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Chapter summary 

In this thesis, we have addressed seven research questions regarding four themes: 3D 

imaging, 3D reconstruction, 3D segmentation and applications in the biomedical 

domain. In this chapter we concisely answer and summarize these seven research 

questions from the research presented in the previous chapters. Subsequently, 

limitations that we have found are addressed and possible solutions with respect to 

data, algorithms and theory are discussed. Lastly, ideas on future research are 

presented. 
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7.1 Main contributions 

The main contributions of the work presented in this thesis can be summarized by 

answering the seven research questions as follows: 

RQ1: To what extent is it possible to increase the processing speed of OPT imaging and 

reconstruction in an integrated manner? 

We have made an attempt to make the process of tomogram reconstruction convenient 

for users by offering an efficient and reliable way of 3D imaging for OPT. Our OPT 

system enables to acquire a tomogram and reconstruct a sample in the millimetre scale, 

e.g. zebrafish larvae, in a few minutes. By using the OPT reconstruction software as 

presented in Chapter 2 (cf. § 2.2.2), an OPT tomogram is uploaded to our computer 

cluster for reconstruction. The computations for reconstruction from tomogram to 3D 

image are parallelized over the cluster through a smart scheduling schema. With the 

current image size, the time for reconstruction is around one minute using 5 compute 

nodes of 8-core 2.66 GHz CPU+16G RAM and 8 nodes of 4-core 2.66 GHz CPU+16G 

RAM. The exact time used for a specific sample is determined by the CPU resources 

available in the cluster as well as the image intensity distribution of a sample. OPT users 

will receive the reconstructed data through a web interface (link) provided by the 

software after the completion of the computation.  By the increased sample throughput, 

more samples can be processed and thereby the integrated system brings facilitates the 

statistical analysis of the biological samples.  

 

RQ2: To what extent is it possible to reduce the artefacts of 3D image introduced during 

reconstruction process by misalignment of Centre of Rotation (CoR)? 

In the exploration of OPT imaging and reconstruction, we found that the misalignment 

between the CoR and the image centre normally introduces ring artefacts around the 

object edges of the reconstructed slices. This is independent of the reconstruction 

algorithm used. This means that the prerequisite for a good quality reconstruction, i.e. the 

3D image, is to correct for this misalignment. We investigated how to apply for this 

correction and we have presented a fast and accurate CoR correction algorithm, cf. § 

2.3.1. The algorithm is implemented on the OPT tomograms and it corrects the sinograms 

in a straightforward way. Similar to the 3D reconstruction, the CoR correction is also 

implemented in a parallel manner. By using the proposed CoR correction before 

reconstruction, the ring artefacts are effectively eliminated from the reconstructed slices. 

Besides the qualitative comparison of the ring artefacts, quantitative improvement is 

analysed and evaluated cf. § 2.4.1 and § 2.4.2.     
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RQ3: Can the Point Spread Function (PSF) of the OPT imaging system be modelled and 

applied for deblurring of an OPT reconstruction? 

This question is answered in Chapter 3. It is of interest to know the relationship between 

projection blur and imaging depth, therefore we propose a protocol to acquire a 

tomogram image set of a single fluorescent bead. Our protocol accommodates for a 

decrease in the probability of overlap between different point sources in a full 3D 

revolution. We model the PSF using a generalized 3D Gaussian model. We have 

simplified this model in a workable manner and relate the model to magnification. The 

model can be easily used for 3D image deconvolution and deblur from just the value of 

magnification. In Chapter 3 both qualitative and quantitative comparisons are given 

based on different magnifications and different specimens including zebrafish larvae, 

zebra finch embryo, chicken heart etc. Moreover, we found that the performance of the 

proposed deconvolution and deblur approach increases on samples imaged with larger 

magnifications. This is because smaller magnifications correspond to flatter 3D deblur 

models whilst larger magnifications relate to steeper, i.e. sharper, models. The results are 

shown in the modelling section of Chapter 3.           

 

RQ4: Can the iterative reconstruction eliminate the streak artefacts produced in the fast 

reconstruction? 

Iterative reconstruction is implemented in a way that takes the observed projections, i.e. 

tomogram images, into account and uses it as a reference for updating the current 

reconstruction. If there are streak artefacts in the current reconstruction, through an 

iterative reconstruction workflow these will be propagated and reflected on simulated 

sinogram and be further compared to the observed projection. Aiming at minimizing the 

error between simulated and observed projection, the algorithm guarantees that the new 

reconstruction will converge in the correct direction. In Chapter 4, an example of streak 

artefacts in zebrafish is given and we present the effectiveness of iterative reconstruction 

on streak artefact elimination based on the results of multiple samples we have tested.    

  

RQ5: How and to what extent the initialization and the number of iteration steps 

influence the results in iterative reconstruction? 

We explore the effects of iteration steps and initial reconstruction having on the 

reconstructions. Thereby, we focus in particular on the zebrafish specimen. By using the 

reconstructions for segmentations, we measure the segmentation performance in 

zebrafish. By evaluating the segmentation performance, we quantify the influences of 

iteration steps and initial reconstruction and further optimise the parameters for the 

iterative reconstruction. To achieve this, a highly reliable segmentation algorithm is 

required, that takes the transparency of the samples into account. Based on the 

experimental results, we find that the combination of 10-iteration and FBP-initial 
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reconstruction has the best performance with the current preparation protocol and data. 

We further demonstrated that without a phantom for reference of quality, and empirical 

approach provides sufficient information on quality of the reconstruction. 

 

RQ6: Is it possible to “learn” a 3D reference structure of zebrafish for 3D fluorescence 

quantification in zebrafish? 

This research question deals with the application domain of OPT; here we have focussed 

on our typical model system, i.e. the zebrafish. In order to avoid influence of the 

variation in individual samples and imaging environment, i.e. exposure time and 

magnification, on tumour quantification for drug discovery, relative quantification is 

proposed and defined in Chapter 5. This quantification approach can be further 

generalized to other fluorescent signals in zebrafish. In terms of 3D relative 

quantification of fluorescence in zebrafish, we focus on the automated detection of 

reference structures. This detection is defined as “learn” as we aim to avoid the laborious 

manual labelling in a volume image. By using the current state-of-the-art volumetric 

segmentation approaches in biomedical imaging, we trained a robust segmentation 

approach to detect the two reference structures, i.e, Body and Eye. Based on the 38 

training samples we have achieved promising results. For both reference structures we 

achieve an accuracy of over 90%. We think that the accuracy can be further improved by 

adding more data in the training procedure.  

 

RQ7: How much 3D information can be achieved and identified from bright-field 

zebrafish OPT imagery and to what extent such identification can be automated? 

From an unstained zebrafish 3D OPT bright-field image we are able to distinguish a 

number of well-defined regions in the volume. For a 5dpf zebrafish we can observer four 

volume regions:  i.e. Eye, Head, Muscle and Belly. Whilst in a 25dpf zebrafish, a more 

advanced developmental stage, more comprehensive volume regions can be observed: i.e.  

Eye, Head, Belly, Fin, Muscle, Blood vessel, Notochord & Spinal cord, Swim bladder and 

Intestine, cf. § 6.3.1. In order to explore the automated detection of 3D structures, we 

trained 35 zebrafish samples aged from 5dpf to 7dpf and independently tested the 

automated detection method on 3 samples. The average accuracy for Head, Muscle, Belly 

and Eye is 54.96%, 70.39%, 39.16% and 0% respectively. Constrained by the 

transparency characteristics, data availability, benchmark labelling, computational 

resources and algorithm intelligence, automated 3D detection on zebrafish is still in its 

infancy and remains a challenge. 
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7.2 Achievements of research presented in this thesis. 

All considered, we set out to study the use of OPT and pondered on how to maximize the 

information that can be obtained from an OPT image. In order to do so, we reviewed the 

quality of the images that are obtained from OPT.   

The quality is influenced by the reconstruction algorithm, the artifacts that are 

introduced from the reconstruction and the artifacts that are introduced from the imaging. 

We have shown from our research questions that we have addressed, in addition, the 

speed of operation as we consider this an important asset of OPT imaging in a research 

workflow.  

We have shown that the artifacts from the reconstruction, i.e. rings and streaks can be 

corrected in an efficient manner. The imperfections in the imaging causing deblur can be 

restored by a specifically designed process of deconvolution. It is clear from the 

algorithms that are designed and probed that OPT imaging is a typical form of 

computational imaging. It requires sufficient computational resources and smart 

algorithmic approaches in order to be efficient and valuable. 

In the chapters on optimisation of the images we have used several different samples 

typical for the range of magnitude common to OPT. In the chapters on application of 

OPT we use zebrafish and worked on typical manners to support the analysis of OPT 

images from zebrafish. In that we have invoked machine learning approaches that are 

state-of-the-art. The rationale behind the use of the machine learning in segmentation is 

to be able to automate these processes. That is, now that we can obtain good quality 

images from the OPT, we must develop the processing of these images. We have shown 

that is approach can be successful.  

7.3 Limitations and possible solutions 

Further to the presentation of the results we here consider some of the limitations as well 

as manners how to overcome these limitations. To that end we take for perspectives in 

the next paragraphs, i.e. data, hardware, algorithms and theory.  

7.3.1 Data perspective 

(1)  The amount of biomedical image datasets, especially 3D images are, in general, 

relatively insufficient for existing computational architectures. Large image resources 

such as ImageNet 
[146]

 do have a better performance for this matter. In this data-limited 

context, typical for scientific research, we accelerate and facilitate the process of 

producing 3D OPT microscopy images. By employing the use of cluster and parallel 

computing with a fast reconstruction algorithm, i.e. FBP, we created a fast reconstruction 

system. It enables users to obtain 3D images fast with a reasonable quality for most cases, 
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yet it fails to avoid streak artefacts at locations where small and concentrated signals 

appear. To completely eliminate the possible streak artefacts, iterative reconstruction is 

applied on top of the fast reconstruction. Currently, the iterative reconstruction is, 

however, explored on GPU without parallel optimisation. This means that in terms of 

speed of 3D image data acquisition, the iterative reconstruction work is far from optimal. 

The combined optimisation of implementation on GPU and parallel computing for 

iterative reconstruction will be considered in the further research now that we know how 

to combine fast and precise reconstruction methods. 

(2)  In Chapter 3, the deblur experiments are implemented and reported on 25 3D images. 

The size of the data we have is far from sufficient with respect to requirements for 

statistical analysis and big data. The effectiveness of the proposed methods needed to be 

further verified as more data become available. In Chapter 4, parameters of iterative 

reconstruction are optimized based on experiments of zebrafish with two different 

clearing protocols. By using each protocol we image three zebrafish, which are utilized 

for reconstruction with different parameters. Even though the test performance of single 

zebrafish reaches up to more than 98%, with the training ratio of 20% and test ratio of 

80%, it might be more convincing if more samples can be used. In Chapter 5 we train the 

two reference models based on 35 zebrafishes and achieve promising results on 3 test 

data, but there is room for improvement to achieve a higher accuracy. We will therefore 

consider keeping adding training samples as they become available and then regularly 

retrain the model, so as for the automated annotation in Chapter 6. 

7.3.2 Hardware perspective 

Imaging resources: The 3D imaging process is accomplished in a full revolution and 

samples are manually mounted in the FoV. Because of the manual operation, a perfect 

mount of the sample to meet the requirements for reconstruction cannot be guaranteed. 

To address this problem, three imaging parameters are introduced. The camera rotation 

and prism tilt in the microscopy synergistically determine the direction of CoR in the 

image space. Ideally, the CoR is supposed to be parallel with one of the image axes for 

reconstruction, but, in practice of imaging this is difficult to accomplish. The operator 

can, however, decrease the differences between them by adjusting two screws, a 

laborious operation. Another parameter is the prism rotation which determines the 

distance between CoR and image centre in the parallel axis. It is also difficult and time 

consuming to adjust this distance to an ideal value of 0. We solve this problem by 

presenting the CoR correction in Chapter 2.  

From our perspective, there are two possible solutions for these problems. One is 

keeping the manual placement and fixing the cameral rotation and prism tilt screw after a 

satisfactory CoR direction is reached. The other solution would be replacing the manual 

mounting of the sample with a fixed automated mounting of the sample. In such way the 

three imaging parameters and sample mounting are fixed and optimized. This is 
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promising in terms of both imaging quality and efficiency. It requires, however, accurate 

mechanical motorized parts, for example how to guarantee the accurate and same 

position when placing each sample. This is absolutely challenging now but might be 

feasible in the near future.  

7.3.3 Algorithmic perspective 

(1)  CoR correction: The CoR correction algorithm is dependent on the signal intensity of 

sample from the imaging system. This means that if signals are weak the tomogram 

cannot provide the algorithm with sufficiently strong signals to calculate the CoR. This is 

the main drawback of our CoR correction approach and currently we cannot establish a 

generic solution to avoid this drawback. However, the combination of bright-field and 

fluorescence channels can give sufficient information. 

(2)  3D PSF modelling: The 3D PSF in Chapter 3 is modelled based on a fluorescently 

labelled bead of fixed size, which is larger than but close to the resolution of the imaging 

system. In such case we approximate the model built from the sphere as the PSF model at 

the specific resolution, but a theoretical PSF is considered more powerful. In this work 

we assume that PSF model is linearly related to sphere size.  The effect of the bead size 

on the modelling and deblur is not taken into account. But the theoretical relation 

between them needs be further investigated. With respect to the magnification effect, the 

model is constructed based on 6 different magnifications. Subsequently, we estimated the 

PSF model on the 3D image according to magnification consistency, which is 

theoretically regarded as reasonable. However, if we critically think about this rationale, 

we need prove the optimality of implementation based on magnification consistency. 

This means performance comparison of deblur with different magnifications 

implemented on the same 3D image needs to be considered, for experimental evidence of 

the abovementioned optimality.     

7.3.4 Theoretical perspective 

(1)  3D PSF modelling: In Chapter 3 we generalize the 3D Gaussian model with more 

parameters for the PSF modelling and deblur tasks. In practice, it works well for both 

tasks. The generalized 3D Gaussian model we used for deblur is supported by previous 

work and experimental observations, which is based on statistical assumption rather than 

imaging theory. This means that there is a lack of theoretical proof showing the 

expediency and effectiveness of PSF modelling from the aspect of imaging process. This 

question motivates us to think is if there is another model working for OPT image deblur, 

benefiting from the inference of the imaging process. To answer this question, knowledge 

of optical physics and inferential mathematics are required. This might be an interesting 

and challenging research to continue with.  
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(2)  3D segmentation: The challenge of zebrafish segmentation in 3D image is a good 

estimation of the location of the surface based on the limited surface information such as 

pigments. The ground truth of zebrafish model for training are estimated based on human 

knowledge, i.e. manual labelling. There is no benchmark model for a zebrafish, so the 

manually labelled model is regarded as the closest to a benchmark. Under this 

assumption, we trained the zebrafish model based on the approximate benchmark and 

used it for evaluation. From practice in machine learning we know that when sufficient 

data is available the learnt model can achieve a very high accuracy but never reach to 

100%, compared to manually labelled benchmark. One possible addition is to combine 

information from phenotypes of zebrafish such as smoothness, connectivity, etc., to 

evaluate the estimation of the rather transparent surface.  

7.4 Outlook 

Some 3D imaging techniques are non-invasive and at the same time provide sufficient 

interior information of the biological sample. This makes 2D imaging of physical 

sections less necessary. Stepping up one dimension, i.e. from 2D to 3D, with large image 

sizes introduces a big challenge for both hardware and software.  

For image acquisition in OPT, the automated mounting of samples is a promising 

direction of research. Given automated mounting, a calibration becomes obsolete with 

the assumption that samples can be ideally placed for obtaining an approximately perfect 

reconstruction. Another point is that automated mounting will shorten the overall time for 

imaging each sample. Both aspects contribute a large decrease in imaging time and 

accelerate the imaging process. Taking advantage of this automation process, the system 

will be suitable for high throughput screening. But the challenge is that the progress of 

automation is determined by the collaborative development of mechanical engineering 

and computer technology. 

The fast reconstruction algorithms in the OPT system have yielded reconstructions for 

hundreds of samples. From these samples we observed two kinds of artefacts in our work. 

But there might be more artefacts for OPT imaging. The scientific literature in this field 

is still limited. A systematic analysis of artefacts in OPT would be an interesting research 

topic. To this end an example can be taken from models that have been used for artefacts 

reduction in CT imaging.  

The research presented in this thesis has addressed several research areas, from 

microscopy, algorithms, image processing and analysis, distributed and parallel 

computing to machine learning and AI. This shows that research can progress if state-of-

the-art methodology is merged and applied. In the future progress for the field of OPT, 

this will also be the case. Merging the different aspects of OPT in a smart manner will 

allow application of OPT in biomedical research to flourish and grow. 

In the workflow of imaging the OPT takes a niche for its ability to produce good 

images of samples in the range of magnitudes of millimetres. Efforts to further optimize 
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this will be beneficial in understanding of biological phenomena as well as in imaging 

workflows in general. 

 

 

 

 

 

 

 

 

 


