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Chapter 6 

Exploration of 3D Structure Annotation and 

Visualization of Zebrafish Reconstructions from 

Optical Projection Tomography Imaging 
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Chapter summary 

In this chapter we investigate the last parts of 3D optical projection tomography 

imaging pipeline: annotation and visualization. Our results focus on zebrafish samples 

without specific staining from the bright-field channel of the OPT. With respect to 

annotation, we first present the manual method from different software packages 

including our own annotation software. This provides a clue about how much 3D 

information within zebrafish can be obtained from the optical projection tomography 

3D imaging system. Beside manual annotation, an automated 3D annotation method 

is explored to give an insight in the extent to which deep learning can automate 3D 

annotation process. With the results the limitations are analysed and new perspectives 

are presented.   
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6.1 Introduction 

The zebrafish is an important vertebrate model organism that is widely used in 

biomedical research, e.g. developmental biology, disease biology, toxicology and 

behaviour. In this research, the identification and quantification of marker signals from 

genes and proteins have been providing basic evidence for gene analysis 
[133]

. 

Detailed analysis of genes includes the identification of certain proteins in organs 

rather than looking at a whole-mount study of zebrafish
 [134]

. Moreover, these organs can 

be physically dissected for an individual proteomic analysis 
[134]–[137]

. Such techniques 

aim to answer the questions, e.g. is a gene X is expressed in an organ and how much of 

the corresponding proteins can be identified in this organ. From imaging, and multi-

channel OPT in particular, expression patterns can be visualized in situ so that location 

and distribution of genes and proteins can be established.  

 Spatial analysis of patterns of gene expression from whole-mount zebrafish has been 

applied in the last decades
 [11], [138]–[141]

. This has often been done using in situ 

hybridization (ISH). In this manner the localization of gene-expression has been 

accomplished. However, research on detailed analysis within organs is limited by the 

techniques available for the imaging of organs and subsequent annotation. To overcome 

these limitations, we explore annotation with experiments to detect zebrafish organs or 

volume regions from optical projection tomography (OPT).  

In the application of imaging with OPT, we assume that patterns of gene expression 

can be visualized in the fluorescence channel through fluorescent in situ hybridization 

(FISH) or using a fluorescent reporter gene (e.g. GFP) . In general, the bright-field 

channel provides structural information for zebrafish and this includes some of the organs. 

Our research questions therefore are: (1) to what extent the organs or volume regions can 

be annotated from OPT 3D images of whole-mount zebrafish; (2) to what extent this 

annotation process can be automated.   

In order to answer these questions, we have manually annotated 5 dpf and 25 dpf 

zebrafish from 3D images obtained from the OPT imaging system. In addition, 

automated annotation is explored on the 5 dpf zebrafish for the annotation of 4 labels. 

The results of the annotation are presented with different visualization software packages.   

In order to set the terminology right for the remainder of this chapter, three definitions 

are introduced. First, we define (1) The anatomical domain as a demarcation of an 

anatomical structure and this structure is being generally accepted as a named structure in 

anatomy of a species. We consider (2) named structures to follow unambiguous labels 

that are organised in controlled vocabularies or curated ontologies. An annotation label 

for an anatomical domain is extracted from either of these curated namespaces. In 

addition to the anatomical domains we distinguish (3) the volume region as volumetric 

part of an organism presenting a dedicated region that is not coinciding with a recognized 

anatomical domain but it can be addressed for its named location.  



Chapter 6 

 

120 
 

With these definitions in hand we can make annotation in zebrafish with the intention 

to detect volume regions and anatomical domains that can be found in the bright-field 3D 

image without any specific contrast techniques being employed. 

This chapter is structured as follows. In section 6.2 we will introduce the sample 

preparation, the OPT imaging system, the annotation methods and the visualization 

software. In section 6.3 we explain the annotation and experiment with visualization 

using different software packages. The results include both manual and automated 

annotation methods. Conclusions and discussion are summarized in section 6.4.   

6.2 Methods and materials 

In order to visualize and quantify a region of interest within a zebrafish, samples need to 

be first prepared and imaged. With the tomograms acquired from the OPT imaging 

system, 3D reconstruction is applied to obtain a 3D image. This 3D image is used for 

segmentation to find the structures for annotation, e.g. zebrafish Eye that can 

subsequently be visualized as a label. The workflow is shown in Figure 6.1. 

 
Figure 6.1. The workflow summary of OPT 3D imaging system. 

6.2.1 Zebrafish and OPT 3D imaging system 

During zebrafish development from larva to juvenile, structures and organs become more 

distinct and can be visualised using the OPT imaging system. In order to visualize and 

compare them, we use a 5 dpf and a 25 dpf zebrafish for our experiments. Each sample is 

prepared with the BABB or the CUBIC protocol (cf. § 4.4.2). The samples are prepared 

and imaged only with the clearing solution for the sole purpose of making the specimen 

transparent. No additional staining is used, meaning that the 3D structures of the 

zebrafish that we can obtain from our OPT imaging system represent the minimum 

information. With a counterstaining or a specific staining, the visualization of more 

structures can be accomplished. The OPT imaging system and reconstruction 

configurations as described in § 5.2.2 are used. 

6.2.2 Annotation method 

With the 3D image obtained from the reconstruction, manual annotation is first 

considered to provide a clue about how much 3D information within zebrafish can be 

identified without staining, using the OPT imaging on both zebrafishes. A manual 

annotation of the 3D image is accomplished with annotation software, e.g. Amira
 [63]

, 

TDR-3Dbase 
[12]–[14]

, Vaa3D 
[144]

, etc. In our work, Amira and TDR-3Dbase software are 

used for manual annotation. Aside from the manual annotation, we also explore the 

possibility of automated annotation for the visualization. The approach we used for the 
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automated annotation is semantic segmentation using the 3D U-net, which is set up 

according to chapter 5 (cf. § 5.3). Differently, multi-label segmentation rather than binary 

segmentation (cf. § 5.3) is required.  

6.2.3 Visualization software 

With respect to the descriptive parameters for phenotype characterisation of a volume 

region within zebrafish, visualization supports the qualitative information of the shape, 

size and context. Quantitative information is obtained from image analysis software.  For 

visualization we use Amira
 [63]

, TDR-3Dbass
 [132], [142], [143]

 and MeshLab
 [145]

 software to 

visualize the individual regions in the 3D image, using several annotation methods.        

6.3 Experiments  

The first experiment is a manual annotation of zebrafish of different developmental 

stages and subsequent visualization of the annotated volume regions from the 3D OPT 

images. This aims to answer the question on the extent to which organs and/or volume 

regions can be annotated from a whole-mount zebrafish 3D image. The second part of the 

experiments focuses on the exploration of automated 3D annotation in 5 dpf zebrafish. As 

the 25 dpf zebrafish has more visible structures but fewer samples, the automated 

annotation of all parts is more challenging. Therefore, we start a simple with the 5dpf 

zebrafish that has much less distinct anatomical domains.     

6.3.1 Manual annotation and visualization 

1) Amira  

In order to visualize a 5dpf zebrafish in 3D or further do quantitative  analysis on it, 

as a point of departure, the bright-field tomogram from the OPT imaging system is used. 

This tomogram consists of 400 images in our OPT setup. In Figure 6.2 (a) the tomogram 

is depicted that composes the input for the reconstruction algorithm. By using an 

effective reconstruction algorithm (cf. § 4.2), the tomogram is transposed to a raw 3D 

volumetric image of the zebrafish with a reduced amount of artefacts/noise. The raw 3D 

image is manually annotated and visualized using Amira 
[63]

 software (Figure 6.2 (b)). 

For volume region quantification in zebrafish annotation is required.  Figure 6.2 (c) 

expresses an intuitive concept of 3D volume region segmentation or detection on a 5 dpf 

zebrafish. Obvious annotation labels are the zebrafish Eye, Head, Muscle and Belly; the 

latter three are location domains whereas Eye is an anatomical domain. The volume 

regions in this example are obtained based on manual segmentation of raw 3D image and 

subsequently visualized using Amira. Because of young age, transparency, and 

preparation method, most internal organs are not very well visible for zebrafish at this 

stage.  
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Figure 6.2. Workflow for 3D OPT imaging, reconstruction and segmentation on a 5 dpf zebrafish. 

(a) OPT tomogram of 400 images over  𝟑𝟔𝟎° in OPT used for reconstruction. (b) Reconstructed 

3D image from the 3D reconstruction algorithm. (c) Manually annotated 4 volumetric parts: Eye 

(blue), Head (light blue), Muscle (pink) and Belly (dark green).    

Different from the 5 dpf zebrafish embryo in Figure 6.2, in Figure 6.3 the result of the 

imaging of a 25 dpf zebrafish with more internal structures is depicted. After 

reconstruction and semantic segmentation, the visualization is realized. This sample, i.e. 

tomogram, contains quite some noise, resulting in more background noise in the 

reconstruction as we can see from Figure 6.3 (b). The visualization results of the 

reconstruction are achieved by using a threshold in Amira as for 5 dpf zebrafish in Figure 

6.2. The volume regions and anatomical domains we can distinguish from this sample are  

9 different parts: Eye (blue), Head (light blue), Muscle (pink) and Fin (purple) in Figure 

6.3 (c); Blood vessel (red) and Belly (dark green) in Figure 6.3 (d); Notochord & Spinal 

cord (yellow), Swim bladder (green) and Intestine (brown) in Figure 6.3 (e). As we can 

see, the Swim bladder has shrunk as a result of deflation. The volume regions and 

anatomical domains can provide significant information such as location or reference for 

fluorescent markers. It helps to understand volumetric structures of zebrafish in the OPT 

imaging system. Each individual part of the 25 dpf zebrafish is shown in Figure 6.4, 

using a surface rendering technique for visualization. 
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Figure 6.3. 3D OPT imaging, reconstruction and annotation on a 25 dpf zebrafish. (a) and (b) 

showing the projections and reconstruction respectively. (c), (d) and (e) visualizing 9 parts of 

zebrafish: Eye, Head, Fin, Muscle, Blood vessels, Belly, Notochord & Spinal cord (N&SC), Swim 

bladder (SB) and Intestine. V1, v2 and v3 represent three visualizations with increasing depth 

from outside to inside, with v1 showing the Eye, Head, Fin and Muscle, v2 showing the Blood 

vessels and Belly, and v3 showing the N&SC, SB and Intestine.    



Chapter 6 

 

125 
 

 
(a) 

 

 
(b) 

Figure 6.4. The individual part of the 25 dpf zebrafish. (a) The parts of Head, Eye, Muscle and 

Blood vessel, with Muscle being visualized transparently. (b) The parts of Swim bladder, Belly, 

Intestine, Fin and Notochord & Spinal cord, with Belly being visualized transparently.  
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(a) 

 

(b) 
Figure 6.5. Annotation of another 25 dpf zebrafish from OPT 3D image using TDR-3Dbase 

software. In this whole-mount OPT imaging of the zebrafish, 9 parts are identified. (a) The parts 

of Head, Eye, Muscle, Belly and Fin. (b) Blood vessel, Swim bladder, Intestine and Notochord & 

Spinal cord are annotated within the zebrafish.  

2) TDR-3Dbase and MeshLab 

In Figure 6.5, another example of the annotation on a 25 dpf zebrafish from OPT 3D 

image is depicted. The annotations are done with the TDR-3Dbase 
[132], [142], [143]

 software. 

With TDR-3Dbase, manual annotation is well incorporated through the use of an LCD-
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tablet with a pen (Wacom Cintiq). Similar to the previous results, nine labels are 

identified including Eye (blue), Head (light blue), Muscle (pink), Belly (dark green), Fin 

(purple), Blood vessel (red), Swim bladder (green), Intestine (brown) and Notochord & 

Spinal cord (yellow). As we can see from the example in Figure 6.5, TDR-3Dbase 

provides an informative and smooth visualization from a triangulation employing a 

surface rendering technique. Further refinement can be accomplished in other software. 

The annotation result of TDR-3Dbase is then transferred to MeshLab 
[145]

. Now, the 

whole-mount zebrafish can be visualized with the volume regions (Head, Muscle, Belly 

and Fin) being transparent.  This is depicted in Figure 6.6.  

 

Figure 6.6. Visualization of the 25 dpf zebrafish using MeshLab software. The Head, Muscle, Belly 

and Fin are visualized as transparency in 4 different colours, whilst the Blood vessel, Swim bladder, 

Intestine and Notochord & Spinal cord are visualized with iso-surface technique. The mesh is 

obtained from TDR-3Dbase.  

6.3.2 Automated 3D annotation of 5 dpf zebrafish 

From the motivation of accelerating image analysis for zebrafish from biomedical 

experiments, segmentation of volume regions is explored. This has not been described in 

earlier literature. Inspired by the promising results achieved with 3D U-net segmentation 

network for binary tasks as applied in Chapter 5; i.e. on the zebrafish Muscle and Eye, we 

are interested in the performance for multi-label segmentation. 

Different from the segmentations in Chapter 5, for a multi-label segmentation, i.e. the 

four volume regions we are using, the segmentation outputs four competing segmentation 

maps or classes excluding background. Voxels are labelled as one of the four classes that 

produce the highest prediction value from the segmentation network (cf. § 5.3). If this 

highest value is smaller than a specified threshold, the voxel will be recognized as 

background. The four prediction maps from the segmentation network, relevant to four 

volume regions accordingly, are trained from the manually labelled zebrafish in a 
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supervised way. The high class imbalance, e.g. Eye and Muscle, however typically results 

in a preferred segmentation for class with more positive samples, i.e. voxels. The 

learning schemas for this four-label segmentation are set similar to the approach of 

Chapter 5. Based on the results of Chapter 5, we use Dice loss 
[117]

 to train and validate 

the network on the same 35 zebrafish and test it with 3 zebrafish. The results are shown 

in Figure 6.7 and Table 6.1. In Figure 6.7 the qualitative performance between manual 

and automated segmentation on the three test zebrafish is compared. In Table 6.1 the 

quantitative evaluation with the five metrics similar to those used in Chapter 5 (cf. § 5.4.1) 

is presented. In each of the test samples, the performance of each volume region is 

quantified. By comparing the performance of different volume regions, it shows that the 

volume region Muscle has the highest segmentation performance with an average 

accuracy of 70.39% on the 3 test samples. Limited by the high class imbalance, i.e. very 

different numbers of voxels for the different parts, the network fails to detect the volume 

regions for Eye because it has much less voxels for the classifier.     

 

Figure 6.7. Comparisons between the performance of manual and automated segmentation on 4 

parts of the 5 dpf zebrafish: Eye, Head, Muscle and Belly, where (a), (b) and (c) correspond to 

three different test samples respectively. The manually labelled models are displayed in the top 

row and the automated labels are in the bottom row. 
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Table 6.1. Quantitative evaluation of the three test samples of zebrafish. The results are obtained 

using the multi-label 3D U-net segmentation network. The evaluation metrics are the same as used 

in Chapter 5. The best performed volume region for each test sample across different metrics is 

printed in bold. 

 Fish1(%) Fish2(%) Fish3(%) 
Muscle Belly Head Eye Muscle Belly Head Eye Muscle Belly Head Eye 

DSC 78.43 47.22 70.82 0 63.58 40.15 29.64 0 69.15 30.12 64.41 0 

Sensitivity 91.34 36.90 87.96 0 85.10 41.14 25.01 0 96.36 28.73 57.76 0 

Specificity 99.69 99.91 99.66 1 99.46 99.58 99.83 1 99.49 99.76 99.85 1 

F2 85.70 40.44 80.20 0 74.95 40.74 26.68 0 83.26 29.27 60.25 0 

APR 62.84 24.46 52.20 0.18 43.29 16.51 9.39 0.17 51.98 9.36 42.34 0.17 

 

6.4 Conclusions and discussion 

In this chapter, we explored the last parts of our OPT imaging pipeline, the annotation 

and the visualization of 3D images. The outcome can be further used for phenotype 

characterisation. We presented examples to show to what extent the organs or regions can 

be annotated from a whole-mount zebrafish based on both manual and automated 

segmentation. With the annotation software packages, e.g. TDR-3D base 
[132], [142], [143],

 

Amira 
[63]

 or Vaa3D 
[144]

, the advantage of manual annotation is that it can provide 

accurate segmentation including the expert-knowledge. The process is, however, quite 

laborious. Achieving comparable segmentation accuracies with automated annotation is 

challenging. Nevertheless, it can save a huge amount of labour and time. For instance, for 

a 3D OPT bright-field image of one single zebrafish, manual annotation normally takes 

hours to days depending on the level of detail. The automated annotation takes several 

seconds and sufficiently reasonable results are achieved. In practice, the combination of 

automated and manual method is recommended for an organ or volume region annotation.  

With the best parameters and configurations achieved from the segmentation method 

described in Chapter 5, the performance for automated multi-label annotation task is not 

yet satisfactory. In future work further improvement need be accomplished by improving 

segmentation method and using larger set of images.  

Based on the results, we analyse and discuss the reasons from the perspective of the 

data, algorithms and resources, and give further insights into performance improvement 

for each individual aspect. Furthermore, possible directions for further improvement are 

given. 

1) Data limitation: We categorize the data limitation into three types: data 

characteristics, data quality and data size. Data characteristics represent the 

inherent structure of zebrafish as represented in a computer and it is further 

determined by using a specific 3D imaging technique. The data characteristic is, in 

proactive, determined by individual samples and imaging techniques. It defines an 

upper limit of the performance of segmentation of a given algorithm. Because of 
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the transparency of zebrafish, 3D segmentation of boundary between some parts, 

e.g. Head and Muscle, Muscle and Belly, in itself is challenging. The image quality 

related to noise in the background is segmented as foreground, with an example 

shown in Figure 6.7. (c). Noise is often introduced during sample preparation. Any 

remains, dust or bubbles during the sample preparation could result in artefacts in 

the 3D image. Because of the high intensity similarity between noise and some 

parts of zebrafish in this example, 3D U-net segmentation network fails to 

distinguish them when feeding the network with volume patches. In order to 

decrease the segmentation error resulting from noise, a cautious sample 

preparation process is required. With respect to data size, the performance is 

achieved with 35 training and validation samples. In our view this is still 

insufficient for training a good 3D segmentation network. To improve the 

segmentation performance, more zebrafish samples will be added in the next steps.    

2) Algorithm limitation: The huge difference of performance between different 

parts/classes is raised by the class imbalance. The segmentation can be treated as a 

multi-label classifier in 3D U-net, with each voxel representing a classification 

sample. The segmentation task is interpreted as classifying all the voxels of a 3D 

image into 4 classes with a probability assigned to each class. The network fails to 

segment or detect the Eye, but it performs reasonably for Muscle segmentation or 

detection. This is probably because in all the training voxels for classification, the 

number of voxels as Muscle is much larger than that as Eye. This gives the Muscle 

class an unfair advantage over Eye. Further research and exploration that aim to 

solve this problem include data resampling and loss rebalancing. In data 

resampling, voxels of lower frequency class can be repeatedly sampled until all the 

classes reach to an approximate balance. Another possible solution for class 

imbalance would be assigning each voxel with a class weight (i.e. reciprocal of 

class frequency) and integrating it into prediction when implementing loss function. 

For both possible solutions the improvement performance need to be further 

verified because of the high imbalance between some classes.  In 3D and multi-

label classification, this imbalance research problem has become a hot and 

challenging topic in the recent years in medical imaging field for MRI/CT images.    

3) Resource limitation: Constrained by the limitation of the GPU memory, the 

training and validation batches are fed into the network. In this way the structural 

and spatial information among patches are not taken into account for training. This 

means the smaller the patch size is, the less structures will be trained and learnt, 

resulting in lower performance of segmentation. In our segmentation task of four 

labels, the patch size is set as 64x64x64, while the image size is 128x128x340 with 

GPU memory size of 12GB. An increase of the GPU memory can be another 

improvement to the segmentation accuracy. This generally means a change of the 

GPU setup and it comes with a cost that need be assessed. However, given the 

number of different images this might be a good investment. 
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All considered, the research described in this chapter gives insights in future 

development of automation of the annotation process. In some cases, for very specific 

structures, a manual annotation would still be the most efficient manner of obtaining an 

accurate result. From the visualization examples it can be assessed that each of the 

software packages has its own advantages. But with a dedicated annotation software 

package like TDR-3Dbase
 [132], [142], [143]

, good results can be accomplished while 

refinements in the visualization can be accomplished with other software packages. 

We have also given our considerations the respect to limitations that are imposed on 

the data. With time these might change, however, when method improvement is 

considered it is good to be aware of these limitations in an assessment for further 

developments. 
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