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Chapter summary 

The reconstruction of a tomogram to a 3D image has some drawbacks in that there are 

artefacts introduced in the reconstruction that affect the quality of the image. We have 

been using the filtered back projection algorithm for the reconstruction; but iterative 

reconstruction algorithms demonstrate a superior performance as far as artefacts are 

concerned. In computerized tomography these iterative algorithms are successfully 

applied. These iterative algorithms will, however, require much more computation time.  

In this chapter we study capability of iterative algorithms to remove streak artefacts 

from reconstructions of optical projection tomograms. Moreover, we explore possible 

ways to optimize the most customary parameters of the iterative reconstruction 

algorithms so as to improve its reconstruction performance. Due to the lack of 

benchmarks for direct reconstruction evaluation in optical projection tomography we 

consider the assessment according to the performance of segmentation in the 

reconstruction. We use the zebrafish model, the model system for which our OPT system 

is used a lot, as we can easily obtain data and build a benchmark. For the segmentation 

approach we employed the 2D U-net convolutional neural network as it is known for 

good performance in biomedical image segmentation. 
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4.1 Introduction 

Three dimensional (3D) image reconstruction in OPT can play a crucial role in giving 

insight into protein distribution and/or gene expression within a research model, e.g. 

zebrafish, at a tissue and organ level. Given the specific data, a good reconstruction 

algorithm typically produces a reliable and effective 3D reconstruction, whereas a simple 

reconstruction technique may introduce computational artefacts that hamper the 

interpretation of the data. These kinds of artefacts are introduced during the 

reconstruction process because of imperfection of the data prior to the imaging process. 

There are two categories of approaches to reduce or eliminate these artefacts. One is 

considering the perspective of the imaging process, meaning trying to avoid the imaging 

imperfections that results in artefacts, either from the sample side or from the instrument 

side. This approach is, however, sometimes quite expensive or even unachievable in 

some cases. Another category is to computationally improve the reconstruction from an 

imperfect tomogram. It can be either applying a powerful reconstruction algorithm or 

employing pre-processing and/or post-processing of a specific algorithm.    

In 2005, Walls et al. 
[22]

 first presented the possible artefacts in the Filtered Back 

Projection (FBP) reconstruction existing in an OPT imaging system. The main 

contribution of this work lies in the study of the origins of the reconstruction artefacts 

from the imaging source, for instance signal decay, CCD imperfection, etc. He studied 

the reasons why these imperfections in imaging would result in reconstruction artefacts 

within the FBP 
[68]

 framework, but not yet explain if more advanced reconstruction 

algorithms, such as iterative reconstruction, can reduce or even eliminate these artefacts.  

In addition to the work of Walls et al., we explain the so called streak artefacts in the 

FBP reconstruction and briefly explain the imaging source reason. OPT imaging is 

characterized by its wide depth of field (DoF) compared to high-resolution microscopes, 

e.g. confocal microscopy 
[69], [70]

. This means that a point source that is properly focused 

in one angle of rotation may be blurred or even invisible in its opposite angle. This will 

result in streak artefacts in the FBP reconstruction because of the severe asymmetry of 

tomograms.  

In CT imaging, the so called metal artefacts can be either reduced with artefacts 

reduction algorithm within the FBP framework or eliminated by using other 

reconstruction methods such as iterative reconstruction. With respect to reduction of 

artefacts, in the last two decades a variety of approaches have been proposed for CT 
[71]–

[75]
. These approaches, however, can only decrease the artefacts rather than eliminate 

them. As for streak artefacts, elimination using other reconstruction methods, the iterative 

reconstruction stands out. Inspired by the superior performance of metal artefacts 

elimination when using iterative reconstruction in CT 
[35], [76]–[78]

, we are interested in 

exploring its capability of streak artefacts elimination in OPT.  

Iterative reconstruction refers to iterative algorithmic approaches used to reconstruct 

2D or 3D images from tomographic imaging techniques. Generally, it starts with an 
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assumed image, computes projections from the image via a projection function and 

updates the image according to the difference between the calculated and the actual 

projections. According to the updating schema for image, it can be categorized into four 

kinds of approaches, i.e. algebraic reconstruction techniques (ART) 
[23]

, iterative sparse 

asymptotic minimum variance (SAMV) 
[24]

, statistical reconstruction 
[25]

 and learned 

iterative reconstruction 
[26], [79]

. They are considered superior when there is a lack of 

uniform projections or when the projections are sparse, which to some extent fits the 

character of imaging source for the aforementioned streak artefacts in OPT. Compared to 

its application in CT, iterative reconstruction was less studied in OPT. Correia et. al 
[12]

 

applied the iterative reconstruction to achieve relatively reasonable results on a sparse 

collection of projections in 2015. One possible reason for impeding prevalence of 

iterative reconstruction in OPT is the high computation time. Nevertheless, with the rapid 

development of computational strategies, e.g. parallel computing and GPU, iterative 

reconstruction will be more widely used in OPT.  

The common approach for evaluating reconstruction performance in tomographic 

imaging is accomplished by producing and projecting a simulated object, e.g. phantom in 

CT, and assessing the performance of a reconstruction algorithm based on the projections 
[80]

.  Nevertheless, due to the DoF in OPT imaging the projection function is much more 

complicated than that in CT. In this case, simulating the projections of a phantom as 

benchmark has, to our best knowledge, never happened in OPT. Therefore, as an 

alternative we use images from real-life samples for experiments.  

Iterative reconstruction has great potential for image reconstruction in OPT. However, 

there is an intrinsic disadvantage for image reconstruction in OPT in that a good 

quantitative evaluation on the reconstruction is difficult. This disadvantage mainly results 

from the lack of benchmarks for samples. In such a situation formulating an alternative 

evaluation method according to the specific research problem is considered applicable 

and feasible. With this idea we transfer the evaluation of reconstruction to that of 

segmentation which can be easily obtained given the reconstruction data; in our 

experiments we use zebrafish. The inspiration of the transfer originates from the fact that 

we are expecting better segmentation results from different reconstructions on the same 

data. Therefore, this transfer can be valid under the assumption that the reconstruction 

with better segmentation result is preferred, given effect of the same segmentation 

algorithm. By transferring the evaluation of reconstruction to segmentation, we can 

approximate the best parameters for reconstruction. Thus, our approach can be 

interpreted as an optimisation of iterative reconstruction for OPT.  

In this chapter we focus on iterative reconstruction in OPT so as to avoid streak 

artefacts, and furthermore we explore the possibility of segmentation evaluation to 

optimize the parameters for iterative reconstruction. In section 4.2 the implementation of 

iterative reconstruction will be briefly introduced. We will focus on the parameter 

optimisation in section 4.3. The specific scheme and approach for parameter optimisation 

will be exhaustively discussed there, which will be followed by the experimental results 
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and discussion. Finally we present our conclusions, as well as raise some limitations and 

future work.  

4.2 Iterative reconstruction for OPT 

In general, iterative reconstruction can lead to a more accurate OPT 3D image than that 

obtained by the FBP 
[68]

. However, a large number of iterations may be required to 

generate an acceptable result, with each iteration taking about the same amount of time as 

the FBP. Thus to some extent the effectiveness of iterative reconstruction is achieved at 

the expense of more computation time. One approach to reduce the number of iterations 

is to organize the projection data into a series of ordered subsets of evenly spaced 

projections and update the current estimate of the object after each subset rather than 

after the complete set of projections. The most commonly used algorithm employing 

subset is referred to as ordered subset expectation maximization (OSEM) reconstruction 
[28], [81]

. It improves the efficiency of iterative reconstruction with respect to 

computational time. 

According to the expectation maximization (EM) algorithm in iterative reconstruction 
[82]

, the intensity of an object projected to the detector follows the Poisson distribution 

with expected value 𝜇 = 𝐸(𝐼(𝑧,𝛽,𝜃) ) = 𝑃(𝑧,𝛽,𝜃) × 𝑅(𝑥,𝑦,𝑧)). The object to be reconstructed 

is assumed as 𝑅(𝑥,𝑦,𝑧) and will be updated in an iterative way as follows:  

𝑅(𝑥,𝑦,𝑧)
𝑙+1 = 𝑅(𝑥,𝑦,𝑧)

𝑙
∑ (𝐼(𝑧,𝛽,𝜃𝑡) /(𝑃(𝑧,𝛽,𝜃𝑡) × 𝑅(𝑥,𝑦,𝑧)

𝑙 ))𝜃𝑡∈𝐼𝑡

∑ 𝑃(𝑧,𝛽,𝜃𝑡)𝜃𝑡∈𝐼𝑡

                             (1) 

with P being the projection function while 𝐼(𝑧,𝛽,𝜃)  symbolizes the tomogram at the angle  

𝜃 in OPT. (𝑧, 𝛽, 𝜃) and (𝑥, 𝑦, 𝑧)are separately the tomogram and 3D image coordinate, 

with 𝛽  being the detector axis and 𝜃  being the projection angle; whilst 𝑧  is the slice 

number and  (𝑥, 𝑦) indicates the image size of a reconstructed slice. The EM based 

iterative reconstruction is based on the idea that the reconstruction 𝑅(𝑥,𝑦,𝑧) of an object in 

3D space can be estimated with the observed or measured data 𝐼(𝑧,𝛽,𝜃) by iteratively 

updating 𝑅(𝑥,𝑦,𝑧) with the EM algorithm, with l being the iteration step. The conventional 

EM iterative reconstruction updates 𝑅(𝑥,𝑦,𝑧) based on a full set of observation 𝐼, while the 

OSEM splits the full set into T ordered subsets 𝐼 = {𝐼𝑡: 𝑡 = 1,2,… , 𝑇}, 𝐼𝑡 = 𝐼(𝑧,𝛽,𝜃𝑡) and 

implements the updating based on 𝐼𝑡 in each iteration step 
[82]

.  

In the OPT imaging system, the light is approximately considered as parallel rather 

than conical. In this case the projection function 𝑃(𝑧,𝛽,𝜃𝑡) remains the same at different 𝑧 

positions or on different reconstructed slices. Then the update can be implemented on a 

slice by slice basis, with each slice updated using:   

𝑅(𝑥,𝑦)
𝑙+1 = 𝑅(𝑥,𝑦)

𝑙
∑ (𝐼(𝛽,𝜃𝑡) /(𝑃(𝛽,𝜃𝑡) × 𝑅(𝑥,𝑦)

𝑙 ))𝜃𝑡∈𝐼𝑡

∑ 𝑃(𝛽,𝜃𝑡)𝜃𝑡∈𝐼𝑡

                                  (2) 
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Figure 4.1. Workflow of iterative reconstruction in OPT. Example is given on a zebrafish larvae of 

6 days post fertilization (dpf). 

In Figure 4.1 the workflow of iterative reconstruction is depicted as applied on a 

zebrafish sample on a slice-by-slice basis. The observed projections, are acquired from 

the OPT imaging system and are here defined as the sinogram 𝐼(𝛽,𝜃𝑡) . By using the 

OSEM algorithm, the reconstructed slice 𝑅(𝑥,𝑦)
𝑙 is updated based on the differences 

between the observed projection and the simulated projection in reconstruction space 

using Eq. (2), with a initial reconstruction slice 𝑅(𝑥,𝑦)
0 . The simulated projection is 

updated as 𝐸(𝐼(𝛽,𝜃𝑡)
𝑙 ) = (𝑃𝜃𝑡 × 𝑅(𝑥,𝑦)

𝑙 )and 𝐸(𝐼(𝛽,𝜃𝑡)
0 ) = (𝑃𝜃𝑡 × 𝑅(𝑥,𝑦)

0 ) for the first update. 

This difference 𝐼(𝛽,𝜃𝑡) /𝐸(𝐼(𝛽,𝜃𝑡)
𝑙 ) in projection space is reconstructed to 3D image space 

using back projection 𝑃𝜃𝑡
−1, which is finally used for updating the slice 𝑅(𝑥,𝑦)

𝑙  as shown in 

Eq. (2). As we can see from Figure 4.1, in the iterative framework both the end point and 

the initial reconstruction 𝑅(𝑥,𝑦)
0  play an important role in the final results, which will be 

studied in the following sections. 
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4.3 Parameter optimisation for iterative reconstruction 

Parameters for iterative reconstruction can be optimized based on the performance 

assessed on reconstructed results. Nevertheless, due to the lack of benchmark for direct 

reconstruction evaluation in optical projection tomography we consider the assessment 

according to the segmentation performance of the 3D images reconstructed with different 

parameters. To this end, the framework for this idea will be first elaborated. It is 

proposed under the assumption that the segmentation method used is reliable and 

effective. In order to guarantee this, we employ a convolutional neural network (CNN) as 

it is known for its high performance in image segmentation. In Figure 4.2, an example 

slice (head part) of 25 dpf zebrafish is given, explaining how different reconstruction 

parameters influence the segmentation performance. Figure 4.2 (a) and (b) are two slices 

reconstructed from the iterative reconstruction using different parameters. Figure 4.2 (c) 

and (d) show the corresponding segmentation results based on the reconstructed slices 

from Figure 4.2 (a) and (b). The benchmark of this slice is displayed in (e), which is 

obtained from the manual segmentation. When visually comparing the reconstructed 

slices and the segmentation performance, we observe that different reconstruction 

parameters could produce different 3D image slices, which will consequently result in 

distinct segmentation results. For instance the slice in (b) has better segmentation 

performance shown in (d), comparing to the performance (c) from the slice in (a). With 

this assumption, we can optimize the parameters based on the segmentation performance 

of the 3D image slices that are reconstructed with different parameters.    

 
Figure 4.2. An example showing the effect of reconstruction parameters on segmentation 

performance. (a) and (b) The slices reconstructed from two different parameters. (c) and (d) The 

corresponding segmentation results. (e) The benchmark of segmentation for comparison. 
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4.3.1 Framework of parameter optimisation for iterative reconstruction  

The framework of parameter optimisation for iterative reconstruction integrates the 

reconstruction and segmentation process as a whole as shown in Figure 4.3. In OPT a 

tomogram is referred to as 𝐼(𝑧,𝛽,𝜃) , with 𝑧  and 𝛽  representing the pixel position of 

tomogram at the projection angle 𝜃. The 3D image is obtained by implementing the 

iterative reconstruction algorithm 𝑓(𝛼) on the tomograms as 𝑅(𝑥,𝑦,𝑧)
𝛼 = 𝑓(𝛼) 𝐼(𝑧,𝛽,𝜃) with 

𝛼 being the parameters required for iterative reconstruction. The reconstructed results can 

further be segmented according to a specific criterion given the data, achieving the 

segmentation result 𝑆(𝑥,𝑦,𝑧)
𝛼  depicted in Figure 4.3, where 𝑆(𝑥,𝑦,𝑧)

𝛼 = 𝑔(𝑅(𝑥,𝑦,𝑧)
𝛼 )𝑅(𝑥,𝑦,𝑧)

𝛼 . 

Therefore, the segmentation result can be formulated as: 

                         𝑆(𝑥,𝑦,𝑧)
𝛼  = 𝑓(𝛼)𝐼(𝑧,𝛽,𝜃) 𝑔 [𝑓(𝛼) 𝐼(𝑥𝜃,𝑦𝜃,𝜃) ]                                          (3) 

 

 
Figure 4.3. The framework for parameter optimisation for iterative reconstruction based on the 

corresponding segmentation performance. The 2D U-net 
[29]

  convolutional neural network is 

applied to train the segmentation model within each parameter group.  

with 𝑔 indicating the global function term for segmentation. Taking its high performance 

in biomedical image segmentation into account, we use the 2D U-net 
[29]

 convolutional 

neural network for our segmentation work. This means that, given the same tomogram, 

training the segmentation network with the 3D image reconstructed from different 𝛼 will 

produce different network outputs for segmentation. However these differences originally 

result from the reconstruction parameter 𝛼 rather than the network itself given the same 

configuration. From this notion the optimisation of 𝛼 can be approximately transferred to 
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a search for a better 𝛼 that produces 3D image for a better segmentation, with the idea 

that the benchmark of the segmentation is known; e.g. the zebrafish model in our work. 

The diagram of the pipline for the optimisation is depicted in Figure 4.3. For the same 

tomogram set, it is assumed that there are N 3D image groups {𝑅(𝑥,𝑦,𝑧)
𝛼1 ,…, 𝑅(𝑥,𝑦,𝑧)

𝛼𝑁 } 

produced from iterative reconstruction functions { 𝑓(𝛼1),…, 𝑓(𝛼𝑁)} with {𝛼1,..., 𝛼𝑁} 

representing the variation of parameters. By evaluating the N 3D image groups based on 

their segmentation performances, we can achieve the best reconstruction parameter 

ranging from 𝛼1 to 𝛼𝑁. If there are K samples for reconstruction and segmentation, then 

we have 𝑅(𝑥,𝑦,𝑧)
𝛼 = {𝑅1(𝑥,𝑦,𝑧)

𝛼 , … , 𝑅𝑘(𝑥,𝑦,𝑧)
𝛼 , … , 𝑅𝐾(𝑥,𝑦,𝑧)

𝛼  and 𝑆(𝑥,𝑦,𝑧)
𝛼 = {𝑆1(𝑥,𝑦,𝑧)

𝛼 , … , 𝑆𝑘(𝑥,𝑦,𝑧)
𝛼 , 

… , 𝑆𝐾(𝑥,𝑦,𝑧)
𝛼 }. It is worth mentioning that the segmentation network used in each 3D 

image group is internally trained rather than training it in a global scale across groups. 

This is because it is considered from an experimental perspective, more practical and 

valuable to train a segmentation network based on the data from the same reconstruction 

method, excluding the network preference when training it on the data across 

reconstruction approaches. With respect to segmentation network we employ the U-net 

CNN 
[29]

 because of its high performance in bio-medical image segmentation, generating 

a segmentation network group {𝑔(𝑅(𝑥,𝑦,𝑧)
𝛼1 ) ,…, 𝑔(𝑅(𝑥,𝑦,𝑧)

𝛼𝑛 )…,𝑔(𝑅(𝑥,𝑦,𝑧)
𝛼𝑁 }. With the 

internal-trained segmenation network, evaluation will be performed to choose the group 

which has the highest performance, simultaneously finding the optimal iterative 

reconstrucion parameter 𝑓(𝛼∗) . There are several parameters required in the OSEM 

iterative reconstruction algorithm, but we focus on the two most customary ones, i.e. 

iteration number and initial reconstruction, as η and γ respectively. The different 

combinations of η and γ comprise { 𝛼1 ,..., 𝛼𝑛 ,...,  𝛼𝑁 }, meaning that if 

𝜂 = {𝜂1, … , 𝜂𝑖 , … , 𝜂𝑝} and 𝛾 = {𝛾1, … , 𝛾𝑗 , … , 𝛾𝑞}, then 𝛼𝑛 = (𝜂𝑖, 𝛾𝑗) and 𝑁 = 𝑝 × 𝑞.  

4.3.2 Segmentation approach 

In order to provide a reliable and effective segmentation approach for reconstructed slices, 

CNN is employed as a result of its recent promising performance in medical image 

segmentation. As for our data, the zebrafish samples are transparent. It is challenging for 

traditional segmentation approaches to segment the foreground from the background 

when their intensities are very similar. A CNN can learn the structural and context 

information at different scales of resolution and, in that, it differs from traditional 

segmentation methods. For this reason, a CNN is very suitable for our research questions. 

We define our segmentation task as a binary segmentation on transparent samples in 

intensity image space. This means a small network such as 2D U-net rather than a 

complex network, is more desirable for our problem.        
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1)  Network structure  

The 2D U-net segmentation network 
[29]

 feeds 2D images as input layer, i.e. the 

reconstructed slices from the 3D image. Overall, the network contains encoder, decoder 

and a Merge layer between them as shown in Figure 4.4. In both the encoder and the 

decoder, there are 4 Convolutional layers and within each individual layer two 3x3 Conv- 

 

Figure 4.4. The structure of the 2D U-net network for zebrafish slices. Each slice is fed into the 

network as a single sample. The network contains both encoder (down layers) and decoder (up 

layers) for the deep CNN. The encoder is accomplished by a convolution and a max pooling 

operation while the decoder consists of a convolution and an upsampling operation. The 

Maxpooling and Upsampling layers are separately represented by red and green arrows. The 

Convolution layers are implemented with a 3x3 kernel at each depth of the encoder and decoder. 

Between similar layers on both sides there is a merge operation, allowing deep convolution layers 

to be merged with more shadow convolutional layers. c is the concatenation operation to merge 

layers from different depths.  

olution layers and one Dropout layer are integrated. Different depths in the encoder and 

the decoder are separately connected by Maxpooling and Upsampling layers. The bridge-

like Merge layer between the symmetric layers combines deep convolution layers and 

shadow ones. This typically improves the performance in segmentation problem. As the 

Output layer, the map activated by Sigmoid function 
[83]

, reflects the response to the 

zebrafish segmentation ranging from 0 to 1. The segmentation mask is generated when 

implementing a threshold on the map.  
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2) Network training 

A. Training scheme 

The segmentation network for zebrafish in each 𝛼𝑛 -specified 3D image group is 

independently trained. The number of segmentation networks for the parameter 

optimisation framework is dependent on the parameter combination, as 𝑁 = 𝑝 × 𝑞 for 

two parameters in our case. For a specific group 𝑅(𝑥,𝑦,𝑧)
𝛼𝑛 , a certain ratio, typically small,  

of reconstructed slices from the 3D image are sampled at even intervals for training while 

the rest, a large ratio, are used for testing. The rationale for training on a small rather than 

large ratio of data is due to the fact of information redundancy among adjacent slices in 

3D. Moreover, this can, to a large extent, reduce the workload of manual labelling. With 

a smaller ratio of data for training, the labelling for a single zebrafish could still be 

hundreds of slices. The image size of a typical OPT image is 512x512x1360. Here 1360 

indicates the number of slices in the image of 512x512 per slice. To further decrease the 

labelling workload and make it more efficient, an interpolation approach is applied. The 

tool for interpolation labelling is available in software 
[63]

. The results of interpolation 

labelling can be further verified manually and efficiently. The 3D images from the FBP 

reconstruction are used for labelling because of its capacity of offering comprehensive 

information. 

Within each group the training slices and the corresponding labelled maps are used to 

train the segmentation network that is constructed referring to the work in 
[29]

. Different 

from their network, the size of feature map after each convolutional layer maintains the 

same. The ReLU activation is used for all convolutional layers except for the last one 

which employs the sigmoid activation such that the output of the network ranges from 0 

to 1. Another difference between the U-net network and ours is that we employ the 

simplest binary cross entropy as the loss function without considering the weight of each 

pixel in the image. The loss energy function would be:  

𝐸 = ∑ 𝑦(𝑋)log (�̂�(𝑋)) + (1 − 𝑦(𝑋))log (1 − �̂�(𝑋))

𝑋∈𝛺

                             (4) 

where 𝑦(𝑋) is the labelled value at the pixel position 𝑋 ∈ 𝛺 with 𝛺 ⊂ 𝑍2, i.e. 𝑦(𝑋) ∈
{0,1}. �̂�(𝑋) represents the predicted value at the same pixel position. The network is 

trained with the Adam optimizer 
[84]

 implementing Keras 
[85]

.  

B. Learning rate 

In the framework of stochastic gradient descent (SGD) 
[86],[87]

 optimisation technique for 

machine learning problem, the learning rate is considered to be carefully chosen to 

guarantee the convergence of the loss function. In order to set an effective learning rate to 

train the segmentation network, we first need to observe the intrinsic correlation between 

the data and the learning rate. Therefore, the different-fixed-learn-rate scheme is first 

applied to the data to investigate the different loss decay profiles. The profile of the loss 

function with an increasing epoch, using different fixed learning rates,  is presented  in  
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Figure 4.5. The profiles of the decay loss for different learning rates in 100 epochs. The learning 

rates observed are from 𝟏𝟎−𝟏 to 𝟏𝟎−𝟕.  

Figure 4.5. It easily and quickly falls into local minimum when the learning rate is set to 

or larger than 1e-5. To avoid this, the learning rate is supposed to be smaller than 1e-5. 

But when the learning rate is equal or smaller than 1e-7, the loss decreases extremely 

slow. 1e-6 is therefor considered to be a good initial learning rate for the data. However, 

as the epoch increases and the loss decreases, the loss decreases very slowly with the 

small learning rate 1e-6.  

We observe a correlation between our data and learning rate. This can be seen in 

Figure 4.5, where loss curves for decreasing learning rate are plotted. As the learning rate 

increases, the learning process quickly drops to the local minimum.  To avoid the 

learning process from falling into the local minimum, a small learning rate is required in 

the beginning of the training process while a relatively larger learning rate is lately 

needed to avoid the cost of extremely slow convergence. Moreover, the learning rate 

increase is supposed to be flat in the beginning to avoid the local minimum, while much 

steeper in the end to decrease the convergence cost. To meet these requirements, the 

learning rate scheme is designed as:    

                           𝑙𝑟(𝑖+1)𝑒 = 𝑙𝑟𝑖𝑒 ∗ λ1+𝑁𝑖𝑒                                                        (5) 

where 𝑙𝑟(𝑖+1)𝑒 and 𝑙𝑟𝑖𝑒 represent the learning rate at the ith and (i+1)th effective epoch 

respectively. An epoch is considered to be effective only when it decreases the loss 

function. For an effective epoch the learning rate will be recorded and used for the next 

update, while the learning rate of ineffective epoch will be propagated to the next epoch. 
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This means that if the current epoch fails to decrease the loss function, the same learning 

rate will be used for the next epochs until an effective epoch emerges. In Eq. (5) 𝑁𝑖𝑒 

counts the effective epochs and λ indicates the base of the exponential function which is 

much close to 1 but greater than 1, which is set as 1.001 for our experiments. We use the 

effective epoch count rather than epoch as the exponential power, to prevent the loss 

function from falling into the local minimum at the early stage and to limit the growth 

rate of learning rate at the late stage around the global optimal solution, resulting from a 

number of ineffective epochs. The initial learning rate is set as 1e-6 and we set the upper 

limit as 1e-4 to avoid divergence as the learning rate increases. 

In Figure 4.6 we compare the loss decrease profiles between the fixed learning rate 

(1e-6) and the proposed learning rate in Eq. (5). It is observed that the proposed scheme 

starts from a point in the network which has a larger loss, but as the learning rate tardily 

increases the loss decreases slowly avoiding the local minimum. However, as the epoch 

increases, the loss rapidly falls down and reaches a smaller level that a fixed learning rate 

10−6 fails to obtain. 

 

 
Figure 4.6. The comparison of the decay loss between learning rate 𝟏𝟎−𝟔  and the proposed 

learning rate scheme in 100 epochs. The proposed learning rate increases from 𝟏𝟎−𝟔 to 𝟏𝟎−𝟒. 
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3) Segmentation 

The segmentation describes the process of implementing the trained network on the 

kth test voxel 𝑅𝑘(𝑥,𝑦,𝑧)
𝛼𝑛 . We have a 2D kernel for training the segmentation network. It 

shows limited ability to consider the relationship between slices. It is assumed that the 

segmentation from network 𝑔(𝑅(𝑥,𝑦,𝑧)
𝛼𝑛 )  is indicated as  𝑀(𝑥,𝑦,𝑧)

𝛼𝑛 ∈ {0, 1} , a binary map 

corresponding to the testing voxel. Considering the correlation between adjacent slice, a 

refining post-processing is introduced as follows. If 𝑀(𝑥,𝑦,𝑧)
𝛼𝑛 ⊕𝑀(𝑥,𝑦,𝑧−1)

𝛼𝑛 = 1 

and 𝑀(𝑥,𝑦,𝑧)
𝛼𝑛 ⊕𝑀(𝑥,𝑦,𝑧+1)

𝛼𝑛 = 1, then 𝑀(𝑥,𝑦,𝑧)
𝛼𝑛  is set to equal to 𝑀(𝑥,𝑦,𝑧−1)

𝛼𝑛  and 𝑀(𝑥,𝑦,𝑧+1)
𝛼𝑛 . 

This process particularly works for correcting the isolated segmentation error in Z 

direction. The segmentation result after the refined process refers as 𝑆(𝑥,𝑦,𝑧)
𝛼𝑛 . 

4.3.3 Evaluation criterion  

The evaluation component as depicted in Figure 4.3 is accomplished by figuring out the 

group which has the best segmentation performance using the internally trained network, 

given the 3D zebrafish data and N different parameter groups { 𝛼1,…,𝛼𝑁}. Different 

from 2D image segmentation, evaluation of image segmentation in 3D should be 

implemented based on a unit of 3D image because the slices are well ordered. This means 

that each 3D sample should be independently evaluated, rather than evaluating all the 

slices in 2D across samples. Because what interests us is not only the overall 

performance of segmentation on image slices but also the profile of performance change 

along the ordered slices, such as how the performance varies from the tail to head for 

zebrafish. Taking this into account the objective function for optimisation is formulated 

as follows:  

  𝛼∗ = min
𝛼

1

𝐾
∑

𝜎−(𝐹1(𝑆𝑘(𝒙,𝒚,𝒛)
𝜶 ))

𝐹1(𝑆𝑘(𝒙,𝒚,𝒛)
𝜶 )

𝐾
𝑘=1                                                  (6)  

K is the number of samples used for evaluation. For each sample, i.e. a zebrafish 3D 

image excluding the training slices in our experiment, both the overall performance in 3D 

and negative deviation 𝜎− of all slices to the overall performance are considered. The 

criterion in Eq. (6) for evaluation is defined as the modified coefficient of variation of 

F1-score (MCVF1). The negative deviation 𝜎−(𝐹1(𝑆𝑘(𝒙,𝒚,𝒛)
𝜶 )) is defined as the standard 

deviation of F1 score 
[88]

 for the slices that perform worse than that of the overall 3D 

volume.  𝐹1(𝑆𝑘(𝒙,𝒚,𝒛)
𝜶  ) gives the overall segmentation performance of the 3D volume for 

sample k with reconstruction parameter 𝛼 . In our work this is accomplished by 

calculating the F1 scores for the whole segmentation volume 𝑆𝒌(𝒙,𝒚,𝒛)
𝜶 .  The aim of the 

parameter optimisation is to find the optimal 𝛼 which produces 3D image group that has 

a maximum overall performance for segmentation as well as minimum negative 

deviation for performance. The details of experimental implement regarding to the 

segmentation evaluation of 3D image will be presented in the experimental section. 
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4.4 Experiments 

In this section, we will first give an example to show the streak artefacts produced in the 

FBP reconstruction, for comparison followed by a result with artefacts eliminated, using 

iterative reconstruction method. The second part of the experiments is the parameter 

optimisation for iterative reconstruction, implemented on two zebrafish datasets cleared 

with different protocols. In the third experiment, we investigate the effects of different 

reconstruction methods, i.e. the FBP and iterative reconstruction, on segmentation 

performance, taking the streak artefacts into account.   

4.4.1 Streak artefacts and elimination 

In this section an intuitive comparison between the FBP 
[68]

 and iterative reconstruction 
[28]

 on a zebrafish for our OPT imaging system is given. There are quite dense but small-

sized GFP 
[89]

 signals inside the zebrafish, which provides an extreme case regarding to 

how the streak artefacts are produced in OPT imaging and reconstruction.  Figure 4.7 (a) 

and 4.8 (a) show the same tomogram which is one of the 400 ones evenly acquired in a 

full revolution. The corresponding reconstructed volumes are presented in Figure 4.7 (b) 

and 4.8 (b) from which a large difference can be observed. To further zoom in and 

visualize the difference we use both maximum projection along Z direction (Figure 4.7 (c) 

and 4.8 (c)) and 3D volume visualization (Figure 4.7 (d) and 4.8 (d)).  

With the results in Figure 4.7 and 4.8, for both algorithms the pre-processing on the 

tomograms includes background subtraction and centre of rotation (CoR) correction in 

Chapter 2. The FBP reconstruction is implemented as elaborated in cf. § 2.3.2. For 

iterative reconstruction the iteration number η is set as 10 and the 3D image from the 

FBP is used as the initial reconstruction γ in this example. From the observation of 

different reconstructed results, we can see that the iterative reconstruction, in a superior 

manner, outperforms the FBP in terms of artefact suppression on the given data. 

4.4.2 Parameter optimisation 

To implement the experiments for the parameter optimisation, first the dataset and 

experimental settings are introduced. The iteration number and initial reconstruction are 

studied and optimized for reconstruction process. In this section, the details of 

experiments for optimizing these two parameters are explained.    

1) Dataset and experimental settings 

In order to implement the experiments for parameter optimisation, 6 zebrafishes are used 

for OPT imaging. They are split into two groups and are prepared with different 

protocols that result in different contrast and intensity distributions. Figure 4.9 shows two 

example images of zebrafish in bright-field mode of which each sample corresponds to a 
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Figure 4.7. Streak artefacts existing in OPT reconstruction with the FBP reconstruction. (a) The 

tomogram of zebrafish in fluorescence mode. (b) Streak artefacts existing in the reconstructed 

slices using the FBP algorithm. (c) Z-projection of all reconstructed slices along with streak 

artefacts. (d) 3D volume rendering with streak artefacts. 

 
Figure 4.8. Streak artefacts eliminated with OSEM reconstruction in OPT. (a) The tomogram of  
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zebrafish in fluorescence mode. (b) Streak artefacts removed in the reconstructed slices using 

OSEM algorithm. (c) Z-projection of all reconstructed slices without streak artefacts. (d) 3D 

volume rendering with no streak artefacts. 

different protocol for sample preparation. The motivation for using bright-field rather 

than fluorescence images is that, in our imaging system, bright-field images provide the 

outline information of a zebrafish. This can provide more prior knowledge to benchmark 

for segmentation. Figure 4.9 (a) corresponds to the tomogram of 5 dpf cleared zebrafish 

with BABB protocol 
[20]

, while (b) displays the 25 dpf zebrafish with CUBIC protocol 
[90],[91]

. In the bright-field mode, we can easily observe the difference of intensity 

distribution between them. For each preparation protocol or dataset, there are three 

zebrafishes studied for parameter optimisation. Each reconstructed sample, i.e. zebrafish 

3D image, consists of 1360 slices produced from a 400 tomogram image set using the 

reconstruction algorithm, compromising 4080 slices for each group or experimental 

implement. 

We study the two most problematic parameters, i.e. iteration number η and initial 

reconstruction γ. First, for each dataset the effect of iteration number on segmentation 

performance is investigated. To this end, 5 groups of 3D images reconstructed from 

different iteration numbers are generated, combing the cost of computation and 

effectiveness of the reconstruction. Each group corresponds to one of five iteration 

numbers, i.e. 𝜂 = {5, 10, 15, 20,25}. We consider 5 to be a reasonable step size for the 

assessment of reconstruction performances based on different numbers of iteration, 

concerning the computational expense and experimental requirements.  

 

Figure 4.9. Samples of zebrafish with different preparation protocols in the bright-field mode. (a) 

One example of a tomogram for the 5 dpf zebrafish clearing with BABB 
[20]

 protocol. (b) One 

example of tomogram for the 25 dpf zebrafish cleared with CUBIC 
[90], [91]

 protocol. 

The iteration number η is optimized by comparing the segmentation performance of 

each group. For initial reconstruction γ we compare the performance with an initial 3D 
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image from the FBP results (FBP-initial) and zeros (No-initial). To obtain the 

segmentation network all the zebrafish slices within each group are evenly distributed 

into training set (20%) and test set (80%). The segmentation network within each group 

is trained with the validation rate as 10%. The segmentation ground truths are labelled 

based on the FBP results. The segmentation performance MCVF1 of each group consists 

of overall F1 scores in 3D scale and the corresponding negative deviation on the test data 

as depicted in cf. § 4.3.2. 

2) Iteration number and initial reconstruction 

A. Experiments on 5 dpf zebrafish 

The first data used in the experiments are three 5 dpf zebrafish are prepared with the 

BABB protocol 
[20

]. The MCVF1 performance of each group defined in cf. § 4.3.2 and 

the performance of individual samples are presented in Table 4.1 and Table 4.2. The two 

tables show the performance differences of different initial reconstruction settings, with 

Table 4.1 presenting the results with the No-initial reconstruction setting while Table 4.2 

corresponding to the FBP-initial results. Results are obtained based on the same training 

configuration of segmentation network.  

For each sample with a particular iteration number, the performance consists of overall 

3D F1 score 𝐹1 and negative deviation 𝜎−(𝐹1) of all slices. Such as for the Fish1 with 5-

iterations, 98.23% represents 𝐹1 and 2.78% is 𝜎−(𝐹1). The smaller the MCVF1 is, i.e. 

higher 𝐹1 and smaller 𝜎−(𝐹1), the higher segmentation performance is. The results of 

the highest segmentation performance for each sample across iteration numbers are in 

bold. From the results obtained on the 3 zebrafishes, 10-iterations achieves the best 

overall performance for both No-initial and FBP-initial reconstruction. Regarding the 

different initial schemes, the FBP-initial method outperforms the No-initial approach in 

terms of three segmentation performances yielded with the same iteration number.  

Table 4.1 and Table 4.2 present quantitative measures for segmentation performance 

on the 3D images. It, however, does not provide performance details of each slice inside 

of the 3D volume. In order to achieve these segmentation performances of all slices 

within each sample, each individual 3D image needs to be investigated. Figure 4.10 and 

4.9 provides an example with that on the first zebrafish. Slices from the left to the right 

correspond to the zebrafish from the head to the tail. The F1_score of each slice ranges 

from 0 to 1. Each point in Figure 4.10 and 4.9 stands for a F1 score of one slice. The 

value of 1.0 on the left and right side of the figures implies a background slice in the 

reconstructed 3D data. Close to the background slices are the critical slices which are 

indistinguishable for segmentation. That is why they have quite low F1 score 

performances on both sides of the 3D data, i.e. the critical slices between the head or tail 

and background.  
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Table 4.1. Segmentation performance of iterative reconstruction implemented with various 

iteration numbers and No-initial reconstruction on the three 5 dpf zebrafishes. 

No-initial Fish1 

(%) 

Fish2 

(%) 

Fish3 

(%) 

MCVF1 

(%) 

5-iterations 98.23 

(-2.78) 

97.94 

(-2.77) 

97.88 

(-3.35) 

3.03 

10-iterations 98.24 

(-2.82) 

98.14 

(-2.69) 

97.94 

(-3.37) 

3.02 

15-iterations 97.54 

(-3.19) 

97.38 

(-3.63) 

97.25 

(-3.98) 

3.70 

20-iterations 97.34 

(-3.10) 

97.11 

(-3.40) 

96.91 

(-3.84) 

3.57 

25-iterations 97.74 

(-3.84) 

97.70 

(-3.10) 

97.69 

(-3.50) 

3.56 

 

 

Table 4.2. Segmentation performance of iterative reconstruction implemented with various 

iteration numbers and FBP-initial reconstruction on the three 5 dpf zebrafishes. 

FBP-initial Fish1 

(%) 

Fish2 

(%) 

Fish3 

(%) 

MCVF1 

(%) 

5-iterations 98.29 

(-2.79) 

98.01 

(-2.56) 

97.95 

(-3.18) 

3.55 

10-iterations 98.39 

(-2.63) 

98.27 

(-2.61) 

98.17 

(-3.16) 

2.85 

15-iterations 98.29 

(-2.82) 

98.14 

(-2.68) 

98.06 

(-3.18) 

2.95 

20-iterations 98.36 

(-2.77) 

98.04 

(-2.77) 

97.95 

(-3.30) 

3.00 

25-iterations 98.31 

(-2.76) 

98.01 

(-2.88) 

98.02 

(-3.57) 

3.13 
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Figure 4.10. Segmentation performance of reconstructed slices with different iteration numbers in 

a No-initial setting on the 5 dpf Fish1. Each point represents the F1 score of each slice for 

segmentation. The rectangular area is zoomed.   

 

Figure 4.11. Segmentation performance of reconstructed slices with different iteration numbers in 

a FBP-initial setting on the 5 dpf Fish1. Each point represents the F1 score of each slice for 

segmentation. The rectangular area is zoomed.   



Chapter 4 

 

83 
 

By comparing the distribution of F1_score on all slices in Figure 4.10, we can also see 

that the 3D image group with 10-iterations has more points with larger F1_score and less 

with smaller F1_score, compared to other groups. This is in correspondence with the 

results of Fish1 in Table 4.1, i.e. larger 𝐹1 and smaller 𝜎−(𝐹1) value. Similar results can 

be observed in Figure 4.11 for FBP-initial reconstruction. The comparisons of 

segmentation performance on the 5 dpf zebrafishes reconstructed with different iterations, 

both for No-initial and FBP-initial, indicate that the reconstruction with the 10-iterations 

produces the most desirable results. 

B. Experiments on 25 dpf zebrafish 

As far as the variation of intensity distribution and experimental environment are 

concerned, three 25 dpf zebrafishes cleared with CUBIC protocol 
[90],[91]

 are also used for 

experiments. The performances of each sample and each 3D image group are 

demonstrated in Table 4.3 and 4.4, with MCVF1 corresponding to the performance of 

each group while 𝐹1 and smaller 𝜎−(𝐹1) showing the performance of each sample. As 

with Table 4.1 and 4.2, the best performance of individual sample and group is given in 

bold. Overall, the segmentation performance indicates that the FBP-initial reconstruction 

method outperforms the No-initial approach. Furthermore, in both cases, 10 iterations 

outperform other number of iterations, according to the MCVF1, 𝐹1 and 𝜎−(𝐹1) values. 

This is consistent with the observations regarding the 5 dpf zebrafishes.  

However, compared to the 5 dpf zebrafishes, segmentation performances on the 25 dpf 

zebrafishes are generally lower and more deviated across 3D image groups. For example 

if we compare the Fish1 of both dataset in the No-initial case (in Table 4.1 and 4.3), the 

Fish1 of 5 dpf zebrafish as shown in Figure 4.9 (a), has a 𝐹1 range of [97.34, 98.24] that 

outperforms the range of [97.37, 97.97] for the Fish1 of 25 dpf zebrafish in Figure 4.9 (b). 

𝜎−(𝐹1) of the 5 dpf Fish1 in Table 4.1 ranges from 2.78 to 3.84, smaller than that of 25 

dpf Fish1 in Table 4.3 with the range from 3.51 to 4.83. Similar comparisons between the 

two datasets, corresponding to the two protocols, can be made for the other samples. In 

general, we conclude that the CUBIC clearing protocol makes the zebrafishes more 

transparent for OPT imaging compared to the BABB protocol. We need to acknowledge 

that a higher transparency of sample results in a higher similarity or a lower contrast 

between the foreground (zebrafish) and background tomograms and the 3D images, 

particularly at the object edge. Such 3D image will consequently have a lower 

segmentation performance and will be more sensitive to the number of iterations in the 

process of reconstruction. 
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Table 4.3. Segmentation performance of iterative reconstruction implemented with various 

iteration numbers and No-initial reconstruction on the three 25 dpf zebrafishes. 

No-initial Fish1 

(%) 

Fish2 

(%) 

Fish3 

(%) 

MCVF1 

(%) 

5-iterations 97.81 

(-3.72) 

96.51 

(-9.24) 

97.73 

(-3.69) 

5.72 

10-iterations 97.97 

(-3.51) 

96.72 

(-5.78) 

97.84 

(-2.23) 

3.95 

15-iterations 97.87 

(-3.86) 

95.18 

(10.56) 

97.89 

(-2.29) 

5.79 

20-iterations 97.86 

(-4.40) 

85.83 

(-30.4) 

97.82 

(-3.32) 

14.44 

25-iterations 97.37 

(-4.83) 

76.08 

(-40.2) 

96.99 

(-4.47) 

20.79 

 

 

 

Table 4.4. Segmentation performance of iterative reconstruction implemented with various 

iteration numbers and FBP-initial reconstruction on the three 25 dpf zebrafishes. 

FBP-initial Fish1 

(%) 

Fish2 

(%) 

Fish3 

(%) 

MCVF1 

(%) 

5-iterations 98.08 

(-3.45) 

97.21 

(-6.07) 

98.17 

(-3.08) 

4.30 

10-iterations 98.29 

(-3.11) 

97.18 

(-5.75) 

98.38 

(-2.58) 

3.90 

15-iterations 97.71 

(-3.99) 

94.15 

(-10.7) 

97.48 

(-3.76) 

6.4 

20-iterations 97.90 

(-4.21) 

91.56 

(-25.4) 

98.02 

(-2.77) 

11.60 

25-iterations 97.90 

(-3.73) 

83.30 

(-32.7) 

97.84 

(-3.28) 

15.47 
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Figure 4.13. Segmentation performance of reconstructed slices with different iteration numbers in 

a No-initial setting on the 25 dpf Fish1. Performance is represented by F1 score of each slice. The 

rectangular area is zoomed.   

 
Figure 4.14. Segmentation performance of reconstructed slices with different iteration numbers in 

a FBP-initial setting on the 25 dpf Fish1. Performance is represented by F1 score of each slice. The 

rectangular area is zoomed.      



Chapter 4 

 

86 
 

 
Figure 4.12. The tomogram of the 25 dpf Fish1, Fish2 and Fish3. They are shown in mounting 

orientation in the OPT imaging system. Fish2 has a lower contrast than the other two, with 

comparable background noise. 

In Table 4.3 and 4.4 we can readily see that as iteration number increases the 

performance of sample Fish2 decreases dramatically whilst sample Fish1 and Fish3 

decrease much less. This is because Fish2 has a lower contrast or a higher transparency 

as we can see from Figure 4.12. When the iteration number increases the information loss 

of the zebrafish body in the reconstruction is much more obvious. This makes it more 

difficult to be segmented correctly.      

Regarding the performance of individual slices within the 25 dpf Fish1 for both No-

initial and FBP-initial configuration, they are separately shown in Figure 4.13 and 4.14. 

For both cases, 10-iterations reconstruction outperforms other groups from either 2D 

slice or 3D volume scale. 

4.4.3 Comparison of segmentation performance between OSEM and FBP 

In this section the segmentation performance from the FBP reconstruction and the 

iterative reconstruction (OSEM) will be compared, experimented on the same datasets as 

for parameter optimisation, cf. § 4.4.2. In order to eliminate the contingency of gaining a 

good performance based a segmentation network that is trained on a fixed training set, 

different training sets are taken into account. They are evenly sampled from the 3D 

reconstruction slices with a different step size from 2 to 20, corresponding to the training 

ratio from 50% to 5%. 50% is considered to be a reasonably high training ratio for 

training a segmentation network in 3D OPT image, considering both accuracy and 

training cost.  Higher training ratio might produce a bit higher accuracy, yet the training 

cost increases dramatically. As the aim of the comparisons among different 

reconstruction groups is to find the best-performed reconstruction parameters, rather than 

search for the global highest accuracy. Therefore, it is not necessary to train each network 
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with the highest training cost, e.g. a training ratio of 90%. The comparisons for both data 

are shown in Table 4.5 and 4.6. The performances are obtained with the same 

configuration for training segmentation networks. 

In this experiment, the iteration number is set to 10 for the iterative reconstruction, 

because of its good performance, cf. § 4.4.2. In the training process of segmentation 

network, the number of epochs is set as 500 with batch size of 12 and each training 

process starts from a similar point in the network which can be seen from the loss and 

accuracy value. The MCVF1 of each 3D image group is calculated from individual 

samples, cf. § 4.3.2. The reconstruction method that has the smallest MCVF1 for each 

training ratio (bold) performs the best. By comparing the average MCVF1 we conclude 

that on both zebrafish datasets the FBP-initial iterative reconstruction achieves the best 

segmentation performance and are most desirable. 

We further investigate the effect of streak artefacts on the segmentation performance. 

The average MCVF1 of different ratios of training set, produced with a specific 

reconstruction method, is seen as the criterion for assessing the overall performance of 

the reconstruction method. For the 5 dpf zebrafishes, the overall performances of the 

three reconstruction methods are 6.00, 3.90, and 3.83. Because the 5 dpf zebrafishes are 

cleared with the BABB protocol that maintains high specimen contrast; the pigments on 

the zebrafish skin are more concentrated, cf. Figure 4.9 (a). This introduces more streak 

artefacts in the FBP reconstructed slices. This explains the reason why iterative 

reconstruction methods (both No-initial and FBP-initial) highly outperform FBP method 

in Table 4.5. Different from the BABB protocol, the 25 dpf zebrafishes are cleared with 

CUBIC protocol. In this case, we obtain tomograms with lower contrast and the pigments 

are also less concentrated, introducing less streak artefacts in the FBP reconstruction. 

This allows the FBP reconstruction to produce 3D images achieving comparable overall 

performance (5.51) for segmentation, comparing to the iterative reconstructions (5.81 and 

5.32).  

Excluding the effect of streak artefacts on segmentation, we only look at the overall 

performance of OSEM reconstruction on the two different datasets in Table 4.5 and 4.6. 

The 5 dpf less transparent zebrafishes outperform the 25 dpf zebrafishes which are more 

transparent. When we compare the performances between the OSEM and FBP, it can be 

seen that the results for the 25 dpf zebrafishes are comparable, but the OSEM achieves 

better performance than the FBP for the 5 dpf zebrafishes. The reason for the difference 

is that the FBP reconstructions for the 5 dpf zebrafishes have much more streak artefacts 

than the 25 dpf zebrafishes do, which deteriorates the segmentation performance.  
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4.4.4 Discussion 

In this section an overall experimental discussion will be given. In § 4.4.1 the qualitative 

comparison between the FBP and iterative (OSEM) reconstruction is presented, in terms 

of the elimination of artefacts in one specific zebrafish. This inspired and motivated us to 

go one step further and study the parameter optimisation for the iterative reconstruction 

with respect to its potential performance in OPT reconstruction. This means that the 

effect of different reconstruction parameters needs to be investigated. We accomplished 

this in § 4.4.2 by studying the two most problematic parameters, i.e. the number of 

iterations and the initial reconstruction, on two zebrafish datasets with different image 

intensity distributions. According to these experiments, the combination of 10-iterations 

and FBP-initial is proved to produce the most desirable and preferable 3D image, 

compared to the other combinations. Additionally, 10-iterations are also acceptable for 

reconstruction implementation concerning the computation cost. When comparing the 

segmentation performances across datasets, we find that the contrast rich dataset 

performs better, which is reasonable from theoretical perspective. Because a highly 

transparent sample produces a more indistinguishable intensity distribution in both 

tomogram and 3D image in OPT, therefore bringing more complications for the 

segmentation.  

Followed by parameter optimisation, comparisons of segmentation performance 

between the FBP and iterative reconstruction are displayed in a quantitative manner. It is 

known that sample preparation plays a crucial role in the OPT imaging, as well as the 3D 

reconstruction process. One should realize that the BABB protocol provides higher 

specimen contrast that generally leads to a better 3D image from the iterative 

reconstruction and consequently achieves a higher segmentation performance, however 

introduces streak artefacts when using the FBP reconstruction. Moreover, with the BABB 

clearing protocol, the iterative reconstruction can eliminate the streak artefacts during the 

reconstruction process, so the segmentation result outperforms that of the 3D images 

from the FBP algorithm. With the CUBIC clearing protocol, both reconstruction methods 

are able to avoid the streak artefacts in the 3D image, therefore obtaining a comparable 

segmentation performance between different approaches. In this work the experiments 

are implemented on finite zebrafish samples. With the trend of high-throughput analysis 

on zebrafish, in the near future more samples will be considered to confirm this tendency. 

4.5 Conclusions 

The research presented in this chapter is the development and implementation of an 

iterative reconstruction, specifically OSEM, and the further exploration of approaches to 

optimize the reconstruction parameters. The OSEM algorithm produces superior 3D 

image in comparison with FBP algorithm in terms of streak artefact elimination when the 

signals in the tomograms are very concentrated. The method used for further improvement 

of the reconstruction is realized by optimizing the parameters for the OSEM algorithm, 
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which requires the evaluation of reconstructed 3D image. Restricted by the lack of 

benchmarks for reconstruction in real-life imaging, we have used an alternative approach 

that is inspired by the segmentation evaluation. Notably, the way of integrating 

segmentation evaluation into parameter optimisation for iterative reconstruction, may not 

result in the achievement of the globally optimal parameters. But to our best knowledge, it 

provides a good and reasonable way for guaranteeing an optimized and efficient 

reconstruction result, considering both the reconstruction quality and computational cost. 

It is worth point out that, even though the OSEM produces promising results for highly 

transparent samples, e.g. the 25 dpf Fish2 with 10 iterations, it could also be possible that 

a sample is too transparent to produce any significant reconstruction results with the same 

OSEM parameters. In such an extreme case, decreasing the iteration number might help 

recover more information in compromise with image blur.    
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