed that 

administration of anti-CD25 mAb early in pregnancy induced implantation failure 

in allogeneic pregnant mice, but not in syngeneic pregnant mice [53]. These 

results suggest an involvement of paternal antigens in Treg expansion. 

Treg induction by seminal plasma

The stages wherein Tregs specific for paternal antigens develop are not yet fully 

defined. There is evidence that seminal plasma may already induce a tolerogenic 

environment.In mice, paternal antigens and maternal MHC class II cells can 

be found in the vaginal mucus already within the first hours of pregnancy [54], 

indicating  the possibility of local antigen presentation  at very early stages. 

Exposure of the mouse female genital mucosa to seminal plasma induced the 

expansion of CD4+CD25+FoxP3+ Tregs in the lymph nodes draining the uterus, 

promoting tolerance to paternal alloantigens [55-57]. The increase in CD4+CD25+ 

cells was abrogated when seminal vesicles were excised before mating [55, 56]. 

Immediately after insemination, paternal antigens were found in several organs of 

the female mice [54, 57]. This emphasizes the possibility that Tregs proliferate after 

encountering semen-derived paternal antigens presented on antigen-presenting 

cells (APCs) in secondary lymphoid organs. More specifically, a soluble form of 
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CD38 (sCD38) released from seminal vesicles to the seminal plasma might play a 

role in this process. Soluble CD38 in seminal plasma was shown to be crucial for 

the induction of uterine tolerogenic dendritic cells (DCs) and CD4+Foxp3+ Tregs 

[58]. Deficiency of sCD38 in seminal fluid increased the loss rate of allogeneic 

foetuses, which could be rescued by a direct injection of recombinant sCD38 

into the uterus. The immunoregulatory role of seminal plasma is not exclusive to 

rodents. Exposure of human peripheral blood T cells to seminal plasma in vitro 

led to increased mRNA expression of CD25, IL-10 and FoxP3, which was partly 

dependent on the presence of APCs [59]. These results suggest that seminal 

plasma contains immunomodulatory factors that may contribute to the formation 

of a tolerogenic environment at the embryo implantation site and that exposure 

to seminal fluid at mating promotes a state of functional tolerance mediated by 

expansion of the local antigen-specific Treg pool. One of these immune modulating 

aspects in semen could be soluble HLA (sHLA), as human seminal plasma contains 

sHLA-G and sHLA class I [59, 60]. HLA-G inhibits the proliferation and cytotoxic 

functions of T cells and induces immunosuppressive T cells [15-17, 61]. Peptides 

derived from the paternal HLA class I antigens in the seminal plasma may be 

presented by maternal APCs in the endometrium and when the proper cytokines 

are present in the seminal fluid this may lead to the induction of regulatory T 

cells (Figure 1). Several prostaglandins, cytokines and chemokines have been 

described to be present in seminal plasma, such as pro-inflammatory IL-1, IL-6, 

IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, granulocyte macrophage 

colony-stimulating factor (GM-CSF) and chemokine C-X-C motif ligand (CXCL)1, 

and anti-inflammatory prostaglandin E2 (PGE2), TGF-β, CXCL10, chemokine 

C-C motif ligand 17 (CCL17), MCP-1 and macrophage colony-stimulating factor 

(M-CSF) [62-66]. Increasing evidence suggests that proteins in seminal fluid are 

able to interact with the vaginal, cervical and uterine epithelium to elicit a series of 

changes in the immune responsiveness of the female [67-69]. However, seminal 

plasma shows great variety between men in the concentrations of cytokines and in 

the strength and quality of the cytokine response elicited [68]. This diversity might 

influence the maternal immune response. A profile with high levels of regulatory 

proteins, such as TGF-β and PGE2, can contribute to the secretion of inhibitory 

cytokines TGF-β, IL-10 and IL-35 by maternal APCs. The secretion of these 

cytokines can lead to the suppression of activation and expansion of conventional 

T lymphocytes and the induction of maternal regulatory T cells and tolerogenic 

DCs (Figure 1; cytokine profile A), whereas a cytokine profile with high levels of 

pro-inflammatory cytokines, such as GM-CSF and IL-8, might induce a response 

eliciting the expression of pro-inflammatory cytokines and chemokines and the 

recruitment of macrophages, dendritic cells, and lymphocytes (Figure 1; cytokine 

profile B). This inflammatory response might lead to pregnancy complications or 

even pregnancy loss.

Figure 1. Soluble HLA molecules and cytokines may affect the local immune response during 
implantation. Paternal HLA antigens, present in seminal plasma in the form of sHLA, might be taken 
up and presented by maternal APCs. These APCs present the allogeneic peptides to naïve T cells. 
The cytokine environment present at the time the paternal antigens are first encountered is pivotal in 
controlling differentiation of APCs, which can determine the strength and quality of the ensuing T cell 
response. Many cytokines are present in seminal plasma. The specific cytokine profile in seminal plasma 
varies between semen samples. When regulatory proteins, e.g. TGF-β and PGE2, are present in the 
seminal fluid, this can contribute to the secretion of inhibitory cytokines TGF-β, IL-10 and IL-35, which 
can lead to the induction of specific regulatory T cells and a tolerogenic environment (cytokine profile 
A). On the other hand, the cytokine profile in the seminal plasma can contribute to the promotion of 
a Th1 like response, which can lead to activation and expansion of conventional T lymphocytes and 
pregnancy complications (cytokine profile B). Adapted due to poor quality of original figure. Created 
with BioRender.com.
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Tregs in human pregnancy

In humans, dynamic changes in circulating CD4+CD25+ Treg frequencies during 

pregnancy have been found, similar to what was seen in mice: a marked increase 

during early pregnancy, peaking during the second trimester, and a progressive 

decrease to levels comparable to non-pregnant conditions at term [47, 70-72]. 

Svensson-Arvelund et al. showed that human foetally derived placental tissue 

promotes the induction of suppressive CD25highCD127lowFoxp3+ Tregs within 

tissue in vitro, in parallel with increased IL-10 production [22]. The expansion 

of Tregs was mediated, in part, by TGF-β and IL-10, produced particularly by 

trophoblast cells. Galectin-1, a progesterone regulated protein expressed at 

the foetomaternal interface, also induces the expansion of CD4+CD25+FoxP3+ 

Tregs[73]. In addition, the PD1/PDL1 pathway promotes both the induction and 

maintenance of CD4+Foxp3+ regulatory T cells, where PDL1 is expressed by foetal 

cells and PD1 is expressed by maternal cells [74-76]. A novel inhibitory cytokine 

identified to play a role in the regulation of maternal-foetal immune tolerance is 

IL-35. This cytokine is produced primarily by CD4+Foxp3+ Tregs and is required 

for maximal suppressive activity of Tregs in vitro and in vivo [77, 78]. It has been 

reported that first-trimester human trophoblast cells express and secrete IL-35, 

which might contribute to their suppressive capacity toward maternal immune 

cells [79]. Interestingly, it was found that the level of IL-35 was significantly higher 

in pregnant females compared to age-matched non-pregnant females, which may 

suggest that increased IL-35 in pregnancy provides immune protection for the 

foetus [77]. In this way, by several placental factors acting in concert, the foetal 

placenta is able to create a tolerant uterine environment. 

The induction of labour in humans is associated with a decrease of peripheral 

CD4+CD25high Tregs and a sharp increase of peripheral CD4+CD25low T cells 

[47], the latter largely representing activated effector T cells. Tilburgs et al. also 

observed this significant increase in the CD4+CD25low T cell fraction in maternal 

peripheral blood lymphocytes at term pregnancy compared to peripheral blood 

of early pregnancy subjects and to peripheral blood of non-pregnant controls. 

However, they did not observe significant differences in the level of peripheral 

CD4+CD25high T cells in early pregnancy, term pregnancy, and non-pregnant 

controls [80]. When comparing the decidua to maternal peripheral blood and 

peripheral blood of non-pregnant controls, a significantly higher percentage of 

CD4+CD25high T cells was found [13, 80]. Furthermore, these CD4+CD25high 

T cells from the decidua contained a significantly higher suppressive capacity to 

regulate the maternal immune response to foetus-specific UCB cells compared to 

CD4+CD25high T cells in maternal blood [13]. These results suggest that foetus-

specific Tregs are specifically recruited from the periphery to the foetal-maternal 

interface. Sindram-Trujillo et al. compared the immune cell composition of decidua 

collected after spontaneous vaginal delivery to elective caesarean section without 

labour. Labour appeared to be associated with dynamic changes in the distribution 

of decidual leukocytes, specifically NK and T cell subpopulations. The percentage 

of CD3+CD4+CD25+ cells in the decidua basalis and decidua parietalis after 

spontaneous vaginal delivery was lower than after caesarean section [81]. This 

down-regulation of Tregs might lead to an abnormal immune milieu, which 

confers susceptibility to pregnancy loss. Hence, low Treg levels may be associated 

with recurrent miscarriages.

Tregs in recurrent miscarriages

Before pregnancy

Compared to non-pregnant women, peripheral CD4+CD25high Tregs are 

increased in healthy women early during pregnancy. However, they are decreased 

in women with (recurrent) miscarriages compared to normal early pregnancy, at a 

level comparable with that of non-pregnant controls [70, 82, 83]. This difference in 
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Treg level can already be detected in non-pregnant women with RM. It has been 

shown that Treg frequencies undergo profound changes during the menstrual 

cycle [84]. Fertile women showed an expansion of Tregs in the late follicular 

phase followed by a dramatic decrease in Treg frequencies in the luteal phase 

of the menstrual cycle, whereas women with RM had similar Treg frequencies at 

both phases. At both the follicular and luteal phases, decreased frequencies of 

peripheral Tregs were observed in women with unexplained RM compared to 

fertile controls [85, 86]. These low levels of Tregs were similar to peripheral Treg 

numbers in postmenopausal women [86]. This may suggest that reproductive 

failure results from the inability of Tregs to sufficiently expand during the pre-

implantation phase. Furthermore, infertile women have significantly reduced 

Foxp3 mRNA levels in the endometrium, supporting the concept that unsuccessful 

pregnancy is caused by the lack of sufficient Tregs [87]. In healthy women, Tregs 

are capable of regulating effector T cells that respond to paternal antigens. A lack 

of regulation thus may also be detected by high levels of paternal antigen-specific 

effector T cells. Indeed, when women with RM were compared to controls, the 

frequency of sperm antigen specific effector T cells was higher and accompanied 

by a lower frequency of sperm antigen specific Tregs [88]. Furthermore, these 

sperm specific Tregs in women with RM expressed less Ubc13, which is a critical 

molecule preventing Tregs from differentiating into effector T cells [88, 89]. 

Knockdown of Ubc13 from isolated Tregs converted the Tregs to effector T cells.

During pregnancy

Lower proportions of CD4+CD25high T cells with FoxP3 expression are found 

in peripheral blood and decidua from pregnant women with RM compared to 

those with normal early pregnancies [85, 90-93]. This suggests that women with 

unexplained RM are less capable to induce and maintain immune tolerance towards 

foetal alloantigens. Furthermore, it has been shown that the level of IL-17+ T cells 

and ratio of IL-17+ T cells/Tregs was significantly increased in peripheral blood 

from non-pregnant women with unexplained RM when compared with fertile 

controls [85, 93]. Th17 cells can exert a rapid response at sites of inflammation 

and may play a role in allograft rejection in solid organ transplantation [94, 95]. 

Likewise, trophoblast invasion from the allogeneic foetus and the shedding of 

foetal antigens may stimulate a maternal systemic inflammatory response and 

may therefore cause the emergence of Th17 cells [94]. This suggests that an 

immunologic imbalance and subsequent immune dysregulation by the altered 

Th17/Treg cell populations influences pregnancy outcome. 

When compared with specimens obtained from abortions on social indication, 

the proportion of decidual CD4+CD25high T cells in products of conception 

from miscarriages was significantly lower [96]. This confirms that decidual 

CD4+CD25high T cells are likely to contribute to the mechanisms mediating 

maternal immune tolerance and maintenance of pregnancy. In addition to 

the decreased frequency of CD4+CD25+CD127low Tregs in unexplained RM 

decidua compared to controls, the suppressive activity of CD4+CD25+CD127low 

cells on effector T cell proliferation was impaired in unexplained RM decidua 

[97]. Higher Treg numbers were required to exert a similar magnitude of in vitro 

suppression, mediated predominantly through TGF-β and IL-10, compared 

to CD4+CD25+FoxP3+ cells from fertile women [86, 97]. The expression of 

intracellular TGF-β and IL-10 in Tregs was lower in the RM group than in the control 

group [97]. As mentioned before, IL-35 is required for maximal suppressive activity 

of Tregs in vitro and in vivo [66, 67], and whereas this cytokine was increased in 

normal pregnancy, it was decreased in RM women [77]. Also galectin-1 expression 

was decreased in women with RM compared to healthy early pregnant women 

[98]. 

Women with RM having low CD4+CD25+Foxp3+ Treg levels in the first trimester 
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experienced a significantly lower ongoing pregnancy rate than those with a higher 

Treg level in the first trimester [99]. The decreased expansion of Tregs during 

pregnancy in the unexplained RM group may predispose to pregnancy loss, and 

Tregs might serve as a pregnancy marker to aid in predicting miscarriage risk in 

newly pregnant women. [99, 100]. Furthermore, this highlights the opportunity to 

use Treg therapy to increase the success rate in women who repeatedly experience 

pregnancy losses.

Tregs as a therapy for recurrent miscarriages

Trials on the use of Tregs to treat graft-versus-host disease (GvHD) in patients 

with a stem cell transplant showed acceptable safety and promising efficacy, e.g. 

reduced incidence of severe acute GvHD [101-104]. This has led to the use of Tregs 

in other fields as well. Whereas studies in solid organ transplantation are already 

focusing on safety [105], the administration of Tregs has not yet been applied 

to pregnancy. However, immunotherapeutic procedures that indirectly increase 

Tregs to prevent maternal rejection of the foetus have been introduced. These 

immunotherapies include boosting the maternal immune response by paternal 

(woman’s partner) or third-party (donor) lymphocyte immunization. Alternative 

immunotherapies include products derived from early embryos (trophoblast 

membranes) or antibodies derived from blood (immunoglobulin therapy). Paternal 

or third-party lymphocyte immunization has been the most widely used treatment 

for alloimmune-mediated miscarriages. However, this therapy is still controversial 

in terms of effectiveness. The latest Cochrane review by Wong et al. showed that 

none of these treatments provided a significant beneficial effect over placebo in 

improving the live birth rate or reducing the risk of future miscarriage in women 

who had RM [106]. Nevertheless, some studies showed that the proportion of 

CD4+CD25high T cells in peripheral blood from women with unexplained RM 

was significantly increased after paternal or third-party lymphocyte immunization 

therapy [107-109], and 80-90% of patients who underwent immunotherapy 

successfully delivered a baby [109]. Furthermore, the proportion of Tregs 

was significantly higher in successfully pregnant women than in those with 

pregnancy loss after lymphocyte therapy [107-109]. In those who experienced an 

unsuccessful pregnancy, no significant change of the proportion of CD4+CD25+ 

T cell/PBMC and CD4+CD25+CD127-/CD4+ T cell was observed and the level 

of Tregs remained low. After successful immunotherapy, the percentage of Th17 

cells was significantly lower and the Th17/Treg ratio significantly decreased to a 

level comparable to that before immunotherapy. Unfortunately, in these studies it 

is not uniformly described whether lymphocyte immunization was performed with 

cells of the partner or a third-party. 

Other therapies that intend to induce Tregs in women with unexplained RM 

involve the administration of cytokines and hormones. Scarpellini and Sbracia 

tested the use of granulocyte colony-stimulating factor (G-CSF) in women with 

unexplained RM [110]. G-CSF is a cytokine that, amongst others, can recruit and 

activate tolerogenic dendritic cells, which can aid in the generation of Tregs [9, 

111, 112]. G-CSF treatment showed an evident effect on the pregnancies of 

women with RM, with a remarkable increase in success rate and a consequent 

reduction of miscarriages. Currently, the RESPONSE trial is testing the effect of 

G-CSF administration in women with three or more unexplained miscarriages 

in a randomised, double-blind, placebo-controlled trial (NCT02156063). Also, 

progesterone is suggested to be an important regulator of systemic and local 

Treg development and function [113, 114]. For now, it is still unclear whether 

it is effective in women with RM [115, 116]. The report of a large multicentre 

study (PROMISE) of progesterone supplementation for RM is currently awaiting 

publication (ISRCTN92644181). 
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Conclusions

Tregs have a critical role in maintaining immune tolerance to self-antigens and to 

foreign antigens of the semi-allogeneic foetus: a deficiency in Tregs is associated 

with implantation rejection at early stages of pregnancy and abortion. Whether 

immunotherapy can play a role by preventing maternal rejection of the foetus 

has yet to be established, but modulation of the immune system as (part of) a 

therapeutic strategy is certainly a valid option to prevent recurrent miscarriages.
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Abstract

Successful pregnancy outcome depends on local immunoregulatory mechanisms 

preventing a detrimental immune response towards the semi-allogeneic 

fetus. We investigated the influence of HLA-DR (in)compatibility on pregnancy 

outcome parameters in 480 women. The parameters tested were birth weight, 

individualized birthweight ratio (IBR), gestational age and maternal highest 

diastolic blood pressure. Irrespective of pregnancy complications, maternal-fetal 

HLA-DR incompatibility resulted in increased IBR. We conclude that reciprocal 

HLA-DR allogenicity between mother and child positively affect pregnancy 

outcome parameters.

Introduction

Successful pregnancy outcome depends on local immunoregulatory mechanisms 

preventing a detrimental maternal immune response towards the semi-allogeneic 

fetus. Paternally-inherited fetal HLA antigens can induce maternal immune 

activation and a variety of immune cells are recruited to the placental bed to 

secure and promote the pregnancy. Regulatory T cells (Tregs) play an important 

role in successful pregnancy. These Tregs are generally CD4+ and are thus HLA 

class II restricted. In organ transplantation, matching for HLA-DR leads to a better 

graft survival and function [1]. 

In the setting of pre-transplant blood transfusion it has been shown that at least 

one HLA-DR antigen has to be shared between donor and recipient in order to 

induce a tolerogenic effect on the course of a subsequent renal transplantation, 

while incompatibility for the second HLA-DR antigen enhances a stable, rejection-

free, allograft function [2, 3]. 

In line with this blood transfusion concept, the pregnant mother has to accept 

the semi-allogeneic fetus. Trophoblast cells do not express HLA-DR, but fetal 

chimeric cells can cross the placenta and trigger a maternal immune response. 

Moreover, such transfer is bidirectional [4]. Both maternal and fetal cells can cross 

the placenta and fetal immune cells can also respond to maternal alloantigens. 

Several studies have aimed at finding a correlation between pregnancy 

complications such as preeclampsia (PE) or recurrent miscarriage (RM) and 

the presence of certain HLA alleles, maternal homozygosity or sharing of HLA 

between mother and father or between mother and fetus. Recently, a systematic 

review showed that HLA-B sharing and HLA-DR sharing were both associated with 

the occurrence of recurrent miscarriage [5]. These results suggest that there is a 

negative correlation between HLA sharing and a favorable pregnancy outcome. 

This is in line with previous findings, suggesting that HLA sharing between mother 
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and child is associated with pregnancies complicated by PE [6]. These studies 

focused on pregnancy complications and do not necessarily represent the 

interaction of HLA molecules and immune cells during uncomplicated pregnancy. 

Therefore, we sought to take a different approach to examine the possible effect 

of HLA on pregnancy outcome with the use of objective parameters. 

We conducted a retrospective, observational study to investigate the influence 

of fetal and maternal HLA-DR sharing on pregnancy outcome using objective 

outcome parameters as birth weight, gestational age and maternal highest 

diastolic blood pressure. 

Materials & Methods

We retrospectively studied a cohort of 480 women who gave birth in the Leiden 

University Medical Center between 1992 and 2011, and their children. The majority 

of the pregnancies (59%) investigated were uncomplicated term pregnancies 

representing successful pregnancy. All women signed informed consent and the 

study was approved by the Ethics Committee of the Leiden University Medical 

Center. HLA-DRB1 typing of both mother and child was performed by SSO PCR 

technique using a reverse dot-blot method at the national reference laboratory 

for histocompatibility testing (Leiden University Medical Center, the Netherlands). 

We divided the woman-child pairs into four previously described groups [6] 

based on the degree of HLA-DR compatibility, as depicted in Figure 1. Maternal 

allogenicity was defined as the situation in which the mother expresses two distinct 

HLA-DR antigens and the fetus only expresses one allelic form. In the situation 

of fetal allogenicity the fetus expresses two distinct HLA-DR antigens, whereas 

the mother only expresses one allelic form. In the reciprocal allogenicity group 

both the mother and fetus express two distinct HLA-DR antigens of which one of 

the HLA-DR antigens is mismatched between mother and child. Syngenicity was Fi
gu
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defined as the situation in which the mother and child express the same HLA-DR 

antigens. 

The parameters tested were birth weight, individualized birthweight ratio (IBR), 

gestational age and maternal highest diastolic blood pressure. The IBR is a ratio 

of the actual birthweight divided by the predicted birthweight [7]. It is calculated 

by dividing the actual birth weight by the mean birth weight of children of the 

same sex born after a pregnancy with equal parity and gestational age, as derived 

from the Kloosterman tables [8]. Supplementary Tables S1 and S2 show the 

characteristics of the study population.

All other statistical analyses were performed using SPSS Statistics 23 software 

(IBM SPSS Software, New York, USA). Non-parametric tests were used, since data 

were not normally distributed according to the Shapiro-Wilk normality test. The 

Kruskal-Wallis test was used to analyze the distribution of the pregnancy outcome 

parameters between the different HLA-DR groups. P-values lower than 0.05 were 

considered statistically significant. To test for independent effects of HLA-DR on 

pregnancy outcome parameters, we included covariates in a regression model. 

Inclusion criterion for inclusion in the multivariate analysis was a univariate P-value 

of <0.1.

Results and discussion

The present study showed that reciprocal allogenicity is significantly related to a 

higher IBR (Figure 1). The group in which both the mother and fetus express two 

distinct HLA-DR antigens, with one HLA-DR mismatch between mother and child, 

had the highest birth weight (P=0.029) and IBR (P=0.030). After correction for 

maternal age, gravidity, parity, spontaneous abortion, PE/HELLP and smoking, we 

found a trend for reciprocal HLA-DR allogenicity and birth weight (P=0.068). The 

association between reciprocal HLA-DR allogenicity and IBR was independent of 

these factors (P=0.042). The IBR is a superior measure for abnormal and normal 

growth, because this factor effectively controls for physiological birthweight 

determinants. These results indicate that the optimal situation for pregnancy is 

reciprocal allogenicity.  Our results suggest that incompatibility for one HLA-

DR antigen between mother and fetus leads to triggering and activation of the 

immune response, while the other HLA-DR antigen has to be shared in order to 

induce immune regulation. Since reciprocal allogenicity was the most optimal 

situation found in our study, both fetal and maternal immune responses seem to 

be important. Although trophoblast cells do not express HLA-DR, HLA-DR+ fetal 

chimeric cells can cross the placenta [4] and interact with the maternal immune 

system leading to a similar immune regulation as previously has been described 

for pretransplant blood transfusions [2]. During pregnancy, increased numbers of 

CD4+ Tregs are indeed present in the decidua and contribute to the regulation of 

fetus-specific responses [9]. 

Similarly, HLA-DR+ chimeric maternal cells in the fetus will interact with the 

developing fetal immune system, leading to the establishment of a large pool 

of fetal Tregs [10]. This T cell tolerance towards maternal alloantigens perceived 

in utero may even be maintained after birth through the establishment of long-

lived Tregs, which play a crucial role in the clinical observations  showing that 

mismatches for  non-inherited maternal antigens (NIMAs) are better tolerated 

than non-inherited paternal alloantigens in the setting of adult solid organ 

transplantation [11].  

The percentage of preterm births in this study (26%) is quite high. This is the direct 

result of collecting retrospective data from women who gave birth in a Dutch 

academic hospital. In the Netherlands it is still common to give birth at home 

under supervision of a midwife, which will have led to a relatively high percentage 

of deliveries with pregnancy complications in hospitals. 
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We did not collect any information on socioeconomic status, marital status, 

education, and race-ethnicity. Even though we think it is unlikely that these 

variables would have influenced the effect of HLA-DR allogenicity on pregnancy 

outcome parameters, we cannot fully exclude the effect of these factors.

In summary, we conclude that the most optimal situation for a successful pregnancy 

is that of reciprocal HLA-DR allogenicity. This suggests that active induction of 

immune tolerance from both maternal and fetal side is important.
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Supplementary Table S1. Maternal characteristics of the 480 women included in the study. 

Mother   n 
 Age (years) * 33 (19-46) 480 
 Highest diastolic pressure (mmHg) * 81 (60-160) 472 
 Proteinuria (positive) # 56 (11.7%) 480 
 Gravidity* 3 (1-10) 480 
 Parity* 1 (0-6) 480 
 Previous spontaneous abortions* 1 (0-7) 480 
 Smoking#  480 
      - No smoking 409 (85.2%)  
      - 1-10 cigarettes/day 18 (3.8%)  
      - >10 cigarettes/day 10 (2.1%)  
      - Unknown 43 (9.0%)  
* Mean value with the range between parentheses. # Number with the percentage of the total 
population. 

 

 

 

 

Supplementary Table S2. Pregnancy characteristics of the 480 women included in the study. 

Pregnancy   n 
 Gestational age (days) * 264 (190-297) 480 
 Mode of delivery#  480 
      - Spontaneous 200 (41.7%)  
      - Caesarean section 280 (58.3%)  
 Indication primary caesarean section (n= 246) #  246 
      - Breech presentation 70 (28.5%)  
      - Caesarean previous pregnancy 59 (24.0%)  
      - Obstetric medical history 23 (9.3%)  
      - Maternal/Fetal indication 16 (6.5%)  
      - Other 78 (31.7%)  
 Indication secondary caesarean section (n= 34) #  34 
      - Failure 1st stage 5 (14.7%)  
      - Failure 2nd stage 7 (20.6%)  
      - Maternal indication 2 (5.9%)  
      - Fetal indication 15 (44.1%)  
      - Other 5 (14.7%)  
Child    
 Birth weight (gram) * 3090 (625-5285) 480 
 Gender (male) # 236 (49.2%) 480 
 Placenta weight (gram) * 559 (100-1480) 381 
Complications    
 Pre-eclampsia# 47 (9.8%) 480 
 HELLP# 7 (1.5%) 480 
 IUGR (<5th percentile)# 22 (4.6%) 480 
 Preterm (<37 weeks)# 123 (26%) 480 
* Mean value with the range between parentheses. # Number with the percentage of the total 
population. 
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Abstract

HLA-G is an immune modulating molecule present on fetal extravillous trophoblasts 

at the fetal-maternal interface. Single nucleotide polymorphisms (SNPs) in the 3 

prime untranslated region (3’UTR) of the HLA-G gene can affect the level of HLA-G 

expression, which may be altered in women with recurrent miscarriages (RM). This 

case-control study included 23 women with a medical history of three or more 

consecutive miscarriages who delivered a child after uncomplicated pregnancy, 

and 46 controls with uncomplicated pregnancy. Genomic DNA was isolated to 

sequence the 3’UTR of HLA-G. Tissue from term placentas was processed to 

quantify HLA-G protein and mRNA levels. The women with a history of RM had 

a lower frequency of the HLA-G 3’UTR 14-bp del/del genotype compared to 

controls (OR 0.28; P = 0.039), which has previously been related to higher soluble 

HLA-G levels. Yet, HLA-G protein (OR 6.67; P = 0.006) and mRNA (OR 6.33; P = 

0.010) expression was increased in term placentas of women with a history of 

RM compared to controls. In conclusion, during a successful pregnancy HLA-G 

expression is elevated in term placentas from women with a history of RM compared 

to controls, despite a genetic predisposition associated with decreased HLA-G 

levels. These findings suggest that HLA-G upregulation could be a compensatory 

mechanism in the occurrence of RM to achieve an ongoing pregnancy.

Introduction

About 1 to 2% of couples trying to conceive experience recurrent miscarriages (RM) 

[1]. Accepted etiological categories for RM include chromosomal abnormalities, 

uterine anatomic abnormalities and antiphospholipid antibody syndrome. 

However, a significant proportion of the couples trying to conceive do not know 

the underlying cause for this recurring problem [2], leaving them with a burden of 

uncertainty.

During pregnancy, the maternal immune system needs to accept the semi-

allogeneic fetal tissue. For this reason, several mechanisms are at play at the 

fetal-maternal interface. The absence of the human leukocyte antigen (HLA) class 

I antigens A and B and HLA class II on fetal trophoblast cells helps to prevent 

allorecognition by T and B cells, whereas the presence of HLA-C, HLA-E, HLA-F 

and HLA-G provide self-signals to control (natural killer) NK responses [3, 4]. Low 

levels of HLA-G have been associated with RM [5, 6]. By alternative splicing, the 

HLA-G pre-mRNA can give rise to seven different isoforms, of which four are 

membrane-bound (HLA-G1, -G2, -G3 and -G4) and three are soluble (HLA-G5, -G6 

and -G7) [7]. Whereas in healthy tissue membrane-bound HLA-G is only expressed 

on trophoblasts, the soluble form of HLA-G can be detected in various body fluids, 

such as amniotic fluid, blood and seminal plasma [8-10]. One mechanism leading 

to the generation of soluble (s)HLA-G1 is the cleavage of membrane-bound 

HLA-G from the cell surface by the activity of metalloproteinases [11].

Several polymorphisms are present in the 3 prime untranslated region (3’UTR) 

of the HLA-G gene. Since the 3’UTR is targeted by microRNAs (miRNA) that 

can negatively influence expression, polymorphisms in this region may have 

an influence on the efficiency of miRNA binding, and consequently on the level 

of HLA-G expression and on pregnancy outcome. The 14 bp insertion/deletion 

polymorphism affects the stability of HLA-G mRNA and thereby the expression 
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of HLA-G [12]: the insertion is associated with low levels of sHLA-G [13]. Presence 

of the +3187A allele is associated with decreased mRNA stability and decreased 

HLA-G expression [14]. The presence of a guanine at position +3142 increases 

the affinity of miR-148a, miR-148b and miR-152, which leads to downregulation of 

HLA-G expression [15].

We analyzed the HLA-G 3’UTR genotype of women with a history of RM and of a 

control group of women with no history of RM. We also analyzed the HLA-G 3’UTR 

genotype of their offspring. The combination of multiple polymorphic sites was 

used to generate 3-UTR haplotypes. In addition, we studied HLA-G mRNA and 

protein expression levels in term placentas of women with successful pregnancies 

in both study groups.

Materials and Methods 

 Subjects and materials

This case control study included women with a medical history of RM who delivered 

a child after uncomplicated pregnancy. These women visited the Department of 

Obstetrics and Gynecology, Leiden University Medical Center (LUMC) between 

2012 and 2015, and no underlying cause for RM was found after a full clinical 

workup according to the local guidelines, which are in line with the international 

ESHRE guideline. Twenty-three women with a history of at least three miscarriages 

and an uncomplicated singleton pregnancy were included in this study, of whom 

placental tissue was stored for research purposes. For the control group, 46 

women were included with a history of ≤1 miscarriage, of whom placental tissue 

of a healthy singleton pregnancy was stored for research purposes after delivery 

at the Department of Obstetrics and Gynecology, LUMC. 

For additional experiments we collected products of conception from eight first 

trimester miscarriages (GA: 6-10 weeks) and four first trimester elective abortions 

(GA: 5-10 weeks). The miscarriage material was obtained from women with a 

history of RM from the Department of Obstetrics and Gynecology in the LUMC. 

Elective abortion material was received anonymously from an abortion clinic [16]. 

The protocol was approved by the Ethical committee of the LUMC (P11.196), and 

all participants gave informed consent for inclusion in the study. 

HLA-G polymorphisms and haplotypes 

Peripheral blood and umbilical cord blood for both groups was processed to 

genotype HLA-G in the mothers and children, respectively. Genomic DNA was 

isolated to sequence a 699/713-bp fragment covering the 3’UTR of exon 8, 

starting just before the 14-bp insertion/deletion and ending 591-bp downstream 

of the insertion/deletion. To sequence the haplotype on each of the two alleles, 

amplification reactions were performed using the generic 3’-primer that was 

tailed with a M13 sequence to cover the 3’UTR region of HLA-G. The following 

polymorphisms were identified: the 14-bp insertion/deletion (rs371194629), 

+3003C/T (rs1707), +3010C/G (rs1710), +3027A/C (rs17179101), +3035C/T 

(rs17179108), +3142C/G (rs1063320), +3187A/G (rs9380142), +3196C/G 

(rs1610696), +3422C/T (rs17875408), +3496A/G (rs1233330), and +3509G/T 

(rs1611139). 

UTR haplotypes were composed based on the combination of SNPs. Conversion 

of sequencing data to UTR haplotypes was carried out by using specialized 

HLA interpretation software (SBT Engine, GenDX, Utrecht, the Netherlands). 

The forward primer (GTGATGGGCTGTTTAAAGTGTCACC), the reverse primer 

(GACGTTGTAAAACGACGGCCAGTAGGGGAAGAGGTGTAGGGGTCTG) and an 

M13 universal primer (GACGTTGTAAAACGACGGCCAGT) were ordered from 
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Sigma (St. Louis, Missouri USA). The underlining represents the M13 sequence.

 Immunohistochemistry

HLA-G and trophoblasts were detected by standard immunohistochemical 

procedures. After delivery, placental tissues were dissected and fixed in 4% 

neutral buffered formaldehyde and embedded in paraffin. Section slides of 6 μm 

were cut, mounted on Superfrost/Plus glass slides (Thermo Scientific, Waltham, 

Massachusetts, USA), and dried overnight at 37°C. Sections were deparaffinized 

in xylene and ethanol. Depending on the primary antibody used, unmasking of 

the antigens was achieved by enzyme digestion with trypsin or incubation with 

citrate buffer in a microwave. This was followed by endogenous peroxidase 

blocking in 3% H2O2 in methanol for enzymatic staining. All incubations were at 

room temperature and wash steps in between the incubations were performed in 

PBS. Slides were pre-incubated with PBS/1% BSA to reduce background staining. 

Excess buffer was removed and slides were incubated with mouse monoclonal 

primary antibodies overnight at room temperature. Antibodies were diluted in 

PBS containing 1% BSA.

For enzymatic and immunofluorescence staining, primary antibodies against the 

free heavy chain of all HLA-G isoforms (MEM-G2; EXBIO Praha, Czech Republic) 

and against cytokeratin 8 (CAM5.2; Becton Dickinson, Franklin Lakes, New Jersey, 

USA) were used. The next day, incubation with secondary antibody (EnVision 

solution, goat anti-mouse HRP, undiluted; DAKO, Agilent, Santa Clara, California, 

USA) for enzymatic staining; Goat-anti-mouse IgG1-AF488 A21121 and Goat-

anti-mouse IgG2a-AF546 A21133 for immunofluorescence staining; Thermo 

Scientific) was performed, and substrate was visualized with diaminobenzidine 

(DAB metal Enhanced substrate kit; 34065; Thermo Scientific) for enzymatic 

staining. Specimens were counterstained with hematoxylin and mounted in 

Micromount Mounting Medium (Leica, Nussloch, Germany) for enzymatic staining 

and ProLong Gold Antifade Mountant with DAPI (P36931; Thermo Scientific) for 

immunofluorescence staining. 

Quantification of immunohistochemical stainings

We set out to compare the extent of MEMG2 and CAM5.2 staining in term placentas 

between the study groups. All slides were scanned by a Pannoramic Midi scanner 

(3DHISTECH, Budapest, Hungary). The entire decidua basalis was quantitatively 

analyzed using the HistoQuant modus in Quant Center software (3DHISTECH). 

This was done by two investigators (JS and HK) independently for 10 placentas 

to analyze interobserver variability. For each staining, the same thresholds and 

training scenarios were used for patient and control slides. We corrected for the 

selected surface area when calculating the percentage positivity of a staining. 

For first trimester material, we could not define the decidua. Therefore, we 

analyzed only the HLA-G positive parts of the slides. Scoring of the slides was 

performed by two investigators (JS and ME) independently, blinded for the cause 

of the abortion. Based on the extent of staining, cases were classified according 

to a semi-quantitative scoring system, i.e., (1) minimal, (2) moderate, or (3) intense 

staining. Examples of stainings are shown in Supplementary Fig. S1. 

RNA isolation and qPCR

Tissue homogenates from term placentas were processed for mRNA quantification 

of HLA-G by real-time qPCR. Tissue sections were immersed in ML lysis buffer 

(Nucleospin miRNA isolation kit from Macherey-Nagel, Düren, Germany) and 

stored at -20°C until isolation. RNA was extracted using NucleoSpin columns 

(Macherey-Nagel) and tested for integrity by gel electrophoresis (Experion, Bio-
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Rad). RNA quantity was determined on a NanoDrop 2000 Spectrophotometer 

(Thermo Scientific). RNA was combined with oligo DT (Promega; 0.5 μg), 

dNTP (Promega; 10 mM), and random nucleotide hexamers (0.5 μg; Promega, 

Fitchburg, Wisconsin, USA). This mixture was incubated at 65°C for 5 minutes 

and then put on ice. Complementary DNA synthesis from mRNA was carried out 

using Superscript III (40 μg/μL RNAseOUT, SuperScriptIII 200 μg/μL, 0.1M DTT; 

Promega). The reactions were proceeded at 25°C for 5 minutes and 50°C for 60 

minutes. Reactions were terminated by increasing the temperature to 70°C for 5 

minutes. 

PCR assays were carried out using iQ™ SYBR® Green Supermix (Bio-Rad) on a Viia7 

Real-time PCR system (Applied Biosystems, Foster City, California, USA). The PCR 

program consisted of 10 minutes at 95 °C, followed by 40 cycles of 15 seconds at 

95 °C and 1 minute at 60 °C. Levels of mRNA transcripts for HLA-G were normalized 

to the geometric mean signal of reference genes GAPDH and β-actin. The forward 

(ACCCACTCCTCCACCTTTGAC) and reverse (TCCACCACCCTGTTGCTGTAG) 

primer for GAPDH; the forward (ACCACACCTTCTACAATGAG) and 

reverse (TAGCACAGCCTGGATAGC) primer for beta-actin; the forward 

(GACAGCGACTCGGCGT) and reverse (GTGTTCCGTGTCTCCTCT) primer for 

HLA-G were ordered from Sigma. 

We also studied miRNA levels in the tissue homogenates. For this, RNA template 

was reverse transcribed into cDNA using the miRCURY LNATM Universal RT miR 

PCR kit (Exiqon, Vedbaek, Denmark). LNATM enhanced primer sets were used 

targeting the following miRNAs of interest: hsa-miR-148a (MIMAT0000243), hsa-

miR-148b (MIMAT0000759), hsa-miR-152 (MIMAT0000438), and hsa-miR-365 

(MIMAT0000710). Levels of these miRNAs were normalized to the geometric mean 

signal of previously described reference genes hsa-miR-16 (MIMAT0000069) and 

hsa-miR-103 (MIMAT0000101) [17, 18].

All PCR reactions were performed in duplicate. Signals were normalized using the 

ΔΔCq method. Quantitative PCR measurements were analyzed using QuantStudio 

Real-Time PCR System Software (Applied Biosystems). To verify the accuracy of 

amplification, melting curve analyses were performed at the end of each PCR run. 

Statistical analysis

Spearman’s correlation analysis and Bland–Altman plotting were performed for the 

assessments of validity and reproducibility [19]. Differences between groups were 

tested by Mann-Whitney U tests, chi-square tests or logistic regression analysis. 

Values of P < 0.05 were considered to indicate statistical significance. Association 

between HLA-G SNPs and RM was studied with binary logistic regression. Per 

HLA-G genotype the highest prevalence was defined as the reference group. 

Alleles with a frequency of <5% were excluded from analysis. For the calculations 

on the HLA-G genotypes Bonferroni adjustment was used to correct for multiple 

comparisons. Observed heterozygosity in both groups was computed by the 

direct counting method. Adherences of genotypic proportions to expectations 

under Hardy–Weinberg equilibrium were tested separately for each SNP using the 

PyPop 0.7.0 software (California, USA) [20]. Statistical analyses were performed 

using GraphPad Prism version 7.02 for Windows (GraphPad Software, California, 

USA) and SPSS Statistics 23 (IBM SPSS Software, New York, USA). 

Results

Patient characteristics

Characteristics of the RM group and control group are listed in Table 1. Groups did 

not differ in maternal age and gestational age (GA) at delivery. As expected, the 

women in the RM group had fewer previous live born children compared to the 
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control women (P < 0.001). Of the RM group, 65.2% had no children, compared to 

19.6% in the control group. 

HLA-G polymorphisms and haplotypes 

We analyzed multiple SNPs to distinguish eight haplotypes of the 3-UTR in exon 

8 of HLA-G. All genotyped SNPs fit the Hardy–Weinberg expected proportions 

in both groups of women and in their offspring (Supplementary Tables S1 and 

S2). No differences in frequency for individual SNPs or in haplotype distribution 

was found between groups (Supplementary Tables S3 and S4), except for the 14-

bp indel polymorphism. We found a higher frequency of HLA-G 14-bp ins/del 

heterozygotes in RM women (65.2%) as compared to control women (36.4%) (OR 

3.28; P = 0.026) and a lower del/del genotype (17.4% compared to 43.2%) (OR 

0.28; P = 0.039), whereas the frequencies of ins/ins genotype are very similar in 

both groups (17.4% vs. 20.5%) (Table 2). Nevertheless the allelic frequencies of 

deletion and insertion do not differ significantly between RM and controls (Table 

2). The 14-bp insertion is known to influence mRNA stability [21], resulting in lower 

HLA-G expression [13]. The children in both groups did not differ in frequency of 

individual SNPs (Supplementary Table S6), haplotypes (Supplementary Table S5) 

and 14-bp indel (Table 3).

Table 1. Subject characteristics. 

 Pregnancy after 
RM 
(n=23) 

Uneventful 
pregnancy 
(n=46) 

P-
value* 

Maternal age at time of index pregnancy 
in years  

34 (22-39) # 33 (20-41) # 0.548 

Gestational age at time of birth  
in weeks 

39 (37-41) # 39 (37-42) # 0.109 

    
Gravidity at time of index pregnancy  5 (4-9)# 3 (1-7) # <0.001 
Parity at time of index pregnancy  0 (0-2) # 1 (0-5) # <0.001 
    
Number of previous miscarriages 4 (3-7) # 0 (0-1) # <0.001 

*Mann-Whitney U Test; # median, min-max 

 

Table 2. The 14-bp insertion/deletion in the 3’UTR region of HLA-G in the women with a history of RM 
and the control groups.  

 RM women 
(n=23) 

Control women 
(n=44)* 

 OR 95% CI P-value$ 

Genotype frequency         
Del/Del 4 17.4% 19 43.2%  0.28 0.08-0.95 0.039 
Ins/Del 15 65.2% 16 36.4%  3.28 1.14-9.43 0.026 
Ins/Ins 4 17.4% 9 20.5%  0.82 0.22-3.01 0.810 
         
Phenotype frequency         
Ins phenotype 19 82.6% 25 56.8%  3.61 1.05-12.38 0.039 
Del phenotype 19 82.6% 35 79.6%  1.22 0.33-4.50 0.810 
         
Allele frequency         
Insertion 23 50.0% 54 38.6%  1.59 0.77-3.26 0.205 
Deletion 23 50.0% 54 61.4%  0.63 0.31-1.29 0.205 

*In 2 control subjects the 14bp ins/del could not be defined (4%). 
$Chi-square.  
OR, odds ratio; 95% CI, 95% confidence interval; del, deletion; ins, insertion. 
 

 

Table 3. The 14-bp insertion/deletion in the 3’UTR region of HLA-G in the offspring of the group with a 
history of RM and the control group.  

 RM offspring 
(n=23) 

Control offspring 
(n=45)* 

 OR 95% CI P-value$ 

Genotype frequency         
Del/Del 8 34.8% 16 34.0%  0.97 1.33-2.77 0.969 
Ins/Del 11 47.8% 22 46.8%  0.96 0.35-2.62 0.936 
Ins/Ins 4 17.4% 7 14.9%  1.14 0.30-4.39 0.789 
         
Phenotype frequency         
Ins phenotype 15 65.2% 29 61.7%  1.03 0.36-2.97 0.969 
Del phenotype 19 82.6% 38 84.4%  0.88 0.23-3.36 0.789 
         
Allele frequency         
Insertion 19 43.3% 36 40.0%  1.06 0.51-2.17 0.875 
Deletion 27 58.7% 54 60.0%  0.95 0.46-1.95 0.875 

*In 1 control subject the 14bp ins/del could not be defined (2%). 
$Chi-square.  
OR, odds ratio; 95% CI, 95% confidence interval; del, deletion; ins, insertion. 
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Placental HLA-G expression is elevated in women with history of RM

Trophoblasts were stained in the term placentas by means of immunohistochemistry 

with an anti-cytokeratin antibody (CAM5.2) (Fig. 1a). On the sequential slides an 

antibody recognizing the free heavy chain of all HLA-G isoforms (MEM-G2) was 

applied (Fig. 1b). Expression of HLA-G was confined to the cytokeratin positive 

cells in the decidua basalis, as determined by double staining experiments by 

immunofluorescence (Supplementary Fig. S2). We annotated the decidual part of 

the placental tissues and quantified the extent of staining within these annotations. 

Spearman’s correlation coefficient of the inter-observer reproducibility for our 

approach of quantitation was r-0.79. In the Bland–Altman plot of inter-observer 

measurements (Supplementary Fig. S3), most of the values ranged within a mean 

± two SD, meaning that the reproducibility of the measurement is acceptable [19].

Figure 1. Expression of trophoblast cell marker and HLA-G in term placenta. Representative examples 
of staining for (a) trophoblasts with cytokeratin marker CAM5.2 and (b) all HLA-G iso forms with marker 
MEM-G2. Decidual parts of the placenta were annotated to specify the area for analysis.

No significant difference was observed in the extent of trophoblast staining 

between groups (Fig. 2a). However, the extent of decidual HLA-G protein 

expression was elevated in the placentas of women with a history of RM (median 

32.6%) compared to the control group (median 21.9%, P < 0.0001) (Fig. 2b). 

HLA-G expression was similar in placentas of women who gave birth to their 

firstborn compared to women who already had a successful previous pregnancy 

(Supplementary Fig. S4). Using the median expression in the controls, the RM 

subjects were divided into either low or high HLA-G protein expression groups 

(Table 4). From RM cases, 87.0% belonged to the high HLA-G protein expression 

group (OR 6.67, 95% CI: 1.74-25.57; P = 0.006). 

Figure 2. (a) Percentage positivity for trophoblast staining. No difference was observed in trophoblast 
staining between women with a history of RM and controls. (b) Percentage positivity for HLA-G staining. 
A higher HLA-G protein expression was observed in the decidual part of the placenta of women with 
a history of RM compared to controls. (c) HLA-G mRNA expression was measured in the placentas of 
women with a history of RM and controls. HLA-G mRNA expression was increased in term placenta of 
women with a history of RM compared to controls.

To verify the differences observed at the protein level, we analyzed the mRNA 

expression of HLA-G in homogenates of term placentas from both groups. For this, 

we developed primers targeting exon 2 and 3 of the HLA-G gene, so all HLA-G 

isoforms were recognized. To verify that the primers only recognize HLA-G, and not 

HLA-C, their specificity was checked by sequencing of the amplicons. The mean 

Cq value for all placentas was 25.2 ± 2.0 (range 21-33), indicating expression well 

above background. Similar to what was observed for HLA-G protein expression, 
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Table 4. HLA-G protein expression in the placentas of women with a history of RM and controls.  

 RM women 
(n=23) 

Control women 
(n=44)* 

 OR 95% CI P-value 

Low HLA-G protein expression 3 13.0% 23 50.0%  6.67 1.74-25.57 0.006$ 
High HLA-G protein expression 20 87.0% 23 50.0%      

$logistic regression. OR, odds ratio; 95% CI, 95% confidence interval. 
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the placentas of women with a history of RM had a 2.3-fold higher HLA-G mRNA 

expression than women without a history of RM (median relative level 8.2 versus 

3.6, P < 0.005) (Fig. 2c). RM subjects were divided into either low or high HLA-G 

mRNA expression groups (Table 5). From RM cases, 86.4% belonged to the high 

HLA-G mRNA expression group (OR 6.33, 95% CI: 1.56-25.71; P = 0.010). No 

correlation was found between maternal and fetal HLA-G genotype with HLA-G 

expression.

We wondered whether the higher placental HLA-G expression in the RM group 

was accompanied by a lower level of miRNAs. Members of the miR-148 family, 

and miR152 and miR-365 have been identified to target the 3’UTR of HLA-G [22, 

23]. Cq values for miR-148a, miR148b and miR-152 ranged between 16 and 29. 

Cq values for miR-365 ranged between 25 and 39. After normalization for two 

reference miRNAs, no difference was observed between groups in the levels of 

miR-152 and miR-365 (Supplementary Fig. S5). Placental miR-148a (P = 0.0009) 

and miR-148b levels (P = 0.0154) were higher in the RM group compared to 

controls. Thus, increased HLA-G expression in the RM group was not accompanied 

by decreased miRNA levels.

HLA-G expression in first trimester miscarriage material and elective abortions is 

similar

Since HLA-G protein expression was elevated in term placentas after successful 

pregnancies, we additionally analyzed HLA-G expression in first trimester 

placentas, using the same antibody for immunohistochemistry. To this aim, we 

collected first trimester miscarriage of patients with a history of RM and elective 

abortion material and stained slides for HLA-G. Since the decidua could not be 

clearly defined in this early material, HLA-G positive region were selected to semi-

quantitatively scored the extent of protein staining. The average score for each 

group is shown in Fig. 3. No difference in HLA-G protein expression was found 

between early miscarriages and elective abortions. 

Figure 3. Amount of HLA-G staining in first trimester miscarriage and elective abortion material. HLA-G 
positive parts in the EVT regions of the placental slides were scored to be (1) minimally, (2) moderately 
or (3) intensely stained.

Discussion

In this study we investigated the HLA-G genotype and HLA-G mRNA and protein 

expression in term placentas of women with a history of RM and of women with 

no such history. A homogenous well-defined case group of women with at least 

three consecutive unexplained RM within 20 weeks of gestation was included. A 

 

Table 5. HLA-G mRNA expression in the placentas of women with a history of RM and controls.  

 RM women 
(n=22)* 

Control women 
(n=32)* 

 OR 95% CI P-value 

Low HLA-G mRNA expression 3 13.6% 16 50.0%  6.33 1.56-25.71 0.010$ 
High HLA-G mRNA expression 19 86.4% 16 50.0%      

*In 1 RM case (4%) and 12 control subjects (26%) mRNA expression could not be defined. 
$logistic regression. OR, odds ratio; 95% CI, 95% confidence interval. 
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lower frequency of the HLA-G 3’UTR 14-bp deletion genotype was observed in 

the case group, suggesting that genetic predisposition to a low level of HLA-G 

played a role in the etiology of previous RM. In the current successful pregnancies, 

a significantly higher HLA-G protein and mRNA expression was found in the 

placenta of the RM group compared to the control group.

The most studied polymorphism in exon 8 of 3-UTR of the HLA-G gene is the 14 bp 

indel polymorphism, which has been associated with altered HLA-G expression. 

The insertion genotype is associated with low levels of sHLA-G [13]. In addition, the 

fetal 14-bp ins/ins genotype has been associated with lower surface expression of 

HLA-G on first trimester trophoblast cells than the 14-bp del/del genotype [24]. 

We did not find any differences in fetal HLA-G 3’UTR haplotypes or individual 

SNPs between both groups. However, we found a higher frequency of HLA-G 14-

bp ins/del heterozygotes in RM women (65.2%) as compared with control women 

(39.1%), and a lower frequency of HLA-G 14 bp del/del homozygotes (17.4% and 

43.2%, respectively). This is consistent with some studies [25-27], but not others 

[28, 29]. Since several studies have focused on the HLA-G 14-bp polymorphism 

in RM with controversial or inconclusive results, Wang et al performed a meta-

analysis [30], which suggested that the HLA-G 14-bp insertion allele was associated 

with increased risk of RM. In 2014, yet another meta-analysis indicated that there 

was only an association between the HLA-G 14-bp indel polymorphism and RM 

in patients with three or more miscarriages [31]. In the present study, we have 

not addressed polymorphisms in the HLA-G promotor region, but they may be 

associated to RM, as recently shown [32].

Both the individual SNPs and the most common extended 3-UTR haplotypes of 

HLA-G were studied in the group of women with a history of RM and controls. 

HLA-G haplotype distribution and frequencies of individual SNPs in the 3-UTR 

region of HLA-G were neither significantly different between the groups of 

women, nor in their offspring (Supplementary Table S3-6). Studies have shown 

that individual SNPs in the 3-UTR region of HLA-G are not significantly associated 

with RM, but that the UTR-4 haplotype seemed to be protective against RM [33, 

34]. Similarly we observed a lower incidence of the HLA-G UTR-4 haplotype in 

women with RM (10.9% in RM women vs 15.9% in control women) (Supplementary 

Table S3). Remarkably, the HLA-G UTR-4 haplotype was more frequently present 

in the offspring of women with RM than in the offspring of controls (21.7% vs 

13.3% respectively) (Supplementary Table S5) and less frequently in miscarriage 

material from women with RM (10%, data not shown). Even though these results 

were not statistically significant, possibly due to limited sample size, collectively 

they support the idea that this haplotype might have a protective effect in 

uncomplicated pregnancy. 

HLA-G in the placenta is suggested to play a role in the induction of immunological 

tolerance at the fetal-maternal interface, by functioning as a trophoblast-restricted 

inhibitory ligand of maternal immune cells. Only a few studies have focused on 

HLA-G protein expression in the placentas of women with a history of RM, with 

contradicting results [35, 36]. Remarkably, the present immune-histochemical 

analysis of term placentas of successful pregnancies showed a significantly higher 

HLA-G protein expression in women with a history of RM compared to controls, 

although this RM group had a lower frequency of the 14 bp del/del genotype. This 

is not in line with results previously found in peripheral blood [25, 37] and suggests 

that local regulation is involved. HLA-G was mostly confined to the trophoblast 

areas at the fetal-maternal interface (decidua basalis), as determined by double 

label immunofluorescence experiments (Supplementary Fig. S2), and the level of 

HLA-G expression was independent of previous pregnancies. 

Since the level of HLA-G expression can depend on the differentiation status 

of EVTs, as determined by in vitro studies using isolated primary trophoblasts 

[38], it is unclear whether the observed differences in HLA-G expression are a 

direct consequence of transcriptional regulation or a secondarily of an altered 
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differentiation status of the EVTs. Possibly, for a successful pregnancy to occur 

after previous RM, a compensatory mechanism resulting in high HLA-G protein 

expression is in place. When comparing first trimester miscarriage material of 

women with a history of RM and material of elective abortions, we did not observe 

a difference in HLA-G expression between both groups, suggesting that successful 

pregnancy in women with a history of RM is due to high fetal HLA-G expression in 

the current pregnancy. Besides HLA-G, other molecules and immune interactions 

may be involved in the immune-regulation leading to successful pregnancy. 

We found a higher miR-148a and miR-148b expression in the term placentas of 

the RM group despite the elevated HLA-G expression. Apparently, either these 

miRNAs do not bind or binding does not result in post-transcriptional repression 

of HLA-G. This leads us to hypothesize that the higher HLA-G protein expression 

in the RM group may be the result of an epigenetically-regulated compensatory 

mechanism to achieve an ongoing pregnancy in patients with a history of RM. 

Alternatively, the higher HLA-G protein expression in the case group may be 

an epiphenomenon resulting from the previous miscarriages. It is possible 

that the elevated HLA-G in the term placentas of women with RM is the result 

of proteolytic cleavage of the membrane bound HLA-G1 isoform resulting from 

activity of metalloproteases, leading to elevated sHLA-G levels. The antibody 

recognizing MEMG2 in our immune-histochemical assays does not distinguish 

membrane bound HLA-G from soluble HLA-G. Previous miscarriages could lead 

to increased metalloprotease (MMP) levels [39], which in turn lead to increased 

proteolytic shedding of HLA-G1 [11]. MMP2 and MMP9 mRNA expression was not 

elevated in term placentas of women with a history of RM compared to controls 

(Supplementary Fig. S6), but this does not fully exclude the involvement of MMPs 

since their activity was not tested in the current setting.

In conclusion, whereas women with RM have a genetic predisposition to lower HLA-G 

levels, HLA-G expression is increased in the placenta of ongoing pregnancies after 

RM. This implies that HLA-G upregulation could be a compensatory mechanism 

in the occurrence of RM to achieve an ongoing pregnancy. Whether the higher 

HLA-G expression in the ongoing pregnancy after RM is a cause or a consequence 

of the successful pregnancy remains to be established. Future studies should be 

concentrated on further establishing the role of HLA-G in complicated pregnancies. 

Measurement of maternal sHLA-G may provide further insight on the prognosis of 

the outcome of pregnancies in women with a history of RM.
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Supplementary Figure S1. Examples of minimal (a), moderate (b), and intense (c) HLA-G staining in 
first trimester placenta.

Supplementary Figure S2. (a) Cytokeratin 8 (CAM5.2, red) and HLA-G (MEM-G2, green) colocalize 
in the decidua; yellow in merged image indicates overlap of red and green labels. (b) CAM5.2 stains 
all trophoblasts in the placenta. (c) MEM-G2 staining is limited to the extravillous trophoblasts in the 
decidual part of the placenta.
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Supplementary Figure S3. Bland-Altman plot of interobserver measurements of HLA-G staining. Ninety 
percent of the values ranged within a mean ±2 SD deviations, indicating acceptable reproducibility.
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Supplementary Figure S4. HLA-G expression in placentas of healthy first pregnancies compared to 
subsequent pregnancies. Previous pregnancies did not influence placental HLA-G expression in the 
control group with uncomplicated pregnancies.
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Supplementary Figure S5. miRNA expression in term placentas of women with a history of RM and 
controls. (a-b) miR-148a and miR-148b expression was elevated in placenta of women with a history of 
RM compared to controls. No difference in miRNA expression was seen for (c) miR-152 and (d) miR-365 
(statistics: Mann-Whitney test).
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Supplementary Figure S6. MMP2 and MMP9 mRNA expression in term placentas of women with a 
history of RM and controls. (a) MMP2 mRNA expression was similar between women with a history of 
RM and controls. (b) MMP9 mRNA expression was similar between women with a history of RM and 
controls (statistics: Mann-Whitney test).
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Supplementary Table S1. Hardy-Weinberg analyses for HLA-G 3’UTR genotypes in women with RM 
and controls. 

SNP Recurrent miscarriage (n=23) 
 

Controls (n=46) 
  common  homozygote heterozygot common homozygote heterozygot

 P  
 

P  
 

P  
 

P  
 

P  
 

P  
 14-bp 0.1444 0.3020 0.3020 0.1220  0.3119 0.2870  

+3003 # 0.9370 & 0.5888 0.7548 0.6054 
+3010 0.7171 0.7637 0.7526 0.1379 0.2975 0.2953 
+3027 # 0.9653 & 0.8602 0.9474 0.8626 
+3035 0.6481 0.7965 0.6619 0.7823   0.9045 0.7874 
+3142 0.7171 0.7637 0.7526 0.2322 0.3997 0.3987 
+3187 0.5487 0.6508 0.5836 0.3077 0.3077 0.2440 
+3196 0.4238   0.5347 0.4688 0.2315    0.3908 0.2679 
+3422 0.9250       0.9520       0.9292       0.5149       0.7170       0.5321       
+3496 # 0.8996       & 0.5888       0.7548       0.6054       
+3509 0.5855       0.6588       0.6280       0.2938       0.4428       0.3332       

All Hardy-Weinberg analyses. P, p value. # Too many parameters for chi-square test. & Too few cases to 
calculate p-value. 

 

Supplementary Table S2. Hardy-Weinberg analyses for HLA-G 3’UTR genotypes in the RM and control 
offspring. 

SNP Recurrent miscarriage (n=23) 
 

Controls (n=46) 
 

 common  homozygote heterozygot common homozygote heterozygot
 P  

 
P  
 

P  
 

P  
 

P  
 

P  
 14-bp 0.9577   0.9647   0.9637 0.9011 0.9341 0.9314 

+3003 0.9471 0.9644 0.9504 0.8976 0.9458 0.9013   
+3010 0.2058 0.2920 0.2883 0.3181 0.4854 0.4820       
+3027 # 0.9653 & # 0.9877 & 
+3035 0.7224   0.8528   0.7319 0.7009 0.8533 0.7094 
+3142 0.2921 0.4575 0.4567 0.8841   0.9179 0.9179 
+3187 0.8147 0.8691 0.8275 0.7358 0.7894 0.7617 
+3196 0.5487 0.6508 0.5836 0.7862 0.8389 0.8038 
+3422 0.4882       0.6574       0.5128       0.9110       0.9424       0.9161       
+3496 0.9471       0.9644       0.9504       0.8976       0.9458       0.9013       
+3509 0.5487       0.6508       0.5836       # 0.8150       0.7861       

All Hardy-Weinberg analyses. P, p value. # Too many parameters for chi-square test. & Too few cases to 
calculate p-value. 

Supplementary Table S3. Haplotypes of women in the RM group and the control group.  
 

RM women 
2n=46 

Controls 
2n=88* 

OR 95% C.I. P  
Lower Upper 

UTR-1 13 28.3% 28 31.8% 0.90 0.413 1.965 0.792 
UTR-2 16 34.8% 23 26.1% 1.60 0.742 3.451 0.231 
UTR-3 5 10.9% 8 9.1% 1.28 0.394 4.159 0.681 
UTR-4 5 10.9% 14 15.9% 0.68 0.229 2.019 0.487 
UTR-5 4 8.7% 4 4.5% 2.10 0.499 8.789 0.312 
UTR-7 3 6.5% 7 8.0% 0.85 0.209 3.440 0.817 
UTR-8 0 0.0% 0 0.0% x x x x 
UTR-18 0 0.0% 3 3.4% 0.00 0.000 

 
0.999 

UTR-N 0 0.0% 1 1.1% 0.00 0.000   1.000  
46 100% 88 100% 

    

 
All univariate logistic regression analysis. P, p value; OR, odds ratio; 95% CI, 95% confidence 
interval; n.a, not applicable. *In 2 control subjects the UTR haplotype could not be defined (4%). 
The 3’UTR haplotype nomenclature is consistent with publication by Castelli et al. 
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Supplementary Table S4. HLA-G 3′UTR genotypic polymorphisms in women with recurrent 
miscarriage and uneventful pregnancy. 

    
RM women Controls 

OR 95% CI P Pc 
(n=23) (n=44) 

3003 CC 0 0.0% 2 4.5% n.c.      
  CT 4 17.4% 10 22.7% 0.67 0.19-2.45 0.549 1.000 
  TT 19 82.6% 32 72.7% ref.       

3010 CC 8 34.8% 12 27.3% 0.94 0.30-3.01 0.923 1.000 
  CG 12 52.2% 17 38.6% ref.      
  GG 3 13.0% 15 34.1% 0.28 0.07-1.20 0.087 1.000 

3027 AA 0 0.0% 0 0.0% n.c.      
  AC 3 13.0% 6 13.6% 0.95 0.22-4.21 0.946 1.000 
  CC 20 87.0% 38 86.4% ref.       

3035 CC 16 69.6% 36 81.8% ref.      
  CT 7 30.4% 8 18.2% 1.97 0.61-6.36 0.258 1.000 
  TT 0 0.0% 0 0.0% n.c.       

3142 CC 3 13.0% 14 31.8% 0.32 0.08-1.36 0.124 1.000 
  CG 12 52.2% 18 40.9% ref.      
  GG 8 34.8% 12 27.3% 1.00 0.32-3.17 1.000 1.000 

3187 AA 11 47.8% 23 52.3% ref.      
  AG 11 47.8% 14 31.8% 1.64 0.57-4.48 0.362 1.000 
  GG 1 4.3% 7 15.9% 0.30 0.03-2.74 0.285 1.000 

3196 CC 10 43.5% 27 61.4% ref.      
  CG 12 52.2% 12 27.3% 2.70 0.92-7.95 0.071 1.000 
  GG 1 4.3% 5 11.4% n.c.    

3422 CC 15 65.2% 33 75.0% ref.      
  CT 7 30.4% 9 20.5% 1.71 0.54-5.46 0.365 1.000 
  TT 1 4.3% 2 4.5% n.c.       

3496 AA 0 0.0% 2 4.5% n.c.      
  AG 5 21.7% 10 22.7% 0.89 0.26-3.01 0.850 1.000 
  GG 18 78.3% 32 72.7% ref.       

3509 GG 9 39.1% 26 59.1% ref.      
  GT 12 52.2% 13 29.5% 2.67 0.90-7.94 0.078 1.000 
  TT 2 8.7% 5 11.4% 1.16 0.19-7.04 0.875 1.000 

   
 

 
 

    

Data are all n (%). All univariate logistic regression analysis. Per HLA-G genotype the highest 
prevalence was defined as the reference group. If percentages in a group were below 5%, no 
calculations were performed. P, p value; Pc, p value corrected for multiple comparisons; OR, odds 
ratio; 95% CI, 95% confidence interval; n.c, not calculated; ref, reference group. 

 

Supplementary Table S5. Haplotypes of the offspring in the RM group and the control group.  
 

RM offspring 
2n=46 

Controls 
2n=90* 

OR 95% C.I. P  
Lower Upper 

UTR-1 11 23.9% 28 31.1% 0.70 0.309 1.566 0.381 
UTR-2 13 28.3% 26 28.9% 0.97 0.441 2.131 0.939 
UTR-3 6 13.0% 11 12.2% 1.08 0.371 3.125 0.891 
UTR-4 10 21.7% 12 13.3% 1.81 0.714 4.565 0.212 
UTR-5 3 6.5% 7 7.8% 0.83 0.204 3.360 0.791 
UTR-7 3 6.5% 3 3.3% 2.02 0.392 10.446 0.400 
UTR-8 0 0.0% 1 1.1% 0.00 0.000 

 
1.000 

UTR-18 0 0.0% 2 2.2% 0.00 0.000 
 

0.999 
UTR-N 0 0.0% 0 0.0% x x x x  

46 100% 90 100% 
    

 
All univariate logistic regression analysis. P, p value; OR, odds ratio; 95% CI, 95% confidence 
interval; n.a, not applicable. *In 1 control subject the UTR haplotype could not be defined (2%).  
The 3’UTR haplotype nomenclature is consistent with publication by Castelli et al. 
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Supplementary Table S6. HLA-G 3′UTR genotypic polymorphisms in the offspring of women with 
recurrent miscarriage and uneventful pregnancy. 

    
RM offspring Controls 

OR 95% CI P Pc 
(n=23) (n=45) 

3003 CC 1 4.3% 1 2.2% n.c.       
  CT 8 34.8% 10 22.2% 1.94 0.63-5.95 0.245 1.000 
  TT 14 60.9% 34 75.6% ref.       

3010 CC 5 21.7% 11 24.4% 0.58 0.16-2.02 0.389 1.000 
  CG 15 65.2% 19 42.2% ref.       
  GG 3 13.0% 15 33.3% 0.25 0.06-1.04 0.057 0.969 

3027 AA 0 0.0% 0 0.0% n.c.       
  AC 3 13.0% 3 6.7% 2.10 0.39-11.34 0.389 1.000 
  CC 20 87.0% 42 93.3% ref.       

3035 CC 17 73.9% 35 77.8% ref.       
  CT 6 26.1% 10 22.2% 1.24 0.38-3.97 0.722 1.000 
  TT 0 0.0% 0 0.0% n.c.       

3142 CC 5 21.7% 11 24.4% 0.71 0.20-2.50 0.598 1.000 
  CG 14 60.9% 22 48.9% ref.       
  GG 4 17.4% 12 26.7% 0.52 0.14-1.95 0.335 1.000 

3187 AA 13 56.5% 20 44.4% ref.       
  AG 9 39.1% 21 46.7% 0.66 0.23-1.88 0.436 1.000 
  GG 1 4.3% 4 8.9% n.c.    

3196 CC 11 47.8% 24 53.3% ref.       
  CG 11 47.8% 17 37.8% 1.41 0.50-4.00 0.516 1.000 
  GG 1 4.3% 4 8.9% n.c.    

3422 CC 14 60.9% 29 64.4% ref.       
  CT 9 39.1% 14 31.1% 1.33 0.47-3.82 0.594 1.000 
  TT 0 0.0% 2 4.4% n.c.       

3496 AA 1 4.3% 1 2.2% n.c.       
  AG 8 34.8% 10 22.2% 1.94 0.63-5.95 0.245 1.000 
  GG 14 60.9% 34 75.6% ref.       

3509 GG 11 47.8% 23 51.1% ref.       
  GT 11 47.8% 17 37.8% 1.35 0.48-3.85 0.571 1.000 
  TT 1 4.3% 4 8.9% 0.52 0.05-5.25 0.581 1.000 
  CT 0 0.0% 1 2.2% n.c.       
   

 
 

 
    

Data are all n (%). All univariate logistic regression analysis. Per HLA-G genotype the highest 
prevalence was defined as the reference group. If percentages in a group were below 5%, no 
calculations were performed. P, p value; Pc, p value corrected for multiple comparisons; OR, odds 
ratio; 95% CI, 95% confidence interval; n.c, not calculated; ref, reference group. 
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Abstract

Soluble HLA-G (sHLA-G) levels in human seminal plasma (SP) can be diverse and 

may affect the establishment of maternal-fetal tolerance and thereby the outcome 

of pregnancy. We investigated whether sHLA-G levels in SP are associated with 

polymorphisms in the 3’-untranslated region (UTR) and UTR haplotypes of the 

HLA-G gene. Furthermore, we compared the HLA-G genotype distribution and 

sHLA-G levels between men, whose partner experienced unexplained recurrent 

miscarriage (RM), and controls. 

Soluble HLA-G levels (n=156) and HLA-G genotyping (n=176) were determined in 

SP samples. The concentration of sHLA-G was significantly associated with several 

single nucleotide polymorphisms (SNPs): the 14 base pair (bp) insertion/deletion 

(indel), +3010, +3142, +3187, +3196, and +3509. High levels of sHLA-G were 

associated with UTR-1 and low levels with UTR-2, UTR-4 , and UTR-7 (P<0.0001). 

HLA-G genotype distribution and sHLA-G levels in SP were not significantly 

different between the RM group (n=44) and controls (n=31). 

In conclusion, seminal sHLA-G levels are associated with both singular SNPs and 

3’UTR haplotypes. HLA-G genotype and sHLA-G levels in SP are not different 

between men whose partner experienced RM and controls, indicating that 

miscarriages are not solely the result of low sHLA-G levels in SP. Instead it is 

more likely that these miscarriages are the result of a multifactorial immunologic 

mechanism, whereby the HLA-G 3’UTR 14 bp ins/ins genotype plays a role in a 

proportion of the cases. Future studies should look into the functions of sHLA-G in 

SP and the consequences of low or high levels on the chance to conceive.

Introduction

Semen contains various immunomodulatory factors, such as chemokines and 

cytokines [1], but also soluble human leukocyte antigens (sHLA), which together 

can induce a local immune response in an immune regulatory environment [2]. 

The presence of seminal plasma (SP) in the female reproductive tract after coitus 

can lead to an influx of immune cells, e.g. the number of CD14+ macrophages and 

CD1a+ dendritic cells were shown to be approximately two-fold increased upon 

semen exposure [3]. Immune recognition of paternal antigens may play a role in 

pregnancy complications: change of partner is a risk factor for intrauterine growth 

restriction, preterm birth, low birth weight and infant mortality, and it counteracts 

the protective effect of multiparity against preeclampsia [4-6]. Additionally, the 

length of unprotected sexual cohabitation affects the incidence of pregnancy-

induced hypertensive disorders [7, 8], and oral exposure to semen is correlated 

with a diminished occurrence of preeclampsia [2]. Furthermore, preeclampsia 

occurs more frequently in pregnancies induced by artificial insemination with 

donor semen [9]. Combined, these findings indicate that exposure to paternal 

antigens prior to gestation has a beneficial effect on pregnancy outcome. Besides 

the classical HLA antigens, SP contains soluble HLA-G (sHLA-G) [10]. Compared 

to classical HLA, HLA-G shows a low level of polymorphism, and does not have 

a major role in antigen presentation. The primary function of HLA-G lies most 

probably in regulating immune functions through interaction with receptors 

on various immune cell subsets [11]. Whereas HLA-G can inhibit the cytotoxic 

function of both NK cells and CD8+ T cells, it is also involved in the induction of 

immunoregulatory antigen presenting cells and CD4+ T cells [12-14]. Furthermore, 

the presence of sHLA-G has been shown to be beneficial for the success rate of 

assisted reproduction techniques [15].

The level of sHLA-G in body fluids appears to be related to specific polymorphisms 

in the 3’-untranslated region (3’UTR) of the HLA-G gene. The 14 base pair (bp) 
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insertion/deletion (indel) polymorphism has shown to be associated with sHLA-G 

levels in blood and semen [16, 17]. Furthermore, the G/C at position +3142 and 

the G/A at position +3187, which are involved in microRNA (miRNA) mediated 

post-transcriptional regulation, seem to influence sHLA-G levels in blood [18, 19]. 

Other SNPs, such as +3003 T/C, +3010 G/C, +3027 C/A and +3035 C/T have been 

proposed as potential miRNA binding sites [20], but they have not been studied 

extensively in relation to sHLA-G levels. At least eight polymorphisms together 

make up UTR haplotypes [21]. UTR haplotypes containing the 14 bp deletion (i.e., 

UTR-1) are associated with high sHLA-G levels in blood plasma, whereas those 

with the 14 bp insertion (i.e., UTR-7) are associated with low sHLA-G levels [22].

Although several studies have demonstrated associations between HLA-G 3’UTR 

polymorphic sites and sHLA-G concentration, these were solely focused on sHLA-G 

concentrations in blood plasma [22]. The association between the 14 bp indel 

polymorphic site and sHLA-G levels was previously evaluated in SP [17], but the 

full 3’UTR region was not included. Here we assess for the first time the correlation 

between sHLA-G levels in semen samples with the sequence of multiple HLA-G 

3’UTR variation sites determining extensive haplotypes. Low levels of HLA-G in 

women have been associated with recurrent miscarriage (RM) [23, 24], but the 

effect of sHLA-G in semen on RM has not been studied. Additionally, we studied 

sHLA-G levels in SP of couples with a history of RM, with the aim to determine 

whether aberrant sHLA-G levels in SP could be an explanation for these couples 

experiencing RM.

Materials and Methods

Study samples

Semen samples were obtained from 156 men visiting the reproductive medicine 

clinic at the Leiden University Medical Center (LUMC). Of these, 101 semen samples 

were obtained from men visiting the in vitro fertilization (IVF) clinic. SP samples 

were collected via masturbation and samples containing leukocytes, as a marker 

for infection, were excluded from this study. Forty-four samples were collected 

from men enrolled in a study of couples with a history of RM. These couples had 

experienced at least three miscarriages, for which the cause remained unknown 

after a full clinical work-up at the reproductive medicine clinic at the LUMC. Blood 

collected from men of RM couples was used for HLA-G genotyping. As a control 

group, we collected blood and semen samples from men, who fathered at least 

one live birth and did not have a history of RM. We obtained 31 unique blood 

samples from these controls and 11 unique semen samples. Within four hours 

after collection, semen samples were centrifuged at 2,000 rpm for 10 min, sperm 

cells were discarded and aliquots of SP were stored at −80oC. 

HLA-G genotype determination

HLA-G genotype determination has previously been described [25]. In short, 

genomic DNA was isolated from blood or from SP, when blood was not available. 

The 699/713-bp fragment covering the 3’UTR of exon 8 was sequenced, starting 

just before the 14 bp insertion/deletion and ending 591 bp downstream of 

the insertion/deletion. To sequence the haplotype on each of the two alleles, 

amplification reactions were performed using the generic 3’-primer that was 

tailed with a M13 sequence to cover the 3’UTR region of HLA-G. The following 

polymorphisms were identified: the 14 bp insertion/deletion (rs371194629), 

+3003C>T (rs1707), +3010G>C (rs1710), +3027C>A (rs17179101), +3035C>T 

(rs17179108), +3142C>G (rs1063320), +3187A>G (rs9380142), +3196C>G 

(rs1610696), +3422C>T (rs17875408), +3496A>G (rs1233330), and +3509G>T 

(rs1611139). 
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UTR haplotypes were composed based on the combination of eight 

SNPs. Nomenclature was used according to Castelli et al. [21]. In case the 

combination of SNPs could not fit any of the established UTR haplotypes, 

these samples were categorized as UTR-N. Conversion of sequencing data 

to UTR haplotypes was carried out by using a specialized HLA interpretation 

software tool (SBT Engine, GenDX, Utrecht, the Netherlands). The 

forward primer (GTGATGGGCTGTTTAAAGTGTCACC), the reverse primer 

(GACGTTGTAAAACGACGGCCAGTAGGGGAAGAGGTGTAGGGGTCTG) and the 

M13 universal primer (GACGTTGTAAAACGACGGCCAGT) were ordered from 

Sigma (St. Louis, Missouri, USA). The underlining represents the M13 sequence. 

Soluble HLA-G determination

For sHLA-G determination, samples were thawed at room temperature and 

centrifuged at 14,000 rpm for 4 min. The level of soluble HLA-G1/HLA-G5 

molecules in the plasma samples was determined by a commercially available 

sandwich enzyme linked immunosorbent assay (ELISA) (EXBIO, Praha, Czech 

Republic) according to the manufacturer’s instructions. This ELISA specifically 

detects soluble HLA-G1 and HLA-G5 in a β2-microglobulin-associated form. The 

limit of detection was 0.6 units/mL. The standard curve ranged from 3.9 to 125 

units/ml. Samples were tested in the assay at 1:5 and 1:10 dilution, using dilution 

buffer 1 of the kit. Subsequently, samples were measured at different dilutions to 

remain in the linear part of the standard curve (ranging from 1:2 to 1:100). 

Samples were run in duplicate and mean absorbance was measured at 450 

nm wavelength using a BIO-RAD Microplate Reader and Microplate Manager 

6 software (Hercules, California, USA). Calculations were done according to 

the manufacturer’s guidelines. Standard curves based on the absorbance of 

calibrators of known concentrations were used for the determination of sHLA-G 

concentration in the samples of interest. Results were expressed as units/mL.

Statistical analysis

Statistical analyses were performed using GraphPad Prism version 7.02 for Windows 

(GraphPad Software, California, USA) and SPSS Statistics 23 (IBM SPSS Software, 

New York, USA). Normality of distribution was examined with D’Agostino & 

Pearson normality test. Differences between groups were tested by Mann-Whitney 

U tests or Chi-square tests. P-values of <0.05 were considered to indicate statistical 

significance. Spearman’s correlation coefficient (r) was used to demonstrate the 

relationship between the volume of the ejaculate and the sHLA-G concentration. 

Distribution of genotype frequencies among groups was tested by a Kruskal-

Wallis test. The association between the presence of specific HLA-G genotypes in 

RM or healthy controls semen samples was studied with binary logistic regression. 

For each HLA-G genotype the highest prevalence was defined as the reference 

group. If percentages in a group were below 5%, no calculations were performed. 

For the calculations on the HLA-G genotypes, Dunn’s post hoc test was used to 

correct for multiple comparisons. Observed heterozygosity in both groups was 

computed by the direct counting method. Adherences of genotypic proportions 

to expectations under Hardy–Weinberg equilibrium were tested separately for 

each SNP using PyPop 0.7.0 software (California, USA) [26].

Results

HLA-G genotype and distributions

We analyzed multiple SNPs to distinguish HLA-G 3-UTR haplotypes. All genotyped 

SNPs fitted the Hardy–Weinberg (HWE) expected proportions, except for +3003 

and +3010 (Supplementary Table 1). When these HWE analyses were performed 
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for the three groups separately, only the IVF group did not fit the HWE analysis for 

the +3010, whereas the other two groups did (Supplementary Table 2). 

sHLA-G levels in seminal plasma are associated with HLA-G 3’UTR 

haplotype and HLA-G 3’UTR polymorphisms

Soluble HLA-G levels did not fit a Gaussian distribution (P<0.0001) and therefore 

we used non-parametric statistical tests. Median sHLA-G levels for all HLA-G 3’UTR 

haplotypes can be found in Table 1. For some controls, only the HLA-G 3’UTR 

genotype was determined, but we did not have SP samples to determine sHLA-G 

concentrations (“missing” in Table 1). The level of sHLA-G was not influenced by 

the volume of the ejaculate (Supplementary Figure 2). 

Since with heterozygous 3’UTR haplotypes combinations (diplotypes) it is unclear 

which haplotypes has the most dominant influence on sHLA-G levels, we analyzed 

homozygous samples. Homozygous haplotypes showed significant differences 

between UTR-1, UTR-2, UTR-3, UTR-4, and UTR-7 (P<0.0001) (Figure 1). Dunn’s 

post hoc test showed that sHLA-G levels between UTR-1 (median: 639.4 units/mL) 

and UTR-2 (median: 102.5 units/mL; P<0.0001) and between UTR-1 and UTR-4 

(median: 132.4 units/mL; P=0.0377) were significantly different after correction for 

multiple comparisons.

 
Figure 1. sHLA-G levels in SP for separate homozygous haplotypes. sHLA-G levels in SP are 
significantly different for the homozygous HLA-G 3’UTR haplotypes UTR-1, UTR-2, UTR-3, UTR-4 and 
UTR-7 (P<0.0001). Dunn’s post hoc test showed that sHLA-G levels in UTR-1 and UTR-2 (P<0.0001) 
and UTR-1 and UTR-4 (P=0.0377) were significantly different after correcting for multiple comparisons.

To evaluate whether specific SNPs are involved in differences in sHLA-G levels per 

haplotype, we analyzed sHLA-G levels for SNPs separately. The concentration of 

sHLA-G in SP samples was significantly associated with the 14 bp ins/del, +3003 

C/T, +3010 C/G, +3142 C/G, +3187 A/G, +3196 C/G, +3496 A/G and +3509 

G/T polymorphic sites in the 3’UTR part of the HLA-G gene (Figure 2A-F and 

Supplementary Table 3). 

The 14 bp del/del genotype showed the highest level of sHLA-G, and the 14 bp ins/

ins genotype showed the lowest sHLA-G level (P<0.0001). Furthermore, individuals 

Table 1. sHLA-G in seminal plasma per haplotype. 

 n Missing % Median Minimum Maximum 
UTR-01 93 13 26.4 639.4 93.0 4988.0 
UTR-02 92 10 26.1 102.5 23.6 1799.1 
UTR-03 43 7 12.2 255.9 62.6 2408.0 
UTR-04 64 7 18.8 132.4 23.0 3917.3 
UTR-05 11 0 3.1 256.8 108.0 1838.8 
UTR-06 2 0 0.6 1582.6 909.6 2255.6 
UTR-07 23 2 6.5 159.0 58.2 1769.5 
UTR-08 1 0 0.3 206.5 206.5 206.5 
UTR-10 2 0 0.6 202.8 108.0 297.7 
UTR-18 4 0 1.1 2578.6 1848.0 4642.7 
UTR-N 17 1 4.8 425.8 23.0 4642.7 
Total 312 40 100%    
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with +3142 CC (median: 776.7 units/mL), +3196 CC (median: 443.0 units/mL), 

+3010 GG (median: 619.5 units/mL), +3187 GG (median: 973.1 units/mL), +3496 

GG (median: 359.7 units/mL) and +3509 GG (median: 436 units/mL) showed 

higher sHLA-G levels than individuals with +3142 GG (median: 153.5 units/mL, 

P<0.0001), +3196 GG (median: 56.74 units/mL, P<0.0001), +3010 CC (median: 

182.9 units/mL, P=0.0013), +3187 AA (median: 121.6 units/mL, P<0.0001), +3496 

AA (median: 81.39 units/mL, P=0.0095), and +3509 TT genotypes (median: 56.74 

units/mL, P<0.0001), respectively. Dunn’s post hoc test for multiple comparisons 

showed significant differences for all these polymorphisms, except for +3003 and 

+3496 (Figure 2A-F). 

Analysis of the IVF group and the RM group separately showed similar associations 

between HLA-G genotype and sHLA-G levels, although significance for several 

SNPs was lost after multiple comparisons due to small samples sizes (data not 

shown). The group with fertile controls was too small for separate analysis.

sHLA-G levels in seminal plasma of RM group and controls

To evaluate whether differences in HLA-G genotype and sHLA-G levels could be 

found for semen samples of men, whose partner experienced RM, we analyzed 

groups separately. No differences in frequency for individual SNPs (Supplementary 

Table 4) or in haplotype distribution (Table 2) were found between semen samples 

from the RM group and semen samples from controls. However, although not 

significant, the frequency of the 14 bp ins/ins genotype, which was associated 

with low levels of sHLA-G, was three times higher in the RM group than in controls 

(18% vs. 6%, P=0.137). The median concentration of sHLA-G was 269.7 units/mL in 

all SP samples compared to 233.8 units/mL in SP samples from men with a history 

of RM and 297.3 units/mL in SP samples of healthy controls (Table 3). The levels 

of sHLA-G were not significantly different between the RM group and controls 

(Supplementary Figure 1).

 

Figure 2. The sHLA-G concentration in SP samples is associated with several SNPs of the 3’UTR part 
HLA-G gene. The concentration of sHLA-G in seminal plasma samples is significantly associated with 
(a) 14 bp ins/del, (b) +3010 C/G, (c) +3142 C/G, (d) +3187 A/G, (e) +3196 C/G and (f) +3509 G/T 
polymorphic sites in the HLA-G 3’UTR after correction for multiple comparisons.
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Table 2. HLA-G 3’UTR haplotype frequencies in RM semen samples and samples of fertile controls. 

 RM  Fertile controls   95% C.I. 
 

 
(2n=88) %  (2n=62) % OR Lower Upper P-value 

UTR-1 23 26.1% 17 27.4% 0.937 0.450 1.950 0.861 
UTR-2 25 28.4% 17 27.4% 1.050 0.509 2.169 0.894 
UTR-3 12 13.6% 8 12.9% 1.066 0.408 2.784 0.897 
UTR-4 18 20.5% 15 24.2% 0.806 0.370 1.755 0.587 
UTR-5 4 4.5% 0 0% Inf. 0.000 Inf. 0.999 
UTR-7 3 3.4% 3 4.8% 0.694 0.135 3.558 0.662 
UTR-N 3 3.4% 2 3.2% 1.059 0.172 6.531 0.951 
 All univariate logistic regression analyses. P, p value; OR, odds ratio; 95% CI, 95% confidence 
interval; The 3’UTR haplotype nomenclature is consistent with publication by Castelli et al.  

 

 

Table 3. sHLA-G levels in semen samples. 
 

All 
(n=176) 

IVF  
(n=101) 

RM 
(n=44) 

Fertile controls 
(n=11) 

Missing 20 0 0 20 
Median 269.67 271.38 233.77 297.26 
Mean 546.93 600.59 477.67 331.18 
Std. deviation 794.02 872.29 684.92 211.53 
Minimum 23.03 23.03 27.43 100.50 
Maximum 4988.79 4988.79 3917.29 851.32 

 

Discussion

In this study, we showed an association of sHLA-G levels with HLA-G 3’UTR 

haplotypes, as well as with singular SNPs. Furthermore, there was no significant 

difference in HLA-G genotype and sHLA-G levels in semen between men whose 

partner had a history of RM and controls.

When comparing genotype frequencies to expected HWE frequencies for 

each group, we observed that the IVF group deviates from HWE for the +3010 

polymorphism, whereas the other two groups fit. Since the samples in this study 

group are not from healthy controls, this could indicate that this SNP may play a 

role in conception, but additional research is required to draw any conclusions. 

Regarding HLA-G 3’UTR haplotypes we found five haplotypes exhibiting 

frequencies higher than 5% (UTR-1, UTR-2, UTR-3, UTR-4, UTR-7) and five others 

with lower frequencies (UTR-5, UTR-6, UTR-8, UTR-10, UTR-18). Some combinations 

of SNPS did not fit any of the established UTR haplotypes and were therefore 

categorized as UTR-N. In line with previous data [27], UTR-1 and UTR-2 were the 

most frequently observed haplotypes. We reported the frequencies of eleven 

polymorphic sites: 14 bp ins/del, +3003C/T, +3010C/G, +3027A/C, +3035C/T, 

+3142C/G, +3187A/G, +3196C/G, +3422C/T, +3496A/G and +3509G/T. The 

most studied polymorphism of the 3-UTR of the HLA-G gene is the 14 bp indel 

polymorphism, which has been associated with altered HLA-G expression. We 

observed that individuals exhibiting the 14 bp del/del genotype indeed exhibited 

higher sHLA-G levels in SP compared to the 14 bp ins/ins genotype. This is in 

line with other studies, describing the association between the 14 bp insertion 

allele and decreased levels of sHLA-G in blood plasma and serum [16, 28, 29]. It 

is suggested that the insertion of 14 bases leads to removal of 92 bases from the 

start of exon 8, affecting mRNA stability and degradation rate [30].

Other SNPs at the 3-UTR, which are associated with HLA-G expression levels, are 

represented by the presence of guanine in the position +3142, which increses 

the affinity of specific miRNA for HLA-G mRNA, leading to decreased HLA-G 

expression [19]. Another SNP is represented by the presence of an adenine at 

position +3187, decreasing the stability of HLA-G mRNA [18]. Indeed, we did 

observe lower sHLA-G levels in the semen of individuals with +3142 GG or +3187 

AA genotype. Of all haplotypes found in this study, the only haplotype presenting 

a guanine at position +3187 is UTR-1. Moreover, taking the possible effect of each 

of the known variation sites that may influence HLA-G production together, UTR-1 
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is theoretically the most suitable to produce high HLA-G amounts, because it is the 

only UTR that harbours the +3187 G allele, as well as the +3142 C and the 14 bp 

del. Indeed, in the present study UTR-1 was clearly associated with higher levels of 

sHLA-G. UTR-2 and UTR-7 both harbour the +3187 A allele, as well as the +3142 

G and the 14 bp ins. In line with our expectations, these UTR haplotypes were 

associated with low HLA-G levels. Remarkably, the UTR-4 was generally associated 

with low sHLA-G levels, even though this haplotype harbours the 14 bp del and 

the +3142 C. It appears that the influence of adenine at position +3187 on sHLA-G 

levels is very strong or that another yet unknown factor influences the level of 

sHLA-G in these cases. 

We found a higher incidence of the 14 bp ins/ins in men whose partner experienced 

RM (18%) compared to controls (6%), although this difference was not significant. 

Taking into account that this genotype is associated with lower sHLA-G levels, 

this may underline the concept that rather a multifactorial process accounts for 

miscarriage. 

We were restricted to collecting one semen sample per man. Therefore, we were 

not able to analyze sHLA-G concentrations over time and we cannot exclude the 

possibility that sHLA-G levels in SP fluctuate over time.

In summary, we provided data on the impact of the most frequent HLA-G 3’UTR 

variation sites on sHLA-G levels in SP, and conclude that sHLA-G levels in SP are 

influenced by HLA-G haplotypes and separate SNPs. On the population level, 

we did not find differences in sHLA-G levels between SP samples from RM and 

controls, indicating that miscarriages cannot solely be explained by HLA-G genes 

and low sHLA-G levels in SP. Instead it is more likely that these miscarriages are the 

result of a multifactorial immunologic mechanism, in which the HLA-G 3’UTR 14 

bp ins/ins genotype plays a role in a proportion of the cases. Future studies should 

look into the functions of sHLA-G in SP and the consequences of low or high levels 

on the chance to conceive.
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Supplementary Figure 1. sHLA-G concentrations in SP samples from RM cases and controls. sHLA-G 
concentrations in SP samples were not significantly different between men whose partner experienced 
RM (median 233.8 units/mL) and controls (median 297.3 units/mL).

Supplementary Figure 2. sHLA-G concentrations in relation to semen volumes (n=177). sHLA-G 
concentrations are not associated with semen volume (Spearman’s r=-0.0533).

Supplementary Table 1. Hardy-Weinberg analyses for HLA-G 3’UTR genotypes in all semen samples. 

  All 
(n=176) 

 

 
common homozygotes heterozygotes  

P P P 
14-bp 0.7658       0.8417       0.8361       
+3003 0.0252*      0.4339       0.2251       
+3010 0.0003*  0.0107*      0.0106*      
+3027 0.6934       0.8753       0.6992       
+3035 0.8336       0.9175       0.8388       
+3142 0.1965       0.3651       0.3624       
+3187 0.1841       0.5051       0.4060       
+3196 0.2859       0.5639       0.4923       
+3422 0.6747       0.8068       0.6886       
+3496 0.0341*      0.4519       0.2478       
+3509 0.1960       0.4912       0.4081       

All Hardy-Weinberg analyses. P, p value. * P < 0.05.  

 

Supplementary Table 2. Hardy-Weinberg analyses for HLA-G 3’UTR genotypes in separate groups 
of semen samples. 

    
RM 

    
Fertile 

controls     
IVF 

  
(n=44) (n=31) (n=101) 

  commo
n 

homozy
gotes 

heterozyg
otes 

commo
n 

homozyg
otes 

heterozyg
otes 

commo
n 

homozy
gotes 

heterozyg
otes 

  P P P P P P P P P 
14-bp  0.5129       0.6640       0.6506       0.3492 0.4518 0.4035 0.6077 0.7244 0.7193 
+3003  0.2254       0.4280       0.2538        0.3560 0.5272 0.3886 0.8000 0.8857 0.8083 
+3010  0.0704       0.2008       0.2008 0.8150 0.8704 0.8692 0.0002 0.0093 0.0092 
+3027  #  0.9873       0.9936       # 0.9782 # 0.6666 0.8412 0.6753 
+3035  0.7823       0.9045       0.7874       # 0.9606 # 0.7012 0.8333 0.7125 
+3142  0.3801       0.5377       0.5358       0.5725 0.6917 0.6905 0.1707 0.3429 0.3361 
+3187  0.6007       0.7020       0.6295       0.8374 0.8783 0.8507 0.1575 0.4778 0.3764 
+3196  0.6611       0.7329       0.6916       0.4088 0.5379 0.4487 0.1035 0.3792 0.2950 
+3422  0.8379       0.8965       0.8467       0.6237 0.7867 0.6376 0.5086 0.7076 0.5268 
+3496  0.2254       0.4280       0.2538       0.4490 0.5925 0.482 0.8000 0.8857 0.8083 
+3509  0.6611       0.7329       0.6916       0.4088 0.5379 0.4487 0.0519 0.3072 0.2159 

All Hardy-Weinberg analyses. P, p value. # Too many parameters for chi-square test.  

 



5

Chapter 5: Soluble HLA-G levels in seminal plasma are associated with HLA-G 3’UTR genotypes 

119118

Supplementary Table 3. Comparisons of seminal plasma soluble HLA-G levels (units/ml) in the 
whole group, stratified according to the SNPs in the HLA-G 3’ UTR. 

Polymorphism   All    Soluble HLA-G levels P-value 
    (n=156)   Median   

14-bp indel Del/Del  55 35% 597.6 <0.00011 
  Ins/del  72 46% 262.4   

  Ins/Ins  29 19% 83.24   
3003 C/C 9 6% 106.6 0.02262 

  C/T 39 25% 161.4   
  T/T 108 69% 351.9   

3010 C/C  49 31% 148.0 <0.00013 
  C/G  55 35% 235.9   
  G/G  52 33% 601.5   

3027 A/A 2 1% 167.4 0.8247 
  A/C 21 13% 199.6   
  C/C  133 85% 274.0   

3035 C/C 121 78% 274.0 0.9849 
  C/T 32 21% 250.3   
  T/T 3 2% 175.8   

3142 C/C  37 24% 725.3 <0.00014 
  C/G  69 44% 295.2   
  G/G  50 32% 134.9   

3187 A/A  89 57% 121.7 <0.00015 
  A/G 53 34% 458.0   
  G/G 14 9% 973.1   

3196 C/C  80 51% 420.2 <0.00016 
  C/G  59 38% 184   
  G/G  17 11% 48.87   

3422 C/C 112 72% 270.9 0.6918 
  C/T 38 24% 269.7   
  T/T 6 4% 305.4   

3496 A/A  9 6% 106.6 0.02267 
  A/G 39 25% 161.4   
  G/G 108 69% 351.9   

3509 G/G 82 53% 402.6 <0.00018 
  G/T 57 37% 184.0   
  T/T 17 11% 48.87  

All Kruskal-Wallis tests.  

1-8 P values as determined by the Dunn’s multiple comparisons test 

1 14-pb      

del/del vs. ins/del 0.0238 
del/del vs. ins/ins <0.0001 
ins/del vs. ins/ins 0.0002 

2 +3003 C/T 
 

CC vs. CT >0.9999 
CC vs. TT 0.1330 
CT vs. TT 0.0950 

3 +3010 C/G     
 

CC vs. CG 0.0200 
CC vs. GG <0.0001 
CG vs. GG 0.0129 

4 +3142 C/G     
 

CC vs. CG 0.0286 
CC vs. GG <0.0001 
CG vs. GG 0.0018 

5 +3187 A/G     
 

AA vs. AG <0.0001 
AA vs. GG <0.0001 
AG vs. GG 0.1560 

6 +3196 C/G     
 

CC vs. CG 0.0011 
CC vs. GG <0.0001 
CG vs. GG 0.0019 

7 +3496 A/G     
 

AA vs. AG >0.9999 
AA vs. GG 0.1330 
AG vs. GG 0.0950 

8 +3509 T/G     
 

TT vs. GT 0.0019 
TT vs. GG <0.0001 
GT vs. GG 0.0020 
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Supplementary Table 4. HLA-G 3’UTR SNPs in RM samples and fertile controls. 

    RM   Fertile 
controls   

OR 
95% C.I. 

Sig.     (n=44)   (n=31)   Lower Upper 
14-bp 
indel Ins 27 61% 19 61%         

  Del/Del  17 39% 12 39% 1.268 0.472 3.401 0.638 

  Ins/del  19 43% 17 55% ref       

  Ins/Ins  8 18% 2 6% 3.579 0.666 19.241 0.137 

3003 C 14 32% 11 35%         

  C/C 4 9% 3 10% 0.889 0.179 4.404 0.885 

  C/T 10 23% 8 26% 0.833 0.281 2.474 0.743 

  T/T 30 68% 20 65% ref       

3010 C 30 68% 22 71%         

  C/C  14 32% 6 19% 2.333 0.716 7.601 0.160 

  C/G  16 36% 16 52% ref       

  G/G  14 32% 9 29% 1.556 0.525 4.612 0.426 

3027 A 3 7% 3 10%         

  A/A 0 0% 0 0% n.c.       

  A/C 3 7% 3 10% 0.683 0.128 3.631 0.655 

  C/C  41 93% 28 90% ref       

3035 T 8 18% 4 13%         

  C/C 36 82% 27 87% ref       

  C/T 8 18% 4 13% 1.500 0.409 5.503 0.541 

  T/T 0 0% 0 0% n.c.       

3142 C 30 68% 25 81%         

  C/C  11 25% 8 26% 1.230 0.401 3.776 0.717 

  C/G  19 43% 17 55% ref       

  G/G  14 32% 6 19% 2.088 0.655 6.652 0.213 

3187 G 19 43% 15 48%         

  A/A  25 57% 16 52% ref       

  A/G 15 34% 13 42% 0.738 0.279 1.952 0.541 

  G/G 4 9% 2 6%         

3196 G 22 50% 16 52%         

  C/C  22 50% 15 48% ref       

  C/G  17 39% 15 48% 0.773 0.297 2.009 0.597 

  G/G  5 11% 1 3% n.c.       

3422 T 15 34% 9 29%         

  C/C 29 66% 22 71% ref       

  C/T 13 30% 9 29% 1.096 0.397 3.022 0.860 

  T/T 2 5% 0 0% n.c.       

3496 A 14 32% 12 39%         

  A/A  4 9% 3 10% 0.844 0.170 4.197 0.836 

  A/G 10 23% 9 29% 0.704 0.242 2.048 0.519 

  G/G 30 68% 19 61% ref       

3509 T 22 50% 16 52%         

  G/G 22 50% 15 48% ref       

  G/T 17 39% 15 48% 0.773 0.297 2.009 0.597 

  T/T 5 11% 1 3% n.c.       
All univariate logistic regression analyses. Per HLA-G genotype the highest prevalence was defined 
as the reference group. If percentages in a group were below 5%, no calculations were performed. 
OR, odds ratio; 95% C.I., 95% confidence interval; n.c., not calculated; ref, reference group. 
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Abstract

Dendritic cells (DC) are key in shaping immune responses and are recruited to the 

human cervix after coitus by seminal plasma (SP). SP has been shown to skew the 

differentiation of monocyte-derived DC towards an anti-inflammatory profile when 

cultured in medium containing fetal calf serum (FCS). However, DC cultured in 

FCS show phenotypical differences when compared to those cultured in medium 

containing human serum (HS). Therefore, to create a setting more similar to the 

in vivo situations in humans, we tested the immune regulatory effect of SP on DC 

in cell cultures containing HS. We confirmed that SP skewed FBS-DC towards a 

tolerogenic profile. HS-DC cultured in the presence of SP showed increased CD14 

and decreased CD1a gene expression, accompanied by an increased percentage 

of CD14+CD1a- cells. Both TGF-β and IL-10 gene expression were elevated in 

LPS matured SP-DC, the latter accompanied by increased protein expression. 

Whereas no effect on the pro-inflammatory cytokines IL-12b and TNF-α mRNA 

levels was found, IL-12p70 protein levels were decreased compared to control 

DC. Co-cultures of SP-DC or control DC with allogeneic PBMC did not show an 

effect of SP on proliferation or inflammatory cytokine production. SP can skew 

the differentiation of monocyte-derived DC cultured in HS towards alternatively 

activated DC. This immune regulatory phenotype appears to be less pronounced 

when compared to SP-treated DC cultured in FCS containing medium. These 

findings highlight the importance of the serum source used in SP treated cell 

cultures in vitro.

Introduction

Semen contains various immunomodulatory factors, such as chemokines, cytokines 

and prostaglandins, but also soluble HLA antigens, which can be recognized as 

foreign and evoke an immune response [1-4]. The presence of seminal plasma 

(SP) in the female reproductive tract after coitus can lead to an influx of immune 

cells [5]. Many studies have demonstrated that factors in human SP can suppress 

the function of several components of the immune system including T-cells, 

B-cells, natural killer (NK) cells, and the complement system [6-11]. Furthermore, 

Lenicov showed that SP can redirect the differentiation of human dendritic cells 

(DC) toward a regulatory phenotype [12]. DC are professional antigen presenting 

cells that have the ability to capture and present antigens to T cells, in particular 

for the stimulation of naïve T cells. They play a key role in inducing an active 

immune response as well as maintaining tolerance. DC differentiated from human 

monocytes in the presence of SP expressed low levels of CD1a and high levels 

of CD14, which are hallmarks of tolerogenic DC [13]. While these SP-DC showed 

increased expression of maturation markers HLA-DR and CD86, they were unable 

to develop a fully mature phenotype in response to lipopolysaccharides (LPS). 

Upon LPS treatment, SP-DC produced low amounts of the inflammatory cytokines 

IL-12p70, IL-1β, TNF-α, and IL-6 and elevated levels of the regulatory cytokines IL-

10 and TGF-β compared to control DC. 

Potent suppression of NK and T cell responses by SP components in vitro has 

been shown to be dependent on the addition of bovine serum factors [14]. NK 

cell mediated cytotoxicity against K562 targets was suppressed when the effectors 

were treated with SP in the presence of 10% fetal calf serum (FCS), but suppression 

was considerably less when the effectors were treated with SP in the presence of 

10% autologous human plasma [14]. Furthermore, human SP has been shown to 

induce cytotoxic effects on lymphocytes in cultures containing FCS [10]. So far, 

the immunomodulatory effect of SP on human DC has only been studied in in 



6

Chapter 6: Effect of seminal plasma on dendritic cell in vitro depends on serum source 

127126

vitro cultures containing FCS. Previous studies showed that human DC cultured in 

medium containing FCS are different from those cultured in medium containing 

HS. HS cultured DC are described to be more granular and heterogeneous and 

have a decreased CD1a expression compared to FCS cultured DC [15-18]. Thus, 

studies showing an effect of SP on human DC in cultures with FCS may have 

resulted in physiologically less relevant conclusions. We therefore examined the 

effect of SP on human DC in cultures containing fetal bovine serum (FBS) or human 

serum (HS). A less profound effect on DC biology in HS containing cultures was 

found compared to cultures containing FBS .

Material and Methods

Semen samples

All semen samples were obtained from men visiting the fertility clinic at the 

Leiden University Medical Center (LUMC). SP samples were collected via 

masturbation. Sperm quality (semen volume, sperm density, motility, morphology 

and viscosity) was assessed the same day. Normozoospermic samples were 

selected using the WHO guidelines [19]. Within four hours after collection, semen 

samples were centrifuged at 2,000 rpm for 10 min, sperm cells were discarded 

and aliquots of SP were stored at −80°C. For addition to cell cultures, samples 

were thawed at room temperature and centrifuged at 14,000 rpm for 4 min. 

In vitro generation of human dendritic cells

Human peripheral blood mononuclear cells (PBMC) were isolated by means of 

density gradient centrifugation (Ficoll separation solution, pharmacy LUMC) from 

buffy coats obtained from anonymous healthy donors (Sanquin Blood Supply, 

Amsterdam, the Netherlands) after informed consent. PBMC were washed three 

times with PBS and monocytes were purified using CD14-MicroBeads according 

to the manufacturer’s protocol (Miltenyi Biotech, Bergisch Gladbach, Germany). 

CD14+ cells were seeded in 12-well tissue culture plates (Corning Costar, Merck 

KGaA, Darmstadt, Germany) at a density of 1.5 x 106 cells per well in 1.5 ml. SP 

was added at the beginning of the culture at a final concentration of 1:1,000 

(unless stated otherwise). Multiple semen samples were used in parallel for each 

experiment. CD14+ cells were cultured for 6 days in RPMI-1640 (Gibco, Thermo 

Fisher Scientific, Waltham, Massachusetts, United States) supplemented with 1% 

L-glutamine (Gibco, Thermo Fisher Scientific), 1% penicillin/streptomycin (Lonza, 

Basel, Switzerland) containing 500 U/ml recombinant human IL-4 (Gentaur, 

Kampenhout, Belgium), 800 U/mL recombinant human GM-CSF (Gibco, Thermo 

Fisher Scientific) and either 8% heat inactivated FBS (Merck) or 8% pooled 

inactivated HS. Whereas in most experiments CD14+ cells from one source were 

cultured in either FBS or HS, in a few experiments CD14+ cells from one donor 

were cultured in parallel in both FBS and HS. On day 3, culture medium including 

supplements was refreshed. On day 6, the resulting immature DC were either 

harvested or treated with 100 ng/mL LPS (Merck) for maturation. After 48 h, culture 

supernatants were harvested and frozen until further use, and activated DC were 

harvested for further analysis. Culture conditions were at 37°C in a humidified 

atmosphere in the presence of 5% CO2.

Quantitative PCR

RNA was extracted using NucleoSpin® RNA spin columns (Macherey-Nagel, 

Düren, Germany) according to the manufacturer’s instructions. RNA quantity and 

integrity were determined on a NanoDrop 2000 Spectrophotometer (Thermo 

Fisher Scientific). First strand cDNA was synthesized from 200 ng total RNA using 

Superscript III RT (Invitrogen, RT, 200 U/µl), dNTP (10 mM each; Promega, Madison, 

Wisconsin, USA), RNase OUT (40 U/ul; Invitrogen, Thermo Fisher Scientific), DTT (0,1 
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M; Invitrogen, Thermo Fisher Scientific), oligodT (OligodT 15, 0,5 ug/ul; Promega) 

and random nucleotide hexamers (0,5 ug/ul; Promega). Real-time quantitative 

PCR was performed using the Real Time PCR machine ViiA7 (Life Technologies, 

Carlsbad, California, USA) based on specific primers and general fluorescence 

detection with SYBR Green (BioRad). To control for sample loading and to allow 

for normalization between samples, β-actin and GAPDH were analysed. Primer 

sequences can be found in Table 1. 

Antibodies and flow cytometry

The following fluorochrome-conjugated antibodies (clone) for flow cytometry 

were used: HLA-DR (L243), CD1a (HI-149), CD14 (M5E2), CD80 (L307.4), and CD45 

(HI30). All antibodies were obtained from BD Pharmingen (Becton Dickinson, 

Franklin Lakes, New Jersey, United States). Flow cytometric data was acquired on 

an LSR-II flow cytometer (Becton Dickinson) and analysed using FACS DIVA 8.0.2 

(Becton Dickinson) and FlowJo 10.0.8 (Ashland, Oregon, United States) software.

Cell proliferation assay (T Cell Stimulation in vitro)

Mixed lymphocyte reactions (MLR) were performed in an allogeneic setting: 

PBMC (1 x 106 cells/ml) were co-cultured in triplicate wells with activated DC at 

a 1:10 ratio in RPMI supplemented with 8% FBS or HS. HLA typing of PBMC and 

DC was performed by SSO PCR technique using a reverse dot-blot method at the 

National Reference Laboratory for Histocompatibility Testing (Leiden University 

Medical Center, the Netherlands). The responders and stimulators were two 

HLA-DR antigen mismatched, in order to induce an alloantigen-specific immune 

response. PBMC were activated with 1 µg/ml phytohaemagglutinin (PHA) (Remel, 

San Diego, California, United States) as positive control. Cells were cultured in a 

96-well round-bottomed plate for 5 days after which culture supernatants were 

harvested and frozen until further use. Cells were exposed to [3H]-thymidine (Pelkin 

Elmer, Waltham, Massachusetts, United States) during the last 18 h of culture after 

which [3H]-thymidine uptake was measured by using a liquid scintillation counter 

(Micro Beta Trilux 1450; Pelkin Elmer).

Cytokine analysis

Supernatants of DC cultures and MLR were analysed for the presence of cytokines 

using the Luminex-based Bio-Plex Pro™ Human Cytokine Th1/Th2 Assay (Bio-

Rad Laboratories, Veenendaal, the Netherlands) following the manufacturer’s 

instructions. Samples were analysed using a Bio-Plex™ Array Reader with Bio-

Plex software (Bio-Rad). All samples were measured in duplicate. Additionally, we 

measured the cytokine levels in culture conditions without cells. These baseline 

cytokine values in the medium and/or SP were subtracted from the cytokine 

Table 1. Primer sequences. 

 5'primer 3'primer 

β-actin ACCACACCTTCTACAATGAG TAGCACAGCCTGGATAGC 

GAPDH ACCCACTCCTCCACCTTTGAC TCCACCACCCTGTTGCTGTAG 
CD14 AGCCTAGACCTCAGCCACAA CTTGGCTGGCAGTCCTTTAG 

CD1a ATGGTATCTCCGCGCAAC AAGCCCACGGAACTGTGAT 
CD80 GAAGCAAGGGGCTGAAAAG GGAAGTTCCCAGAAGAGGTCA 
CD86 CGAGCAATATGACCATCTTCTG CGCTTCTTCTTCTTCCATTTCC 

HLA-DR AATGGAGAGCACGGTCTG TGTCCTTTCTGATTCCTGAAG 
TGF-β CCCAGCATCTGCAAAGCTC GTCAATGTACAGCTGCCGCA 

TNF-α CCCCAGGGACCTCTCTCTAATC TACAACATGGGCTACAGGCTTG 
IL-10 GCGCTGTCATCGATTTCTTCC GTAGATGCCTTTCTCTTGGAGCTTA 

IL-12a CCAGAGTCCCGGGAAAGTC ACCAGGGTAGCCACAAGG 
IL-12b CCCTGACATTCTGCGTTCA AGGTCTTGTCCGTGAAGACTCTA 
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production in the wells with cells. 

Statistical analysis

Data are expressed as medians ± SD, unless stated otherwise. Data were analysed 

using the Wilcoxon matched-pairs signed rank test or the Mann-Whitney U test. 

Data were considered statistically significant when p<0.05.

Results

SP alters the phenotype and function of FBS cultured DC 

In a first set of experiments, we confirmed that SP induced a change in gene 

expression in immature DC cultured in FBS containing medium. In these culture 

conditions, CD14 mRNA levels were increased and CD1a mRNA levels were 

decreased in SP-DC compared to control DC. Also, we observed that mRNA levels 

of CD86 and HLA-DR were upregulated in SP-DC compared to control DC (Figure 

1A). Additionally, we confirmed that DC incubated with SP in FBS containing 

medium for six days showed an alternative phenotype by analysis of protein 

expression of CD14 and CD1a (Figure 1B-C) and that this effect of SP was dose-

dependent (Figure 1D). Furthermore, HLA-DR surface expression was upregulated 

in SP-DC compared to control DC (Figure 1E).

Upon LPS maturation, gene expression levels of the anti-inflammatory cytokines 

IL-10 and TGF-β1 were increased in SP-DC compared to control DC, whereas gene 

expression of the pro-inflammatory cytokines IL-12b and TNF-α was decreased 

(Figure 1F). In line with these results and with published data, SP-DC showed 

increased IL-10 and decreased IL-12p70 protein production compared to control-

DC (Figure 1G-H). Whereas TNF-α gene expression was marginally affected, we 

 

Figure 1. Phenotypical and functional characterization of dendritic cells (DC) cultured with fetal bovine 
serum (FBS) in the presence or absence of seminal plasma (SP). 
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(A) Difference in CD1a (median 0.06; P<0.0001), CD14 (median 150.80; P<0.0001), HLA-
DR (median 1.40; P=0.0395), CD80 (median 0.47; P=0.0313) and CD86 (median 2.01; 
P<0.0001) mRNA expression between immature SP-DC and control DC (n=17; except 
CD80 n=6). Expression level in the control DC was set to 1 for each gene, and relative 
expression levels in SP-DC were compared with the control.

(B) CD14 and CD1a expression in immature DC cultured in the presence or absence of SP was 
analyzed by flow cytometry. Dot plots from a representative experiment (n=16) are shown. 

(C) Percentage of CD14+CD1a- immature DC after culturing monocytes with or without SP 
(n=16). 

(D) The effect of different concentrations of SP on CD14 and CD1a expression in immature DC. 
The more seminal plasma was added to the culture the more distinct the phenotype from 
control DC. 

(E) Histogram from a representative experiment (n=14) is shown. HLA-DR mean fluorescence 
intensity (MFI) values in DC cultured with SP are compared to controls.

(F) Difference in IL-10 (median: 9.46; P<0.0001), IL-12b (median: 0.10; P=0.0015), TGF-β1 
(median: 2.43; P<0.0001) and TNF-α (median: 0.43; P=0.0034) mRNA expression between 
mature SP-DC and control DC (n=15; except CD80 n=5). Expression level in the control DC 
was set as 1 for each gene, and relative expression levels in SP-DC were compared with the 
control.

(G) Cytokine production in DC culture upon stimulation with LPS (n=10). Mature SP-DC 
produced high levels of IL-10 (P=0.0195) compared to mature control DC (in pg/ml).

(H) Cytokine production in DC culture upon stimulation with LPS (n=10). Mature SP-DC 
produced low levels of IL-12p70 (P=0.0195) compared to mature control DC (in pg/ml).

(I) Proliferation of T cells stimulated in co-cultures with either control DC or SP-DC in counts 
per minute (CPM)(n=31). SP-DC had low stimulatory capacity compared to control DC 
(P=0.0002).

(J) Relative IL-2, IFN-γ and TNF-α production in the co-culture with SP-DC compared to the 
co-culture with control DC (n=28). Low amounts of IL-2 (median 0.51; P<0.0001), IFN-γ 
(median 0.42; P=0.0001) and TNF-α (median 0.54; P<0.0001) were found in co-cultures of 
PBMC with SP-DC compared to co-cultures with control DC. Cytokine level in the control 
DC was set to 1 for each cytokine, and relative cytokine levels in SP-DC were compared 
with the control. Absolute numbers of cytokine levels are depicted in Table 2. 

did not observe a decreased TNF-α protein production in SP-DC compared to 

control DC (data not shown).

In line with these phenotypic and functional characteristics, SP-DC showed a 

decreased stimulatory capacity in co-cultures with allogeneic PBMCs, significantly 

affecting the proliferative potential op the responder cells compared to cultures 

with control DC (Figure 1I). Concomitantly, the production of pro-inflammatory 

cytokines IFN-γ, TNF-α, and IL-2 during co-culture was significantly decreased 

compared to control DC (Table 2; Figure 1J).

SP alters the phenotype of HS cultured immature DC 

To determine whether SP had similar effects on DC in HS containing cultures, we 

analysed CD14, CD1a, CD86, and HLA-DR gene expression in the treated cells. 

Similar to FBS cultured SP-DC, CD14 and HLA-DR mRNA expression was increased 

and CD1a mRNA expression was decreased in immature SP-DC compared to 

control DC, albeit to a lesser extent. In contrast, SP did not affect CD80 or CD86 

mRNA in this culture condition (Figure 2A). 

By means of flow cytometry, we confirmed the generation of predominantly CD1a 

negative DC that were cultured in the presence of HS, as was shown in previous 

 

Table 2. IL-2, IFN-γ, and TNF-α production in co-cultures of PBMC with either SP-DC or control DC. 

 
IL-2 

 
IFN-γ 

 
TNF-α 

 

 

Control 
DC SP-DC 

 

Control 
DC SP-DC 

 

Control 
DC SP-DC 

 
  FCS   

Median 
(pg/ml) 195 88 P<0.0001 311 76 P=0.0006 184 89 P<0.0001 

Minimum 
(pg/ml) 44 38 

 
29 12 

 
43 25 

 
Maximum 
(pg/ml) 535 369 

 
9975 12018 

 
3381 1655 

 
Nr of values 28 28 

 
28 28 

 
28 28 

 
  HS   

Median 
(pg/ml) 46 38 P=0.9697 83 63 P=0.2036 1154 1209 P=0.4697 

Minimum 
(pg/ml) 19 21 

 
18 9 

 
262 199 

 
Maximum 
(pg/ml) 63 99 

 
504 404 

 
1724 1918 

 
Nr of values 12 12 

 
12 12 

 
12 12 
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Figure 2. Phenotypical and functional characterization of dendritic cells (DC) cultured with human 
serum (HS) in the presence or absence of seminal plasma (SP). 

(A) Difference in CD1a (median 0.50; P=0.0023), CD14 (median 6.61; P=0.0001), HLA-DR 
(median 1.25; P=0.0353), CD80 (median 1.14; P=0.0906), CD86 (median 0.90; P=0.2412) 
mRNA expression between immature SP-DC and control DC (n=14). Expression level in 
the control DC was set as 1 for each gene, and relative expression levels in SP-DC were 
compared with the control.

(B) CD14 and CD1a expression in immature DC cultured in the presence or absence of SP was 
analyzed by flow cytometry. Dot plots from a representative experiment (n=12) are shown. 

(C) Percentage of CD14+CD1a- immature DC after culturing monocytes with or without SP 
(n=12). 

(D) The effect of different concentrations SP on CD14 and CD1a expression in immature DC. 
The more seminal plasma was added to the culture the more distinct the phenotype from 
control DC. 

(E) Difference in IL-10 (median 4.57; P=0.0002), TGF- β1 (median 1.36; P=0.0017), COX-2 
(median 2.82; P=0.0105), S100A8 (median 3.54; P=0.0005) and S100A9 (median 4.56; 
P=0.0002) mRNA expression between mature SP-DC and control DC (n=13). Expression 
level in the control DC was set as 1 for each gene, and relative expression levels in SP-DC 
were compared with the control.

(F) Histogram from a representative experiment (n=12) is shown. HLA-DR mean fluorescence 
intensity (MFI) values in DC cultured with SP are compared to controls.

(G) Cytokine production in DC culture upon stimulation with LPS (n=11). Mature SP-DC 
produced high levels of IL-10 (P=0.0137) compared to mature control DC (in pg/ml).

(H) Cytokine production in DC culture upon stimulation with LPS (n=11). Mature SP-DC 
produced low levels of IL-12p70 (P=0.0010) compared to mature control DC (in pg/ml).

(I) Cytokine production in DC culture upon stimulation with LPS (n=11). Mature SP-DC 
produced low levels of IL-2 (P=0.0010) compared to mature control DC (in pg/ml).

(J) Proliferation of T cells stimulated in co-cultures with either control DC or SP-DC in counts 
per minute (CPM) (n=12). SP-DC had similar stimulatory capacity compared to control DC 
(P=0.733).

(K) Relative IL-2, IFN-γ and TNF-α production in the co-culture with SP-DC compared to the 
co-culture with control DC (n=12). Similar amounts of IL-2 (median 1.00; P=0.970), IFN-γ 
(median 0.75; P=0.204) and TNF-α (median 0.84; P=0.470) were found in co-cultures of 
PBMC with SP-DC compared to co-cultures with control DC. Cytokine level in the control 
DC was set to 1 for each cytokine, and relative cytokine levels in SP-DC were compared 
with the control. Absolute numbers of cytokine levels are depicted in Table 2.

studies [15, 16]. A representative example of this CD1a negative population is 

shown in Figure 2B. Whereas HS cultured DC did not upregulate CD1a, we did 

observe that SP led to a higher percentage of CD14+CD1a- cells, and that this 

change in CD14/CD1a was dose dependent (Figure 2C-D). Additionally, we 

analysed the expression of HLA-DR in immature DC, but we did not observe a 

difference between SP-DC and control DC (data not shown).
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SP leads to an increased IL-10 and decreased IL-12 production, but does not affect 

the stimulatory capacity of HS cultured DC

On day 6 we added LPS to the culture for DC maturation and 48 hours later we 

analysed expression levels of several genes. CD14 and HLA-DR mRNA expression 

was still increased in SP-DC compared to control DC, whereas CD1a mRNA 

expression was still decreased (data not shown). No difference was found for 

mRNA expression of pro-inflammatory markers IL-12b and TNF-α (data not shown). 

On the other hand, mRNA expression of anti-inflammatory markers IL-10, TGF-β, 

COX-2, S100A8, and S100A9 was increased in mature SP-DC compared to control 

DC (Figure 2E).

Next, we analysed surface marker expression. The increase of CD14+CD1a- cells 

we observed in immature SP-DC compared to control DC persisted, although not 

as strong as before LPS maturation (data not shown). Additionally, we observed an 

upregulated HLA-DR expression in mature SP-DC compared to control DC (Figure 

2F). 

To determine whether the changes in gene expression and phenotype of DC 

cultured in the presence of SP also resulted in an altered cytokine production, 

we analysed the cytokine profile produced by mature SP-DC and control DC. 

We observed higher IL-10 and lower IL-12 cytokine levels in supernatants of 

LPS activated SP-DC compared to control-DC (Figure 2G-H), consistent with the 

data obtained in FBS containing cultures. Additionally, we observed a lower IL-2 

production for SP-DC compared to control-DC (Figure 2I).

In a next set of experiments, we analysed the stimulatory capacity of mature DC 

and the profile of cytokines produced in co-cultures of these cells with allogeneic 

PBMC. These co-cultures did not show a decreased T cell stimulatory capacity 

toward SP-DC compared to control DC (Figure 2J). Additionally, we did not find 

any differences in the production of pro-inflammatory cytokines IFN-γ, TNF-α, and 

IL-2 between co-cultures of PBMC with SP-DC and co-cultures with control DC 

(Table 2; Figure 2K). 

Discussion

In this study, we showed that SP-DC cultured in HS containing medium were 

resembling anti-inflammatory DC with regards to phenotype, gene expression 

patterns, and cytokine production. However, the effect of SP on DC differentiation 

was less pronounced in HS cultured DC than in FBS cultured DC, and it did not 

result in an altered T cell stimulatory capacity.

It has been widely reported that factors in human SP are capable of affecting 

lymphocyte function in vitro [6-11]. However, the majority of studies demonstrating 

SP suppression have been carried out using culture medium containing bovine 

serum in the assays, and its presence may have influenced the immune responses, 

as was shown in studies that compared different serum sources [10, 14]. It was 

previously shown that SP promotes the differentiation of tolerogenic DC  [12], but 

these in vitro experiments were performed with SP in the presence of FCS. Previous 

studies showed that human DC cultured in medium containing FCS are different 

from those cultured in medium containing HS. Therefore, to create a setting that 

is more similar to the in vivo situation in humans, we set out to study the effect of 

seminal plasma on DC differentiation in the absence of xenoproteins. 

Culturing monocytes in the presence of SP in HS containing medium led to a 

change in gene expression. CD14, IL-10, and TGF-β mRNA levels were upregulated, 

whereas CD1a levels were downregulated in mature SP-DC, all of these are 

hallmarks of tolerogenic DC [13, 20]. Additionally, we found higher mRNA levels 

for anti-inflammatory markers S100A8, S100A9, and COX-2. Previous studies have 

shown that S100A8 and S100A9 were upregulated in IL-10 treated tolerogenic 
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DC [21].S100A9 deficient DC have pro-inflammatory characteristics, such as an 

increase in IL-12p40 secretion and T-cell proliferation [22], and the addition of 

exogenous S100A8/S100A9 to the culture reduced T-cell proliferation [22]. COX2 

can enhance the production of IL-10 in DC and has cytotoxic T cell suppressive 

function, which can be reversed by COX-2 inhibition. The induction of COX2 in SP-

DC may promote a stable tolerogenic phenotype of SP-DC via a positive feedback 

loop between prostaglandin E2 (PGE2) and COX2 [23].

Analysis of surface markers showed an increase in CD14+CD1a- cells in cultures 

with SP. This is a similar phenotype as that of other modulated DC, such as those 

cultured in the presence of vitamin D3, dexamethasone or IL-10, which all have 

reduced T cell stimulatory capacity [24-27]. Upon LPS maturation, SP-DC showed 

an increased HLA-DR expression, a molecule typically associated with DC 

maturation, and necessary for binding the T cell receptor [28]. In addition, SP-DC 

produced higher levels of IL-10 and lower levels of IL-12 than control DC, which is 

characteristic for tolerogenic DC [20]. All these results hint towards the induction 

of tolerogenic DC by SP in the presence of HS. However, culturing of SP-treated 

DC in HS did not translate to a functional effect of these cells on T-cell stimulation. 

In contrast to what we observed in co-cultures with FBS cultured DC, we showed 

that there was no difference in stimulatory capacity between SP-DC and control-

DC, nor in the production of Th1 cytokines in co-cultures with allogeneic PBMC. 

The MLR is classically affected when using tolerogenic DC instead of mature DC 

[29, 30], but it is possible that the effect of SP in HS cultured DC is not prominent 

enough to have a functional effect. 

In mice, within hours after mating, macrophages, DC, and granulocytes are 

recruited into the reproductive tract [31-33]. SP antigens are presented by female 

DC in lymph nodes draining the genital tract, thereby activating and expanding 

inducible regulatory T cell populations [1, 34]. Subsequently, these populations 

migrate to the implantation site and facilitate maternal immune tolerance towards 

the semi-allogeneic conceptus [35]. In humans, it was shown that the presence 

of SP in the female reproductive tract after coitus can lead to an influx of immune 

cells [5] and possibly modulate the local immune response. Extrapolation of in 

vitro data to the situation in vivo in humans remains a challenge, and in this study 

we showed that even the serum source can influence the results of an in vitro 

experiment. 
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The mother’s acceptance of the foetus, which can be seen as an allograft expressing 

paternally inherited alloantigens, is a unique example of how the immune system 

reshapes a destructive alloimmune response to a state of tolerance. 

In Chapter 2, we discussed the role of regulatory T cells (Tregs) in foetal–maternal 

immune tolerance as well as in recurrent miscarriage (RM). Tregs have a critical 

role in maintaining immune tolerance to self-antigens and to foreign antigens of 

the semi-allogeneic foetus: a deficiency in Tregs is associated with implantation 

rejection at early stages of pregnancy and abortion . Lower proportions of Tregs 

are found in peripheral blood from pregnant women with RM during pregnancy 

and products of conception from miscarriages compared with peripheral blood 

specimens obtained from controls and abortions on social indication, respectively 

[1-5]. Even in non-pregnant women with a history of RM frequencies of peripheral 

Tregs are decreased compared to fertile controls [1, 6]. This suggests an important 

role for Tregs in pregnancy. 

Tregs are generally CD4+ and thus restricted by HLA class II. In organ 

transplantation, matching for HLA-DR results in a better graft survival and function 

[7] and in the setting of pre-transplant blood transfusion sharing of at least one 

HLA-DR antigen leads to a tolerogenic effect on the course of a subsequent renal 

transplantation, while incompatibility for the second HLA-DR antigen enhances 

a stable, rejection-free, allograft function [8, 9]. We investigated the influence of 

HLA-DR (in)compatibility on pregnancy outcome parameters (Chapter 3), and 

observed that mutual maternal-fetal HLA-DR incompatibility resulted in increased 

birth weight and individualized birth rate ratio (IBR), irrespective of pregnancy 

complications. A limitation of this study is the low resolution typing, which leads to 

an underestimation of the number of HLA-DR mismatches between mother and 

child. However, all cases in the group of reciprocal allogenicity, the situation in 

which both the mother and fetus express two distinct HLA-DR antigens of which 

one of the HLA-DR antigens is mismatched between mother and child. It seems 

that the optimal situation for a successful pregnancy is that of reciprocal HLA-DR 

allogenicity, which may be explained by an active induction of immune tolerance 

from both maternal and fetal side. Further research on the immune mechanisms 

leading to this balance will reveal whether this is indeed the case. 

Immune tolerance at the foetal-maternal interface can also be induced by HLA-G. 

HLA-G facilitates semi-allogeneic pregnancy by inhibiting maternal immune 

responses to foreign (paternal) antigens [10]. In Chapter 4 we determined that 

women with RM have a genetic predisposition to lower HLA-G levels. In that 

perspective, it is remarkable that HLA-G expression is increased in the placenta 

of successful pregnancies in women with a history of RM. HLA-G was mostly 

confined to the trophoblast areas at the fetal-maternal interface (decidua basalis). 

Since the level of HLA-G expression can depend on the differentiation status of 

EVTs [11], it is unclear whether the observed differences in HLA-G expression 

are a direct consequence of transcriptional regulation or a secondarily of an 

altered differentiation status of the EVTs. We hypothesize that for a successful 

pregnancy to occur after previous RM, a compensatory mechanism resulting in 

high HLA-G protein expression is in place. Whether the higher HLA-G expression 

in the ongoing pregnancy after RM is a cause or a consequence of the successful 

pregnancy remains to be established. Future studies should be concentrated on 

further establishing the role of HLA-G in complicated pregnancies. Measurement 

of maternal sHLA-G may provide further insight on the prognosis of the outcome 

of pregnancies in women with a history of RM.

HLA-G may already play a role before implantation by creating a tolerant 

environment. We determined the presence of sHLA-G in seminal plasma (SP) and 

studied the impact of the most frequent HLA-G 3’UTR variation sites on sHLA-G levels 

in SP (Chapter 5). These studies showed that sHLA-G levels in SP are influenced 

by HLA-G haplotypes and separate SNPs. We found a higher incidence of the 14 

bp ins/ins, a genotype associated with lower sHLA-G levels, in men of whom the 
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partner experienced RM compared to controls, although this difference was not 

significant. We did not find differences in sHLA-G levels between SP samples from 

RM and controls on the population level, indicating that not all miscarriages can 

be explained by HLA-G genes and low sHLA-G levels in SP. It is more likely that 

different immune mechanisms contribute to the occurrence of so far unexplained 

recurrent miscarriages. Other factors that have been associated with RM are high 

levels of circulating TNF-α and low levels of galectin-1 and mannose-binding 

lectin (MBL) [12-14]. These are thought to lead to pro-inflammatory processes in 

women with RM, and thereby contributing to an active maternal immune response 

toward the fetus. TNF-α is an inflammatory cytokine that promotes inflammation. 

Galectin-1 can induce differentiation of tolerogenic DC that promote the expansion 

of IL-10 secreting Tregs. MBL is a complement activating protein that enhances 

phagocytosis. Women with low MBL may have impaired clearance of apoptotic 

cells, leading to inflammation. However, these factors may have different functions 

in the circulation compared to the decidua, and these functions might also change 

during the course of pregnancy. This makes research on the role of such factors in 

RM very difficult. 

SP contains not only soluble HLA-G, but also sHLA class I. Peptides derived from 

the paternal HLA class I antigens in the SP may be presented by maternal antigen 

presenting cells (APC) in the endometrium and when the proper cytokines are 

present in the seminal fluid this may lead to the induction of Tregs. The effect of 

SP on dendritic cells (DC) has been tested before in vitro. It was shown that SP can 

skew the differentiation of monocyte-derived DC towards an anti-inflammatory 

profile when cultured in medium containing fetal calf serum (FCS). However, FCS 

contains xenoproteins, which can also influence human DC. In Chapter 6, we 

showed that SP can skew the differentiation of monocyte-derived DC cultured in 

HS towards alternatively activated DC. However, this phenotype appears to be less 

immune regulatory when compared to SP-treated DC cultured in FCS containing 

medium. These findings highlight the importance of the serum source used in SP 

treated cell cultures in vitro. Furthermore, it would be interesting to study the effect 

of SP on DC in samples from couples with RM in comparison to SP and DC from 

healthy donors.

Clinical relevance

Successful pregnancy can be regarded as a biologic example of graft acceptance, 

in which the semi-allogeneic foetus is protected from rejection by a proper 

regulation of the maternal immune system. Different mechanisms play a role in 

establishing tolerance towards the fetus, some of which already before conception 

takes place. The presence of SP in the female reproductive tract after coitus can 

lead to an influx of immune cells [15]. Semen contains various immunomodulatory 

factors, such as chemokines, cytokines and prostaglandins, but also soluble HLA 

antigens, which can be recognized as foreign and evoke an immune response 

[16-19]. There is great variety in the content of SP between men. The variety in 

cytokine concentration in SP can lead to a difference in the strength and quality 

of the cytokine response elicited and could be involved in a differential regulation 

of the immune response to seminal antigens [20]. Paternal HLA antigens in SP 

might be taken up and presented by maternal APC, mostly DC (Figure 1). These 

APC migrate to the draining lymph node and present the allogeneic peptides 

to naïve T cells. The cytokine environment present at the time the paternal 

antigens are first encountered is pivotal in controlling differentiation of APC, 

which can determine the strength and quality of the ensuing T cell response. 

By using in vitro experiments, we showed that SP can skew the differentiation of 

monocyte-derived DC cultured in HS towards alternatively activated DC with anti-

inflammatory characteristics (Chapter 6). In the in vivo situation, when regulatory 

proteins, e.g. transforming growth factor beta (TGF-β), prostaglandin E2 (PGE2) 
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Figure 1. Seminal plasma (SP) contains inflammatory chemokines that induce accumulation 
and differentiation of dendritic cells (DC) and monocytes. PGE2 and TGF-β in SP promote the 
differentiationof tolerogenic DCs (TolDC). TolDC take paternal antigens in SP and present these to 
naive T cells, resulting in induction of paternal antigen-specific regulatory T cells (Treg) cells in uterine 
draining lymph nodes. Created with BioRender.com.

and sHLA-G, are present in SP, this could lead to DC with a tolerogenic profile 

and subsequently the induction of antigen specific Tregs. In this way, antigens 

in the SP elicit T-cell activation to initiate the female immune response during 

pregnancy, when these paternal antigen specific Treg may be expanded. During 

pregnancy, fetal trophoblast cells come into contact with maternal immune cells 

in the decidua (Figure 2). The expanding paternal antigen-specific Treg block 

effector T cell proliferation and induce apoptosis. Furthermore, they produce 

cytokines, such as IL-10 and TGF-β, which skew DC to a tolerogenic profile. These 

tolerogenic DC inhibit effector T cell proliferation and differentiation. Maternal T 

cells and DC also express receptors that can recognize HLA-G on trophoblasts. In 

vitro tests showed that HLA-G can inhibit cytotoxicity and cytokine production by 

T cells, and that it can skew DC toward a tolerogenic phenotype, contributing to 

downregulation of a possible allogeneic immune response [21-23]. Other immune 

cells that come into contact with trophoblast cells are uterine NK (uNK) cells. 

Figure 2. After implantation, the regulatory T (Treg) cells quickly move to the uterus resulting in 
successful pregnancy. Treg cells block effector T cell proliferation and induce apoptosis. By secreting 
cytokines, such as IL-10 and TGF-β, they induce tolerogenic DC (TolDC). These TolDC inhibit effector T 
cell proliferation and differentiation. Created with BioRender.com.

These uNK cells can recognize HLA-C and HLA-G on the fetal trophoblast cells. 

They express receptors of the killer cell immunoglobulin-like receptor (KIR) 

family, which seem to be important in balancing the NK activating and inhibitory 

signalling. It is thought that the main function of uNK cells is to produce cytokines, 

growth factors, angiogenic factors and other factors for trophoblast migration and 

spiral artery remodeling. For this, inhibitory and activating signalling need to be 

in balance.

In addition, it appears that immune regulation towards the fetus needs to be 

actively induced. We showed that reciprocal HLA-DR allogenicity between mother 

and child is the optimal situation for pregnancy (Chapter 3). In this situation, 

both the mother and fetus express two distinct HLA-DR antigens of which one 

of the HLA-DR antigens is mismatched between mother and child. This suggests 
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that incompatibility for one HLA-DR antigen between mother and fetus leads 

to triggering and activation of the immune response, while the other HLA-DR 

antigen has to be shared in order to induce immune regulation (Figure 3). Even 

though trophoblast cells do not express HLA-DR during normal pregnancy, both 

maternal and fetal cells can cross the placenta and trigger an immune response 

[24, 25]. That HLA mismatches can be beneficial for pregnancy was also shown by 

Tilburgs et al., who showed an increased percentage of decidual activated T cells 

in HLA-C mismatched pregnancies compared to HLA-C matched pregnancies 

[26]. Additionally, they reported that decidual Tregs had an increased suppressive 

capacity in HLA-C mismatched pregnancies compared to HLA-C matched 

pregnancies. Since reciprocal allogenicity was the most optimal situation found in 

our study, both fetal and maternal immune responses seem to be important. 

Figure 3. Incompatibility for one HLA-DR antigen between mother and fetus leads to triggering and 
activation of the immune response, while the other HLA-DR antigen has to be shared in order to induce 
immune regulation. Created with BioRender.com.

Recurrent miscarriage

On the other hand, a cytokine profile in SP with high levels of pro-inflammatory 

cytokines and low levels of PGE2 and TGF-β might contribute to the promotion of 

a Th1-like response, which can lead to activation and expansion of conventional T 

lymphocytes instead of Tregs (Figure 4). 

Figure 4. When seminal plasma (SP) contains only low amounts of factors, such as PGE2 and TGF-β, 
that can skew dendritic cell towards a tolerogenic phenotype, it is possible that paternal antigens are 
taken up by dendritic cells and that the subsequent immune response results mainly in the induction 
of Th1 cells instead of regulator T cells. Created with BioRender.com.

We showed that sHLA-G levels in SP vary between men, and that these levels are 

associated with HLA-G 3’UTR haplotypes, as well as with singular SNPs (Chapter 5). 

However, we did not find a difference in sHLA-G levels between SP samples from 

men from couples with RM compared to controls. There are probably multiple 

factors at play that can have similar effects or that can compensate, synergize or 

antagonize with other factors in SP. It is still possible that if SP samples contain 

low amounts of cytokines that are involved in the induction of tolerogenic DC, 

such as TGF-β and PGE2, a Th1 response is promoted instead of a regulatory 
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response. In our review, we discussed the lower proportions of Tregs in women 

with RM (Chapter 2). These decreased amounts of Tregs might be the result of a 

pro-inflammatory profile of SP. During pregnancy these paternal antigen specific 

Th1 cells could expand and might lead to an increased amount of effector cells. 

Increased amounts of CD8 cytotoxic T cells could recognize HLA-C on trophoblast 

cells and attack (Figure 5). In the end, this inflammatory response might lead to 

pregnancy complications or even pregnancy loss.

Figure 5. After implantation, the Th1 cells move to the uterus and expand. Th1 cell induce effector T 
cell proliferation. By the secretion of cytokines, such as IFN-γ and TNF-α they create a pro-inflammatory 
environment, stimulating the allogeneic maternal immune response. This might lead to rejection of the 
fetus and a miscarriage. Created with BioRender.com.

Besides sHLA-G levels in SP, we studied the expression of HLA-G in term placentas 

of women with a history of RM. Remarkably, these placentas showed elevated 

HLA-G expression compared to term placentas of controls (Chapter 4), suggesting 

that HLA-G upregulation could be a compensatory mechanism in the occurrence 

of RM to achieve an ongoing pregnancy. It is possible that earlier pregnancies 

with lower HLA-G expressing trophoblasts ended in pregnancy loss. A decreased 

expression of HLA-G might have led to a disbalance in inhibitory and activating 

signals in uNK cells, and subsequently to abnormal placentation and finally a 

miscarriage. 

Conclusion

All together, immunology seems to play an important role in pregnancy, and 

the composition of immune cells at the fetomaternal interface appears to be 

involved in pregnancy success. However, whether immunotherapy can play a 

role by preventing maternal rejection of the foetus has yet to be established, but 

modulation of the immune system as (part of) a therapeutic strategy could be a 

valid option to prevent RM.
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Nederlandse samenvatting

Zwangerschap kan gezien worden als een immunologische paradox. Ook al 

is het kind gedeeltelijk lichaamsvreemd, het wordt niet afgestoten door het 

immuunsysteem van de moeder. Dit is opmerkelijk: als de man een orgaan zou 

doneren aan zijn partner, zou dit orgaan hoogstwaarschijnlijk afgestoten worden 

of zou de vrouw levenslang immunosuppressiva moeten nemen om afstoting te 

voorkomen.

Het immuunsysteem onderscheidt lichaamseigen van lichaamsvreemd. Dat wat 

herkend wordt als lichaamsvreemd wordt afgestoten. Hierbij spelen humaan 

Leukocyt Antigenen (HLA) een belangrijke rol. HLA zijn eiwitten op cellen die 

verschillen per individu en die herkend kunnen worden als lichaamsvreemd. HLA 

wordt per set overgeërfd (zie Figuur 5 op pagina 152): het kind erft één set van de 

moeder en één van de vader. De eiwitten die het kind erft van de vader kunnen 

herkend worden als lichaamsvreemd door immuuncellen van de moeder. 

Na innesteling van de bevruchte eicel in de baarmoederwand, groeit een deel 

van de cellen uit tot de foetus en het andere deel tot de placenta. De cellen die de 

placenta vormen dringen de baarmoederwand in en hechten zich daar vast. De 

placenta is de plek waar foetale en maternale cellen met elkaar in contact komen, 

en zuurstof en nutriënten uitgewisseld worden tussen moeder en kind. Hier vindt 

op verschillende manieren ook immuunregulatie plaats, zodat het maternale 

immuunsysteem het kind niet actief afstoot. Onvoldoende regulatie zou er toe 

kunnen leiden dat het maternale immuunsysteem toch het kind afstoot, met een 

miskraam als gevolg. 

Door middel van dit onderzoek willen we meer duidelijkheid over onderliggende 

oorzaken kunnen geven aan patiënten met zwangerschapscomplicaties, zoals 

herhaalde miskramen. Verder hopen we te kunnen leren van de immunologische 

processen tijdens de zwangerschap en deze kennis toe te passen in onderzoek 

naar de immuunrespons na transplantatie. Hierbij speelt de verschuiving van 

rejectie naar tolerantie natuurlijk ook een belangrijke rol.

In hoofdstuk 2 evalueren we eerder onderzoek naar de rol van regulatoire 

T cellen (Tregs) in zwangerschap en in het geval van herhaalde miskramen 

(RM). Tregs hebben een belangrijke rol in het reguleren van de maternale 

immuunrespons tegen eigen antigenen en vreemde antigenen van de 

gedeeltelijk lichaamsvreemde foetus. Een verlaagd aantal Tregs is geassocieerd 

met implantatiefalen vroeg tijdens de zwangerschap en met miskramen. Lagere 

proporties Tregs zijn gevonden in perifeer bloed van zwangere vrouwen met RM 

tijdens de zwangerschap ten opzichten van controles, en ook in producten van 

miskramen ten opzichte van gekozen abortussen. Zelfs in niet-zwangere vrouwen 

met RM in de voorgeschiedenis werden lageren aantallen Tregs in het bloed 

gevonden ten opzichte van controles. Dit suggereert een belangrijke rol voor 

Tregs tijdens de zwangerschap.

Tregs zijn meestal CD4+ T cellen en daardoor alleen compatibel met HLA klasse 

II. In orgaantransplantatie leidt het matchen voor HLA-DR tot beter functioneren 

en hogere overlevingskans van het orgaan. In het geval van een bloedtransfusie 

voorafgaand aan de transplantatie leidt het delen van ten minste één HLA-

DR antigen tot een tolerogeen effect tijdens de transplantatie, terwijl het niet-

delen van het tweede HLA-DR antigen een stabiele, rejectie-vrije orgaanfunctie 

verbetert. We bestudeerden de invloed van HLA-DR incompatibiliteit op 

zwangerschapsuitkomstparameters (hoofdstuk 3), en we zagen dat het wel of 

niet delen van HLA-DR (moeder en kind) invloed had op het geboortegewicht en 

IBR, onafhankelijk van zwangerschapscomplicaties. Het lijkt er op dat reciprocal 

HLA-DR allogenicity het meest optimaal is voor succesvolle zwangerschap. 

Dit kan verklaard worden door actieve aanzetting tot immuunregulatie in 

moeder en kind. Verder onderzoek naar het immuunmechanisme dat leidt 

tot deze regulatie is nodig om uit te wijzen of dit werkelijk het geval is. 
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Immuunregulatie tussen moeder en kind kan ook aangedreven worden door HLA-G. 

HLA-G faciliteert semi-allogene zwangerschap door de maternale immuunrespons 

tegen vreemde (paternale) antigenen te verhinderen. In hoofdstuk 4 toonden 

we aan dat vrouwen met RM een genetische aanleg hebben voor lagere HLA-G 

waardes. In dat perspectief is het opmerkelijk dat HLA-G expressie verhoogd 

is in de placenta van succesvolle zwangerschappen in vrouwen met RM in hun 

voorgeschiedenis. HLA-G kwam het meest tot expressie in de foetale cellen in de 

placenta. Aangezien de waardes van HLA-G expressie ook kunnen afhangen van 

de differentiatiestatus van de foetale cel, is het nog onduidelijk of de bevonden 

verschillen in HLA-G expressie een direct gevolg zijn van transcriptionele regulatie 

of een later gevolg van een veranderde differentiatiestatus van de foetale cel. We 

denken dat in een succesvolle zwangerschap na RM een compensatiemechanisme 

resulteert in een hogere HLA-G eiwit expressie. Of deze hogere HLA-G expressie 

in de doorgaande zwangerschap na RM een oorzaak of een gevolg is van de 

succesvolle zwangerschap moet nog bekeken worden. Toekomstig onderzoek 

zou zich moeten concentreren op het verder uitzoeken van de rol van HLA-G in 

zwangerschapscomplicaties. Het meten van maternaal sHLA-G zou verder inzicht 

kunnen verschaffen in de prognose van de uitkomst van zwangerschappen in 

vrouwen met RM in hun voorgeschiedenis. 

HLA-G zou ook al een rol kunnen spelen in het creëren van een tolerante 

omgeving vóór de implantatie. We bepaalden de aanwezigheid van oplosbaar 

HLA (sHLA)-G in seminaal plasma (SP) en bestudeerden de impact van de meest 

frequente HLA-G 3 ‘UTR variatieplekken op sHLA-G in SP (hoofdstuk 5). Deze 

studies toonden aan dat sHLA-G waardes in SP beïnvloed worden door HLA-G 

haplotypes en aparte SNPs. We vonden een hogere incidentie van de 14 bp ins/

ins, een genotype geassocieerd met lagere sHLA-G waarden, in mannen van 

koppels met RM ten opzichte van controles, al was dit verschil niet significant. We 

vonden geen verschillen in sHLA-G waarden tussen SP samples van mannen van 

koppels met RM ten opzichte van controles op populatieniveau, wat impliceert dat 

niet alle miskramen verklaard kunnen worden door HLA-G genen en lage sHLA-G 

waarden in SP. Het is meer waarschijnlijk dat verschillende immuunmechanismes 

bijdragen aan de tot nu toe onverklaarde RM. 

SP bevat niet alleen sHLA-G, maar ook sHLA klasse I. Gedeeltes van dit paternaal 

sHLA kunnen gepresenteerd worden door maternale antigen presenterende 

cellen (APC), met name dendritische cellen (DC), in het endometrium. In 

combinatie met regulerende cytokines in SP zou dit kunnen leiden tot de inductie 

van Tregs. Het effect van SP op DC is eerder getest in vitro. Het is aangetoond 

dat SP de differentiatie van gekweekte DC kan trekken naar een anti-inflammatoir 

profiel. Deze testopzet bevatte medium met foetaal kalf serum (FCS), en FCS bevat 

eiwitten die niet in mensen voorkomen. Deze vreemde eiwitten kunnen de humane 

DC beïnvloeden. In hoofdstuk 6 tonen we aan dat SP de differentiatie van DC 

gekweekt met humaan serum kan trekken naar een alternatief geactiveerde DC, 

maar dit fenotype lijkt minder immuunregulerend te zijn wanneer het vergeleken 

wordt met SP behandelde DC gekweekt met humaan serum. Deze bevindingen 

benadrukken het belang van de serumbron gebruikt in SP behandelde celkweken 

in vitro. Het zou interessant zijn om het effect van SP te bestuderen op DC in 

samples van koppels met RM en deze te vergelijken met SP en DC van gezonde 

donoren. 
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papers, de techniek en statistiek. Buiten alle hulp met werkgerelateerde zaken, 

was er ook altijd tijd voor een praatje over andere dingen. Dave, Els, Yvonne de 



Chapter 8

8

167166

En dan natuurlijk mijn paranimfen. Anita, ik was blij dat ik een PhD maatje erbij 

kreeg binnen de RI. Ik genoot van onze hardloopmomenten ’s ochtends vroeg 

voor werk. Jij hebt het promoveren natuurlijk net zelf meegemaakt, ik ben blij dat 

je deze bijzondere dag nu aan mijn zijde mee wilt maken. Bedankt voor alle hulp, 

tips en tricks tijdens de vele koffiemomenten, maar ook dat we kunnen delen wat 

er minder goed gaat.

Judith, we zijn natuurlijk al jaren vriendinnen en vanaf het begin wist ik dat 

jij degene was die de lay-out van mijn boekje moest gaan doen. Je hebt echt 

prachtwerk afgeleverd! Ik ben blij dat de afstand tussen Venlo en Leiden nooit 

te groot is geweest. Bedankt voor de weekendjes die je naar Leiden kwam om 

samen te genieten van zon en GT’s; bedankt voor het blijven vragen naar updates 

over mijn onderzoek, al ging alles altijd te langzaam; bedankt voor het verzorgen 

van mijn boekje en de dag van mijn verdediging. 

Giel, Thijs en Olyne, ik ben heel blij dat ik jullie om me heen heb en dat we elkaar 

ondanks de afstand toch regelmatig zien en spreken. Bedankt voor alle hulp, 

steun en betrokkenheid en dat ik altijd op jullie kan rekenen.

Lieve pap en mam, ik weet dat jullie ontzettend trots op mij zijn. Ik weet ook dat 

ik dit zonder jullie steun en vertrouwen in mij nooit had gekund. Jullie staan altijd 

voor mij klaar als ik iets nodig heb en ik kan altijd bij jullie terecht. Jullie beseffen 

niet hoeveel jullie voor mij gedaan hebben en nog steeds altijd doen. Ondanks 

tegenslagen, gaan jullie onverminderd door. Weet dat ik ook ontzettend trots op 

jullie ben.

Vaal, Manon, Marijke, Janine, jullie hebben me geholpen met experimenten voor 

papers die het al dan niet gehaald hebben, bedankt voor alle hulp. Anouk, het 

liefst kwam ik altijd even bij je langs om een afspraak met een van de heren in te 

plannen, ondanks hun volle agenda’s leidde jij alles in goede banen. 

Mede “PhD’ers” Anita, Cynthia, Gonca, Caroline, Heleen, May, Juliette, Douwe, 

Michelle, Helena, een aantal van jullie zijn inmiddels al klaar, de rest gaat snel volgen. 

Bedankt voor het sparren over werkgerelateerde en niet-werkgererelateerde 

zaken tijdens borrels, etentjes, congressen of gewoon in onze kamer. “Despite the 

company” was het toch vaak wel heel gezellig. Ook studenten Kaveri, Iris, Milo, 

Angelos en Kim, bedankt voor hulp en gezelligheid. 

Marie-Louise, bedankt voor jouw enthousiasme en het aansporen tot doorzetten. 

Na een gesprek met jou kon ik altijd vol goede moed weer verder. Ook alle andere 

personen van het geboortehuis die geholpen hebben bij het verzamelen van 

materiaal en alle vrouwen en mannen die materiaal hebben afgestaan, bedankt. 

Alle collega’s van de IHB en andere afdelingen en in het bijzonder Cees, Tanja en 

Ruben, bedankt voor het kritisch meedenken, nieuwe ideeën en het tonen van 

interesse in de gang van zaken.

Alle voetbalchicks en trainers, met jullie kon ik mijn gedachten even verzetten 

tijdens onze wekelijkse trainingen en wedstrijden, movie  nights, etentjes en 

borrels. Bij jullie kon en kan ik altijd alles kwijt. Geblesseerd of niet, ik kan jullie 

helemaal niet missen en pak graag een avondje gezelligheid mee waar dat kan.

Mijn vrienden en vriendinnen uit Limburg, mijn nichtjes en de rest van de familie, 

mijn jaarclubgenoten en voedingsmiepen door de rest van het land en ver 

daarbuiten, bedankt voor alle afleiding en gezelligheid. Ik zie jullie nooit genoeg, 

maar ondanks dat kan ik altijd bij jullie terecht. Wanneer we elkaar zien is het altijd 

gezellig en voelt het als vanouds. Bedankt dat jullie er altijd voor me zijn.
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Curriculum vitae

Moniek Henriëtte Catharina Craenmehr werd geboren op 25 maart 1988 te 

Horst. In 2006 behaalde zij haar VWO diploma aan het Dendron College te 

Horst. In datzelfde jaar begon zij de studie Pedagogische Wetenschappen en 

Onderwijskunde aan de Radboud Universiteit Nijmegen. Halverwege het eerste 

leerjaar besloot zij dat dit niet het juiste pad voor haar was en leerde zij wiskunde 

en scheikunde bij, zodat ze in 2007 toegelaten werd tot de bachelor Voeding 

& Gezondheid aan de Wageningen Universiteit. Deze studie onderbrak zij vier 

maanden voor de Almanakredactie van de Wageningse Studentenvereniging 

Ceres. Haar bachelor thesis bestond uit een literatuurstudie naar het effect van 

probiotica op de darmpermeabiliteit in topsporters. Moniek haalde haar bachelor 

diploma in 2011 en startte daarna met een master Biomedische Wetenschappen 

aan de Radboud Universiteit Nijmegen. Tijdens haar master deed zij twee stages. 

Haar eerste stage vond plaats aan het Charité in Berlijn. Zij bestudeerde het T-cel 

repertoire in enteropathie geassocieerd T cel lymfoom, refractaire coeliakie en 

chronische coeliakie. Haar tweede stage in het RadboudUMC betrof de rol van 

B-cellen en T-cellen in EBV-gerelateerde lymfoproliferatieve aandoeningen. Na 

het afronden van haar master, ging zij aan de slag op de pathologieafdeling van 

het RadboudUMC als researchanalist. In augustus 2014 startte zij met haar PhD in 

Leiden onder begeleiding van professor Frans Claas. In november 2019 startte zij 

als Business Development Manager bij BD. Hier is zij verantwoordelijk voor BD’s 

Cell and Biomarker Preservation (CBP) portfolio in de Benelux. 




