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Chapter 2 

Fast Post-processing Pipeline for Optical 

Projection Tomography 
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Chapter summary 

In order to improve the effectiveness and efficiency of 3D reconstruction for optical 

projection tomography, we present a fast post-processing pipeline. This pipeline includes 

image cropping, background subtraction, centre of rotation correction and 3D 

reconstruction. For OPT imaging, with respect to the centre of rotation correction, a 

novel algorithm based on interest point detection in the sinogram is proposed. Instead of 

locating the centre of rotation on single sinogram, we intermittently and evenly select 

sinograms in the detected full range of a sample to make the located centre of rotation 

more robust. The post-processing pipeline presented is implemented on a parallel manner 

and experiments demonstrate that the average runtime for images of size 1036×1360×400 

pixel can be less than 1 minute on a computer cluster of which 5 compute nodes are used. 
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2.1 Introduction 

In this section we will state our research question and introduce our perspective on 

optical projection tomography (OPT) imaging and reconstruction framework. It includes 

a brief introduction of our contribution to this research as well as related work in this 

field of research.    

2.1.1 Research problem 

The aim of an OPT imaging system is to obtain a 3D volume image, so that this volume 

image can be used for analysis and visualization. This is accomplished by a 

reconstruction algorithm that is applied on the sinograms derived from the OPT image. 

With an OPT imaging system a so called tomogram is acquired. The tomogram is a 

collection of images of a specimen taken at regular angular intervals. For OPT this 

typically comprised a stepwise acquisition of the images over a full revolution of the 

sample. The tomogram is transformed to a sinogram in which all projections are 

represented.  

The reconstruction process could, however, introduce various artefacts depending on 

different imaging setups. This means that for each individual OPT imaging system, 

exploration and elimination of reconstruction artefacts are necessary. In this chapter, we 

will focus on the artefacts resulting from the misalignment of centre of rotation (CoR).  

Another important issue for OPT imaging system is the speed of reconstruction 

process. In order to be able to apply OPT in a high-throughput setting as well as to allow 

quick reconstruction of the imaging, research on fast and efficient reconstruction is 

important. These two issues represent the general motivation for the work in this chapter. 

With the two research questions, we propose a fast post-processing pipeline that is 

integrated into reconstruction software. In this pipeline, cropping and background 

subtraction are the first two steps for image pre-processing, followed by a fast and 

efficient CoR correction and a 3D reconstruction algorithm. This significantly contributes 

to the innovation in our OPT applications. With the application of cropping and CoR 

correction, the sample can be placed at any position of the field of view (FoV), 

decreasing the time for post-processing of tomogram and avoiding the calibration process 

prior to tomogram acquisition. Originally, a calibration helps to align the CoR to the 

centre of FoV, which normally takes several minutes. In this pipeline, we implement a 

parallel computation of both CoR correction and 3D reconstruction to further accelerate 

the post-processing of OPT tomogram. 

2.1.2 Related work 

In the recent years, cancer progression 
[5]–[7]

, drug discovery 
[8]

 and development studies 

for organ system such as skeleton 
[9], [10]

, teeth 
[38]

 and blood vessels 
[12]

 have benefited 

from the further development of OPT microscopy. Kumer et al. 
[5]

 applied OPT to adult 
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zebrafish to study the synchronous development of cancer and vasculature in adult 

zebrafish. McGinty et al. 
[8]

 proposed a fluorescence lifetime optical projection 

tomography in 2011 for biological research and drug discovery, the time for image 

acquisition and post-processing including 3D reconstruction were both reported to be ~20 

minutes. Later, in 2012, Fieramonti et al. 
[9]

 extended OPT to optically diffusive samples 

for studying skeletal and nervous structures in zebrafish, improving the acquisition time 

to something like ~3 minutes but without considering the artefacts produced when the 

CoR is inconsistent with the centre of the tomogram. Agarwal et al. 
[7]

 presented a 

diagnosis method of early cancer by reconstructing 3D cellular image with OPT. The 

high resolution of single cells was achieved by using a large NA and scanning the 

objective focal plan contributed to the extension of DOF, which consequently increased 

the light dose and acquisition time. More recent, in 2015, Correia et al. 
[12]

 introduced 

accelerated OPT by decreasing the number of rotations at tomogram acquisition, aiming 

to improve the efficiency of OPT system and decrease the light dose the sample is 

exposed to. In similar fashion, aiming at improving the efficiency of OPT imaging, we 

present a fast OPT post-processing pipeline which contains pre-processing, CoR 

correction and 3D reconstruction taking ~1 minute with tomogram size of 

1036×1360×400 pixels.  

Before applying the inverse radon transform to the sinogram for reconstruction, by 

definition the position of the CoR should be in the middle of the sinogram, achieved by 

CoR correction. This was first studied in 1990 
[39]

 in computational CT. Previous studies 

showed that shifted CoR could introduce severe artefacts or even incorrect results 
[40]

. 

Furthermore, correcting CoR based on images can bypass the calibration prior to 

tomogram acquisition, improving the efficiency of the imaging system. In terms of 

methodologies for CoR correction, there are two mainstream approaches. The first 

approach is based on signal match for pairs of projection data (180° opposed to each 

other) 
[39], [41]–[43]

. This is widely used in CT because the intensities from two opposite 

projected angles are theoretically equivalent in CT imaging. Unfortunately, this method 

may not be directly suitable for OPT images, as opposite projected data may vary at 

different sample angles. The differences are caused by the fact that the lens introduces a 

DoF and only images the front half of the sample 
[44]

. Moreover, feasibility is hampered 

as the sinogram is often disturbed by fixation artefacts and/ or random noise; both 

frequently occur in OPT imaging.  

The second approach both for CT and OPT is based on iterative reconstruction of the 

sinogram 
[22], [45], [46]

. The vertical axis that is producing the smallest variance in the 

reconstructed image is chosen as the CoR, cf. 
[46]

. This approach is however time-

consuming and therefore less used in CT. Furthermore, both approaches chose only one 

sinogram for CoR correction, whereas the CoR fluctuation produced by different 

sinograms was not taken into account, to some extent resulting in unconvincing CoR. 
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2.2 Materials and methods 

An OPT system that is used for 3D imaging in biomedical research, e.g. embryo or 

skeleton development, requires the sample, i.e. a zebrafish larvae, first to be prepared for 

imaging. A clearing of the sample is accomplished with the BABB protocol, cf. § 1.2.4. 

The data flow of a sample goes from preparation, to OPT image acquisition using our 

dedicated imaging software, cf. § 1.2.3, to the production of the OPT tomogram. This 

tomogram is then reconstructed to 3D image by using the OPT reconstruction software 

which will be further elaborated in this section. The OPT reconstruction software 

integrates the whole reconstruction pipeline. For the CoR correction and 3D 

reconstruction tasks, it provides the interface to submit the tasks to our compute cluster, 

i.e. the Leiden Life Science Cluster (LLSC).   

2.2.1 OPT imaging 

Our OPT imaging system supports both bright-field and fluorescence illumination. The 

acquisition time for a bright-field tomogram is less than 3 minutes, and for a fluorescence 

tomogram it varies depending on the strength of the fluorescence and exposure time; but 

normally it is less than 10 minutes for a sample in a full revolution, cf. § 1.2.3. 

Optimisation of sample preparation protocol and image acquisition were implemented as 

described in chapter 1, cf. § 1.2.4. The tomogram of a single channel from the OPT is a 

16-bit image of size 1036×1360×400 pixels, with a file size of 1.05GB. Image of 

1036×1360 is acquired over 400 rotation angles in [0°, 360°). For each tomogram, 10 

background images of the same size are acquired for the post-processing. The acquisition 

of the tomogram is separated from the computationally more demanding post-processing. 

This is accomplished on a cluster computer and communication to the cluster application 

is realized via a web-service that is available on the acquisition computer. 

Application of the post-processing pipeline, implies that the acquired OPT tomograms 

will be first cropped to the region of interest (RoI). It is followed by a background 

subtraction of the median of the background images for each channel. Subsequently, CoR 

correction and 3D reconstruction are applied. The user interface of the post-processing 

software is shown in Figure 2.1 with an example of a zebrafish in bright-field. Cropping 

and background subtraction are implemented locally on the left side, and on the right we 

can upload the data to our computer cluster (LLSC) for CoR correction and 

reconstruction. Once the task is finished, the resulting 3D image will be automatically 

stored on the LLSC file server and a file link for downloading is returned. At the same 

time the reconstructed 3D image is downloaded to the local computer, cf. right panel in 

the user interface as shown Figure 2.1. Users can also visualize the x-projection and y-

projection using the Details button. The file link for users to download the 3D image is 

provided under the Details button on the right of user interface.  
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2.2.2 OPT reconstruction software 

 

Figure 2.1. The user interface of the post-processing software; it includes cropping, background 

subtraction, CoR correction and 3D reconstruction. Once the tomogram is opened, cropping and 

background subtraction can be done with buttons on the left. With a Start Reconstruction button, 

the data are automatically uploaded to a dedicated cluster computer. The CoR correction and 

reconstruction are distributed on the cluster. The reconstructed results and maximum intensity 

projections are sent to the local computer after completion (right panel).    

2.2.3 Cluster computing: the LLSC 

The LLSC is a computer cluster for bioinformatics applications. As displayed in Figure 

2.2, it consists of three user nodes, 20+ compute nodes and a file server. Each compute 

node consists of multiple two Intel Xeon dual- or quad-core processors with 16GB RAM, 

forming a cluster of 108 processors in total. The separate file server has 36TB storage. 

The nodes and file server are connected using Gigabit Ethernet. The LLSC currently uses 

the TORQUE job scheduler 
[47]

 to allocate the computational tasks, but a future upgrade 

to the SLURM workload Manager 
[48]

 is planned. To ensure consistent performance 

measurements we will be using the nodes that contain two Intel Xeon 5150 dual-core 

processors and two Intel Xeon e5430 dual-core processors, given that most of the 

currently operational nodes in the cluster are of these types.  
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Figure 2.2. The LLSC cluster with three user nodes, 20 computing nodes (108 processors) and a 

file server. 

2.3 Implementation 

In this section we present our specific contributions to the post-processing pipeline, i.e. 

the CoR correction algorithm and Reconstruction on the LLSC system.    

2.3.1 CoR correction 

CoR correction involves CoR localization for each of the channels and the CoR 

alignment of these multiple channels. Considering the artefacts from CoR shift depicted 

in 
[22], [49]

 and the computationally expensive problem of the traditional CoR localization 

method by using iterative reconstruction 
[46]

, a novel CoR localization approach is 

presented. The CoR localization for each channel is defined as searching for most 

frequently occurring value from the obtained CoRs of multiple sinograms, which are 

localized based on interest point detection and CoR optimisation function. 

1) Sinogram selection   

To make the CoR localization in each channel convincing, multiple sinograms are 

selected. We select these multiple sinograms by investigating the slice range NS from 4 

valid sinogram ranges using:  
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Figure 2.3. The 4 orthogonal sinogram ranges  𝐍𝐒𝟎, 𝐍𝐒𝟗𝟎, 𝐍𝐒𝟏𝟖𝟎 and 𝐍𝐒𝟐𝟕𝟎  are from the 4 

orthogonal tomogram images (𝟎°, 𝟗𝟎°, 𝟏𝟖𝟎°, 𝟐𝟕𝟎°) of an adult zebrafish brain. 

                                            𝑁𝑆 = 𝑁𝑆0 ∩ 𝑁𝑆90 ∩ 𝑁𝑆180 ∩ 𝑁𝑆270                                        (1) 

𝑁𝑆0, 𝑁𝑆90, 𝑁𝑆180  and 𝑁𝑆270  respectively represent the 4 slice ranges of 4 orthogonal 

tomogram images of size 1360 × 1036, as shown in Figure 2.3. Here, as an example we 

look at the brain of an adult zebrafish. Within NS, the step for selecting a sinogram 

𝑠𝑡𝑒𝑝 = 𝑐𝑒𝑖𝑙(
𝑁𝑆

𝜌
) is experimentally determined and approximately 𝜌 sinograms from the 

range NS are evenly selected. The selected set of sinograms is defined as S. In this 

manner, specimen samples have approximately the same number of selected sinograms 

for CoR localization regardless of their different sizes.  

2) Interest point detection 

According to the design of our OPT imaging system, only the front half of the 

sample is in the DoF, so the projected data from opposite angles may vary differently 

depending on the rotation angle, specimen size and shape. However, a voxel projected at 

the left or right boundary of the specimen shares approximately the same image intensity 

with the opposite projection of the same sample location. This equivalence is shown as a 

peak and a trough along the sinogram. To illustrate our assumption, a sinogram from the 

fluorescence tomogram of a zebrafish larva is depicted as an example in Figure 2.4. Point 

O, A and B are the fluorescence signals of the 6 days post fertilization (dpf) zebrafish eye 

from 3 different angles, and O*, A* and B* are their corresponding opposite projections. 
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Figure 2.4. A sinogram of a zebrafish embryo showing the differences among pairs of opposite 

projected data. O and O*, A and A*, B and B* are pairs respectively. O and O* are interest 

points; while A and A*, B and B* are not. 

The projected data for a voxel in the eye should be formed as a sine function passing 

through O, A, B, O*, A* and B* in CT system, but in OPT only O and O* remain 

equivalent; while A and A* as well as B and B* differ significantly, being consistent with 

the assumption above. With this assumption, the CoR should be located with the 

oppositely projected pairs that are similar to O and O*. The problem of locating the CoR 

is therefore transformed as search for peaks and troughs on the sinogram edge; in our 

case defined as interest points. 

A sinogram is defined as 𝑆(𝜉, 𝜑) where 𝜑 is the rotation angle, and 𝜉 is the phase in 

each angle. The size of the sinogram is 𝜙 × 𝑝 in our case, with 𝜙 being the number of 

sample angles and 𝑝  being the tomogram height after cropping. As depicted in the 

flowchart in Figure 2.5, the procedure for detecting interest point is based on point 

selection from initial points 𝐸 = {𝜉𝑘 ,  𝜑𝑘},   𝑘 ∈ [1,𝑀]. 𝐸 is the collection of points using 

edge detection in a sinogram with M being the number of initial points. 𝑆𝑏(𝜉, 𝜑) refers to 

the binary sinogram. After point selection, the detected interest points are  𝑃 =

{𝜉𝑗 , 𝜑𝑗},   𝑗 ∈ [1, 𝑁], and 𝑁 ≤ 𝑀. In Figure 2.5, the detailed algorithm for point selection 

is presented in the flowchart. 

As shown in Figure 2.5, 𝑊0𝑘  and 𝑊𝑘  are the window patches of an initial point 

(𝜉𝑜𝑛𝑒 , 𝜑𝑜𝑛𝑒) 𝜖 𝐸, meeting different conditions. 𝐸𝐷𝑘 is the image edge detected from 𝑊𝑘. 

In 𝑊𝑘  we define 𝜃 as the angle passing through the 0-labeled centre (ξzero, φzero) and 

the 1-labeled centre (𝜉𝑜𝑛𝑒 , 𝜑𝑜𝑛𝑒) that are separated by edge 𝐸𝐷𝑘. If 𝐸𝐷𝑘 is enclosed, we 
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set a constraint of tan 𝜃 <
1

3
√3, where arctan

1

3
√3 = 30°, therefore only points with  

𝜃 < 30° will remain. The peak and trough within 𝑊𝑘 (indicated with red stars in Figure 

2.6) are defined as follows:  

                Peak:

{
  
 

  
 

  

𝜉𝑧𝑒𝑟𝑜 > 𝜉𝑜𝑛𝑒        
|𝐷𝜑| = (𝑤1 − 1)

𝐷(𝐷𝜉) < 0         

1 ∉ 𝑠𝑖𝑔𝑛(𝑑𝜉1)   

1 ∉ 𝑠𝑖𝑔𝑛(𝑑𝜉2)   

                     Trough:

{
 
 

 
 

  

𝜉𝑧𝑒𝑟𝑜 < 𝜉𝑜𝑛𝑒        
|𝐷𝜑| = (𝑤1 − 1)

𝐷(𝐷𝜉) > 0         

−1 ∉ 𝑠𝑖𝑔𝑛(𝑑𝜉1)

−1 ∉ 𝑠𝑖𝑔𝑛(𝑑𝜉2)

                     (2)            

𝐷𝜑 symbolizes the sum of derivatives of 𝐸𝐷𝑘  in the 𝜑 direction along the edge curve, 

while 𝐷(𝐷𝜉) is the sum of second derivatives of 𝐸𝐷𝑘 in the 𝜉 direction along the edge 

curve. When 𝐷(𝐷𝜉) < 0 , the function of the 𝐸𝐷𝑘  sequence is constrained as being 

convex, and if 𝐷(𝐷𝜉) > 0 , it is concave, corresponding to the peak and trough, 

respectively. We break  𝐸𝐷𝑘 into upper and lower edges: 𝐸𝐷𝑘1 and 𝐸𝐷𝑘2, both of which 

are started at the middle of 𝐸𝐷𝑘 in the φ direction. Now, 𝑑𝜉1 and 𝑑𝜉2 are separately the 

derivatives of  𝐸𝐷𝑘1 and 𝐸𝐷𝑘2 in the 𝜉 direction.  

Applying the definition from Eq. (2), false-peak and false-trough (indicated with 

purple stars in Figure 2.6) are not kept as interest points, as they are not true sine peaks 

but rather intersections of different sine functions, which should therefore be discarded. 

Furthermore, when a true trough satisfies R (yellow star in Figure 2.6), 

                                             𝑅 =

{
  
 

  
 

  

𝜉𝑧𝑒𝑟𝑜 < 𝜉𝑜𝑛𝑒        
|𝐷𝜑| = (𝑤1 − 1)

𝐷(𝐷𝜉) = 0         

𝑠𝑖𝑔𝑛(𝑑𝜉1) = 0  

𝑠𝑖𝑔𝑛(𝑑𝜉2) = 0  

                                                       (3) 

or a true peak satisfies Q, 

                                             𝑄 =

{
  
 

  
 

  

𝜉𝑧𝑒𝑟𝑜 > 𝜉𝑜𝑛𝑒        
|𝐷𝜑| = (𝑤1 − 1)

𝐷(𝐷𝜉) = 0          

𝑠𝑖𝑔𝑛(𝑑𝜉1) = 0  

𝑠𝑖𝑔𝑛(𝑑𝜉2) = 0  

                                                       (4) 

The edge 𝐸𝐷𝑘 in 𝑊𝑘 of size 𝑤1 is strictly vertical. Then it does not satisfy the definition 

of peak or trough in Eq. (2). The reason for the inconsistency is caused by the size of 𝑊𝑘. 

Therefore, to solve this problem, a bigger patch (set as 2𝑤1+1 in our experiment) is set to 

satisfy Eq. (2) in a bigger patch, following the same steps for interest point detection in 

Figure 2.5. 
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Figure 2.5. Flowchart of the algorithm for interest point detection. The binary sinogram and 

initial points are obtained through OSTU segmentation 
[50]

 and the  Sobel edge detector 
[51]

  

respectively.  
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3) CoR localization and alignment 

According to the definition of CoR localization above, CoR for single sinogram 

should be first localized. With the interest points P = {ξj, φj},   j ∈ [1, N]  detected in 

single sinogram, the CoR range is obtained as  [ξmin, ξmax] , where ξmax  and ξmin  are 

respectively the maximum and minimum of ξj in the interest points P. For a specific CoR 

value c, we locate the corresponding opposite points for P as Pc
′ = {(ξj , φj)c

′
},   j ∈ [1, N], 

which are symmetric by c and have an interval of π in projection. To find a mathematical 

metric between P and Pc
′, we define the neighbors of (ξj , φj) and (ξj , φj)c

′
 as rc(ξj, φj) 

and rc
′(ξj, φj). As shown in Figure 2.4, the projection data between interest point (ξj , φj) 

and its opposite point (ξj , φj)c
′
 should be approximately equivalent, so we localize the 

optimal CoR in the range of [ξmin, ξmax] for the ith sinogram by formulating: 

                              𝐶𝑖
∗ = min𝑐

1

𝑁
∑ (𝑟𝑐(𝜉𝑗 , 𝜑𝑗) − 𝑟𝑐

′(𝜉𝑗 , 𝜑𝑗))
𝑁
𝑗                                    (5) 

For the selected 𝜌 sinograms, the localized optimal CoRs are 𝐶 = {𝐶1
∗, 𝐶2

∗, … , 𝐶𝜌
∗}; so the 

most frequently occurring value 𝐶∗ in C is referred to as the CoR for a single channel, 

either the bright-field or fluorescence channel.  

 

 

Figure 2.6. A bright-field sinogram (displayed inverted) from a chicken heart images with interest 

points detected (shown as red and yellow stars). Edge points, i.e. initial points, are shown in cyan; 

while false-peaks are shown as purple stars. 
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For multiple channels the sinograms should be aligned to the same size with the same 

CoR before 3D reconstruction. The disparity between different channels may be a result 

of a mechanic drift, when images are recorded at different time. We illustrate our 

alignment scheme in two channels (fluorescence and bright-field), but it is also suitable 

to multiple channels. The ith sinogram 𝑆𝑖  of size 𝜙 × 𝑝  in each channel is aligned 

centered by C∗ as Si
′ of size  𝜙 × 𝑞. This is accomplished by using:  

                                                 𝑞 = {
2 × 𝐶∗ ,               𝐶∗  <

𝑝

2

2 × (𝑝 − 𝐶∗ ),   𝐶∗  ≥
𝑝

2

 ,                                            (6) 

and   

     𝑆𝑖
′
= {

 𝑆𝑖(1: 2𝐶
∗ , 𝜑),             𝐶∗  <

𝑝

2

 𝑆𝑖(2𝐶
∗  − 𝑝: 𝑝, 𝜑),      𝐶∗  ≥

𝑝

2

                                        (7) 

As illustrated in Eq. (6), q is calculated to be smaller than p to preserve sufficient 

sinogram information, as well as to avoid redundant background reconstruction, i.e. 𝑆𝑖 is 

truncated instead of being extended, which consumes more time for reconstructing the 

background. With Eq. (6) and Eq. (7), the ith sinogram for the fluorescence and bright-

field channel are 𝑆𝑓𝑖
′  and  𝑆𝑏𝑖

′  with size of  𝜙 × 𝑞𝑓  and  𝜙 × 𝑞𝑏  respectively. They are 

aligned to the same CoR with the same size as 𝑆𝑓𝑖
∗  and 𝑆𝑏𝑖

∗  by using: 

                                       {
𝑆𝑓𝑖
∗ = (𝑧0, 𝑆𝑓𝑖

′ , 𝑧0); 𝑆𝑏𝑖
∗ = 𝑆𝑏𝑖

′ ,         𝑞𝑓 < 𝑞𝑏

𝑆𝑓𝑖
∗ = 𝑆𝑓𝑖

′ ;  𝑆𝑏𝑖
∗ = (𝑧0, 𝑆𝑏𝑖

′ , 𝑧0),         𝑞𝑓 > 𝑞𝑏
                               (8) 

where z0  is a Zero matrix with size of   𝜙 × |Cf
∗ − Cb

∗ | , and  Cf
∗  and  Cb

∗  represent the 

located CoRs for the fluorescence and bright-field channel. 

2.3.2 Reconstruction and fusion 

Next, from the corrected sinogram, now we have a new sinogram. Applying inverse 

radon transform or filtered back projection (FBP) 
[52]

 to both the bright-field and the 

fluorescence channel of the obtained samples, the reconstructed images are formed  as 

𝑅𝑏
𝑡 = {𝑅𝑏1, … , 𝑅𝑏𝑙 , … , 𝑅𝑏𝐿} and 𝑅𝑓

𝑡 = {𝑅𝑓1, … , 𝑅𝑓𝑙 , … , 𝑅𝑓𝐿} respectively. L is the number 

of sinogams at imaging time t. The intensities in 𝑅𝑓𝑙 and 𝑅𝑏𝑙 refer to the fluorescence and 

bright-field signals. For transparent specimens, such as the zebrafish larvae from our 

experiments, the bright-field signals are generally distributed in vertebra and cartilage, 

providing a description of the silhouette of the zebrafish. Therefore, by fusing 𝑅𝑓
𝑡 and 𝑅𝑏

𝑡 , 

fluorescence signals, for instance a pattern of gene expression could be located and 

analysed within specimens at the specific time t. 𝑅𝑓
𝑡 and 𝑅𝑏

𝑡  are fused according to their 

equivalent slice number l and imaging time t. For each voxel in the fused 4D image, 

𝑉(𝑥,𝑦,𝑙,𝑡) = (𝐼𝑓 , 𝐼𝑏) describes its signals of different channels, and (𝑥, 𝑦, 𝑙, 𝑡) symbolizes 
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the coordinate in 4D space. (𝑥, 𝑦) corresponds to the pixel of the reconstructed image 

slice, while l and t symbolize the slice number and imaging time. 𝑉(𝑥,𝑦,𝑙,𝑡)  could be 

further used in a 3D segmentation procedure and quantification of fluorescence, i.e. gene 

and/or protein activity,  in the specific specimen or organs. 

2.3.3 Parallel setting   

 

Figure 2.7. Parallel framework for CoR correction and 3D reconstruction. Processor 0 is 

responsible for sinogram selection, broadcast and collective communication, as well as 

normalization before image writing. 
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In order to speed up computations, we implemented a parallel computing scheme on our 

cluster computers, i.e. LLSC, for both the CoR correction as well as for the 3D 

reconstruction. This scheme is an essential part of our proposed pipeline. The specific 

implementation is illustrated in Figure 2.7. K represents the number of available 

processors. Processor 0 is defined as the Master processor unit responsible for sinogram 

selection, broadcast and collective communication. The selected sinograms S are then 

distributed to the K processors for localizing the corresponding CoRs using Eq. (5). All 

the CoRs from different processors are gathered by the Master processor unit to calculate 

the 𝐶∗ of each channel. Subsequently, the CoR alignment  of the different channels using 

Eq. (6), Eq. (7) and Eq. (8) is also processed on the Master processor unit. After CoR 

correction, the Master processor unit distributes the L slices of aligned sinograms to the K 

processors for the 3D reconstruction. The reconstructed image slices will be gathered 

again to the Master processor unit for normalization before image writting.  

2.4 Experiments 

In this section, we first evaluate the reconstruction pipeline without the CoR correction, 

qualitatively and quantitatively comparing the results with the pipeline considering the 

CoR correction. The runtimes of distributed computing for both experimental setups are 

measured and compared. We present a new CoR correction algorithm in this chapter, 

therefore further performance comparisons with previous CoR correction algorithm are 

also included.     

2.4.1 Experiments on the fast post-processing pipeline 

Instead of calibration of CoR based on adapting the adequate parts in the imaging system, 

we acquired a tomogram of a zebrafish sample and reconstructed it using the proposed 

pipeline. The raw 1036×1360×400 OPT tomogram was first cropped, producing a 

smaller image size of 506×1360×400, followed by a background subtraction from the 10 

background images acquired, cf. § 2.2.2. The cropping and background subtraction 

normally take less than 1 second, the average time of each channel for CoR correction 

and 3D reconstruction is 15.05s and 18.81s respectively with 5 nodes of 8-core 2.66 GHz 

CPU+ 16G RAM and 8 nodes of 4-core 2.66 GHz CPU+16G RAM. The number of 

selected sinograms is set to 𝜌 = 40  to balance the effectiveness and computational 

complexity of CoR localization, and the patch size is  𝑤1 = 15. The visualizations of 3D 

reconstruction without and with the CoR correction are respectively shown in Figure 2.8 

(a), (b), (c) and Figure 2.9 (a), (b), (c). It is obvious that Figure 2.9 (a), (b) and (c) contain 

distinct signals in both channels while Figure 2.8 (a), (b) and (c) show blurred 3D models 

and signals. Maximum projections of 10 slices of cross-section image selected from the 

combination model in (c) are magnified in Figure 2.8 (d) and Figure 2.9 (d). Figure 2.9 (d) 

accurately represented the zebrafish spinal cord and specific GFP fluorescent signals.  
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Figure 2.8. An example of 3D reconstruction for a zebrafish without CoR calibration prior to 

image acquisition . The results are obtained based on the proposed pipeline without CoR 

correction. (a) , (b) 3D image in bright-field and Fluorescence channel. (c) The combination of (a) 

and (b). (d) Reconstructed slices between 410 and 419 of (c). The bright-field and fluorescence 

signals are shown in red and green and the intersections of them are in yellow. (e) The coefficient 

of variation of all slices corresponding to (c). (f) Normalized histograms for the average of the 10 

slices selected from (c) and (e) . black arrows indicate the statistical characteristics of the 

reconstructed silhouette for the zebrafish.  

Figure 2.9. 3D reconstruction for the same zebrafish sample as Figure 2.8, without CoR 

calibration prior to image acquisition , but the omission of the calibration is  compensated  with 

the proposed  pipeline with CoR correction. (a), (b) 3D image in bright-field and Fluorescence 

channel. (c) Combination of (a) and (b). (d) Reconstructed slices between 410 and 419 of (c). The 

bright-field signals (in red) show the outline of the zebrafish. The fluorescence signals (GFP) are  
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shown in green and the brightness of color indicates the strength of GFP signals, decribing the 

fluorescent texture. (e) coefficient of variation of all slices corresponding to (c). (f) Normalized 

histograms for the average of the 10 slices selected from (c) and (e). The peaks (background) are 

higher and the edges (black arrow) are much sharper compared to those in Figure 2.8 (f). 

To quantitatively compare the difference between the reconstructed slices without and 

with CoR correction, coefficient of variation (CV): CV =
σ

μ
 is calculated for each 

reconstructed slice as shown Figure 2.8 (e) and Figure 2.9 (e). It should be noted that the 

CVs calculated in our experiments are based on the raw reconstruction without scaling. 

In terms of reducing artefacts produced in the reconstruction, we aim to simultaneously 

maximize the variance and minimize the mean of bright-field and fluorescence signals, 

presenting the specimen with the least of blur. By comparing Figure 2.8 (e) with Figure 

2.9 (e), we can see that after CoR correction CV increases significantly on all slices in 

both channels. 

To observe more details in the reconstructed image slices, the histograms for the 

average image of the selected 10 slices without and with CoR correction are illustrated in 

Figure 2.8 (f) and Figure 2.9 (f). The pixel value corresponds to the bright-field or 

fluorescence signal strength. In practice, the bright-field image is inverted to satisfy the 

correspondence of pixel value and signal strength. In Figure 2.8 (f) and Figure 2.9 (f), the 

peaks of the histogram indicate the pixel values of the background, and values for signals 

are on the right of the peak. We can observe that the background boundary of the 

histogram (black arrow) in Figure 2.9 (f) is sharper than that in Figure 2.8 (f). The peaks 

in Figure 2.9 (f) are both higher than peaks in Figure 2.8 (f), indicating that CoR 

correction clears the background which is smeared by blurred artefacts. This is consistent 

with the refined and distinct silhouette and texture of reconstructed image with CoR 

correction.  

    To illustrate the over-all runtime of the pipeline in our system, we repeat the 

experiments on 10 more sample specimens including zebrafish, zebra-finch embryo and 

adult chicken heart. These samples are acquired at different magnifications. The 

parameters for the CoR correction and the configuration of parallel computing are set as 

the same as the experiments above. The only difference is that we fixed the image size to 

the original 1036×1360×400 pixels without cropping to exclude the influence of different 

image sizes on the runtime. Figure 2.10 describes the runtime of 3D reconstruction (Rec) 

and that of 3D reconstruction with CoR correction (Rec&CoR). Over all, Rec takes an 

average time of 26.91s and Rec&CoR takes 54.66s for all the 10 dataset tested. 
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Figure 2.10. The runtime (solid axis) of the pipeline implemented on the cluster. Rec represents 

the runtime for 3D reconstruction and Rec&CoR indicates the runtime that includes CoR 

correction as well. The increasing runtime of REC&CoR corresponds to the increasing number of 

interest points (dashed axis) detected in the CoR correction algorithm on different data.   

2.4.2 Comparison of different CoR corrections on different data 

Three previous CoR correction approaches are analysed and compared to our method on 

the 12 OPT images. The Pixel Match method 
[42]

 and the Cross Correlation Operation 

(CCO) method 
[43]

 are based on signal match for pairs of projection, both of which are 

successfully used in CT CoR correction. The most commonly used method for CoR 

correction in OPT, as described in 
[46]

, here referred to as the Automated method. As the 

results of CoR correction depend on the selection of sinograms, the comparisons of 

different CoR correction methods are implemented on multiple sinograms selected with 

the proposed strategy above. For our experiments, the 12 OPT datasets consisting of 

whole-mount organisms as well as dissected organs. As the developmental stages differ, 

the size and shape differs. The samples comprise zebrafish embryo (ZE), chicken heart 

(CEH) and zebra finch embryo (ZFE) using both the bright-field (B) and fluorescence (F) 

channel. The samples are part of researches in embryo development, skeleton 

development and heart defection.  
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Figure 2.11. The comparison of average coefficient of variation (CV) for reconstruction with 4 

different CoR correction methods on 12 datasets. For each dataset, larger CV corresponds to 

discrimination of information and less artefacts introduced by reconstrution. ZE: zebrafish 

embryo; CEH : chicken heart; ZFE: zebra finch embryo; Different prefixes refer to different 

developmental stages of the sample specimens at acquisition. B and F are the bright-field and 

fluorescence channel. 

Table 2.1. Runtimes of different CoR alignment aprroaches in each sinogram on different datasets 

Datasets Pixel Match(s) CCO(s) Automated(s) Ours(s) 

ZE01(F) 0.6897 102.8966 1043.1034 10.3448 

ZE01(B) 0.6765 102.7941 1042.7941 12.2941 

ZE02(F) 0.6897 102.9310 1043.3793 11.7241 

ZE02(B) 0.6786 102.8929 1042.8214 11.7241 

H36CEH (F) 0.6774 102.9032 1043.2580 2.2258 

H36 CEH (B) 0.6667 102.9333 1042.8444 6.2888 

H28 CEH (F) 0.6800 103.1200 1043.1200 5.2000 

H26 CEH (F) 0.7200 103.2000 1043.2000 4.3200 

H30 CEH (B) 0.6774 103.5484 1043.1935 4.1612 

H34 CEH (B) 0.6897 103.5517 1043.0344 3.3793 

Tg228 ZFE (B) 0.7143 103.1786 1042.8571 2.6785 

Tg225 ZFE (B) 0.7857 103.2143 1042.7857 2.7857 

Average 0.6955 103.097 1043.0326 6.4272 
 

In Figure 2.11 the results are depicted. These indicate the measurement of CV 

considering both the variance and mean of the reconstructed results, which are more 

convincing and reliable. The data used for CV calculation is the raw data after 

reconstruction but before image normalization, excluding the effect of scaling. We 
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should consider that the CV is only a criterion for evaluating the performance of different 

reconstruction of the same specimen. It is not suitable for comparing the reconstruction 

performance across specimens, because the variance and mean value differs in the 

different specimen structures. However for the same specimen, the CV is very suitable 

for evaluating reconstruction performance than variance in 
[46]

. In Figure 2.11, the 

Automated method  
[46]

 and our method obtained maximum values for the CV in all the 

12 datasets, because both methods achieved the optimal and equivalent CoR in each 

dataset. The Pixel Match 
[42]

 and CCO methods 
[43]

 gained different reconstruction and 

CV performance on the different data. The reason for this variation is that the algorithms 

in 
[42]

 and 
[43]

 strongly depend on the symmetry of all opposite projected pixel pairs. In the 

process of OPT imaging system, however, most of the pairs are not symmetrical. 

Achieving competitive performance to the Automated method regarding to 

reconstruction quality in Figure 2.11, our method performs significantly superior to CCO 

method and Automated method in terms of its computational complexity; cf. Table 2.1. 

With the computer configuration of 16Gb RAM and 8-core 3.4GHz CPU, the average 

runtime of different CoR correction methods for single sinogram are 0.6955s, 103.097s, 

1043.0326s and 6.4272s respectively. The Pixel Match method 
[42]

 achieves highest 

runtime performance, but its capability of optimal CoR correction is limited. Overall, our 

method outperforms the other three by considering the effectiveness and complexity of 

synchronous computation. It is noteworthy that in our method the runtime of different 

datasets varies due to the differences in the number of interest points. The other three 

approaches, however, consume approximately the same runtime for each sinogram 

because they are considering a fixed number of sinogram pixels. 

2.5 Conclusions 

In this chapter we presented a fast post-processing pipeline for OPT tomograms including 

cropping, background subtraction, CoR correction and 3D reconstruction, with focus on 

parallel computing. For CoR correction, a new automated CoR correction method was 

proposed, outperforming the other three CoR correction approaches in terms of general 

efficiency. In terms of 3D reconstruction, we have implemented the inverse radon 

transform on our cluster computer, i.e. LLSC, to achieve faster reconstruction. A pipeline 

was implemented using parallel computation and the average runtime based on the 10 

datasets with a fixed image size of 1036×1360×400 is 54.66s, using 5 nodes of 8-core 

2.66 GHz CPU+16G RAM and 8 nodes of 4-core 2.66 GHz CPU+16G RAM. 

Furthermore, the proposed CoR correction methodology could suppress random or fixed 

noise in background, because only peaks and troughs of the sinogram from foreground 

are detected as interest points. Importantly, the proposed pipeline and CoR correction are 

also suitable for 3D CT image reconstruction and comparison when used in medical 

therapy. Currently, the integrated system including imaging, data transfer, pre-processing, 

CoR correction, 3D reconstruction and visualization is being optimized as a distributed 
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application. With this integrated system, a profile of the organism/organ enhanced 

fluorescence probes within it can be imaged, reconstructed and visualized in a very short 

period of time. In our future work, a quantitative model for locating, calculating and 

tracking fluorescent signals (gene and/or protein activity) will be established. 
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