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Chapter 5 

Automated Detection of Reference Structures for 

Fluorescent Signals in Zebrafish with a Case 

Study in Tumour Quantification 
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Chapter summary 

Zebrafish as a vertebrate model plays an important role in biomedical researches such 

as development, disease, toxicological and drug discovery studies. In this chapter we 

assume that fluorescent markers represent a specific signal of interest. We aim to 

quantify these signals in zebrafish, to provide accurate experimental information, for 

e.g. drug discovery, in an automated and efficient way. We first define the 

quantification approaches with a case study in tumour growth. Based on the definition, 

the reference structures for the quantification, obtained from bright-field images, are 

studied.  

In order to automatically detect the reference structures from 3D bright-field 

images with a high performance, we use the deep learning approach to obtain a 

segmentation of the reference structures for each sample. The 3D images are obtained 

and reconstructed from the optical projection tomography imaging.  According to our 

experiments, the automated approach for detecting reference structures is a promising 

method for the relative quantification of fluorescent signals in zebrafish.  
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5.1 Introduction 

In this chapter we will focus on the application of imaging of zebrafish in OPT for 

disease modelling. In biomedical research, zebrafish has become a widely used model 

organism in the last decade because of its fecundity, its physiological and genomic 

similarity to mammals, the existence of many genomic tools and the ease with which 

large, phenotype-based screens can be performed 
[92]

. Mammalian models of absorption, 

distribution, metabolism and excretion (ADME) or pharmacokinetics and efficacy, are 

considered expensive and laborious and consume quantities of precious compounds. 

Compared to this, zebrafish is more cost-effective and can therefore be a useful 

alternative to mammalian models.  

5.1.1 Research questions 

Drug discovery involves a complex iterative process of biochemical and cellular assays, 

working up to in vivo validation in animal models and ultimately in humans. Zebrafish is 

considered promising in accelerating the process of drug discovery with a comprehensive 

advantage of scale, high-throughput screening and physiological complexity. In disease 

modelling and treatment, e.g. drug discovery for tumour treatment, zebrafish has revealed 

its effectiveness and advantages 
[93]

. Using zebrafish as disease model for tumour means 

exposures to different levels of drug treatment. The performance of this drug treatment 

can be expressed in qualitative terms, i.e. using the visual signal, as well as in 

quantitative terms, i.e. measurements of the intensities and extend of the signal. 

    To this end a specific fluorescent signal, i.e. the expression of a representative gene is 

used. However, compared to visual qualitative assays, quantitative assessment is more 

comparable and transferable and hence more convincing. The quantification of the 

expression of specific disease within zebrafish such as tumour 
[93]

 can give a direct and 

accurate insight of tumour size and shape, as well as make the precise comparison of 

different treatment groups. 

Depending on different research demands and available facilities, the disease 

phenotype can be represented as 2D or 3D microscope images. For a whole-mount 

zebrafish, 2D images from a stereo-fluorescence microscope can provide fast information 

on the structure of a tumour in a single specimen; de facto this is a projection of 3D 

information. For measurement and phenotypical description, this should be considered 

with caution. Projecting and imaging a zebrafish from a different angle will result in a 

different 2D image. This difference can result in inaccurate and biased quantification. In 

contrast, 3D imaging of disease phenotype reconstructs the 3D structure, therefore 

potentially more accurate for disease phenotype quantification. Therefore, we take it as a 

research question: given a 3D image, what are the possible solutions for the 

quantification of disease phenotype and to what extent the quantification process can be 

automated.   
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5.1.2 OPT as a solution for whole-mount imaging 

As mentioned, zebrafish is a good model system for the disease studies. For overview of 

disease and disease progression in zebrafish, whole-mount imaging is indispensable. 

With confocal laser scanning microscopy (CLSM), light microscopy (LM) and, to a 

lesser extent, scanning electron microscopy (SEM) the size of the specimen limits the 

application of whole-mount imaging 
[15], [94]

. With MRI 
[16]

 the strength of the magnetic 

field determines the resolution that can be obtained for whole-mount imaging and a mm-

scale object requires quite a strong magnet. With a right choice of optics, optical 

projection tomography (OPT) 
[95]

 can conveniently operate with mm-scale objects. It can 

display gene expression or a specific staining in the bright-field or fluorescence channel, 

while the specimen as a whole can be visualized. In this manner OPT adds an important 

range of scale that can be investigated. It allows for the acquisition of whole-mount 

images of animal/plant tissues as well as organs/organisms 
[18], [19]

. OPT has also been 

studied for its capability of imaging with excellent spatial resolution and contrast and 

minimal shadowing artefacts produced from back-projection reconstruction after 

tomogram acquisition. Therefore, we take OPT into account to assess the whole-mount 

3D imaging of zebrafish.  

5.1.3 Multi-channel analysis of whole-mount zebrafish 

In order to exclude biological variation and individual differences, large scale analysis of 

zebrafish for disease treatment is necessary. This means that multiple zebrafishes will 

need to be quantified and averaged to describe the disease progression or the 

performance of drug exposure at different time-points in disease. 

To our best knowledge, two methodologies are used for the quantifying of a disease 

model. One is measuring a read-out in absolute sizes of the disease marker in either 2D 

or 3D, named as absolute quantification. This involves a segmentation of the signal that 

is representing the disease, i.e. the marker, and pixel/voxel size calibration. For absolute 

quantification, only the fluorescence channel, with fluorescent disease marker, is required. 

In this particular case, the pixel/voxel size calibration for the imaging system is required 

so as to make measurements comparable and transferrable between different systems.  

Another approach is calculating the relative ratio of disease phenotype, i.e. fluorescent 

signal, referring to a specific structure such as Body or Eye. This is mostly depending on 

detection of the reference structure (RS) and has generality across imaging systems and 

between specimens. In this case often both modalities, i.e. fluorescence and bright-field, 

are required; with one for the fluorescent marker and the other for the RS. Taking 

advantage from computational techniques and resources, in this chapter we construct and 

detect RS for relative quantification of disease phenotype. To that end we introduce two 

definitions so as to support our approach for relative quantification. 
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Definition 1 Phenotype: The total appearance of an organism determined by 

interaction during development between its genetic constitution (genotype) and the 

environment 
 [96]

. 

Definition  2  Reference Structure (RS):  a structure that is a part of the organism 

under study that is used for a relative comparison over scale and/or time. Usually, the RS 

is used in a normalization to establish an effect in a phenotype.  

 

Relative quantification of 2D disease phenotype for each zebrafish can be achieved by 

standard image analysis tools
 [97]

. When considering throughput of the data, a more 

automated approach is preferred. However, quantification of 3D disease phenotypes for a 

zebrafish specimen is much more difficult to obtain than it is in 2D. Therefore, in order to 

prevent manual labor and enable application of analysis on a larger scale, automated 

image analysis is necessary. We focus on the automation of obtaining RS to accelerate 

the throughput of the 3D analysis of zebrafish. 

The research presented in this chapter concentrates on relative quantification of disease 

phenotyping, specifically constructing 3D reference structures in zebrafish. We have 

chosen to work with two RSs that are always visible: the Body and the Eye. The Body 

represents the overall phenotype of a sample, providing a normalization standard for all 

the samples. The Eye is a local RS with less deviation among specimens of the same 

stage, it is also easier to detect because of its clear texture. The goal of this research is to 

automatically detect both RSs and using them for the calculation of the relative 

quantification of fluorescent signals. Here we focus on the 3D quantification of signals 

from a disease. The automated RS detection can be generalized to other 3D fluorescent 

signals in zebrafish. 

The RSs we need for the 3D relative quantification are automatically detected from the 

bright-field 3D image by using segmentation techniques. Concerning the large-scale 

requirement, we are into exploring an approach for automated detection of the RSs. The 

transparency and inhomogeneity of the zebrafish make segmentation performance 

cumbersome, particularly in 3D, when using traditional segmentation algorithms; i.e. 

threshold-based, region growth, graph cut and traditional machine learning techniques. 

The challenge must be seen in the high similarity of intensity between voxels inside and 

outside zebrafish, as well as the edge/surface discontinuities 
[98]

. Fortunately compared to 

Body, Eye has a more dense tissue, therefore more discriminative. To meet our 

requirements for automated RS detection, advanced segmentation approaches will have 

to be explored.  

5.1.4 Related work 

During the last twenty years, to our best knowledge there were just a few research topics 

on automated analysis in zebrafish. Mikut et al. 
[99]

 contributed a survey on automated 

processing of zebrafish-related data and generalized the workflow for analysis of 

biomedical research on zebrafish model. They showed some examples of automated 
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image analysis, including cell tracking during embryogenesis, heartbeat detection, 

anatomical landmarks, dead embryo detection, recognition of tissues, and quantification 

of behavioral patterns. In general, the microscopy images could be classified into two 

categories as mentioned: bright-field images and fluorescence images. Analysis of the 

fluorescence images is relatively easy compared to bright-field because fluorescent 

intensity typically reflects specific information of interest. 

Previous work on fluorescent imaging varies with the specific research topic. 

Understanding bacterial infection was accomplished with a template-based segmentation 

method through which the shape of a zebrafish larva was detected. The bacterial load was 

obtained from the fluorescent channel and normalized to the size of the larva, or specific 

parts thereof 
[100]–[103]

. An automated segmentation was utilized to zebrafish heart based 

on 2D light-sheet fluorescent images, accompanied by 3D reconstruction in the second 

stage 
[104]

. They followed the pipeline that 3D volume is reconstructed based on the 

segmentation results of tomograms. Segmentation of the  axial skeleton and spine of the 

zebrafish are also common in developmental research 
[105],[106]

. Their segmentation was 

implemented on images of fluorescent maker in notochord sheath cells and with 

conventional segmentation techniques acceptable results have been achieved
 [105], [106]

. 

More lately segmentation of developing zebrafish vasculature was proposed from light 

sheet fluorescence microscopy imaging 
[107]

. They used the open source software Fiji 
[97]

 

for segmentation of the fluorescent marker and achieved satisfied results 
[107]

. Different 

from the aforementioned non-learning algorithms, Zhang et al. 
[108]

 first brought the deep 

learning technique to vessel segmentation on images from 3D confocal imaging in 2019. 

They obtained promising results on accurate segmentation of challenging vessel data that 

were labelled with green fluorescent protein (GFP). The 3D image data were acquired 

with confocal microscopy and the segmentation was implemented on the reconstructed 

slices 
[108]

.  

In addition, whole-mount specimen segmentation can be achieved using the bright-

field image of the sample. It is typically related to phenotype and behavior analysis in the 

research of development and drug discovery
 [98], [109]–[111],

. Wu et al. 
[109]

 proposed a hybrid 

method which integrates region and boundary information into an active contour model 

considering the ambiguity of edges for 2D image segmentation. Later, Xiong et al. 
[110]

  

presented the level-set model to segment zebrafish on image slices from confocal 

microscopy and achieved promising results on 3D images. Inspired by the good 

performance of level-set model, Guo et al. 
[98]

 integrated mean shift to level-set model for 

accurate 2D zebrafish image segmentation in bright-field channel, and then used the 

segmented masks for 3D reconstruction of zebrafish surface. Recently, instead of 

phenotype analysis, Ishaq et al. 
[111]

 classified zebrafish deformation, i.e. normality or 

deformation, based on 2D bright-field images for drug discovery using a deep neural 

network.                         
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5.1.5 Structure of this chapter 

The research presented in this chapter is to explore a segmentation approach, aiming at 

automated detection of the RSs for fluorescent signals in zebrafish. The detected RS is 

able to help with relative quantification of fluorescent signals in zebrafish. In section 5.2 

we present the materials and methods used for our research. In section 5.3 we further 

elaborate the design and implementation of the segmentation approach for automated 

detection of the two 3D RSs that we use here. In section 5.4 the experiments and results 

will be presented, with a case study in tumour quantification, followed by conclusions 

and discussion in section 5.5. 

5.2 Materials and methods 

Here, we will first explain the specimen and sample preparation of zebrafish used for 

automated RS detection. The 3D imaging and reconstruction framework will follow 

afterwards. Based on the reconstructed 3D image, the approach to the relative 

quantification of fluorescent signals will be formed.   

5.2.1 Zebrafish 

Both for the Body and Eye reference structures, 38 zebrafish samples are used to learn 

parameters of the segmentation approach for automated detection. These zebrafishes are 

from three different stages including 5 dpf, 6 dpf and 7 dpf and all of them are cleared 

with the BABB protocol (cf. [20]). As we are only interested in the bright-field image for 

the detection, the samples are not necessarily stained or marked with fluorescent markers. 

For our experiments we have eight 5 dpf zebrafishes, fifteen 6 dpf and fifteen 7 dpf 

zebrafish without staining.  

5.2.2 OPT imaging and reconstruction 

3D imaging with OPT is suitable for zebrafish imaging as it can deal with the size range 

to produce whole-mount images. With OPT both bright-field and fluorescence modalities 

can be accomplished and the acquisition of these channels is done in a sequential manner. 

In confocal microscopy the details are inspected at cellular level but it compromises 

information at the global level 
[112],[113]

. The strength of OPT is that it enables observation 

of the whole specimen, i.e. the zebrafish, at a tissue level with depth ranging from 

millimeter to centimeter. This character of a large depth and field of view (FoV) enables 

the analysis the zebrafish as a whole on volumetric level. This also explains the 

conditions of our research work for detecting the RSs for fluorescent signals in zebrafish. 

The bright-field images from the 38 samples are acquired using the OPT imaging 

system as depicted in chapter 1, cf. § 1.2, producing a 3D tomogram of 1360 × 1036 ×
400 for each sample; 1360 × 1036 per image over 400 angles in full revolution.  The 

3D bright-field image of each zebrafish is obtained from the corrected tomogram set by 
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using the iterative reconstruction algorithm as described in chapter 4, cf. § 4.2. The 

transform from original OPT tomogram set to corrected ones are accomplished by 

applying the centre of rotation (CoR) correction approach in chapter 2, cf. § 2.3. The 

application of the iterative reconstruction 
[28]

 results in a  3D image  sized  𝑅 × 𝑅 × 1360, 

where R is the determined by the CoR value and 1360 refers to the number of slices in 

3D. The 3D images of all the 38 zebrafishes are subsequently used to learn the 

parameters of segmentation approach for RS detection. This design of the automated RS 

detection will be elaborated in the section on design and implementation.    

5.2.3 Relative quantification 

The relative quantification of fluorescent signals is based on the reconstructed 3D images 

from both the bright-field and fluorescence channel. Specifically, the fluorescent signals 

from the 3D image of the fluorescence channel are first segmented through a threshold-

based algorithm. In this manner, a sub-volume is produced from which the fluorescent 

signal is quantified. For RS detection, we need first to segment or identify the RS from 

the 3D bright-field image, producing the sub-volume of the reference structure. The ratio 

of the two volumes obtained from the segmentation results is defined as the relative 

quantification of the fluorescent signal.      

5.3 Design and implementation  

In this section, we focus on the design and implementation of automated RS detection for 

3D quantification. With the 3D bright-field image of zebrafish, cf. § 5.2.2, the RS, i.e. 

Body or Eye will be identified by the supervised segmentation approach. We investigate 

how this can be accomplished by a convolutional neural network. For each of the RSs 

binary ground truth is realized with annotation software, such as TDR or Amira. In order 

to train  a high-performance segmentation network for each RS, we employ U-net 

segmentation network 
 [29], [114]

 implemented in both 2D and 3D image space.  

5.3.1 Segmentation of reference structures 

In order to reduce the computational load, we rescale the 3D image to 512 × 512 × 680 

for the 2D U-net segmentation and to 128 × 128 × 340 for the 3D U-net segmentation, 

thereby compromising resolution. To our best knowledge, 3D U-net has the highest 

performance when each 3D image is directly fed into the network. However, constrained 

by the memory, this is not feasible for our 3D image due to its large size. Alternatively, 

we resized and cropped the 3D image as 128 × 128 × 340 and feed the 3D U-net in a 

patch way. From the 38 samples as introduced in§ 5.2.1, 35 samples are used for training 

and validating the segmentation network, whilst 3 samples for testing or evaluating the 

performance of the segmentation approach. So, there are 23800 slice samples in total for 

training and validating the 2D U-net, but much less volume patches for 3D U-net training. 

In order to increase the sample size for 3D U-net, we decrease the patch size to 64 ×
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64 × 64 with an overlap of 16 to cover 3D context well. This results in 1113 cubic patch 

samples for training and validation. Concerning the high imbalance of voxels between 

RS and background, in particular for Eye, we exclude the patches that have no object in 

the ground truth data. For the remaining patch samples, data augmentation including 

distortion and flip is employed before being fed into the network. 

1) 2D Unet 

The 2D U-net network 
[29]

 feeds 2D images in the Input layer. As our starting point 

is 3D images, we need a slice extractor to provide the 2D images to the net.  In this 

manner, the slice extractor also contributes in stacking all slices back to 3D volumetric 

images after Output layer. The network structure has been elaborated in chapter 4, cf. § 

4.3.2.  

2) 3D Unet 

In the 3D U-net 
[114]

, different from the 2D U-net, 3D image are used as Input layer. 

This is schematically depicted in Figure 5.1. As we now work in 3D, a slice extractor is 

no longer required, and instead a cubic patch is used. The equation operation fits the 

cubic patch into the Input or Output layer. The Output layer of the network is named as 

the segmentation map. This will, to some extent simplify the description of network 

layers including 3D Input and number of kernels. Besides the features on each 

reconstruction slice, the encoder and decoder in 3D U-net also considers the correlation 

between adjacent slices by using 3D Maxpooling, Convolution and Upsampling layers. 

Compared to a 2D U-net approach, this produces smoother segmentation results. Similar 

to 2D U-net there is one more Convolution layer before each Maxpooling or Upsampling 

layer (not shown in Figure 5.1). The Merge layer after each Upsampling layer integrates 

shadow layer into a deeper one, this yielding even more informative layers. The 

segmentation result of the volumetric patch is achieved based on the thresholding of 3D 

segmentation map, the Output layer of network.  

5.3.2 Learning scheme 

A CNN can only be successful when it is properly designed and parameterized. For this, 

the proper loss functions, optimizers and learning rate will be employed. In this section, 

we elaborate on these schemes and how they should be applied. 

1) Loss & Metrics 

Loss and metrics functions play an important role in training networks, because they 

provide a criterion for measuring the similarities between prediction and truth, and 

determine the level of convergence for the training process. With the Sigmoid activation 

function at the Output layer and the binary segmentation problem for both RSs, we first  
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Figure 5.1. The 3D U-net framework for volumetric segmentation of the Body RS in zebrafish. A 

volumetric patch of reconstructed 3D image, i.e. 64x64x64, is fed into the network as Input layer. 

It inherits the characteristics of Max pooling, Upsampling and Convolution layers; moreover, it 

includes the concatenation operation to merge similar layers of different depths. In this structure, 

every operation is implemented in 3D.  The equations operation at Input and Output layer help to 

overcome the visualization gap between 3D image and 4D network layers. The values of the 

segmentation map at the Output layer are in the range of [0, 1], representing the network response 

to the Body RS. By applying threshold=0.5 to the segmentation map, the binary 3D Body RS is 

obtained as shown in the 3D image patch.   

use the binary cross entropy loss 
[115],[116]

 and accuracy metrics. In this case, the 

segmentation performance of both background and RS, i.e. foreground, are taken into 

account for updating the network weights according to: 

 𝐸𝐿 = ∑ 𝑔𝑖
𝑟 log(𝑝𝑖

𝑟) + (1 − 𝑔𝑖
𝑟) log(1 − 𝑝𝑖

𝑟)𝑁
𝑖=0                                   (1) 

where 𝐸𝐿 is the loss, whilst 𝑝𝑖
𝑟 represents the probability of voxel i being predicted as the 

RS 𝑟, and 𝑔𝑖
𝑟 symbolizes the corresponding ground truth. This normally results in very 

small losses and high accuracies during training process when the classes are highly 

imbalanced. In classification problems, class imbalance exists if the number of samples 

for each class varies. Such imbalance may have a different impact on the classification 

results depending on the level of imbalance. For the 3D images in our work, the number 

of voxels for RS class is generally smaller compared to the background class.  

With respect to segmentation map in both networks, it only records the response of the 

positive class, i.e the RS. This means that the network can be updated according to the 

assessment of the segmentation performance for the positive class. To this end, the Dice 

coefficient and Dice loss 
[117]

 are applied for the training of the network. With the 

Sigmoid activation, the Output layer consists of one plane for the RS. Now P and G are 
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the set of predicted and ground truth binary labels. The Dice similarity coefficient 

between two volumes is defined as 
[117], [118]

:  

𝐷(𝑃, 𝐺) =
2|𝑃⋂𝐺|

|𝑃| + |𝐺|
                                                          (2) 

It weighs FP and FN (precision and recall) equally. The Dice coefficient loss is then 

defined as follows:  

𝐷𝐿 = 1 −
2 ∑ 𝑝𝑖

𝑟𝑔𝑖
𝑟𝑁

𝑖=1 + 𝜖

∑ 𝑝𝑖
𝑟𝑁

𝑖=1 + ∑ 𝑔𝑖
𝑟 + 𝜖𝑁

𝑖=1

                                        (3) 

where 𝑝𝑖
𝑟  represents the probability of voxel i being predicted as the RS and 𝑔𝑖

𝑟 

symbolizes that of the ground truth. 𝜖 is a secondary functional term which helps the loss 

function converge more effectively.  

Considering the high imbalance of 3D image for RS detection, in addition the Tversky 

loss function 
[119]

 is also applied. This metric was formulated based on the Tversky index 
[120]

, which gives FP higher weights than FN in the training of the network. The Tversky 

index between prediction and ground truth volume is formulated as:  

𝑇(𝑃, 𝐺;  𝛼, 𝛽) =
|𝑃⋂𝐺|

|𝑃⋂𝐺| + 𝛼|𝑃 − 𝐺| + 𝛽|𝐺 − 𝑃|
                              (4) 

where 𝛼  and 𝛽 control the magnitude of penalties for FP and FN, respectively. 

Accordingly, the Tversky loss function is formulated as: 

𝑇𝐿 = 1 −
 ∑ 𝑝𝑖

𝑟𝑔𝑖
𝑟𝑁

𝑖=1 + 𝜖

∑ 𝑝𝑖
𝑟𝑔𝑖

𝑟𝑁
𝑖=1 + 𝛼∑ 𝑝𝑖

𝑟𝑔𝑖
0 + 𝛽∑ 𝑝𝑖

0𝑔𝑖
𝑟 +𝑁

𝑖=1 𝜖𝑁
𝑖=1

                    (5)  

Here 𝑝𝑖
𝑟  and 𝑔𝑖

𝑟  have the same meaning with Dice coefficient loss, and 𝑝𝑖
0 and 𝑔𝑖

0  are 

separately the probability of voxel i belonging the background (label = 0) in prediction 

and ground truth. According to the literature 
[119]

, for  𝛼 = 0.3 and 𝛽=0.7 the Tversky 

loss function has the best performance in managing highly imbalanced data. Therefore, 

we adopt these values to the CNN for our segmentation.  

The aforementioned three state-of-the-art metrics and loss functions are widely used in 

biomedical image segmentation 
[121]

 because of their stability and robustness. In the 

results section we will apply the three metrics and loss functions to our data and 

segmentation network, and explore how they perform on the results. 

2) Optimizer & Learning rate 

An Optimizer is an optimisation algorithm that regulates and determines the route of 

converging for the loss function. Our volumetric data exhibit sparseness, i.e. compared to 

the object voxels the ratio of the background voxels is high. The Adam optimizer 
[122]

 is 

typically useful for such sparse data. Adam was designed to combine the advantages of 

Adagrad 
[123],[124]

 and RMSprop 
[125],[126]

 with momentum 
[122]

 as an improved version of 

stochastic gradient decent (SGD) 
[87]

 for training deep learning models.  This makes it 

suitable to work with sparse gradients on noisy data. Another advantage of Adam is that 
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the rule for step size updating, is invariant to the magnitude of gradient. This helps to go 

through areas with low gradients such as saddle points and ravines 
[122]

. 

 In order to accelerate training process and to some extent improve the performance of 

the deep network 
[127]

, we employ the stochastic gradient descent with warm restarts 

(SGDR) 
[128]

 in a cyclical learning rate scheme. The idea of this strategy is to decay the 

learning rate from maximum 𝑙𝑚𝑎𝑥
𝑖  to minimum 𝑙𝑚𝑖𝑛

𝑖   in a cyclic fashion, using:  

𝑙𝑡 = 𝑙𝑚𝑖𝑛
𝑖 +

1

2
(𝑙𝑚𝑎𝑥
𝑖 − 𝑙𝑚𝑖𝑛

𝑖 ) (1 + cos (
𝑇𝑡
𝑇𝑖
𝜋))                                (6) 

where i is the current cycle for learning decay. The beginning of each cycle is referred to 

as a restart. 𝑇𝑖 is the length of the i
th
 cycle, deciding the number of epochs in this cycle. 

Experimentally, it is preferred to increase 𝑇𝑖 as i increases during training. The increasing 

step for each restart cycle is controlled by 𝑇𝑚𝑢𝑙𝑡.  𝑇𝑡 accounts for the number of epochs 

that have been performed since the last restart or in the current cycle i. This means that 

the learning rate will decay for each epoch within each cycle, and the decay speed will 

decrease as the cycle progresses. Experimentally we set 𝑙𝑚𝑎𝑥
𝑖 = 10−4 , 𝑙𝑚𝑖𝑛

𝑖 = 10−6 , 

𝑇𝑚𝑢𝑙𝑡 = 1.5 and number of epochs as 500. In this manner we are achieving reasonable 

results. For more information about the learning rate, we refer to 
[128]

.             

5.4 Experiments and results  

The experiments are first applied to the 3D bright-field images of the 38 zebrafish 

samples to train and evaluate the RS segmentation network (cf. § 5.3.1). Both networks 

and different metrics are used for comparison to achieve the highest performance of the 

segmentation network. This network is then employed for the case study in tumour 

quantification (cf. § 5.2.4) as a test for automated RS detection and phenotype 

quantification.  

5.4.1 Detection of 3D reference structures 

In order to use the segmentation network for automated detection of the RSs from the 3D 

bright-field image, we first need to train and optimize the segmentation network with the 

35 training samples. This means that the performance of the segmentation network needs 

to be evaluated first on the 3 testing samples with evaluation metrics, before it can be 

used further for 3D quantification. To this end, we introduce the evaluation metrics, 

followed by optimisation and evaluation experiments implemented on both RSs for this 

study.     

1) Evaluation metrics 

To evaluate the performance of different loss functions on both networks for each 

RS, we spilt the 38 samples into three sets: 28 samples for training the networks, 7 

samples for validation and 3 samples for testing. The performance is compared by 
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applying five different evaluation metrics to the 3 test samples from individual prediction. 

The evaluation metrics we employ include the Dice similarity coefficient (DSC) 
[117]

 or 

F1 score, sensitivity, specificity, F2 score and area under the Precision-Recall curve, i.e. 

APR score
 [129]–[131]

:  

𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                      (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                    (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                    (9) 

𝐹2 =  
5𝑇𝑃

5𝑇𝑃 + 𝐹𝑃 + 4𝐹𝑁
                                                   (10) 

where TP, TN, FP and FN are the true positive, true negative, false positive and false 

negative rates, respectively. Sensitivity or recall, measures the proportion of actual 

positives that are correctly identified as such and it also quantifies the ability to avoid 

false negatives. Specificity or precision, quantifies the ability to avoid false positive. The 

F2 score is an effective measure for cases where recall is more important than precision 

compared to F1 that equally measures the recall and precision. To critically evaluate the 

segmentation performance of different networks for highly unbalanced data, in our case 

in particular for Eye, we use the APR score.   

2) Detection of 3D Body reference structure 

Compared to 2D, the 3D segmentation of the Body RS is more complicated. 

Specifically, 3D data contains both image information of each slice and correlation 

between adjacent slices. By using 3D based segmentation techniques such as 3D U-net, 

we can collect and extract, to some extent, both kinds of information. To this respect it 

offers more features compared to the 2D Body RS. However, because of the transparency 

of the specimen in the bright-field channel, the difficulty of segmentation in zebrafish, 

especially the surface, also increases; even more so from 2D to 3D. Figure 5.2 (a) gives 

us an intuitive idea of what transparency means in a single reconstructed slice of a 3D 

image. Due to the intensity similarity between background and transparent tissue, the 

difficulty of segmentation with transparencies in the specimen on a single slice can be 

assessed by comparing Figure 5.2 (a) and (b). 

To investigate the ability of the U-net based segmentation network on transparent 

specimens, we evaluate both 2D U-net network excluding correlations between adjacent 

slices and 3D U-net network including correlations between adjacent slices. Both are 

trained based on the three different loss functions (cf. § 5.3.2). Figure 5.3 shows the 

results of a test sample achieved from different methods, i.e. two networks with three loss 
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functions, and the corresponding errors (yellow for FP and red for FN), compared to the 

ground truth. From these qualitative results, it is difficult to conclude which methodology 

performs best on the data. However, we observe that the loss function has an impact on 

the segmentation errors. From binary cross-entropy loss 
[116]

 to Tversky loss 
[119]

, 

regardless of different networks used, the FN error decreases whilst the FP error 

increases. This means that both segmentation networks have the highest ability to avoid 

FN errors when using the aforementioned Tversky loss, and the highest capability to 

avoid FP errors when using binary cross-entropy loss. 

 

Figure 5.2. An Example for the reconstructed slice of 3D zebrafish image and the corresponding 

segmentation result for the slice of the Body. 

To further quantify the performances of different methods and loss functions, five 

evaluation metrics are reported in Table 5.1 based on the average performance of the 

three tested samples. The best result of each individual metric across different 

segmentation networks and loss functions is presented in bold. Since in our work 

avoiding FP errors is equally important as avoiding FP errors, the combination of 

network and loss function that has the most bold results in the DSC and APR metrics, is 

regarded as the overall best performing method. By evaluating and assessing the results 

in Table 5.1, we concluded that 3D U-net with Dice loss has the best performance on the 

current dataset. It achieves the highest DSC/F1 and APR score as 93.9% and 88.4% 

separately. 
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Figure 5.3. Comparison of the detected Body (volume rendering), as a RS on a zebrafish sample. 

The results from different segmentation networks and loss functions are displayed on the top row, 

as well as the ground truth model manually labelled on the top right. On the bottom there are six 

errors (volume rendering), corresponding to different segmentation methods or metrics, with 

yellow showing FP and red for FN. 

3) Detection of 3D Eye reference structure 

The tissues in Eye are relatively dense, which guarantees a sufficiently distinct range 

of image intensities for Eye. One should, however, be aware that similar intensity 

patterns also exist in other parts of the zebrafish.  A good segmentation method is 

supposed to discriminate Eye from other tissues considering the 3D specific 

configuration of that shape. The experiments for Eye segmentation are implemented 

according to the description in § 5.3. Ground truth labels for Eye are obtained through 

manual labelling using annotation software; i.e. TDR
 [132]

 and Amira 
[63]

.    

Figure 5.4 presents the comparisons of segmentation results on the same sample, when 

applying the 2D/3D networks and various loss functions. When assessing the 

segmentation results, we conclude that 2D U-net with Dice loss and 3D U-net with 

binary cross entropy loss fail to identify or segment the volume of Eye correctly. 2D U-
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net with binary cross entropy loss is able to identify parts of Eye, whilst with Tversky 

loss there is an over-segmentation of the volume. Similar to the Body, the best 

performing methods for the Eye are also 3D U-net with Dice loss, with much less errors 

both in the volume and on the surface. In order to identify the best segmentation 

performance for Eye, a quantified evaluation on the dataset is required. 

 
Table 5.1. The average evaluation results of the Body detection on three test samples. We compare 

6 methods including 2D U-net and 3D U-net across three different loss functions. In order to 

evaluate the results in a comprehensive and critical way, five evaluation metrics are employed. 

Referring to the visible errors in Figure 5.3, it is easier to understand the differences. The bold 

number represents the highest accuracy among 6 approaches for each individual evaluation 

metric. 

 

Network 

 

Metrics 

Loss_function 

Cross_entropy
[116]

 Dice 
[117]

 Tversky
 [119]

 

 

 

2D U-net 

DSC 92.80% 93.03% 92.47% 

Sensitivity 92.37% 94.20% 95.70% 

Specificity 99.88% 99.84% 99.79% 

F2 92.53% 93.70% 94.40% 

APR 86.37% 86.73% 85.83% 

 

 

3D U-net 

DSC 90.60% 93.90% 92.37% 

Sensitivity 90.53% 94.47% 97.47% 

Specificity 99.83% 99.87% 99.74% 

F2 90.50% 94.27% 95.40% 

APR 82.60% 88.40% 85.63% 

 

 
Table 5.2. The evaluation of Eye detection on three test samples. Five evaluations with 6 

approaches for segmentation are presented. The bold number in represents the highest accuracy 

among 6 approaches for each individual evaluation metric. 

 

Network 

 

Metrics 

Loss_function 

Cross_entropy 
[116]

 Dice
[117]

 Tversky
[119]

 

 

 

2D U-net 

DSC 54.70% 0% 35.00% 

Sensitivity 43.00% 0% 99.70% 

Specificity 99.98% 100% 99.21% 

F2 46.87% 0% 55.47% 

APR 34.43% 0.20% 22.03% 

 

 

3D U-net 

DSC 0% 91.80% 90.64% 

Sensitivity 0% 90.78% 93.62% 

Specificity 100% 99.99% 99.98% 

F2 0% 91.17% 92.40% 

APR 0.20% 84.53% 82.40% 
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Figure 5.4. Comparison of the detected Eye (volume rendering), as a RS on the same zebrafish 

sample. Similar to Figure 5.3, the detected results and ground truth are presented on the top, 

while the segmentation errors are showing on the bottom with yellow showing FP and red for FN. 

A qualitative report on the evaluation results on the three test samples is given in Table 

5.2. Because the 2D U-net with Dice loss and 3D U-net with binary cross entropy loss 

fail to detect Eye, the accuracies of DSC, sensitivity, F2 and APR are 0%. But 

specificities are reported 100% because they are able to avoid FP errors. 2D U-net with 

Tversky loss performs best for sensitivity at 99.7%, but not best for specificity at 99.21%, 

meaning it has the highest ability to prevent FN errors but lowest ability to avoid FP 

errors. 3D U-net with Tversky loss has best performance for F2 score at 92.40%. 

However, overall we conclude that the 3D U-net with Dice loss performs best, achieving 

a DSC score of 91.80%, specificity of 99.99%, and APR of 84.53%. 

5.4.2 Case study in tumour 

Tumour growth and remission of neuroblastoma in zebrafish can be observed in a 

controlled experiment with and without a tumour inhibitor. The experimental condition 

includes a longitudinal exposure to the tumour inhibitor isotretinoin so that the relative 

quantification can be used for determining the tumour size at a specific stage of treatment. 

In this manner the measurements are independent of the variation in the individual 
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samples and imaging environment (e.g. exposure time and magnification). The 

performance of the treatment at that stage will be statistically averaged based on the 

quantification of multiple samples. In this section we describe the 3D relative 

quantification of tumour as a case study. Prior that, 2D relative quantification is 

explained for comparison. 

1) 2D relative quantification with manual labelling 

2D quantification provides a fast and intuitive view of fluorescent signals (tumour) 

and the RS, i.e. Body or Eye, in zebrafish in terms of a projection from the sample in both 

channels. We wish to obtain a measurement with which we can compare samples. 

Therefore, in 2D we normalize a tumour for a sample n by dividing the tumour area 𝑡𝑛 by 

area of a RS 𝑓𝑛, achieving the area ratio 𝑟𝑛 = 𝑡𝑛/𝑓𝑛 , which is depicted in Figure 5.5 (A) 

and (B) for a different RS. In the example of Fish 1, the area ratios from the two different 

RSs are separately 0.3694% and 3.5006%, with threshold-based segmentation for the 

tumour and manual labelling for the RSs. The performance of a treatment at stage i is 

determined by the average ratio of the N samples,   𝑅𝑖 =
1

𝑁
∑ 𝑟𝑛
𝑁
𝑛=1 . A satisfactory 

segmentation of the tumour in the fluorescence channel is basically easy to achieve by 

using traditional threshold-based algorithms. However, for the segmentation of the RSs, 

more advanced methods 
[109],[98],[111]

 are needed.  

When averaging the relative ratios of N samples, the treatment performance of all 

samples 𝑅𝑖  should be calculated at the same projection angle, which is difficult to 

achieve. Another drawback of 2D quantification is that it fails to provide information 

about the shape of the tumour and the RSs. This limits its capability of representation in 

true 3D space. Therefore, we change to 3D quantification.        

2) 3D relative quantification with manual labelling 

Before 3D quantification, the OPT tomograms from individual channel are reconstructed 

to a 3D image, cf. § 5.2.2. This 3D reconstruction is required for the volumetric analysis. 

The pipeline of 3D relative quantification for each sample is similar to that of the 2D 

quantification, so is tumour segmentation in the fluorescence channel. The challenge of 

the 3D quantification lies in obtaining the volumetric RS. Specifically, the large number 

of reconstructed slices in 3D image makes manual labelling of a 3D RS impractical. Thus 

there is a demand for automated RS detection. Figure 5.6 presents an example of 

workflow for 3D tumour quantification at treatment stage i using the individual RS. In 

the next section, the state-of-the-art automated segmentation strategy based on 

convolutional neural network (CNN), cf. § 5.4.1, will be presented and implemented. In 

the same example of Fish 1, the 3D relative quantification results of tumour from the two 

different RSs are separately 0.1865% and 2.6962%.   
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Figure 5.5. 2D relative quantification of tumour at a specific treatment stage i using Body (A) and 

Eye (B) RS labelled from the OPT tomogram. Each zebrafish sample is represented as a 2D image 

in the two channels (tumour in fluorescence channel and zebrafish structure in bright-field 

channel). The segmentation of tumour and the manual labelling of RS (Body or Eye) are used for 

the quantification. In the example of Fish 1 with 𝒓𝒏 = 𝒕𝒏/𝒇𝒏, the 2D relative quantification results 

𝒓𝒏 for the Body and Eye are separately 𝒓𝟏 = 𝟎. 𝟑𝟔𝟗𝟒% and 𝒓𝟏 = 𝟑. 𝟓𝟎𝟎𝟔%. By averaging the 2D 

relative quantification 𝒓𝒏 of N samples, the performance of treatment at time-point i, i.e. 𝑹𝒊 is 

achieved. 
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Figure 5.6. 3D relative quantification of tumour using two different 3D RSs. Each zebrafish 

sample is represented in two different channels, with the fluorescence channel for the tumour and 

the bright-field channel for the RS. (A) The 3D quantification based on the Body. (B) The 3D 

quantification based on the Eye. The 3D quantification is obtained by calculating the volume ratio 

between the tumour and RS. Specifically, in this example the 3D quantification results for Fish 1 

are 𝐫𝟏 = 𝟎. 𝟏𝟖𝟔𝟓% and 𝐫𝟏 = 𝟐. 𝟔𝟗𝟔𝟐%, calculated based on the two different RSs. As with 2D 

quantification the performance of treatment at time-point i, i.e. 𝐑𝐢 is achievable by averaging the 

𝒓𝒏 of N different samples.    
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3) Comparisons of automated detection and manual labelling of RS for 3D 

quantification 

Studies of tumour growth in zebrafish require measurements of the size and shape of 

the tumour. In our work the relative quantification of tumour is based on images in the 

fluorescent and bright-field channel (cf. § 5.2.4). Here we use the output of experiments 

on the automated detection method to automatically detect the RSs, i.e. Body or Eye, for 

a case study in tumour growth. Manual labelling a volume such as the Body normally 

takes at least 1-2 hours for one sample, while automated detection takes a few seconds. 

Figure 5.7 and 5.8 provide the comparisons of tumour quantification performance based 

on the RSs from automated detection and manual labelling. Because of its good 

performance for both RSs, we adopt 3D U-net to the tumour quantification for this case 

study. The sample compared in this section is a 25 dpf zebrafish and it is not included in 

the 38 samples mentioned before. The tail was not included in the imaging process 

because as a higher magnification is used, this results in an incomplete zebrafish. 

However, the segmentation method succeeds to detect the incomplete zebrafish even 

though it is trained and validated on the 35 complete zebrafishes.  

For the Body RS, the automated detection using 3D U-net with Dice loss, achieves best 

overall performance when referring to the manual labelling result as the ground truth. 

Therefore, we use this segmentation network to automatically detect the Body in this case 

study. The relative ratios of the tumour referring to the Body from automated detection 𝑟 

and manual labelling 𝑟𝑓  (§ 5.2.4), are separately 0.1883% and 0.1865%, with a 

quantification error of 0.9651%. The quantification error 𝐸𝑟  explains the relationship 

between the FP and the FN error. A positive error in this case, i.e. the volume from 

automated detection is larger than the ground truth, means that the FN error is more than 

the FP error. With respect to Eye, the automated method has the best performance of 

95.04% for DSC score, 93.77% for sensitivity, 99.98% for specificity, 94.27% for F2 

score and 90.37% for APR, using Dice loss function. Dividing the number of tumour 

voxels by Eye volume, we obtain the relative ratio as 𝑟 = 2.7679%, larger than 𝑟𝑓  = 

2.6962% from manual labelling as the ground truth, resulting in the positive ratio error 

𝐸𝑟 = 2.7261%. This is consistent with the fact that the FN error exceeds the FP error 

shown on the right of Figure 5.8.  
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Figure 5.7. Comparison of tumour quantification based on the volumetric Body RS obtained from 

automated detection and manual labelling.  

 

Figure 5.8. Example of tumour quantification based on the volumetric Eye RS obtained from 

automated detection and manual labelling. 
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5.5 Conclusions and discussion 

In the previous sections, we introduced the concept of 2D and 3D relative quantification 

for fluorescent signals in zebrafish and focused on the technical solution of automated 

reference structure detection for the 3D quantification. In § 5.4, we compared the 

detection performances of different segmentation methods for both RSs and conclude 

that the 3D U-net segmentation network with Dice loss function performs best for 

automated detection of both RSs on the 38 samples. An overall promising accuracy of 

over 90% is achieved with respect to five evaluation metrics for both RSs. Subsequently, 

we compared the relative quantification of tumour between the automatically detected 

RSs and manually labelled ones. We further investigated how the segmentation errors 

influence the relative ratio r, compared to the ground truth ratio 𝑟𝑓. From our experiments 

it is shown that when FN exceeds FP this results in positive quantification error. Whereas, 

an FN smaller compared to FP results in a negative quantification error. The overall 

quantification error that we have established is 0.9651% for the zebrafish body RS and 

2.7261% for the zebrafish eye RS. Given the experimental setting this is acceptable and 

reasonable. Nevertheless, given these acceptable outcomes we still can do the effort of 

further automation of the laborious manual labelling. Moreover, based on the results of 

the automated detection, further improvement can be accomplished by a careful manual 

error correction. In this case, the hybrid of artificial intelligence (AI) and human 

intelligence (HI) gains the best performance. 

In this research project we focused on quantification of tumour growth, but the 

approach can be generalized to the quantification of fluorescent signals in zebrafish. 

Ideally, they are labelled with fluorescent markers for OPT imaging and reconstruction. 

With the promising results of automated detection on the limited dataset, better results 

can be achieved when training the network with a larger dataset. This way we can further 

improve the accuracy of automated detection of the RSs. Additionally, another 

contribution of this research is the introduction of a pipeline for relative quantification 

using automatically detected RSs. This pipeline can be transferred to high-throughput 

analysis of zebrafish. In the case study for tumour quantification, we presented and 

evaluated the pipeline for just one sample. Once more samples are available, we would 

continue with a statistical analysis of the performance of treatment using the proposed 

pipeline. This is motivated by the fact that statistical analysis of samples at either the 

same stage or different stages is getting increasingly important for drug discovery.  
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