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Chapter 3 

Deblurring Images from 3D Optical Projection 

Tomography Using Point Spread Function 

Modelling  
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Chapter summary 

Optical projection tomography is successfully used in the life-sciences for 3D imaging of 

specimens of size between 1 𝑚𝑚 and  10 𝑚𝑚. However, this requires imaging of large 

specimens at a large depth of field, which normally results in blur in imaging process, i.e. 

it compromises the image quality or resolution. Yet, it is important to obtain the best 

possible quality 3D image from the OPT, therefore deblurring of the image is important. 

The imaging process is modelled through the point spread function: the imaging of a 

point light source through the lens system. In this chapter we first model the point spread 

function along optical axis which varies at different depths in the OPT imaging system. 

Subsequently, the magnification is taken into account in the point spread function 

modelling. Deconvolution in the coronal plane based on the modelled point spread 

function is implemented to correct for blurring. Experiments with the proposed approach 

based on 25 3D images including 4 different categories of samples, indicate the 

effectiveness of quality improvement assessed by image blur measures from both the 

spatial and frequency domain. 
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3.1 Introduction 

Here we introduce the origin for imaging blur in optical projection tomography (OPT) 

and elaborate our motivation of deblurring the 3D image using the point spread function 

(PSF). The aim of our contribution is to improve the visual resolution by deblurring the 

3D OPT image by means of deconvolution based on the modeled PSF of the imaging 

system. This will, for large samples with a focal plane being at or away from the centre 

of rotation (CoR), recuperate the imperfections of 3D image resulting from the imaging 

system. The method for the PSF modelling will be explained in Section 3.2 and the 

qualitative and quantitative image comparison will be presented in Section 3.3. In Section 

3.4 we will give our conclusions.  

3.1.1 Background: 3D image deconvolution 

As mentioned in Chapter 1 (cf. § 1.1), OPT is an optical 3D imaging technique typically 

for objects at tissue-, organ- and organism-level in the magnitude range of millimeters, 

thereby filling a gap between confocal and computational tomography imaging in the 

resolution range. We use depth of field (DoF) to assess the image quality - DoF is 

defined as the distance between the nearest and the furthest objects in an image that are in 

acceptable sharp focus. A point object located within the DoF of the optical system is 

considered to be in focus, but not necessarily in optimal focus. Beyond the DoF, the 

object is out of focus 
[32]

. DoF in OPT imaging system is shaped as a double fan 

symmetric around the focal plane. For OPT imaging and reconstruction, the DoF is 

expected to be large enough to contain as much of the sample as possible. In this manner 

the parts of the sample located in the DoF will result in an image more or less in focus. 

However according to previous studies 
[32],[33]

, a large DoF subsequently introduces 

image blur resulting in low in-focus image quality. The image quality in this chapter is 

also referred to as image resolution according to some literatures 
[53]

, i.e. the extent to 

which detail can be observed. The trade-off between DoF and image quality should be 

considered when selecting lens for an OPT imaging system. A lens with low numerical 

aperture (NA) will produce a large DoF, allowing imaging of larger samples but results 

in a relatively blurred image. 
 

A 3D image is reconstructed from the OPT tomogram that are obtained by rotating the 

specimen and acquiring a series of wide-field images at regular angular intervals. This is 

accomplished over a full revolution of the specimen. The Filtered Back Projection (FBP) 

algorithm is typically used for 3D image reconstruction 
[54]

 in this case, cf. § 2.2. 

Deconvolution applied to the reconstructed 3D image is defined as 3D image 

deconvolution in this thesis. 

A typical way to improve the image quality to meet the resolution in the best possible 

way is the application of deconvolution on each reconstructed slice at individual depth, 

using a constant theoretical or experimental PSF. This is commonly used in 3D scanning 

microscopy, e.g. confocal laser scanning microscopy (CLSM), where the images 
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acquired from microscopy are actually a subset of reconstruction slices. However, this 

approach, in terms of constant PSF deconvolution, is not strictly suitable for OPT 

imaging. Because the imaging PSF within the DoF in OPT system, varies at different 

depths along the optical axis. It is, therefore, necessary to model this variation in OPT 

imaging, which can be subsequently used for 3D image deconvolution. This explains our 

motivation for PSF modelling in OPT imaging system.      

According to Chen et al. 
[55]

, OPT is typically performed with specimens that extend 

beyond the Rayleigh length or Rayleigh range of the imaging lens. Therefore, the 

tangential resolution of the reconstructed 3D image decreases away from the focal plane 

in a radial manner. When the focal plane coincides with CoR, the tangential resolution, 

centred at the CoR, decreases in a radial-symmetrical fashion. For an imaging system 

with a focal plane located away from the CoR the decrease in resolution is more 

complicated but the highest resolution is still found around the focal plane. In this case 

the focal plane in the reconstructed slice corresponds to a circle centred at the CoR, rather 

than a point coincident with the CoR. This subsequently appears as a cylindrical surface 

in the 3D image centred at the CoR. 

The tangential resolution of the OPT 3D image slice decreases radially around the 

focal plane. Theoretically, the best resolution of the reconstructed 3D image can be 

achieved by combining all the coronal deconvolutions of different sample angles. The 

coronal deconvolution means deconvolving the 3D image with the PSF slice by slice in 

the coronal plane along its depth axis. This depth axis is parallel to optical axis of the 

modelled PSF. We will only implement the coronal deconvolution in 2 opposite angles, 

i.e. the reconstructed 3D image and its opposite sample at 180° centred at the CoR, in 

parallel considering the enormous time consumption of 3D matrix rotation in N angles 

and the symmetry of the focal plane. When the focal plane is off the CoR during the 

imaging process, the shift is accounted for by a shift in the model of the PSF.  

In this chapter we focus on the presentation of the concept of PSF modelling and 

coronal deconvolution on 3D OPT data, accompanied by some initial experimental 

results based on 25 3D images including 4 different categories of samples. Further 

evaluations on a larger number of data are point of our current research. 

3.1.2 Related work 

Accounting for the trade-off between large DoF and high resolution, previous studies 

have proposed several methods to this problem. One possibility is choosing a high NA 

lens to acquire a high-resolution image and combining multiple focal planes in a 

simultaneous manner 
[56]

 or scanning the focal plane through the sample 
[57]

 (Miao et al., 

2010) . These multiple focal plane approaches solve the issue of narrow DoF, but the 

mechanism of multiple measurements and scanning increases the acquisition time and the 

complexity of the imaging system. Another direction is to use a reasonable NA lens and 

deblur the image by employing a deconvolution or filter on images before or after 

reconstruction. Walls et al. 
[32]

 first applied the frequency-distance relationship (FDR) 
[58]
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in OPT. The corresponding filter was implemented on the sinogram prior to 

reconstruction. The quality of the 3D image can be further improved with weighted 

filtered back projection (WFBP) 
[59]

; this is accomplished by considering the intensity 

distribution of multiple fluorescent spheres of known size along the optical axis. But the 

implementation of evenly placing each sphere along the optical axis is rather difficult to 

achieve. Chen et al. 
[55]

 proposed a way to determine the modulation transfer function 

(MTF) that contributed to MTF-mask filter and MTF-deconvolution filter in the 

reconstruction process. The former filter significantly reduced the artifacts produced by 

sparse projection but the latter filter had limited improvement on tangential image 

resolution. Additionally, a spatial-invariant experimental PSF was investigated by 

McErlean et al. 
[60]

 in order to improve the spatial resolution. However, spatial-invariance 

of the PSF is not entirely convincing for OPT. Most recently, a new deconvolution 

approach based on the reconstructed 3D image was proposed by Horst et al. 
[53]

. In their 

approach the PSF was modelled and as such they achieved significant improvement on 

the reconstructed slice. Nevertheless, they focused on the deconvolution of vertically 

independent slices and omitted the PSF diffractions along the optical axis that concerns 

the interaction of different slices.  

In this chapter, we present our contribution by modelling an experimental PSF from a 

single sphere along optical axis, thereby considering the interaction of contiguous slices 

from the reconstructed volume. At the same time, the magnification, as obtained from a 

zoom lens, is taken into account in the experiments.  

3.2 Materials and methods 

In order to model the PSF for our OPT imaging system, we first propose a protocol to 

prepare for the imaging of a point source, i.e. a fluorescence sphere or bead. The 

modelling approach will then be introduced and elaborated. This approach will be 

subsequently used for the deconvolution of 3D image in OPT.   

3.2.1 Sample preparation of a single fluorescence sphere 

To image the specimens in the range of several millimeters small-valued NA lens is used 

to obtain the large DoF in our OPT imaging system, i.e. effective NA: 0.0105~0.0705 as 

part of a Leica Stereo Microscope. The resolution of an optical system is defined as the 

minimum distance 𝑟 at which two separate points can be distinguished as individuals. 

According to the Rayleigh criterion 𝑟 = 0.61 ∗ 𝜆/𝑁𝐴 for a circular aperture with 𝜆 =
509 𝑛𝑚 is the emission wavelength, the minimum size of the experimental fluorescence 

sphere is supposed to be in the range between 4.40 𝜇 and 29.57 𝜇. To make it visible in 

the image the sphere size is supposed to exceed this range. In our case, we choose the 

fluorescence sphere of size 43.2 𝜇𝑚 and diluted it to a concentration of 360 𝑏𝑒𝑎𝑑𝑠/𝑚𝑙. 
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Figure 3.1. The injection protocol with green spots indicating the injection position of fluorescence 

spheres. The cylinder corresponds to the shape of the agarose block as mounted in the OPT. 

To image and model the PSF along optical axis we have developed an injection-based 

protocol to place the spheres into agarose as follows: 

 1% low melting point (LMP) agarose, cool down to ~37°; 
 Drill cylindrical agarose shapes when it is semi-solidified in a petri dish; 

 Inject the diluted spheres into the outer wall of the agarose along a line parallel to the 

central axis, preferably with a small size syringe. We use a 0.5 ml syringe with a 

needle length of  13 𝑚𝑚 and diameter of  0.29 𝑚𝑚, as shown in Figure 3.1; 

 Keep the agarose at 4℃ until it is fully solidified (~3 hours); 

 Clear the sample with 70%, 80%, 90%, 96%, 100% ethanol, 100% ethanol: BABB 

(benzyl alcohol: benzyl benzoate = 2: 1) = 1: 1 and BABA. 

Our goal is to acquire the images of a single sphere placed at different depths along 

optical axis. Therefore, randomly sprinkling the spheres into the agarose in a traditional 

way is not feasible. The main reason is that there may be interactions and overlap 

between different spheres either at the same or different depths. This makes the selection 

for imaging of a single sphere image difficult or even impossible. The images of each 

single sphere at different depths are acquired by means of sample rotation. Each rotation 

corresponds to a different depth in the OPT imaging system. The sphere injection method 

in of our protocol significantly reduces the probability of overlapping between different 

spheres. In this way the images of the same sphere in a full revolution can be easily and 

efficiently acquired. The OPT imaging system and environment is configured as 

explained in chapter 1 cf. § 1.2. 

3.2.2 PSF modelling concerning different magnifications 

For our experiments the acquisition of a single sphere comprises a full revolution in 0.9° 
steps resulting in 400 images. In Figure 3.2 the processes of sphere image acquisition and 

PSF modelling are depicted. In Figure 3.2(a) and (b), the green dot represents the sphere 

and the red arrow indicates the sphere rotation. The excitation and emission beams are 

regarded to be parallel. This is indicated by blue and green arrows in Figure 3.2(a). For
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 PSF modelling, the focal plane is set at the CoR. The 3D image whose focal plane is 

shifted from the CoR, requires an equal shift in the PSF. With the protocol (cf. section 

3.2.1) the physical rotation radius of the sphere 𝑟𝑏 can be easily measured. To this end, 

we first measure the radius of the cylindrical agarose 𝑟𝑐 and image it in the bright-field 

mode with short exposure time. In the same experimental environment, the sphere is 

afterwards imaged in the fluorescence mode. 𝑟𝑏 is calculated as: 

                                                               𝑟𝑏 =
𝑑𝑏𝑖

𝑑𝑐𝑖
∙ 𝑟𝑐                                                         (1)    

with 𝑑𝑏𝑖 representing the rotation diameter of the sphere in the tomogram, achieved by 

measuring the distance of two opposite sphere centres that are both in focal plane. 𝑑𝑐𝑖 is 

the diameter of the cylindrical agarose in the bright-field image. Dividing 𝑟𝑏  by the 

number of steps required for a rotation of  𝜋/2, i.e. the rotation radius 𝑟𝑏, the depth of 

each rotation step along optical axis is approximately determined as 𝑟𝑏/100 
*
. In our case 

the measured  𝑟𝑐 = 4 𝑚𝑚 , 𝑑𝑏𝑖/𝑑𝑐𝑖 = 0.751 , producing 𝑟𝑏 ≈ 3 𝑚𝑚 . Therefore, the 

physical distance of two adjacent rotations along optical axis is approximately 30 𝜇𝑚.   

 
Figure 3.2. Image acquisition and PSF modelling of a single fluorescence sphere. (a) The light path 

of the OPT imaging system that passes through fluorescence sphere (green dot). The excitation 

beams and emission beams are separately shown as blue and green arrows. (b) Images of the 

single sphere acquired at different angles. (c) Images of the single sphere stacked according to the 

defocus. Half rotation with defocus range [−𝒓𝒃,  +𝒓𝒃] is required, in our experiment  𝐫𝐛 = 𝟑 𝒎𝒎 

as calculated from Eq. (1). (d) The experimental and discrete PSF with defocus [−𝒓𝒃,  +𝒓𝒃]. (e) 

The modelled and continuous PSF with defocus [−𝒓𝒃,  +𝒓𝒃].  
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Figure 3.3. PSF modelling along the optical axis. (a), (d) Experimental PSFs acquired from images 

at magnification of 12.5 × and 25.0 ×. (b), (e) The corresponding modelled PSFs using Eq. (4) and 

Eq. (5). All the voxels of experimental data in (a) and modelled data in (b) are respectively 

transformed to blue and red dots in 1D functional in (c) to visualize the modelling performance. 

The vertical axis in (c) displays the intensity that corresponds to the voxel intensity in (a) and (b). 

Similarly, voxels in (d) and (e) are transformed to the data in (f). 

According to the definition, the optical imaging PSF is assumed as a focused 

Gaussian-like beam 
[61]

, i.e:  

                                              𝑝(𝑠, 𝑡, 𝑑) =
1

2𝜋𝜎(𝑑)2
∙ 𝑒𝑥𝑝 (−

𝑠2+𝑡2

2𝜎(𝑑)2
)                                    (2) 

Where 𝑠, 𝑡, 𝑑 are the three axes in 3D space, with 𝑑 being the optical axis. The 𝜎(𝑑) is 

beam waist (Figure 3.2) given by: 

                                                      𝜎(𝑑) = √𝜎0
2 + (

𝜆𝑑

𝜋𝜎0
)2                                                 (3) 

with σ0 the Gaussian beam waist defined as the 1/e value of the field amplitude in focus, 

λ the emission wave length of fluorescence spheres and 𝑑 the defocus along optical axis.  

For a specific magnification, σ0 is constant, but it varies when imaging with different 

magnifications. Additionally, in Eq. (2) and Eq. (3) the beam waist σ(d) is typically 

regarded as the standard deviation of the Gaussian model in previous studies 
[53]

. 

Different from the Gaussian model 
[53]

, we can further generalize the model by 

employing parameters ρ1, ρ2 and ρ3 as follows: 
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                                𝑝(𝑠, 𝑡, 𝑑) = 𝜌1 ∙
1

2𝜋𝜎(𝑑)2
∙ exp (−

s2+t2

2σ(d)2
)𝜌2 + 𝜌3                                (4)   

Instead of equalizing the beam waist and standard deviation as described in [53] and 

[61], we investigate the relationship between them by multiplying a parameter 𝑎 with 

beam waist, thereby considering different magnifications; thus,  

                                              𝜎(𝑑) = 𝑎 ∙ √𝜎0
2 + (

𝜆𝑑

𝜋𝜎0
)2                                                   (5)   

To relate the beam waist in focus 𝜎0 and the scale parameter a to the magnification, 6 

magnifications i.e. 12.5 ×, 15.0 ×, 17.5 ×, 20.0 ×, 22.5 ×, 25.0 ×, are configured to 

acquire the images of the same sphere. The magnifications are obtained through zooming. 

The magnification of 12.5 × approximately corresponds to the minimum magnification 

that renders the sphere visible in our experiment, while 25.0  ×  approximates to the 

maximum magnification that confirms that a full revolution of the sphere remains in the 

field of view (FoV). The PSF of each magnification is modelled by creating an 

optimisation problem and solving it with least square curve fitting. The overall fitting 

error of the 6 experimental PSFs is 5.00%. The experimental PSFs acquired from images 

with magnification of 12.5 × and 25.0 × are shown in Figure 3.3 (a) and (d) respectively. 

The color of the voxel indicates the intensity of PSF response. (b) and (e) represent the 

modelled PSFs of the two magnifications. Voxels in 3D space are converted to a 1D 

space with horizontal axis approximating the optical axis and vertical axis displaying the 

intensity. The 3D voxels on the slice in (a) and (b) match the 1D points in the box in (c) 

according to the same color. The experimental PSF differentiation between two 

magnifications is evident in (a) and (d). By transforming the 3D space to 1D functional, 

we can intuitively visualize and understand the distribution of the experimental PSF (blue 

dots) and the modelled PSF (red dots), as well as showing the differences between them. 

     With the proposed modelling approach on our data, the parameters 𝜌1, 𝜌2 and 𝜌3 have 

proven to be constant regardless of magnification: 𝜌1 ≈ 0.0041 , 𝜌2 ≈ 1.0549  and 

𝜌3 ≈ 2.9 × 10
−5. The beam waist 𝜎0 and parameter a related to the magnification range 

are estimated as depicted in Figure 3.4. We imply to the model that the fitting errors on 

the observed data are minimal. We, therefore, employ exponential and a quadratic 

function respectively. As shown in Eq. (6) and Eq. (7),  𝑥 represents magnification and 

𝑝1 to 𝑝5 are the model parameters.  

                                                           𝜎0 = 𝑝1 ∙ 𝑒
𝑝2𝑥                                                        (6) 

                                                       𝑎 = 𝑝3𝑥
2 + 𝑝4𝑥 + 𝑝5                                                (7)  

The PSF of any 3D image between −∞ and +∞ along optical axis can be modelled as 

depicted in this section. The modelling is implemented with the focal plane set at the 

CoR. However, we acknowledge that in most circumstances of imaging acquisition the 

focal plane is not in line with the CoR, i.e. with a shift η. Consequently, the modelled 

PSF will be shifted along the optical axis by η from the focal plane to meet the imaging 

setup. Besides, the length of the PSF along optical axis is determined by the size of 3D 

image and the resolution 𝑟, because in 3D reconstruction each voxel in the 3D image 
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corresponds to each pixel in the 2D images. The NA is the effective value achieved from 

interpolation relating to the magnification. The relationship between effective NA and 

magnification is determined by the Leica objective lens. 

 

Figure 3.4.  Fitting of the parameter 𝛔𝟎 and 𝑎 estimated from 6 magnifications. 𝛔𝟎 can be fitted best 

by an exponential function as shown in (a) while 𝑎  can be  fitted best by a quadratic function in (b). 

3.2.3 Deconvolution of 3D images in coronal plane  

The modelled PSF consists of multiple 2D Gaussian patterns along optical axis. 

Therefore, the 3D image can be deconvolved slice by slice along its depth axis that is 

parallel to the optical axis. As the slices are coronal sections, the deconvolution is 

implemented on the 3D image 𝑅 in the coronal plane as follows: 

                                             𝐷(𝑥,𝑦,𝑑) = 𝑅(𝑥,𝑦,𝑑) ∗/∗ 𝑝(𝑠,𝑡,𝑑)                                              (8) 

R is the reconstructed 3D image with the depth axis d parallel to the optical axis of the 

PSF. ∗/∗ stands for the operation of deconvolution. Considering the shifted focal plane 

and the reconstruction symmetry, deconvolution of 𝑅′, the opposite view of R projected 

along d, is executed by applying: 

                                          𝐷(𝑥,𝑦,𝑑)
′ = 𝑅(𝑥,𝑦,𝑑)

′ ∗/∗ 𝑝(𝑠,𝑡,𝑑)                                              (9)  

The transform from 𝑅 to 𝑅′ is conducted by a matrix rotation of  𝜋 centred at the CoR. 

The 3D image with the deconvolution is then achieved by combining 𝐷  and 𝜋  back 

rotation of 𝐷′. 
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3.3 Experiments 

The deconvolution performances of the PSF model on 3D OPT images are presented in 

three different ways. We first give a qualitative comparison between image slices with 

and without the proposed deconvolution approach. To further quantify the performance 

differences, we use three image blur metrics to measure the image blur and calculate the 

performance based on these metrics, in a slice manner. Finally, we present a holistic 

metric for 3D image deblurring improvement and implement it for performance 

comparisons. The samples used for the experiments are prepared according to our 

standard protocol, cf. § 1.2.4. 

3.3.1 Image comparison of deconvolution 

With respect to the magnifications, the experiments were conducted on images at 2 

different magnifications. One is a zebra finch embryo in fluorescence mode with 

magnification 13.83 × and focal plane shifted by −0.93 𝑚𝑚. Taking the resolution limit 

and the 3D image size into consideration, the calculated defocus of the PSF along the 

optical axis ranges from  −6.303 𝑚𝑚  to  8.063 𝑚𝑚 . The deconvolution is performed 

using the Lucy-Richardson algorithm 
[62]

 with a same number of iterations; here 10 is 

used based on the balance between reconstruction quality and computational time. The 

result for one coronal slice is shown in Figure 3.5 (c) and for the horizontal slice in 

Figure 3.5 (d). The corresponding slices prior to deconvolution are displayed in Figure 

3.5 (a) and (b). The comparisons of intensity profile along a line with (red) and without 

(blue) deconvolution are presented in (e) and (f) respectively. The comparisons of the 3D 

visualization results are shown in Figure 3.6.   

In Figure 3.7 another sample is depicted; a specimen of zebrafish larvae. The 3D 

visualizations of reconstructions with and without deconvolution are displayed in Figure 

3.7. Figure 3.8 compares two orthogonal image samples of the zebrafish in detail. The 

magnification and the shifted focal plane are separately 49.98 × and−0.5 𝑚𝑚, with the 

computed defocus of the PSF being between  −2.242 𝑚𝑚 and 3.246 𝑚𝑚. Figure 3.8 (a) 

and (b) are the slices prior to deconvolution in two orthogonal planes, while (c) and (d) 

correspond to the deconvolution results. From visual assessment between (c) and (d), we 

can appreciate that the performance in the horizontal plane is almost as good as it is in 

coronal plane. This means that deconvolution in the coronal plane simultaneously 

improves the quality of the image in the horizontal plane to some extent. From a 

comparison of the quantitative intensity profile in the graph, we state that the proposed 

deconvolution sharpens and refines the 3D reconstructed images. It enhances the strong 

signals and makes the intensity profile more distinct. 
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Figure 3.5. Deconvolution results. (a) The coronal slice of the 3D zebra finch with obvious blur 

around the ribs. (c) Distinct texture appears around the ribs after the deconvolution. (e) The 

comparison of intensity profiles along a line in (a) and (c). (b) and (d) The horizontal slice 

comparisons with the line intensity profiles shown in (f). In (c) and (d), more textures are 

observable in comparison with (a) and (b). In (e) and (f), the red thinner intensity profile, explains 

the more image sharpness along the red line in (c) and (d), comparing to (a) and (b) separately. 
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              (a)                                                                 (b)         

Figure 3.6. Deconvolution results. (a) 3D visualization of the zebra finch embryo without 

deconvolution. (b) 3D visualization of zebra finch with deconvolution. The visualization is made 

with Amira software
 [63]

.  

 
(a) 

 
(b) 

Figure 3.7. Deconvolution results. (a) 3D visualization of the zebrafish without deconvolution. (b) 

3D visualization of zebrafish with deconvolution, visualized with Amira software 
[63]

.  
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Figure 3.8. Coronal and horizontal slices of 3D zebrafish before ((a) and (b)) and after ((c) and (d)) 

deconvolution. The deconvolution highlights the strong signals and makes the texture more visible. 

(e) compares the intensity profile of the same line before ( labelled as blue in (a)) and after 

(labelled as red in (c)) deconvolution, so does (f). 

3.3.2 Image blur measurement on slices 

To quantify the image blur of each slice, three metrics, known from the literature, were 

selected; i.e. the just noticeable blur (JNB) 
[64]

, the cumulative probability of blur 

detection (CPBD) 
[65]

 and the frequency measure (FM) 
[66]

. These three metrics are 

employed to evaluate the performance of our method. Both the JNB and CPBD measure 

represent a sharpness metric by detecting and quantifying the blur in the spatial domain. 

Different from JNB and CPBD, the FM measure quantifies the sharpness in the 

frequency domain with an easier and more efficient approach. All the three metrics 

characterize the sharpness of an image, so the measure increases at improved image 

quality. 
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Figure 3.9. (a) JNB measure on the zebra finch data with magnification 13.83 ×. (b) JNB Measure 

on the zebrafish data with magnification 49.98 ×. Coronal and horizontal are the two orthogonal 

planes displaying the 3D image. 

 

Figure 3.10. (a) CPBD measure on the zebra finch with magnification 13.83 ×. (b) CPBD Measure 

on the zebrafish with magnification 49.98 ×. 

Whilst experiments in section 3.3.1 give us a qualitative comparison between the 

deconvolved slices and non-deconvolved slices, in this section we quantitatively look 

into all the slices in different orthogonal planes (coronal and horizontal) with the three 

image sharpness metrics (i.e. JNB, CPBD and FM). In the graphs depicted in Figure 3.9 - 

3.11 we can observe that with all the three metrics the deconvolved slices on both planes 

show higher measurement values compared to the image slices without deconvolution. 

This means that for all the slices, regardless of orientation, the deconvolution holistically 

deblurs the images and thereby significantly improves the image quality. 
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Figure 3.11. The FM before and after deconvolution on the two 3D image data. (a) FM measure 

on the zebra finch with magnification 13.83  × . (b) FM Measure on the zebrafish with 

magnification 49.98 ×. 

3.3.3 Quantitative 3D image quality improvement of deblur 

To further quantify the deblur of the deconvolution results on the original reconstructed 

3D data across the planes, we present the 3D image quality improvement criterion of 

deblur as 𝐼3d in Eq. (10). Improvement in three orthogonal individuals are combined and 

encoded as a whole and each of them are represented as: 

                    𝐼3𝑑 = √(
1

𝑁𝑥
∑ 𝐼𝑖𝑥
𝑁𝑥
𝑖𝑥=1 )2 + (

1

𝑁𝑦
∑ 𝐼𝑖𝑦
𝑁𝑦
𝑖𝑦=1 )2 + (

1

𝑁𝑧
∑ 𝐼𝑖𝑧
𝑁𝑧
𝑖𝑧=1 )2                       (10) 

                                                            𝐼𝑖𝑥 =
𝑀𝑖𝑥
𝑑 −𝑀𝑖𝑥

𝑟

𝑀𝑖𝑥
𝑟  ,                                                       (11) 

                                                           𝐼𝑖𝑦 =
𝑀𝑖𝑦
𝑑 −𝑀𝑖𝑦

𝑟

𝑀𝑖𝑦
𝑟  ,                                                        (12) 

                                                           𝐼𝑖𝑧 =
𝑀𝑖𝑧
𝑑−𝑀𝑖𝑧

𝑟

𝑀𝑖𝑧
𝑟  ,                                                        (13) 

Where i is the slice number and x, y and z are the coordinate axises in 3D space. 𝐼𝑖𝑥, 𝐼𝑖𝑦 

and  𝐼𝑖𝑧 indicate the deblurring performance of slice i on the three different axises. 𝑀𝑖𝑥
𝑑  

and 𝑀𝑖𝑥
𝑟  are respectively the ith deconvolved and original reconstructed slice on axis x. 

𝑀𝑖𝑦
𝑑 , 𝑀𝑖𝑦

𝑟 , 𝑀𝑖𝑧
𝑑  and 𝑀𝑖𝑧

𝑟  are defined in a similar way on the two different axises. By 

employing the deblur performance 𝐼3𝑑 , deconvolution performance of two different 

methods on the same data should be comparable.  

Next, we apply our deconvolution method to 23 more 3D data sets, which contains 3 

categories of samples i.e. zebrafish larvae, the adult zebrafish brain and the chicken 

embryo heart. They are in different stages of development and are acquired at different 

magnifications. It is important to realize that the metrics in this chapter cannot assess the 
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image blur across different data, but using the same data they are able to evaluate the 

performance of different deblurring approaches. Taking advantage of this, we compare 

the presented deconvolution method with the most commonly used Gaussian-based blind 

deconvolution 
[67]

. According to our observation of the results for blind deconvolution, 

the kernel size does not make a visible difference on our 3D images. Therefore, we 

present our results for blind deconvolution with the kernel size set as 7, taking acceptable 

computation time into account. From the 3 metrics, i.e. CPBD, JNB and FM, we have 

selected the most robust metric JNB to measure the image blur of each slice. The results 

of the 3 categories of samples are presented in Table 3-1 to Table 3-3. For all the 23 data, 

our deconvolution approach outperforms the Gaussian-based deconvolution, thereby 

indicating the success of the method. 

Table 3.1. 3D image quality improvement of 10 zebrafish embryos based on JNB Measure. 

 01 02 03 04 05 06 07 08 09 10 
G 0.16 0.21 0.15 0.21 0.29 0.24 0.22 0.16 0.20 0.25 

PSFm 1.35 2.10 1.41 3.23 1.54 1.50 1.50 1.37 1.45 1.70 

⋆ G -- Gaussian-based blind deconvolution. PSFm -- PSF based modelling deconvolution. 10 zebrafish 

embryos correspond to 01-10 with age from 3 dpf to 7 dpf.  

Table 3.2. 3D image quality improvement of 6 zebrafish brain based on JNB Measure. 

 01 02 03 04 05 06 

G 0.25 0.29 0.26 0.24 0.01 0.21 

PSFm 0.41 0.49 2.55 0.17 1.15 1.20 

⋆ 6 adult zebrafish brains correspond to 01-06 with different magnifications. 

Table 3.3. 3D image quality improvement of 7 chicken heart based on JNB Measure. 

 01 02 03 04 05 06 07 
G 0.24 0.16 0.19 0.26 0.27 0.18 0.32 

PSFm 0.93 0.49 0.29 1.15 0.49 0.38 1.07 

⋆ 7 chicken embryo hearts at different stages correspond to 01-07.  

3.4 Conclusions 

In this chapter we have focused on 3D image deblur and quality improvement, under the 

condition of the limitation of small NA for imaging of large sized samples. We 

investigated and modeled the PSF along the optical axis, exploring the influence of 

magnification on PSF. The sample of a single fluorescence sphere is prepared with the 

protocol in section 3.2.1. The experimental PSF is then modelled to deconvolve the 3D 

image in a coronal plane. A number of measures for image blur are employed to 

convincingly evaluate the performance of the deconvolution. They provide quantitative 

information about how much improvement is achieved. The overall improvement  𝐼3𝑑 
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gives us a criterion to compare image quality improvement regardless of different data. 

All the experimental results including the image comparisons and quantitative measures 

sustain the effectiveness of the proposed PSF modelling and deconvolution methodology.  

The deconvolution results presented represent a proof of concept. The datasets used in 

the experiments are composed of 25 samples, i.e. 4 categories: zebrafish embryo, zebra 

finch embryo, adult zebrafish brain and chicken embryo heart. Regarding the evaluation 

of performance on a large volume of different datasets, our data are far from perfect in 

terms of ‘large dataset’. However, it presents a clear idea that our model is not 

constrained by samples of one particular type, it also works on many other types of 

specimens. This will help to explain its potential capability of improving image quality 

with similar performance on more 3D data, including those from other OPT imaging 

systems, which is a part of our current work. In the future we will take further efforts on 

generalizing the model to other imaging set-ups. In addition, the fluorescent sphere used 

in the experiments is fixed-size. The effect of sphere size on PSF modelling and deblur 

performance need to be given more attentions. 
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