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ON THE BIFURCATION SET OF UNIQUE EXPANSIONS

CHARLENE KALLE, DERONG KONG, WENXIA LI, AND FAN LÜ

Abstract. Given a positive integer M , for q ∈ (1,M+1] let Uq be the set of x ∈ [0,M/(q−

1)] having a unique q-expansion with the digit set {0, 1, . . . ,M}, and let Uq be the set of

corresponding q-expansions. Recently, Komornik et al. showed in [23] that the topological

entropy function H : q 7→ htop(Uq) is a Devil’s staircase in (1,M + 1].

Let B be the bifurcation set of H defined by

B = {q ∈ (1,M + 1] : H(p) 6= H(q) for any p 6= q}.

In this paper we analyze the fractal properties of B, and show that for any q ∈ B,

lim
δ→0

dimH(B ∩ (q − δ, q + δ)) = dimH Uq,

where dimH denotes the Hausdorff dimension. Moreover, when q ∈ B the univoque set Uq is

dimensionally homogeneous, i.e., dimH(Uq ∩V ) = dimH Uq for any open set V that intersect

Uq.

As an application we obtain a dimensional spectrum result for the set U containing all

bases q ∈ (1,M + 1] such that 1 admits a unique q-expansion. In particular, we prove that

for any t > 1 we have

dimH(U ∩ (1, t]) = max
q≤t

dimH Uq.

We also consider the variations of the sets U = U (M) when M changes.

1. Introduction

Fix a positive integer M . For any q ∈ (1,M + 1] each x ∈ Iq,M := [0,M/(q − 1)] has a

q-expansion, i.e., there exists a sequence (xi) = x1x2 . . . with each xi ∈ {0, 1, . . . ,M} such

that

(1.1) x =

∞
∑

i=1

xi
qi

=: πq((xi)).

The sequence (xi) is called a q-expansion of x. If no confusion arises the alphabet is always

assumed to be {0, 1, . . . ,M}.

Non-integer base expansions have received a lot of attention since the pioneering papers

of Rényi [34] and Parry [33]. It is well known that for any q ∈ (1,M + 1) Lebesgue almost

every x ∈ Iq,M has a continuum of q-expansions (cf. [35, 11]). Moreover, for any k ∈ N∪{ℵ0}
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there exist q ∈ (1,M +1] and x ∈ Iq,M such that x has precisely k different q-expansions (see

e.g., [19, 37]). For more information on non-integer base expansions we refer the reader to

the survey paper [22] and the references therein.

In this paper we focus on studying unique q-expansions. For q ∈ (1,M + 1] let

Uq := {x ∈ Iq,M : x has a unique q-expansion} ,

and let Uq = π−1
q (Uq) be the set of corresponding q-expansions. These sets have been the

object of study in many articles and have a very rich topological structure (see for example

[25, 15]). Komornik et al. studied in [23] the Hausdorff dimension of Uq, and showed that the

dimension function D : q 7→ dimH Uq has a Devil’s staircase behavior (see also [3]). Moreover,

they showed that the entropy function

H : (1,M + 1] → [0, log(M + 1)]; q 7→ htop(Uq)

is a Devil’s staircase (see Lemma 2.4 below). Recently, Alcaraz Barrera et al. investigated

in [1] the dynamical properties of Uq, and determined the maximal intervals on which the

entropy function H is constant.

Let B be the bifurcation set of the function H defined by

B = {q ∈ (1,M + 1] : H(p) 6= H(q) for any p 6= q} .

Then B is the set of bases where the entropy function H is not locally constant. In [1] Alcaraz

Barrera et al. gave a characterization of B and showed that B has full Hausdorff dimension.

In particular, we have

(1.2) B = (qKL,M + 1] \
⋃

[pL, pR],

where qKL is the Komornik-Loreti constant (cf. [24]) and the union on the right hand side is

countable and pairwise disjoint (see Section 2 below for more explanation).

From [15] we know that the univoque set Uq has a fractal structure and might have isol-

ated points. Our first result states that for q ∈ B the univoque set Uq is dimensionally

homogeneous, i.e., the local Hausdorff dimension of Uq equals the full dimension of Uq.

Theorem 1. Let q ∈ (qKL,M +1]\
⋃

(pL, pR]. Then for any open set V ⊆ R with Uq ∩V 6= ∅

we have

dimH(Uq ∩ V ) = dimH Uq.

Remark 1.1.

(1) Note by (1.2) that B ⊂ (qKL,M + 1] \
⋃

(pL, pR]. So Theorem 1 implies that the

univoque set Uq is dimensionally homogeneous for any q ∈ B.
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(2) In Theorem 3.6 we give a complete characterization of the set

{q ∈ (1,M + 1] : Uq is dimensionally homogeneous} .

It turns out that the Lebesgue measure of this set is positive and strictly smaller than

M .

Throughout the paper we will use A to denote the topological closure of a set A ⊂ R. Our

second result presents a close relationship between the bifurcation set B and the univoque

sets Uq.

Theorem 2. For any q ∈ B we have

lim
δ→0

dimH(B ∩ (q − δ, q + δ)) = dimH Uq.

Remark 1.2.

(1) Since by (1.2) and (2.5) the difference between B and B is countable, Theorem 2 also

holds if we replace B by B.

(2) Note that dimH Uq > 0 for any q > qKL (see Lemma 2.4 below). As a consequence of

Theorem 2 it follows that

q ∈ B \ {qKL} ⇐⇒ lim
δ→0

dimH(B ∩ (q − δ, q + δ)) = dimH Uq > 0.

Recently, Allaart et al. [2, Corollary 3] gave another characterization of B, and showed

that

q ∈ B \ {qKL} ⇐⇒ lim
δ→0

dimH(U ∩ (q − δ, q + δ)) = dimH Uq > 0,

where U := {q ∈ (1,M + 1] : 1 ∈ Uq}.

It is well-known that the univoque set Uq has a close connection with the set U = U (M)

of univoque bases q ∈ (1,M + 1] for which 1 has a unique q-expansion with alphabet

{0, 1, . . . ,M}. For example, in [15] De Vries and Komornik showed that Uq is closed if

and only if q /∈ U . The set U has many interesting properties itself. Erdős et al. showed in

[18] that U is an uncountable set of zero Lebesgue measure. Daróczy and Kátai proved in

[14] that the Hausdorff dimension of U is 1 (see also [23]). Komornik and Loreti showed in

[24] that the smallest element of U is qKL. In [25] the same authors studied the topological

properties of U , and showed that its closure U is a Cantor set. Recently, Kong et al. proved

in [28] that for any q ∈ U we have

(1.3) dimH(U ∩ (q − δ, q + δ)) > 0 for any δ > 0.

On a different note, in [9] Bonanno et al. introduced a set

(1.4) Λ = {x ∈ [0, 1] : Skx ≤ x for all n ≥ 0},
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where S is the tent map defined by S : x 7→ min{2x, 2 − 2x} and showed that there is a one

to one correspondence between the set U (1) and the set Λ\Q1, where Q1 is the set of all

rationals with odd denominator. This link is based on work by Allouche and Cosnard (see

[4, 6, 7]), who related the set U (1) to kneading sequences of unimodal maps. The authors of

[9] also explored a relationship between these sets and the real slice of the boundary of the

Mandelbrot set.

2 4 6 8 10
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Figure 1. The asymptotic graph of the function φ(t) = dimH(U ∩ (1, t]) for

t ∈ [4, 11.5] with M = 9 and qKL = qKL(9) ≈ 5.97592.

By using Theorem 2 we investigate the dimensional spectrum of U . Our next result

strengthens the relationship between Uq and U .

Theorem 3. For any t > 1 we have

dimH(U ∩ (1, t]) = max
q≤t

dimH Uq.

Moreover, the function φ(t) := dimH(U ∩ (1, t]) is a Devil’s staircase on (1,∞).

Remark 1.3.

(1) In [25] it was shown that U \ U is a countable set. Hence, Theorem 3 still holds if

we replace U by U .

(2) Results from [23] (see Lemma 2.4 below) give that dimH Uq = 1 if and only if q =

M +1. In view of Theorem 3 we obtain that dimH(U ∩ (1, t]) < 1 for any t < M +1.
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This implies that the Hausdorff dimension of U is concentrated on the neighborhood

of M + 1.

As an application of Theorem 3 we investigate the variations of U = U (M) when the

parameter M changes. For K ∈ {1, 2, . . . ,M}, let U (K) be the set of bases q ∈ (1,K + 1]

such that 1 has a unique q-expansion with respect to the alphabet {0, 1, . . . ,K}. Theorem 4

characterizes the Hausdorff dimensions of the intersection U (M) ∩ U (K) and the difference

U (M) \ U (K). Indeed, we prove the following stronger result.

Theorem 4.

(i) Let K ∈ {1, 2, . . . ,M}. Then

dimH

(

M
⋂

J=K

U (J)

)

= max
q≤K+1

dimH Uq.

(ii) For any positive integer L we have

dimH



U (L) \
⋃

J 6=L

U (J)



 = 1.

Remark 1.4. By the proof of Theorem 4 it follows that for K < M the intersection

M
⋂

J=K

U (J) = U (M) ∩ (1,K + 1]

is a proper subset of U (K). This, together with (1.3), implies that for K < M neither the

intersection
⋂M

J=K U (J) nor the difference set U (M) \
⋂M

J=K U (J) contains isolated points.

We emphasize that for each q ∈ (1,M +1] the univoque set Uq is related to the dynamical

system

Tq,j :

[

0,
M

q − 1

]

→

[

0,
M

q − 1

]

; x 7→ qx− j

for j ∈ {0, 1, . . . ,M}. On the other hand, the set U contains all parameters q ∈ (1,M + 1]

such that 1 has a unique q-expansion, and thus U is related to infinitely many dynamical

systems. A similar set up involving a bifurcation set for infinitely many dynamical systems

is considered in [9] (see also [10]). They considered the bifurcation set of an entropy map for a

family of maps {Tα : [α−1, α] → [α−1, α]}α∈[0,1], called α-continued fraction transformations

[32], where for each α ∈ [0, 1] the map Tα is defined by

(1.5) Tα(x) =

{

1
|x| − ⌊ 1

|x| + 1− α⌋ if x 6= 0;

0 if x = 0.
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Each map Tα has a unique invariant measure µα that is absolutely continuous with respect

to the Lebesgue measure. They showed that the map

ψ : α 7→ hµα(Tα),

assigning to each α the measure theoretic entropy hµα(Tα), has countably many intervals

on which it is monotonic. The complement of the union of these intervals in [0, 1], i.e., the

bifurcation set of ψ denoted by F , has Lebesgue measure 0 (see [29] and [10]) and Hausdorff

dimension 1 (see [9]). Moreover, in [9] the authors identified a homeomorphism between the

set F and the set Λ \ {0} from (1.4), giving also a relation to the set U (1). In [9], however,

no information is given on the local structure of F . Recently, Dajani and the first author

identified in [12] another set E that is linked to the sets U (1), Λ and F . They investigated

a family of symmetric doubling maps Sγ : [−1, 1] → [−1, 1], given by

Sγ(x) = 2x− γ⌊2x⌋,

where ⌊x⌋ denotes the integer part of x, and showd that the set E of parameters γ ∈ [1, 2]

for which the map Sγ does not have a piecewise smooth invariant density is homeomorphic

to Λ \ {0}. Therefore, the results obtained in this paper about the set U (1) can be used to

investigate the bifurcation sets E, F and the set Λ.

The rest of the paper is arranged in the following way. In Section 2 we fix the notation and

recall some properties of unique q-expansions. Moreover, we recall from [1] some important

properties of the bifurcation set B. In Section 3 we give the proof of Theorem 1 for the

dimensional homogeneousness of Uq. In Section 4 we prove an auxiliary proposition that will

be used to prove Theorem 2 in Section 5. The proof of Theorems 3 and 4 will be given in

Sections 6 and 7, respectively. We end the paper with some remarks.

2. Unique expansions and bifurcation set

In this section we recall some properties of unique q-expansions and of the bifurcation set

B as well. First we need some terminology from symbolic dynamics (cf. [30]).

2.1. Symbolic dynamics. Given a positive integer M , let {0, 1, . . . ,M}∗ denote the set of

all finite strings of symbols from {0, 1, . . . ,M}, called words, together with the empty word

denoted by ǫ. Let {0, 1, . . . ,M}N be the set of sequences (di) = d1d2 . . . with each element

di ∈ {0, 1, . . . ,M}. Let σ be the left shift on {0, 1, . . . ,M}N defined by σ((di)) = (di+1).

Then ({0, 1, . . . ,M}N , σ) is a full shift. For a word c = c1 . . . cn ∈ {0, 1, . . . ,M}∗ we denote

by ck = (c1 . . . cn)
k the k-fold concatenation of c to itself and by c∞ = (c1 . . . cn)

∞ the

periodic sequence with period block c. Moreover, for a word c = c1 . . . cn with cn < M we
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denote by c+ the word

c+ = c1 . . . cn−1(cn + 1).

Similarly, for a word c = c1 . . . cn with cn > 0 we write c− = c1 . . . cn−1(cn−1). For a sequence

(di) ∈ {0, 1, . . . ,M}N we denote its reflection by

(di) = (M − d1)(M − d2) · · · .

Accordingly, for a word c = c1 . . . cn we denote its reflection by c = (M − c1) · · · (M − cn).

On words and sequences we consider the lexicographical ordering ≺,4,≻ or < which is

defined as follows. For two sequences (ci), (di) ∈ {0, 1, . . . ,M}N we say that (ci) ≺ (di) if

there exists n ∈ N such that c1 . . . cn−1 = d1 . . . dn−1 and cn < dn. Moreover, we write

(ci) 4 (di) if (ci) ≺ (di) or (ci) = (di). Similarly, we write (ci) ≻ (di) if (di) ≺ (ci), and

(ci) < (di) if (di) 4 (ci). We extend this definition to words in the following way. For two

words ω, ν ∈ {0, 1, . . . ,M}∗ we write ω ≺ ν if ω0∞ ≺ ν0∞. Accordingly, for a sequence

(di) ∈ {0, 1, . . . ,M}N and a word c = c1 . . . cm we say (di) ≺ c if (di) ≺ c0∞.

Let F ⊆ {0, 1, . . . ,M}∗ and let X = XF ⊆ {0, 1, . . . ,M}N be the set of those sequences

that do not contain any word from F . We call the pair (X,σ) a subshift. If F can be chosen

to be a finite set, then (X,σ) is called a subshift of finite type. For n ∈ N ∪ {0} we denote by

Ln(X) the set of words of length n occurring in sequences of X. In particular, for n = 0 we

set L0(X) = {ǫ}. The languange of (X,σ) is then defined by

L(X) =
∞
⋃

n=0

Ln(X).

So, L(X) is the set of all finite words occurring in sequences from X.

For a subshift (X,σ) and a word ω ∈ L(X) let FX(ω) be the follower set of ω in X defined

by

(2.1) FX(ω) :=
{

(di) ∈ X : d1 . . . d|ω| = ω
}

,

where |c| denotes the length of a word c ∈ {0, 1, . . . ,M}∗.

A subshift (X,σ) is called topologically transitive (or simply transitive) if for any two words

ω, ν ∈ L(X) there exists a word γ such that ωγν ∈ L(X). In other words, in a transitive

subshift (X,σ) any two words can be “connected” in L(X).

The topological entropy htop(X) of a subshift (X,σ) is a quantity that indicates its com-

plexity. It is defined by

(2.2) htop(X) = lim
n→∞

log#Ln(X)

n
= inf

n≥1

log #Ln(X)

n
,
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where #A denotes the cardinality of a set A. Accordingly, we define the topological entropy

of a follower set FX(ω) by changing X to FX(ω) in (2.2) if the corresponding limit exists.

Clearly, if X is a transitive subshift, then htop(FX(ω)) = htop(X) for any ω ∈ L(X).

2.2. Unique expansions. In this subsection we recall some results about unique expansions.

For more information on this topic we refer the reader to the survey papers [36, 22] or the

book chapter [16]. For q ∈ (1,M + 1], let

α(q) = α1(q)α2(q) . . .

be the quasi-greedy q-expansion of 1 (cf. [13]), i.e., the lexicographically largest q-expansion of

1 not ending with a string of zeros. The following characterization of quasi-greedy expansions

was given in [8, Theorem 2.2].

Lemma 2.1. The map q 7→ α(q) is a strictly increasing bijection from (1,M + 1] onto the

set of all sequences (ai) ∈ {0, 1, . . . ,M}N not ending with 0∞ and satisfying

an+1an+2 . . . � a1a2 . . . whenever an < M.

Recall from (1.1) the definition of the projection map πq for q ∈ (1,M + 1] mapping

{0, 1, . . . ,M}N onto the interval Iq,M = [0,M/(q−1)]. In general, πq is not bijective. However,

πq is a bijection betweenUq = π−1
q (Uq) and Uq. The following lexicographical characterization

of Uq, or equivalently Uq, was essentially due to Parry [33] (see also [8]).

Lemma 2.2. Let q ∈ (1,M + 1]. Then (xi) ∈ Uq if and only if

xn+1xn+2 . . . ≺ α(q) whenever xn < M,

xn+1xn+2 . . . ≺ α(q) whenever xn > 0.

Observe that U = {q ∈ (1,M + 1] : α(q) ∈ Uq}. As a corollary of Lemma 2.2 we have the

following characterizations of U and U .

Lemma 2.3.

(i) q ∈ U \ {M + 1} if and only if the quasi-greedy expansion α(q) satisfies

α(q) ≺ σn(α(q)) ≺ α(q) for any n ≥ 1.

(ii) q ∈ U if and only if the quasi-greedy expansion α(q) satisfies

α(q) ≺ σn(α(q)) 4 α(q) for any n ≥ 1.

Proof. Part (i) was shown in [17, Theorem 2.5] and Part (ii) was proven in [17, Theorem

3.9]. �
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In [15] it was shown that (Uq, σ) is not necessarily a subshift. Inspired by [23] we consider

the set Vq which contains all sequences (xi) ∈ {0, 1, . . . ,M}N satisfying

α(q) 4 σn((xi)) 4 α(q) for all n ≥ 0.

Then (Vq, σ) is a subshift (cf. [23, Lemma 2.6]). Furthermore, Lemma 2.1 implies that the

set-valued map q 7→ Vq is increasing, i.e., Vp ⊆ Vq whenever p < q.

Recall that the Komornik-Loreti constant qKL is the smallest element of U , which is defined

in terms of the classical Thue-Morse sequence (τi)
∞
i=0 = 01101001 . . .. Here the sequence

(τi)
∞
i=0 is defined as follows (cf. [5]): τ0 = 0, and if τ0 . . . τ2n−1 has already been defined

for some n ≥ 0, then τ2n . . . τ2n+1−1 = τ0 . . . τ2n−1. Then the Komornik-Loreti constant

qKL = qKL(M) ∈ (1,M + 1] is the unique base satisfying

(2.3) α(qKL) = λ1λ2 . . . ,

where

λi =

{

k + τi − τi−1 if M = 2k,

k + τi if M = 2k + 1,

for each i ≥ 1. We emphasize that the sequence (λi) depends on M . By the definition of the

Thue-Morse sequence (τi)
∞
i=0 it follows that (cf. [1])

(2.4) λ2n+1 . . . λ2n+1 = λ1 . . . λ2n
+ for any n ≥ 0.

Recall that a function f : [a, b] → R is called a Devil’s staircase (or Cantor function) if f is

a continuous and non-decreasing function with f(a) < f(b), and f is locally constant almost

everywhere. The next lemma summarizes some results from [23] on the Hausdorff dimension

of Uq.

Lemma 2.4.

(i) For any q ∈ (1,M + 1] we have

dimH Uq =
htop(Vq)

log q
.

(ii) The entropy function H : q 7→ htop(Vq) is a Devil’s staircase in (1,M + 1]:

• H is increasing and continuous in (1,M + 1];

• H is locally constant almost everywhere in (1,M + 1];

• H(q) = 0 if and only if 1 < q ≤ qKL. Moreover, H(q) = log(M + 1) if and only if

q =M + 1.

Remark 2.5.
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(1) Lemma 2.4 implies that the dimensional function D : q 7→ dimH Uq has a Devil’s

staircase behavior: (i) D is continous in (1,M + 1]; (ii) D′ < 0 almost everywhere in

(1,M + 1]; (iii) D(q) = 0 for any q ∈ (1, qKL] and D(q) = 1 for q =M + 1.

(2) In [23, Lemma 2.11] the authors showed that H is locally constant on the complement

of U , i.e., H ′(q) = 0 for any q ∈ (1,M + 1] \ U .

2.3. Bifurcation set. In this subsection we recall some recent results obtained in [1], where

the authors investigated the maximal intervals on which H is locally constant, called entropy

plateaus (or simply called plateaus). For convenience of the reader we adopt much of the

notation from [1]. We hope that this helps the interested reader who wants to access the

relevant background information. Let B be the complement of these plateaus. From Lemma

2.4 (ii) we have

B = {q ∈ (1,M + 1] : H(p) 6= H(q) for any p 6= q} .

Note by (1.2) that B is not closed. For the closure B we have

B = {q ∈ (1,M + 1] : ∀δ > 0,∃p ∈ (q − δ, q + δ) such that H(p) 6= H(q)} .

In [1] B was denoted by E . The following lemma for B, the first part of which follows from

Remark 2.5 (2), was established in [1, Theorem 3].

Lemma 2.6. B ⊂ U , and B is a Cantor set of full Hausdorff dimension.

By Lemma 2.4 it follows that minB = qKL and maxB =M +1. Since B is a Cantor set,

we can write

(2.5) (qKL,M + 1] \ B =
⋃

(pL, pR),

where the union is pairwise disjoint and countable. By the definition of B it follows that the

intervals [pL, pR] are the plateaus of H. In particular, since H is increasing, these intervals

have the property that H(q) = H(pL) if and only if q ∈ [pL, pR]. This implies that the

bifurcation set B can be rewritten as in (1.2), i.e.,

B = (qKL,M + 1] \
⋃

[pL, pR].

By (2.5) and (1.2) it follows that B \B is countable. The fact that B does not have isolated

points gives the following lemma (see also [1]).

Lemma 2.7.

(i) For any q ∈ (qKL,M +1]\
⋃

(pL, pR] there exists a sequence of plateaus {[pL(n), pR(n)]}

such that pL(n) ր q as n→ ∞.
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(ii) For any q ∈ [qKL,M +1) \
⋃

[pL, pR) there exists a sequence of plateaus {[qL(n), qR(n)]}

such that qL(n) ց q as n→ ∞.

So, by (2.5), (1.2) and Lemma 2.7 it follows that B \B is a countable and dense subset of

B. In particular, the set of left endpoints of all plateaus of H is dense in B.

In [1] more detailed information on the structure of the plateaus of H is given. Before we

can give the necessary details, we have to recall some notation from [1]. Let V be the set of

sequences (ai) ∈ {0, 1, . . . ,M}N satisfying the inequalities

(ai) 4 σn((ai)) 4 (ai) for all n ≥ 0.

In [1, Lemma 3.3] it is proved that the subshift (Vq, σ) is not transitive for any q ∈ (qKL, qT ),

where qT ∈ (1,M + 1) ∩ B is the unique base such that

(2.6) α(qT ) =

{

(k + 1)k∞ if M = 2k,

(k + 1)((k + 1)k)∞ if M = 2k + 1.

The plateaus of H are characterized separately for the cases (A) q ∈ [qT ,M + 1] and (B)

q ∈ (qKL, qT ).

(A). First we recall from [1] the following definition.

Definition 2.8. A sequence (ai) ∈ V is called irreducible if

a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai) whenever (a1 . . . a

−
j )

∞ ∈ V.

Lemma 2.9. Let [pL, pR] ⊂ [qT ,M + 1] be a plateau of H.

(i) There exists a word a1 . . . am ∈ L(VpL) such that

α(pL) = (a1 . . . am)∞ is irreducible, and α(pR) = a1 . . . a
+
m(a1 . . . am)∞.

(ii) (VpL , σ) is a transitive subshift of finite type.

(iii) There exists a periodic sequence ν∞ ∈ VpL such that for any word η ∈ L(VpL) we can

find a large integer N and a word ω satisfying

α1(pL) . . . αN (pL) ≺ σj(ηων∞) ≺ α1(pL) . . . αN (pL) for any j ≥ 0.

Proof. Part (i) follows by [1, Proposition 5.2], and Part (ii) follows by [1, Lemma 5.1 (1)].

For (iii) we take

ν =

{

k if M = 2k,

(k + 1)k if M = 2k + 1.

Since pL ≥ qT , by Lemma 2.1 we have α(pL) < α(qT ). Then (2.6) gives that

(2.7) α1(pL)α2(pL) 4 α1(qT )α2(qT ) ≺ σj(ν∞) ≺ α1(qT )α2(qT ) 4 α1(pL)α2(pL)
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for all j ≥ 0. Note by (i) that α(pL) is irreducible. By the proof of [1, Proposition 3.17]

it follows that for any word η ∈ L(VpL) there exist a large integer N ≥ 2 and a word ω

satisfying

α1(pL) . . . αN (pL) ≺ σj(ηων∞) ≺ α1(pL) . . . αN (pL) for any 0 ≤ j < |η|+ |ω|.

This together with (2.7) proves (iii). �

(B). Now we consider plateaus of H in (qKL, qT ). Let (λi) be the quasi-greedy qKL-

expansion of 1 as given in (2.3). Note that (λi) depends on M . For n ≥ 1 let

(2.8) ξ(n) =

{

λ1 . . . λ2n−1(λ1 . . . λ2n−1
+)∞ if M = 2k,

λ1 . . . λ2n(λ1 . . . λ2n
+)∞ if M = 2k + 1.

Then ξ(1) = α(qT ), and ξ(n) is strictly decreasing to (λi) = α(qKL) as n→ ∞. Moreover, [1,

Lemma 4.2] gives that ξ(n) ∈ V for all n ≥ 1. We recall from [1] the following definition.

Definition 2.10. A sequence (ai) ∈ V is said to be ∗-irreducible if there exists n ∈ N such

that ξ(n+ 1) 4 (ai) ≺ ξ(n), and

a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai)

whenever

(a1 . . . a
−
j )

∞ ∈ V and j >

{

2n if M = 2k,

2n+1 if M = 2k + 1.

Lemma 2.11. Let [pL, pR] ⊆ (qKL, qT ) be a plateau of H.

(i) There exists a word a1 . . . am ∈ L(VpL) such that

α(pL) = (a1 . . . am)∞ is ∗-irreducible, and α(pR) = a1 . . . a
+
m(a1 . . . am)∞.

(ii) (VpL , σ) is a subshift of finite type, and it contains a unique transitive subshift of finite

type (XpL , σ) satisfying htop(XpL) = htop(VpL).

(iii) There exists a periodic sequence ν∞ ∈ XpL such that for any word η ∈ L(VpL) we can

find a large integer N and a word ω satisfying

α1(pL) . . . αN (pL) ≺ σj(ηων∞) ≺ α1(pL) . . . αN (pL) for any j ≥ 0.

Proof. Part (i) follows from [1, Proposition 5.11], and Part (ii) follows from [1, Lemma 5.9].

Then it remains to prove (iii).

By (i) we know that α(pL) is a ∗-irreducible sequence. Then there exists n ∈ N such that

ξ(n + 1) 4 α(pL) ≺ ξ(n). Note by (i) and (2.8) that α(pL) is purely periodic while ξ(n + 1)

is eventually periodic. Then α(pL) ≻ ξ(n+ 1). Let

ν =

{

λ1 . . . λ
−
2n if M = 2k,

λ1 . . . λ
−
2n+1 if M = 2k + 1.
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Then by the proof of [1, Lemma 5.9] we have ν∞ ∈ XpL . Observe by (2.4) and (2.8) that

ξ(n + 1) = ν+(ν)∞ ∈ V. Then by using α(pL) ≻ ξ(n + 1) it follows that there exists a large

integer N such that

α1(pL) . . . αN (pL) ≺ σj(ν∞) ≺ α1(pL) . . . αN (pL) for any j ≥ 0.

The remaining part of (iii) follows by the proof of [1, Lemma 5.8]. �

Finally, the following characterization of B was established in [1, Theorem 3].

Lemma 2.12. B = {q ∈ (qKL,M + 1] : α(q) is irreducible or ∗ −irreducible}.

3. Dimensional homogeneity of Uq

In this section we will prove Theorem 1. Instead of proving Theorem 1 we prove the

following equivalent statement.

Theorem 3.1. Let q ∈ (1, qKL] ∪ ((qKL,M + 1] \
⋃

(pL, pR]). Then for any x ∈ Uq we have

dimH(Uq ∩ (x− δ, x+ δ)) = dimH Uq for any δ > 0.

Before giving the proof of Theorem 3.1 we first explain why Theorem 3.1 is equivalent to

Theorem 1. Clearly, Theorem 1 implies Theorem 3.1. On the other hand, take q ∈ B. Let

V ⊆ R be an open set with Uq ∩ V 6= ∅. Then there exist x ∈ Uq ∩ V and δ > 0 such that

Uq ∩ V ⊃ Uq ∩ (x− δ, x+ δ).

By Theorem 3.1 it follows that dimH(Uq ∩ V ) ≥ dimH Uq, which gives Theorem 1.

Note that for q ∈ (1, qKL] the statement of Theorem 3.1 follows immediately from the

fact that dimH Uq = 0. For q ∈ (qKL,M + 1] recall that Vq is the set of sequences (xi) ∈

{0, 1, . . . ,M}N satisfying

α(q) 4 σn((xi)) 4 α(q) for all n ≥ 0.

Accordingly, let

Vq := {πq((xi)) : (xi) ∈ Vq} ,

where πq is the projection map defined in (1.1). For a set A ⊂ R and r ∈ R we denote by

rA := {r · a : a ∈ A} and r +A := {r + a : a ∈ A}.

The following lemma for a relationship between Uq and Vq follows from Lemma 2.2 and

the definition of Vq.
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Lemma 3.2. Let q ∈ (qKL,M + 1]. Then Uq is a countable union of affine copies of Vq up

to a countable set, i.e.,

Uq ∪N =

{

0,
M

q − 1

}

∪
M−1
⋃

c1=1

(

c1
q

+
Vq

q

)

∪
∞
⋃

m=2

M
⋃

cm=1

(

cm
qm

+
Vq

qm

)

∪
∞
⋃

m=2

M−1
⋃

cm=0

(

m−1
∑

i=1

M

qi
+
cm
qm

+
Vq

qm

)

,

where the set N is at most countable.

Proof. For q ∈ (qKL,M + 1] let Wq be the set of sequences (xi) satisfying

α(q) ≺ σn((xi)) ≺ α(q) for any n ≥ 0,

and let Wq = πq(Wq). Then Vq \Wq is at most countable (cf. [15]). By [23, Lemma 2.5] it

follows that

Uq =

{

0,
M

q − 1

}

∪
M−1
⋃

c1=1

(

c1
q

+
Wq

q

)

∪
∞
⋃

m=2

M
⋃

cm=1

(

cm
qm

+
Wq

qm

)

∪
∞
⋃

m=2

M−1
⋃

cm=0

(

m−1
∑

i=1

M

qi
+
cm
qm

+
Wq

qm

)

.

This establishes the lemma since Wq ⊆ Vq and Vq \Wq is at most countable. �

It immediately follows from Lemma 3.2 that

dimH Uq = dimH Vq for any q ∈ (qKL,M + 1].

Hence, it suffices to prove Theorem 3.1 for Vq instead of Uq. We first prove it for q being the

left endpoint of an entropy plateau.

Lemma 3.3. Let [pL, pR] ⊂ (qKL,M + 1) be a plateau of H. Then for any x ∈ VpL we have

dimH(VpL ∩ (x− δ, x+ δ)) = dimH VpL for any δ > 0.

Proof. Obviously, dimH(VpL ∩ (x − δ, x + δ)) ≤ dimH VpL . So, it suffices to the prove the

reverse inequality.

Fix δ > 0 and x ∈ VpL . Suppose that (xi) ∈ VpL is a pL-expansion of x. Then there exists

a large integer N such that

(3.1) πpL(FVpL
(x1 . . . xN )) ⊆ VpL ∩ (x− δ, x+ δ),

where the follower set FVpL
(x1 . . . xN ) = {(yi) ∈ VpL : y1 . . . yN = x1 . . . xN} is as defined in

(2.1). We split the proof into the following two cases.
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Case I. [pL, pR] ⊂ [qT ,M+1]. Then by Lemma 2.9 (ii) it follows that (VpL , σ) is a transitive

subshift of finite type. This implies that

htop(FVpL
(x1 . . . xN )) = htop(VpL).

Then, by (3.1), Lemma 2.4 (i) and Lemma 3.2 it follows that

dimH(VpL ∩ (x− δ, x + δ)) ≥ dimH πpL(FVpL
(x1 . . . xN ))

=
htop(FVpL

(x1 . . . xN ))

log pL

=
htop(VpL)

log pL
= dimH UpL = dimH VpL .

Case II. [pL, pR] ⊂ (qKL, qT ). Then by Lemma 2.11 (ii) it follows that (VpL , σ) is a subshift

of finite type that contains a unique transitive subshift of finite type XpL such that

(3.2) htop(XpL) = htop(VpL).

Furthermore, by Lemma 2.11 (iii) there exist a sequence ν∞ ∈ XpL and a word ω such that

(3.3) x1 . . . xNων
∞ ∈ FVpL

(x1 . . . xN ).

From [30, Proposition 2.1.7] there exists m ≥ 0 such that (VpL , σ) is an m-step subshift of

finite type. Note by (3.3) that the word x1 . . . xNων
m ∈ L(VpL). Then by [30, Theorem 2.1.8]

it follows that for any sequence (di) ∈ FXpL
(νm) ⊆ FVpL

(νm) we have x1 . . . xNωd1d2 . . . ∈

FVpL
(x1 . . . xN ). In other words,

{

x1 . . . xNωd1d2 . . . : (di) ∈ FXpL
(νm)

}

⊆ FVpL
(x1 . . . xN ).

Therefore, by (3.1) it follows that

dimH(VpL ∩ (x− δ, x+ δ)) ≥ dimH πpL(FVpL
(x1 . . . xN ))

≥ dimH πpL(FXpL
(νm)) = dimH πpL(XpL),

(3.4)

where the last equality holds by the transitivity of (XpL , σ). Observe that πpL(XpL) is a

graph-directed set satisfying the open set condition (cf. [31]). Then the Hausdorff dimension

of πpL(XpL) is given by

(3.5) dimH πpL(XpL) =
htop(XpL)

log pL
.

By (3.2), (3.4), (3.5) and Lemma 2.4 (i) we conclude that

dimH(VpL ∩ (x− δ, x + δ)) ≥ dimH πpL(XpL)

=
htop(XpL)

log pL
=
htop(VpL)

log pL

= dimH UpL = dimH VpL . �
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Now we consider q ∈ B. We need the following lemma.

Lemma 3.4. Let q ∈ (qKL,M + 1] and x1 . . . xN ∈ L(Vq). Let {pn} ⊂ (1,M + 1] be a

sequence such that α(pn) ∈ V for each n ≥ 1, and pn ր q as n→ ∞. Then

x1 . . . xN ∈ L(Vpn) for all sufficiently large n.

Proof. Since x1 . . . xN ∈ L(Vq), we have

α1(q) . . . αN−i(q) 4 xi+1 . . . xN 4 α1(q) . . . αN−i(q) for any 0 ≤ i < N.

Let s ∈ {0, 1, . . . , N − 1} be the smallest integer such that

(3.6) xs+1 . . . xN = α1(q) . . . αN−s(q) or xs+1 . . . xN = α1(q) . . . αN−s(q).

If there is no s ∈ {0, 1, . . . , N − 1} for which (3.6) holds, then we set s = N . By our choice of

s it follows that

(3.7) α1(q) . . . αN−i(q) ≺ xi+1 . . . xN ≺ α1(q) . . . αN−i(q) for all 0 ≤ i < s.

In terms of (3.6) we may assume by symmetry that

(3.8) xs+1 . . . xN = α1(q) . . . αN−s(q).

Since pn ր q as n→ ∞, by Lemma 2.1 there exists K ∈ N such that

α1(pn) . . . αN (pn) = α1(q) . . . αN (q) for any n ≥ K.

By the assumption that α(pn) ∈ V for any n ≥ 1, it follows from (3.7) and (3.8) that

x1 . . . xNαN−s+1(pn)αN−s+2(pn) . . . = x1 . . . xsα1(pn)α2(pn) . . . ∈ Vpn

for any n ≥ K. So, x1 . . . xN ∈ L(Vpn) for all n ≥ K. �

Lemma 3.5. Let q ∈ B. Then for any x ∈ Vq we have

dimH(Vq ∩ (x− δ, x+ δ)) = dimH Vq for any δ > 0.

Proof. Take q ∈ B. Since B ⊂ (qKL,M + 1] \
⋃

(pL, pR], by Lemma 2.7 (i) there exists a

sequence of plateaus {[pL(n), pR(n)]}
∞
n=1 such that pL(n) ր q as n→ ∞.

Now we fix δ > 0 and x ∈ Vq. Suppose (xi) ∈ Vq is a q-expansion of x. Then there exists

a large integer N such that

(3.9) πq(FVq (x1 . . . xN )) ⊆ Vq ∩ (x− δ, x+ δ).

By Lemmas 2.9 (i) and 2.11 (i) we have α(pL(n)) ∈ V for all n ≥ 1. Then applying Lemma

3.4 to the sequence {pL(n)} gives a large integer K such that

x1 . . . xN ∈ L(VpL(n)) for all n ≥ K.
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Since VpL(n) ⊂ Vq for any n ≥ 1, it follows from (3.9) that

(3.10) πq(FVpL(n)
(x1 . . . xN )) ⊂ Vq ∩ (x− δ, x+ δ) for all n ≥ K.

By (3.10) and the proof of Lemma 3.3 it follows that for any n ≥ K,

dimH(Vq ∩ (x− δ, x + δ)) ≥ dimH πq(FVpL(n)
(x1 . . . xN )) ≥

htop(VpL(n))

log q
.

Letting n → ∞ we have pL(n) ր q, and then we conclude by the continuity of the function

q 7→ htop(Vq) (see Lemma 2.4 (ii)) that

dimH(Vq ∩ (x− δ, x+ δ)) ≥
htop(Vq)

log q
= dimH Uq = dimH Vq. �

Proof of Theorem 3.1. Take q ∈ (1, qKL] ∪ ((qKL,M + 1] \
⋃

(pL, pR]). If q ∈ (1, qKL], then

the result follows from the fact that dimH Uq = 0 (see Lemma 2.4).

Assume q ∈ (qKL,M + 1] \
⋃

(pL, pR] where the union is taken over all plateaus [pL, pR]

of H. Take x ∈ Uq. If x /∈ {0,M/(q − 1)}, then by Lemma 3.2 x belongs to an affine copy

of Vq. Since the Hausdorff dimension is invariant under affine transformations (cf. [20]), the

statement follows from Lemmas 3.3 and 3.5.

So, it remains to consider x = 0 and x =M/(q − 1). By symmetry we may assume x = 0.

Take δ > 0. Then by Lemma 3.2 there exists a sufficiently large integer m such that

1

qm
+

Vq

qm
⊆ (Uq ∪N ) ∩ (−δ, δ),

where N is at most countable. This proves the statement for x = 0. �

At the end of this section we strengthen Theorem 3.1 and give a complete characterization

of the set

{q ∈ (1,M + 1] : Uq is dimensionally homogeneous} .

Let [pL, pR] ⊂ (qKL,M + 1] be a plateau of H. Note that pL ∈ B \ B ⊂ U \ U . Then by

[15, Theorem 1.7] there exists a largest p̂L ∈ (pL, pR) such that the set-valued map q 7→ Vq

is constant in [pL, p̂L). Furthermore, for q = p̂L any sequence in the difference set Vp̂L \VpL

is not contained in Up̂L . Then by the same argument as in the proof of Lemma 3.3 it follows

that Theorem 3.1 also holds for any q ∈ [pL, p̂L]. Clearly, Uq is dimensionally homogeneous

for q ≤ qKL. So, the univoque set Uq is dimensionally homogeneous for any q ∈ (1, qKL] ∪

((qKL,M +1] \
⋃

(p̂L, pR]). This, combined with some recent progress obtained by Allaart et

al. [2], implies the following.

Theorem 3.6.

(i) If M = 1 or M is even, then Uq is dimensionally homogeneous if, and only if, q ∈

(1, qKL] ∪ ((qKL,M + 1] \
⋃

(p̂L, pR]).
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(ii) If M = 2k+1 ≥ 3, then Uq is dimensionally homogeneous if, and only if, q ∈ (1, qKL]∪

((qKL,M + 1] \
⋃

(p̂L, pR]) or q = k+3+
√
k2+6k+1
2 .

Proof. By Theorem 3.1 and the above arguments it follows that Uq is dimensionally homogen-

eous for any q ∈ (1, qKL]∪ ((qKL,M +1]\
⋃

(p̂L, pR]). Then to prove the sufficiency it remains

to prove the dimensional homogeneity of Uq for q =
k+3+

√
k2+6k+1
2 =: q⋆ withM = 2k+1 ≥ 3.

Note that q⋆ is the right endpoint of the entropy plateau generated by k+1, i.e., [p⋆, q⋆] is an

entropy plateau with α(p⋆) = (k + 1)∞ and α(q⋆) = (k + 2)k∞. Then by [2, Corollary 3.10]

it follows that

(3.11) htop(Vq⋆ \Vp⋆) = htop(Vp⋆) = log 2,

where the second equality follows from that Vp⋆ = {k, k + 1}N. Furthermore, any se-

quence in Vq⋆ \Vp⋆ eventually ends in a transitive sub-shift of finite type (X,σ) with states

{k − 1, k, k + 1, k + 2} and adjacency matrix

(3.12) A =











0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0











.

Observe that htop(X) = log 2. Using (3.11) and by a similar argument as in the proof of

Lemma 3.3 it follows that Uq⋆ is dimensionally homogeneous.

Now we prove the necessity. Without loss of generality we assume that M = 1 or M

is even. Let [pL, pR] ⊂ (qKL,M + 1] be an entropy plateau generated by a1 . . . am, and let

p̂L ∈ (pL, pR) be the largest point such that the map q 7→ Vq is constant in [pL, p̂L). In fact,

we have α(p̂L) = (a1 . . . a
+
ma1 . . . a

+
m)∞ (cf. [15]). Take q ∈ (p̂L, pR]. Then Wq \ VpL 6= ∅,

where Wq is the set of sequences (xi) satisfying

α(q) ≺ σn((xi)) ≺ α(q) for any n ≥ 0.

Furthermore, any sequence in Wq \VpL must end in the sub-shift of finite type (Y, σ) with

states
{

a1 . . . a
+
m, a1 . . . am, a1 . . . am, a1 . . . a

+
m

}

and adjacency matrix A defined in (3.12).

In particular,

(3.13) htop(Y ) =
log 2

m
= htop(VpR \VpL) < htop(VpL),

where the inequality follows from [2, Corollary 3.10]. Observe that Wq ⊆ Uq. Therefore,

by (3.13) and the same argument as in the proof of Lemma 3.3 it follows that for any x ∈

πq(Wq \VpL) ⊂ Uq there exists δ > 0 such that

dimH(Uq ∩ (x− δ, x + δ)) ≤
htop(Y )

log q
<
htop(VpL)

log q
= dimH Uq.
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This completes the proof. �

4. Auxiliary Proposition

In this section we prove an auxiliary proposition that will be used to prove Theorem 2 in

the next section.

Proposition 4.1. Let q ∈ B \ {M + 1}. Then for any ε > 0 there exists δ > 0 such that

(1− ε) dimH πq(Bδ(q)) ≤ dimH(B ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Bδ(q)),

where

Bδ(q) :=
{

α(p) : p ∈ B ∩ (q − δ, q + δ)
}

.

The proof of Proposition 4.1 is based on the following lemma for the Hausdorff dimension

under Hölder continuous maps (cf. [20]).

Lemma 4.2. Let f : (X, ρ1) → (Y, ρ2) be a Hölder map between two metric spaces, i.e., there

exist two constants C > 0 and λ > 0 such that

ρ2(f(x), f(y)) ≤ Cρ1(x, y)
λ

for any x, y ∈ X with ρ1(x, y) ≤ c (here c is a small constant). Then dimH f(X) ≤ 1
λ
dimH X.

First we prove the second inequality in Proposition 4.1.

Lemma 4.3. Let q ∈ B \ {M + 1}. Then for any ε > 0 there exists δ > 0 such that

dimH(B ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Bδ(q)).

Proof. Fix ε > 0 and q ∈ B \ {M + 1}. Then there exists δ > 0 such that

(4.1) q − δ > 1, q + δ < M + 1 and
log(q + δ)

log(q − δ)
≤ 1 + ε.

Since B ⊆ U , by Lemmas 2.1 and 2.3 (ii) it follows that for each p ∈ B ∩ (q − δ, q + δ) we

have

α(q + δ) ≺ α(p) ≺ σi(α(p)) 4 α(p) ≺ α(q + δ) for all i ≥ 0.

So, by Lemma 2.2 α(p) ∈ Uq+δ for any p ∈ B ∩ (q − δ, q + δ). This implies that the map

g : B ∩ (q − δ, q + δ) → πq+δ(Bδ(q)); p 7→ πq+δ(α(p))

is bijective. By Lemma 4.2 it suffices to prove that there exists a constant C > 0 such that

∣

∣πq+δ(α(p2))− πq+δ(α(p1))
∣

∣ ≥ C |p2 − p1|
1+ε

for any p1, p2 ∈ B ∩ (q − δ, q + δ).
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Take p1, p2 ∈ B ∩ (q − δ, q + δ) with p1 < p2. Then by Lemma 2.1 we have α(p1) ≺ α(p2).

So, there exists n ≥ 1 such that

α1(p1) . . . αn−1(p1) = α1(p2) . . . αn−1(p2) and αn(p1) < αn(p2).

Then

0 < p2 − p1 =

∞
∑

i=1

αi(p2)

pi−1
2

−
∞
∑

i=1

αi(p1)

pi−1
1

≤
n−1
∑

i=1

(

αi(p2)

pi−1
2

−
αi(p1)

pi−1
1

)

+
∞
∑

i=n

αi(p2)

pi−1
2

≤ p2−n
2 ,

(4.2)

where the last inequality follows from the property of quasi-greedy expansion α(p2) that
∑∞

i=1 αk+i(p2)/p
i
2 ≤ 1 for any k ≥ 1.

On the other hand, by (4.1) we have α(p2) 4 α(q + δ) ≺ α(M + 1) = M∞. Then there

exists a large integer N (depending on q + δ) such that

(4.3) α1(p2) . . . αN (p2) 4MN−1(M − 1).

Note that p2 ∈ B ⊆ U . Then by Lemma 2.3 (ii) and (4.3) it follows that

αm+1(p2)αm+2(p2) . . . ≻ α(p2) < 0N−110∞ for any m ≥ 1.

This implies that

πq+δ(α(p2))− πq+δ(α(p1))

=

∞
∑

i=1

αi(p2)− αi(p1)

(q + δ)i

=
αn(p2)− αn(p1)

(q + δ)n
−

1

(q + δ)n

∞
∑

i=1

αn+i(p1)

(q + δ)i
+

∞
∑

i=n+1

αi(p2)

(q + δ)i

≥
1

(q + δ)n
−

1

(q + δ)n

∞
∑

i=1

αn+i(p1)

pi1
+

∞
∑

i=n+1

αi(p2)

(q + δ)i

≥
∞
∑

i=n+1

αi(p2)

(q + δ)i
≥

1

(q + δ)n+N
,

where the second inequality follows from the same property of the quasi-greedy expansion

α(p1) that was used before.

Therefore, by (4.1) and (4.2) it follows that

πq+δ(α(p2))− πq+δ(α(p1)) ≥
(

(q + δ)−
n+N
1+ε

)1+ε

≥
(

(q − δ)−n−N
)1+ε

≥ (q − δ)−N(1+ε)(p−n
2 )1+ε ≥ C(p2 − p1)

1+ε,
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where the constant C = (q − δ)−N(1+ε)(q + δ)−2(1+ε). This completes the proof. �

Now we turn to prove the first inequality of Proposition 4.1.

Lemma 4.4. Let q ∈ B \ {M + 1}. Then for any ε > 0 there exists δ > 0 such that

dimH(B ∩ (q − δ, q + δ)) ≥ (1− ε) dimH πq(Bδ(q)).

Proof. The proof is similar to that of Lemma 4.3. Fix ε > 0 and take q ∈ B \{M + 1}. Then

there exists δ > 0 such that

(4.4) q − δ > 1, q + δ < M + 1 and
log(q + δ)

log q
≤

1

1− ε
.

Take p1, p2 ∈ B ∩ (q − δ, q + δ) with p1 < p2. Then by Lemma 2.1 we have α(p1) ≺ α(p2),

and therefore there exists a smallest integer n ≥ 1 such that αn(p1) < αn(p2). This implies

that

(4.5)
∣

∣πq(α(p2))− πq(α(p1))
∣

∣ =

∣

∣

∣

∣

∣

∞
∑

i=1

αi(p2)− αi(p1)

qi

∣

∣

∣

∣

∣

≤
∞
∑

i=n

M

qi
=

Mq

q − 1
q−n.

On the other hand, observe that q+δ < M+1. Then α(p2) 4 α(q+δ) ≺ α(M+1) =M∞.

So, there exists N ≥ 1 such that

α1(p2) . . . αN (p2) 4MN−1(M − 1).

Since p2 ∈ B ⊆ U , Lemma 2.3 (ii) gives

1 =

∞
∑

i=1

αi(p2)

pi2
>

n
∑

i=1

αi(p2)

pi2
+

1

pn+N
2

,

which implies that

1

pn+N
2

< 1−
n
∑

i=1

αi(p2)

pi2
=

∞
∑

i=1

αi(p1)

pi1
−

n
∑

i=1

αi(p2)

pi2

≤
n
∑

i=1

(

αi(p2)

pi1
−
αi(p2)

pi2

)

≤
∞
∑

i=1

(

M

pi1
−
M

pi2

)

=
M

(p1 − 1)(p2 − 1)
(p2 − p1).

(4.6)

Here the second inequality holds since

α1(p1) . . . αn−1(p1) = α1(p2) . . . αn−1(p2),

αn(p1) < αn(p2) and
∞
∑

i=1

αn+i(p1)/p
i
1 ≤ 1.



22 CHARLENE KALLE, DERONG KONG, WENXIA LI, AND FAN LÜ

Therefore, by (4.4)–(4.6) we conclude that

∣

∣πq(α(p2))− πq(α(p1))
∣

∣ ≤
MqN+1

q − 1

(

q−
n+N
1−ε

)1−ε

≤
MqN+1

q − 1
(q + δ)−(n+N)(1−ε)

≤
MqN+1

q − 1
p
−(n+N)(1−ε)
2 < C(p2 − p1)

1−ε,

where

C =
M2−εqN+1

(q − 1)(q − δ − 1)2(1−ε)
.

Note by Lemma 2.1 that the map p 7→ α(p) is bijective from B ∩ (q − δ, q + δ) onto Bδ(q).

Hence, the lemma follows by letting f = πq ◦ α in Lemma 4.2. �

Proof of Proposition 4.1. The proposition follows from Lemmas 4.3 and 4.4. �

5. Local dimension of B

In this section we will prove Theorem 2, which states that for any q ∈ B we have

lim
δ→0

dimH(B ∩ (q − δ, q + δ)) = dimH Uq.

First we prove the upper bound.

Proposition 5.1. For any q ∈ B we have

lim
δ→0

dimH(B ∩ (q − δ, q + δ)) ≤ dimH Uq.

Proof. Take q ∈ B. By Lemma 2.4 and Proposition 4.1 it follows that for any ε > 0 there

exists a δ > 0 such that

dimH Uq+δ ≤ dimH Uq + ε,

dimH(B ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Bδ(q)),
(5.1)

where Bδ(q) =
{

α(p) : p ∈ (q − δ, q + δ) ∩ B
}

.

Since B ⊆ U , Lemmas 2.1 and 2.3 (ii) give that any sequence α(p) ∈ Bδ(q) satisfies

α(q + δ) ≺ α(p) ≺ σn(α(p)) 4 α(p) ≺ α(q + δ) for all n ≥ 0.

By Lemma 2.2 this implies that Bδ(q) ⊆ Uq+δ . Therefore, by (5.1) it follows that

dimH(B ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Bδ(q))

≤ (1 + ε) dimH Uq+δ ≤ (1 + ε)(dimH Uq + ε).

Since ε > 0 was arbitrary, this completes the proof. �
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The proof of the lower bound of Theorem 2 is tedious. We will prove this in several steps.

First we need the following lemma.

Lemma 5.2. Let [pL, pR] ⊆ (qKL,M + 1) be a plateau of H such that α(pL) = (α1 . . . αm)∞

with period m. Then

αi+1 . . . αm ≺ α1 . . . αm−i for all 0 < i < m,

αi+1 . . . αmα1 . . . αi ≻ α1 . . . αm for all 0 ≤ i < m.

Proof. Since (α1 . . . αm)∞ is the quasi-greedy pL-expansion of 1 with periodm, the greedy pL-

expansion of 1 is α1 . . . α
+
m0∞. So, by [17, Propostion 2.2] it follows that σn(α1 . . . α

+
m0∞) ≺

α1 . . . α
+
m0∞ for any n ≥ 1. This implies

αi+1 . . . αm ≺ αi+1 . . . α
+
m 4 α1 . . . αm−i for any 0 < i < m.

Lemma 2.6 states that pL ∈ B ⊂ U . Then by Lemma 2.3 (ii) we have that

(αi+1 . . . αmα1 . . . αi)
∞ = σi((α1 . . . αm)∞) ≻ (α1 . . . αm)∞

for any 0 ≤ i < m. This implies that

αi+1 . . . αmα1 . . . αi ≻ α1 . . . αm for any 0 ≤ i < m. �

Let [pL, pR] ⊂ (qKL,M +1) be a plateau of H. For any N ≥ 1 let (WpL,N , σ) be a subshift

of finite type in {0, 1, . . . ,M}N with the set of forbidden blocks c1 . . . cN satisfying

c1 . . . cN 4 α1(pL) . . . αN (pL) or c1 . . . cN < α1(pL) . . . αN (pL).

Then any sequence (xi) ∈ WpL,N satisfies

α1(pL) . . . αN (pL) ≺ σn((xi)) ≺ α1(pL) . . . αN (pL) for all n ≥ 0.

If αN (pL) > 0, then WpL,N is indeed the set of sequences (xi) ∈ {0, 1, . . . ,M}N satisfying

(α1(pL) . . . αN (pL)
+
)∞ 4 σn((xi)) 4 (α1(pL) . . . αN (pL)

−)∞

for all n ≥ 0. By the definition of WpL,N it gives that

WpL,1 ⊆ WpL,2 ⊆ · · · ⊆ VpL .

We emphasize that WpL,1 can be an empty set, and the inclusions in the above equation are

not necessarily strict.

Observe that (VpL , σ) is a subshift of finite type with positive topological entropy. The

following asymptotic result was established in [23, Proposition 2.8].

Lemma 5.3. Let [pL, pR] ⊆ [qT ,M + 1] be a plateau of H. Then

lim
N→∞

htop(WpL,N) = htop(VpL).
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Recall from (2.8) that

ξ(n) = λ1 . . . λ2n−1(λ1 . . . λ2n−1
+)∞ if M = 2k,

ξ(n) = λ1 . . . λ2n(λ1 . . . λ2n
+)∞ if M = 2k + 1.

Note that the sequence (λi) in the definition of ξ(n) depends on M . In the following lemma

we show that the entropy of (WpL,N , σ) is equal to the entropy of the follower set FWpL,N
(ν)

for all sufficiently large integers N , where ν is the word defined in Lemma 2.9 (iii) or Lemma

2.11 (iii).

Lemma 5.4.

(i) Let [pL, pR] ⊂ [qT ,M + 1] be a plateau of H, and let

ν =

{

k if M = 2k,

(k + 1)k if M = 2k + 1.

Then for all sufficiently large integers N we have

htop(FWpL,N
(νℓ)) = htop(WpL,N ) for any ℓ ≥ 1.

(ii) Let [pL, pR] ⊂ (qKL, qT ) be a plateau of H with ξ(n+ 1) 4 α(pL) ≺ ξ(n). Set

ν =

{

λ1 . . . λ
−
2n if M = 2k,

λ1 . . . λ
−
2n+1 if M = 2k + 1.

Then for all sufficiently large integers N we have

htop(FWpL,N
(νℓ)) = htop(WpL,N ) for any ℓ ≥ 1.

Proof. Take ℓ ≥ 1. First we prove (i). By Lemma 2.9 (iii) there exists a large integer N ≥ 2

such that νℓ ∈ L(WpL,N ). Since (WpL,N , σ) is a subshift of finite type, to prove (i) it suffices

to prove that for any word ρ ∈ L(WpL,N ) there exists a word γ of uniformly bounded length

for which νℓγρ ∈ L(WpL,N ).

Take ρ = ρ1 . . . ρm ∈ L(WpL,N ). IfM = 2k, then ν = k. Since α(pL) < α(qT ) = (k+1)k∞,

we have

α1(pL) ≤ k − 1 < ν < k + 1 ≤ α1(pL).

So, νℓγρ ∈ L(WpL,N ) by taking γ = ǫ the empty word. Similarly, if M = 2k + 1 then

ν = (k + 1)k. Observe that α(pL) < α(qT ) = (k + 1)((k + 1)k)∞. This implies that νℓγρ ∈

L(WpL,N ) by taking γ = ǫ if the initial word ρ1 ≥ k + 1, and by taking γ = k + 1 if ρ1 ≤ k.

Now we turn to prove (ii). We only give the proof forM = 2k, since the proof forM = 2k+1

is similar. Then ν = λ1 . . . λ
−
2n . By Lemma 2.11 (iii) there exists a large integer N ≥ 2n+1

such that ν∞ = (λ1 . . . λ
−
2n)

∞ ∈ WpL,N . Since htop(VpL) > 0, by Lemma 5.3 we can choose N

sufficiently large such that htop(WpL,N) > 0. Since WpL,N is a subshift of finite type, there
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exists a transitive subshift of finite type XN ⊂ WpL,N for which htop(XN ) = htop(WpL,N )

(cf. [30, Theorem 4.4.4]). We claim that the word λ1 . . . λ2n or λ1 . . . λ2n belongs to L(XN ).

By (2.8) and (2.4) it follows that

ξ(n) = λ1 . . . λ2n−1(λ1 . . . λ2n−1
+)∞ = λ1 . . . λ2n(λ1 . . . λ2n−1

+)∞.

Then the assumption ξ(n+ 1) 4 α(pL) ≺ ξ(n) gives that

(5.2) α1(pL) . . . α2n(pL) = λ1 . . . λ2n = α1(qKL) . . . α2n(qKL).

Suppose that the words λ1 . . . λ2n and λ1 . . . λ2n do not belong to L(XN ). Then by (5.2) we

have

XN ⊂ WpL,2n = WqKL,2n ⊂ VqKL
.

So, by Lemma 2.4 it follows that XN has zero topological entropy, leading to a contradiction

with htop(XN ) = htop(WpL,N ) > 0.

By the claim, to finish the proof of (ii) it suffices to prove that for any word ρ ∈ L(XN )

with a prefix λ1 . . . λ2n or λ1 . . . λ2n there exists a word γ of uniformly bounded length such

that νℓγρ ∈ L(WpL,N ). In [26, Lemma 4.2] (see also, [1, Lemma 4.2]) it was shown that for

any n ≥ 1 we have

λ1 . . . λ2n−i ≺ λi+1 . . . λ2n 4 λ1 . . . λ2n−i for any 0 ≤ i < 2n.

This implies that for any 0 ≤ i < 2n we have

(5.3) λi+1 . . . λ
−
2n ≺ λ1 . . . λ2n−i and λi+1 . . . λ

−
2nλ1 . . . λi ≻ λ1 . . . λ2n .

Observe that

ν = λ1 . . . λ
−
2n = λ1 . . . λ2n−1λ1 . . . λ2n−1 .

Then by (5.2) and (5.3) it follows that if λ1 . . . λ2n is a prefix of ρ, then νℓγρ ∈ L(WpL,N )

by taking γ = ǫ the empty word, and if λ1 . . . λ2n is a prefix of ρ then νℓγρ ∈ L(WpL,N) by

taking γ = λ1 . . . λ2n−1 . �

In the following lemma we prove the lower bound of Theorem 2 for q ∈ [qT ,M + 1] being

the left endpoint of an entropy plateau.

Lemma 5.5. Let [pL, pR] ⊆ [qT ,M + 1] be a plateau of H. Then for any δ > 0 we have

dimH(B ∩ (pL − δ, pL + δ)) ≥ dimH UpL .

Proof. By Lemma 2.9 (i) it follows that α(pL) = (αi) = (α1 . . . αm)∞ is an irreducible se-

quence, where m is the minimal period of α(pL). Then, there exists a large integer N1 > m

such that

(5.4) α1 · · ·αj(α1 . . . αj
+)∞ ≺ α1 . . . αN1 if (α1 . . . α

−
j )

∞ ∈ V and 1 ≤ j ≤ m.
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Let ν be the word defined in Lemma 5.4 (i). Then by Lemma 2.9 (iii) there exist a large

integer N > N1 and a word ω such that

(5.5) α1 . . . αN ≺ σn(α1 . . . αmων
∞) ≺ α1 . . . αN for any n ≥ 0.

Observe that (WpL,N , σ) is anN -step subshift of finite type. Note by (5.5) that α1 . . . αmων
N ∈

L(WpL,N ). Then by [30, Theorem 2.1.8] it follows that for any sequence (di) ∈ FWpL,N
(νN )

we have α1 . . . αmωd1d2 . . . ∈ FWpL,N
(α1 . . . αm). In other words,

{

α1 . . . αmωd1d2 . . . : (di) ∈ FWpL,N
(νN )

}

⊆ FWpL,N
(α1 . . . αm) ⊆ WpL,N .

So,

htop(FWpL,N
(νN )) ≤ htop(FWpL,N

(α1 . . . αm)) ≤ htop(WpL,N ).

Therefore, by Lemma 5.4 (i) we obtain

(5.6) htop(FWpL,N
(α1 . . . αm)) = htop(WpL,N ).

Let ΛN be the set of sequences (ai) ∈ {0, 1, . . . ,M}∞ satisfying

a1 . . . amN = (α1 . . . αm)N and amN+1amN+2 . . . ∈ FWpL,N
(α1 . . . αm).

Fix δ > 0. We claim that

ΛN ⊆ Bδ(pL) =
{

α(q) : q ∈ B ∩ (pL − δ, pL + δ)
}

for all sufficiently large integers N > N1.

Clearly, when N increases the length of the common prefix of sequences in ΛN grows, and

it coincides with a prefix of α(pL) = (α1 . . . αm)∞. So, by Lemmas 2.1 and 2.12 it suffices to

show that for all N > N1 any sequence (ai) ∈ ΛN is irreducible.

Take N > N1 and (ai) ∈ ΛN . First we claim that

(5.7) α1 . . . αN ≺ σn((ai)) ≺ α1 . . . αN for any n ≥ 1.

Observe that a1 . . . amN = (α1 . . . αm)N and the tails amN+1amN+2 . . . ∈ FWpL,N
(α1 . . . αm).

Since N > N1 > m, (5.7) follows directly from Lemma 5.2.

Note by the definition of ΛN that a1 . . . aN = α1 . . . αN . By (5.7) it follows that (ai) ∈ V.

So, by Definition 2.8 it remains to prove that

(5.8) a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai) whenever (a1 . . . a

−
j )

∞ ∈ V.

We split the proof of (5.8) into the following three cases.

• For 1 ≤ j ≤ m, (5.8) follows from (5.4).
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• For m < j ≤ N , let j = j1m + r1 with j1 ≥ 1 and r1 ∈ {1, 2, . . . ,m}. Since

(α1 . . . α
−
j )

∞ = ((α1 . . . αm)j1α1 . . . α
−
r1
)∞ ∈ V, we have

αr1+1 . . . αmα1 . . . αr1 ≻ αr1+1 . . . αmα1 . . . α
−
r1

< α1 . . . αm.

This implies that

a1 . . . aj(a1 . . . aj
+)∞ = (α1 . . . αm)j1α1 . . . αr1α1 . . . αm . . .

≺ (α1 . . . αm)j1α1 . . . αr1αr1+1 . . . αmα1 . . . αr10
∞

4 (ai).

• For j > N , by (5.7) it follows that

(a1 . . . aj
+)∞ = (α1 . . . αNaN+1 . . . aj

+)∞ ≺ aj+1aj+2 . . . ,

which implies that (5.8) also holds in this case.

Therefore, (ai) is an irreducible sequence, and thus (ai) ∈ Bδ(pL). So, ΛN ⊆ Bδ(pL) for all

N > N1.

Note that πpL(ΛN ) is a scaling copy of πpL(FWpL,N
(α1 . . . αm)) which is related to a graph-

directed set satisfying the open set condition (cf. [23, Lemma 3.2]). By Proposition 4.1 and

(5.6) it follows that for any ε > 0 there exists δ > 0 such that

dimH(B ∩ (pL − δ, pL + δ)) ≥ (1− ε) dimH πpL(Bδ(pL))

≥ (1− ε) dimH πpL(ΛN )

= (1− ε)
htop(FWpL,N

(α1 . . . αm))

log pL

= (1− ε)
htop(WpL,N )

log pL

for all sufficiently large integers N > N1. Letting N → ∞ we conclude by Lemmas 5.3 and

2.4 that

dimH(B ∩ (pL − δ, pL + δ)) ≥ (1− ε)
htop(VpL)

log pL
= (1− ε) dimH UpL .

Since ε > 0 was taken arbitrarily, this establishes the lemma. �

Now we prove the lower bound of Theorem 2 for q ∈ (qKL, qT ) being the left endpoint of

an entropy plateau.

Lemma 5.6. Let [pL, pR] ⊂ (qKL, qT ) be a plateau of H. Then for any δ > 0 we have

dimH B ∩ (pL − δ, pL + δ) ≥ dimH UpL .
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Proof. The proof is similar to that of Lemma 5.5. We only give the proof for M = 2k, since

the proof for M = 2k + 1 is similar.

By Lemma 2.11 (i) it follows that α(pL) = (αi) = (α1 . . . αm)∞ is a ∗-irreducible sequence,

wherem is the minimal period of α(pL). Then there exists n ≥ 1 such that ξ(n+1) 4 α(pL) ≺

ξ(n), where ξ(n) = λ1 . . . λ2n−1(λ1 . . . λ2n−1
+)∞. By (2.4) this implies that m > 2n. Since

α(pL) = (αi) is periodic while ξ(n+1) is eventually periodic, we have ξ(n+1) ≺ α(pL) ≺ ξ(n).

So there exists a large integer N0 such that

(5.9) ξ(n+ 1) ≺ α1 . . . αN0 ≺ ξ(n).

Since α(pL) = (αi) is ∗-irreducible, by Definition 2.10 there exists an integer N1 > N0 such

that

(5.10) α1 . . . αj(α1 . . . αj
+)∞ ≺ α1 . . . αN1 if (α1 . . . α

−
j )

∞ ∈ V and 2n < j ≤ m.

Let ν = λ1 . . . λ
−
2n be the word defined as in Lemma 5.4 (ii). Then by Lemma 2.11 (iii)

there exist a large integer N ≥ N1 and a word ω such that

(5.11) α1 . . . αN ≺ σj(α1 . . . αmων
∞) ≺ α1 . . . αN for any j ≥ 0.

Observe that (WpL,N , σ) is anN -step subshift of finite type. Note by (5.11) that α1 . . . αmων
N ∈

L(WpL,N ). Then by [30, Theorem 2.1.8] it follows that for any sequence (di) ∈ FWpL,N
(νN )

we have α1 . . . αmωd1d2 . . . ∈ FWpL,N
(α1 . . . αm). This implies

{

α1 . . . αmωd1d2 . . . : (di) ∈ FWpL,N
(νN )

}

⊆ FWpL,N
(α1 . . . αm) ⊆ WpL,N .

So, by Lemma 5.4 (ii) we obtain

(5.12) htop(FWpL,N
(α1 . . . αm)) = htop(WpL,N ).

Let ∆N be the set of sequences (ai) satisfying

a1 . . . amN = (α1 . . . αm)N and amN+1amN+2 . . . ∈ FWpL,N
(α1 . . . αm).

Fix δ > 0. Then we claim that

∆N ⊂ Bδ(pL) =
{

α(q) : q ∈ B ∩ (pL − δ, pL + δ)
}

for all sufficiently large integers N > N1. Observe that the common prefix of sequences in ∆N

has length at least m(N + 1) and it coincides with a prefix of α(pL) = (α1 . . . αm)∞. So, by

Lemmas 2.1 and 2.12 it suffices to show that for all integers N > N1 any sequence in ∆N is

∗-irreducible.

Take N > N1 sufficiently large and take (ai) ∈ ∆N . Then by (5.9) we have ξ(n + 1) ≺

(ai) ≺ ξ(n). Furthermore, by Lemma 5.2 and the definition of ∆N it follows that

(5.13) a1 . . . aN ≺ σj((ai)) ≺ a1 . . . aN for any j ≥ 1.
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This implies that (ai) ∈ V. Furthermore, by (5.10), (5.13) and arguments similar to those in

the proof of Lemma 5.5 we can prove that

a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai)

whenever j > 2n and (a1 . . . a
−
j )

∞ ∈ V. Therefore, by Definition 2.10 the sequence (ai) is

∗-irreducible, and then ∆N ⊂ Bδ(pL) for all N > N1, proving the claim.

Hence, by Proposition 4.1 and (5.12) it follows that for any ε > 0 there exists δ > 0 such

that

dimH(B ∩ (pL − δ, pL + δ)) ≥ (1− ε) dimH πpL(Bδ(pL))

≥ (1− ε) dimH πpL(∆N )

= (1− ε)
htop(FWpL,N

(α1 . . . αm))

log pL

= (1− ε)
htop(WpL,N )

log pL

for all sufficiently large integers N > N1. Letting N → ∞ we obtain by Lemmas 5.3 and 2.4

that

dimH(B ∩ (pL − δ, pL + δ)) ≥ (1− ε)
htop(VpL)

log pL
= (1− ε) dimH UpL .

Since ε > 0 was arbitrary, we complete the proof by letting ε→ 0. �

Proof of Theorem 2. Take q ∈ B and δ > 0. By Lemma 2.7 there exists a sequence of plateaus

{[pL(n), pR(n)]} such that pL(n) converges to q as n→ ∞. By Lemmas 5.5 and 5.6 it follows

that

dimH(B ∩ (q − δ, q + δ)) ≥ dimH UpL(n)

for all sufficiently large n. Letting n→ ∞ and by Lemma 2.4 we obtain that

(5.14) dimH(B ∩ (q − δ, q + δ)) ≥ dimH Uq.

Therefore, the theorem follows from (5.14) and Proposition 5.1. �

6. Dimensional spectrum of U

Recall that U is the set of univoque bases q ∈ (1,M + 1] for which 1 has a unique q-

expansion. In this section we will use Theorem 2 to prove Theorem 3 for the dimensional

spectrum of U , which states that

dimH(U ∩ (1, t]) = max
q≤t

dimH Uq for all t > 1.

We focus on t ∈ (qKL,M + 1), since by Lemma 2.4 the other cases are trivial.

Since the proof of Lemma 4.3 above only uses properties of U instead of B, the proof also

gives the following lemma for the set U .
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Lemma 6.1. Let q ∈ U \ {M + 1}. Then for any ε > 0 there exists a δ > 0 such that

dimH(U ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Uδ(q)),

where Uδ(q) =
{

α(p) : p ∈ U ∩ (q − δ, q + δ)
}

.

To prove Theorem 3 we first consider the upper bound.

Lemma 6.2. For any t ∈ (qKL,M + 1) we have

dimH(U ∩ (1, t]) ≤ max
q≤t

dimH Uq.

Proof. Fix ε > 0, and take t ∈ (qKL,M + 1). Then it suffices to prove

(6.1) dimH(U ∩ (1, t]) ≤ (1 + ε)(max
q≤t

dimH Uq + ε).

By Lemmas 2.4 and 6.1 it follows that for each q ∈ U ∩ (1, t] there exists a sufficiently

small δ = δ(q, ε) > 0 such that

dimH Uq+δ ≤ dimH Uq + ε,

dimH(U ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Uδ(q)).
(6.2)

Observe that
{

(q − δ, q + δ) : q ∈ U ∩ (1, t]
}

is an open cover of U ∩(1, t], and that U ∩(1, t] =

U ∩ [qKL, t] is a compact set. Hence, there exist q1, q2, . . . , qN in U ∩ (1, t] such that

(6.3) U ∩ (1, t] ⊆
N
⋃

i=1

(

U ∩ (qi − δi, qi + δi)
)

,

where δi = δ(qi, ε) for 1 ≤ i ≤ N .

Note by Lemmas 2.2 and 2.3 that for each i ∈ {1, 2, . . . , N} we have

πqi+δi(Uδi(qi)) = πqi+δi(
{

α(p) : p ∈ U ∩ (qi − δi, qi + δi)
}

) ⊆ Uqi+δi .

Then by (6.2) and (6.3) it follows that

dimH(U ∩ (1, t]) ≤ dimH

(

N
⋃

i=1

(

U ∩ (qi − δi, qi + δi)
)

)

= max
1≤i≤N

dimH(U ∩ (qi − δi, qi + δi))

≤ (1 + ε) max
1≤i≤N

dimH πqi+δi(Uδi(qi))

≤ (1 + ε) max
1≤i≤N

dimH Uqi+δi

≤ (1 + ε) max
1≤i≤N

(dimH Uqi + ε)

≤ (1 + ε)(max
q≤t

dimH Uq + ε).

This proves (6.1), and completes the proof. �
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The next lemma gives the lower bound of Theorem 3.

Lemma 6.3. For any t ∈ (qKL,M + 1) we have

dimH(U ∩ (1, t]) ≥ max
q≤t

dimH Uq.

Proof. Take t ∈ (qKL,M + 1). Note by Lemma 2.4 that the dimension function D : q 7→

dimH Uq is continuous. Then there exists q∗ ∈ [qKL, t] such that

dimH Uq∗ = max
q≤t

dimH Uq.

Since the entropy function H is locally constant on the complement of B, it follows by Lemma

2.4 that

q∗ ∈ (qKL, t] \
⋃

(pL, pR] ⊆ (qKL, t] ∩ B.

If q∗ ∈ (qKL, t) ∩ B, then the lemma follows by B ⊂ U and Theorem 2. If q∗ = t, then

by Lemma 2.7 (i) there exists a sequence of plateaus {[pL(n), pR(n)]} such that pL(n) ∈

(qKL, t) ∩ B and pL(n) ր q∗ as n → ∞. Therefore, by Lemma 2.4 and Theorem 2 we also

have

dimH(U ∩ (1, t]) ≥ dimH(B ∩ (qKL, t]) ≥ dimH UpL(n) → dimH Uq∗

as n→ ∞. This establishes the lemma. �

Proof of Theorem 3. For 1 < t ≤ qKL we have U ∩ (1, t] ⊆ {qKL} and thus by Lemma 2.4 (i)

it follows that

dimH(U ∩ (1, t]) = 0 = max
q≤t

dimH Uq.

For t ≥ M + 1 we have U = U ∩ (1, t] and the result also follows from Lemma 2.4. For the

remaining t the result follows from Lemmas 6.2 and 6.3, since U \U is countable.

From Lemma 2.4 it follows that the dimension function D : q 7→ dimH Uq has a Devil’s

staircase behavior (see also Remark 2.5 (1)). This implies that φ(t) := maxq≤t dimH Uq is a

Devil’s staircase in (1,∞): (i) φ is non-decreasing and continuous in (1,∞); (ii) φ is locally

constant almost everywhere in (1,∞); and (iii) φ(qKL) = 0, and φ(t) > 0 for any t > qKL.

�

7. Variations of U (M)

For any K ∈ {0, 1, . . . ,M}, let U (K) denote the set of bases q > 1 such that 1 has a unique

q-expansion over the alphabet {0, 1, . . . ,K}. Then U (K) ⊂ (1,K + 1]. In this section we

investigate the Hausdorff dimension of the intersection
⋂M

J=K U (J), and prove Theorem 4.

Note that qKL = qKL(M) is the smallest element of U (M), and K +1 is the largest element

of U (K). So, if K+1 < qKL then U (M)∩U (K) = ∅. Therefore, in the following we assume

K ∈ [qKL − 1,M ].
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Lemma 7.1. Let K ∈ [qKL − 1,M ] be an integer. Then for each q ∈ U (M) ∩ (1,K + 1] the

unique expansion α(q) = (αi(q)) satisfies

M −K ≤ αi(q) ≤ K for any i ≥ 1.

Proof. Clearly, the lemma holds if K =M . So we assume K < M . Take q ∈ U (M)∩ (1,K+

1] ⊆ [qKL,K + 1]. Then

α(qKL) � α(q) � α(K + 1) = K∞.

This, together with α1(qKL) ≥M − α1(qKL), implies that

M −K ≤ α1(qKL) ≤ α1(q) ≤ K.

Since M > K and q ∈ U (M), it follows from Lemma 2.3 (i) that

M −K ≤M − α1(q) ≤ αi(q) ≤ α1(q) ≤ K for any i ≥ 1.

This completes the proof. �

Lemma 7.2. Let K ∈ [qKL − 1,M ] be an integer. Then

U (M) ∩ U (K) = (1,K + 1] ∩ U (M).

Proof. Since U (K) ⊆ (1,K + 1], it suffices to prove that U (M) ∩ (1,K + 1] ⊆ U (K). Take

q ∈ U (M) ∩ (1,K + 1]. Then by Lemma 2.3 it follows that α(q) = (αi(q)) satisfies

(7.1) (K − αi(q)) � (M − αi(q)) ≺ αi+1(q)αi+2(q) · · · ≺ α(q) for all i ≥ 1.

Note by Lemma 7.1 that 0 ≤ αi(q) ≤ K for all i ≥ 1. Hence, by (7.1) and Lemma 2.3 we

conclude that q ∈ U (K). �

Proof of Theorem 4. First we prove (i). Clearly, if K < qKL − 1 then
⋂M

J=K U (J) = ∅, and

therefore (i) holds by Lemma 2.4 (i). If qKL − 1 ≤ K ≤M , then by repeatedly using Lemma
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7.2 we conclude that

M
⋂

J=K

U (J) =
(

U (M) ∩ U (M − 1)
)

∩
M−2
⋂

J=K

U (J)

= (1,M ] ∩ U (M) ∩
M−2
⋂

J=K

U (J)

= (1,M ] ∩
(

U (M) ∩ U (M − 2)
)

∩
M−3
⋂

J=K

U (J)

= (1,M − 1] ∩ U (M) ∩
M−3
⋂

J=K

U (J)

· · ·

= (1,K + 1] ∩ U (M).

Therefore, by Theorem 3 we establish (i).

As for (ii), we observe that for any L ≥ 1,

(7.2) U (L) =
(

U (L) \
⋃

J 6=L

U (J)
)

∪
⋃

J 6=L

(

U (L) ∩ U (J)
)

.

From (i) and Lemma 2.4 (i) it follows that dimH(U (L)∩U (J)) < 1 for any J 6= L. Further-

more, by Lemma 2.6 we have dimH U (L) = 1 (see also, [23, Theorem 1.6]). Therefore, (ii)

immediately follows from (7.2). �

8. Final remarks

It was shown in Theorem 3 that the function φ(t) = dimH(U ∩ (1, t]) is a Devil’s staircase

in (1,∞) (see Figure 1 for the sketch plot of φ). Then a natural question is to ask about the

presence and position of plateaus for φ, i.e., maximal intervals on which φ is constant. By

Lemma 2.4 (i) and Theorem 3 it follows that φ(t) = 0 if and only if t ≤ qKL, and φ(t) = 1

if and only if t ≥ M + 1. Hence, the first plateau of φ is (1, qKL], and the last plateau is

[M + 1,∞).

Since φ(t) = maxq≤t dimH Uq, an interval [qL, qR] is a plateau of φ if and only if

dimH Up < dimH UqL for any p < qL,

dimH Uq ≤ dimH UqL for any qL ≤ q ≤ qR,

dimH Ur > dimH UqL for any r > qR.

By Lemma 2.4 it follows that for each plateau [qL, qR] of φ we have dimH UqL = dimH UqR .

Question 1. Can we describe the plateaus of φ in (qKL,M + 1)?
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Theorem 3 tells us that the set U gets heavier towards the right, but does not say anything

about the local weight.

Question 2. For any t2 > t1 > 1, what is the local dimension dimH(U ∩ [t1, t2])?
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