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Chapter summary 

In this chapter, we focus on presenting the general idea of our research interest and topics. 

It starts with the importance of three-dimensional imaging techniques in biomedical 

research, providing a broad view of the selection of imaging instruments according to the 

research requirements. Subsequently, we introduce the three-dimensional imaging system 

used in our research, i.e. optical projection tomography, and thoroughly elaborate it from 

the imaging schema, experimental setup, imaging software and sample preparation. 

Beside the imaging aspects, the computational approaches of optical projection 

tomography are explained, including three-dimensional reconstruction, segmentation and 

quantification. Following, seven research questions are formulated from our research 

perspective.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 

 

3 
 

1.1 Importance of three-dimensional imaging in biomedical research 

Microscopes are our eyes for things beyond our sight. Therefore, in research this 

instrument is indispensable. The standard microscope was designed to produce a two-

dimensional (2D) image of a sample that would otherwise remain unobservable by the 

eyes. In this manner, an intuitive representation of details and structures can be easily 

transformed to an image. In the life sciences the requirement for imaging is far beyond 

just a qualitative description. Quantitative approaches for measurements are required. 

Advances in molecular genetics have enabled molecular imaging to visualize 

processes in cells, cell cultures, tissues, organs and organisms with a resolution from less 

than a micrometer to centimeters. These possibilities are making a tremendous impact on 

biology and medical research. Genetic engineering technologies such as in situ 

hybridization as well as fluorescence staining permit the qualitative, quantitative and 

localization analysis of protein and gene expression patterns in animals and plants. 

With respect to cells and cell cultures, the application of genetic engineering to cells 

allows studying signaling processes in cells and mono-layer cell cultures.  However, 

these mono-layer cell cultures may exhibit non-physiological behavior within their 

artificial planar environment. Hence, there is a trend from in vitro to in vivo 

experimentation and thus a trend of understanding biology at the level of the scale of 

tissue or whole organism. Imaging modalities need to support this trend 
[1], [2]

. 

In order to understand spatial organization and gene expression, three-dimensional 

(3D) imaging is required. On the level of tissues and organisms this has been 

accomplished by making physical thin sections and producing a 3D image through 

reconstructing from these physical sections. This technique, referred to as invasive 

imaging, is laborious and sometimes complicates an understanding of the sample through 

artefacts that are introduced in the process of sample preparation and imaging.  

In the past decades, studies on disease mechanisms and drug discovery have also 

benefited from the high-resolution fluorescence microscopy techniques such as confocal 

laser scanning microscopy (CLSM) or multiphoton laser scanning microscopy (MLSM), 

enabling the visualization of parts of the cell signaling network 
[3], [4]

. The sample in 3D is 

scanned in a plan parallel fashion using the optics in a smart manner. This approach, of 

non-invasive imaging, works well with cellular mono layers and relatively thin samples, 

i.e. in the range of tens of micrometers to a millimeter.  Samples that are larger and 

thicker are less suitable for this kind of approach, i.e. samples larger than 2 millimeters to 

one centimeter. As indicated, one approach for imaging would be an invasive technique 

like serial sectioning. However, there are other options. 

Classical non-invasive in vivo imaging tools such as computed tomography (CT), 

magnetic resonance imaging (MRI), positron emission tomography (PET) or single-

photon computed tomography (SPECT) provide a spatial resolution in the  millimeter 

scale at organ-level in living specimens and patients. These imaging techniques make 

significant contribution especially for disease models of the central nervous system 
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(CNS), such as brain tumours, Alzheimer’s disease, or multiple sclerosis.  

In terms of biology and optical imaging an efficient non-invasive instrument for 

imaging biological tissue, organ and organism is optical projection tomography (OPT). In 

the recent years, cancer progression 
[5]–[7]

, drug discovery 
[8] 

and development studies 

such as skeleton, teeth and blood vessels have successfully used OPT imaging 
[9]–[12]

. 

Figure 1.1 briefly summarizes the range of resolution at which imaging techniques in 

bio-medical research operates. It ranges from nanometers to centimeters with imaging 

scale from protein to whole organism. The white color shown between two different 

types of imaging indicates some overlapping in scale where both types are being applied, 

depending on the experimental setup and research requirement. 

With respect to OPT imaging, signal acquired covers 2D information. For this device, 

3D imaging is archived by rotating the samples over a full revolution (360°) and at each 

step capture an image. The collection of these images is known as the tomogram. From 

the tomogram a 3D image is reconstructed. This reconstruction process is a 

computational process and requires design of smart algorithms and efficient computation 

strategies. An example of such reconstruction algorithm is the filtered back projection 

(FBP) algorithm
 [13]

.  

The research in this thesis focusses on the application of OPT in biomedical research. 

Therefore, it deals with design and implementation of algorithms and computational 

strategies to deal with data, i.e. images that are acquired with an OPT microscope. 

 

 
Figure 1.1. Overview of sample scale and the corresponding microscope applicable. The 

representations of different imaging levels are shown on the top from protein to organism, 

inspired by Alanis et al. 
[14]

.     
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1.2 Introduction of OPT imaging system   

With respect to CLSM 
[15]

 we are confronted with a limitation of size of the specimen for 

whole-mount imaging. With MRI 
[16]

 the strength of the magnetic field determines the 

resolution that can be obtained for a whole-mount imaging. The OPT technique 
[17]

 for 

that matter, can overcome these shortcomings. It can visualize gene expression or 

specific staining in bright-field or fluorescence channel, while the specimen as a whole 

can be imaged. In that manner, OPT adds an important range of scale that can be imaged. 

It allows for the acquisition of high resolution full body images of animal/plant tissues as 

well as organs/organisms 
[18], [19]

. It has been studied for the capability of imaging with 

good spatial resolution and contrast and minimal shadowing artefacts produced after 

reconstruction of a tomogram.  

1.2.1 Introduction of OPT imaging schema  

In Figure 1.2, we describe our imaging system conform the original set up as presented in 
[17]

. We will focus on the OPT of zebrafish as this is the main specimen that we work 

with. The specimen is fixed for imaging in an agarose cylinder that can be rotated, 

mounted to a step motor unit using a magnet. Light transmitted (purple lines) is focused 

by the lenses onto the digital camera, i.e. Charge-Coupled Device (CCD). The apparatus 

is adjusted so that light emitted from a slice that is perpendicular to the rotation axis (red 

ellipse), is focused onto a single row of pixels on the CCD (red line). The slice 

highlighted as a red ellipse in (A) is seen as a red circle in (B). Different from CT 

imaging, in optical imaging system a pixel on the CCD contains the information of the 

specific slice of the specimen in the cone-shaped region (purple region). Points far from 

the focal plane will not be focused and will, as a consequence, not produce a sharp image. 

Contrarily, only the point closer to focal plane yields a high-quality image. The depth of 

the cone-shaped region is defined as depth of focus (DoF) which is determined by the 

property of lenses. For good OPT imaging the cone is ideally as narrow as possible and 

the DoF is expected to be large enough to include the whole specimen. But in practice, 

there is a trade-off between them; i.e, large DoF corresponds to wide cone. One typical 

way to solve this problem is to adjust the position of rotation centre so that only the front 

half of the specimen is in focus. This ensures that every part of the specimen is imaged in 

focus during a full revolution (360◦ rotation of the specimen). The sampled regions (C) 

from adjacent pixels are distributed across the section as an approximation of parallel line 

integrals. 
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Figure 1.2. The schema of OPT microscopy imaging system. (A) The general imaging schema of a 

single pixel on a specific slice (red circle). (B) The optical explanation of a pixel of the image on 

CCD. (C) The formation of adjacent pixels of the image on a specific slice, i.e. the red line in (A). 

1.2.2 Experimental OPT imaging setup  

The flow diagram of our OPT imaging system is illustrated in Figure 1.3. It consists of a 

Leica MZ16 FA stereomicroscope with a Plan 0.5 and 135mm working distance objective 

lens (Leica 10446157). Images are acquired by a thermos electronically cooled Retiga 

Exi CCD camera with a chip size of  1036 × 1360. The images are saved as 16 bit tiff 

files but are effectively 12-bit from the Analog to Digital (AD) conversion. A full 

revolution of 400 images over 360◦ results in a 1.13Gb tiff-file. The acquisition is 

realized by a rotation of the specimen driven by a stepper unit, meaning that the stepper 

accomplishes a step of 0.9◦. The OPT imaging system has imaging modules: for the 

bright-field imaging, specimen is illuminated with a LED and for fluorescence imaging a 

100W mercury lamp attached to the microscope housing is used in combination with a 

filter block. The optical path of the bright-field channel is shown in yellow while that of 

the fluorescence channel is illustrated in blue and green depending on configuration of 

the filter block for green fluorescent protein (GFP), e.g. as presented in Figure 1.3. In our 

imaging system there are three fluorescence channels available including GFP, YFP and 

TRX. The switch between the bright-field and fluorescence module is controlled by 

software through an Arduino controller that is integrated in the system.  
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Figure 1.3. The diagram of the homemade OPT imaging system. The optical path of the bright-

field channel is illustrated in yellow. The fluorescence optical path from Hg lamp goes through the 

filter block producing the required excitation wavelength (in blue). The emission wavelength (in 

green) is produced when the excitation light is excited by fluorescence protein such as GFP.    

The details of the OPT imaging system are explained in Figure 1.4. As follows: (A) 

presents the overall view of the imaging units which consist of control unit (blue line), 

light path unit (purple line) and sample unit (red line). The control unit includes 

microcontroller Arduino and manual controller that are described in (B). The manual 

controller can be used for manual magnification adjustment by rolling zoom wheel. The 

focus wheel is used for focusing at a specific magnification. The filter change and shutter 

are combined to determine and change the filter for working in fluorescence mode. Set 

button stores the current positions of magnification/focus/filter changer/double iris 

diaphragm for five combinations. (C) and (D) elaborate the sample unit in which the 

sample is mounted and imaged. The sample, e.g. zebrafish, is embedded in agarose prior 

to a clearing process and after clearing glued to a cylindrical plastic stub with a metal 

ending. As shown in (C) the metal ending can be mounted to a magnet with a stepper 

motor, through a full revolution of the sample over 360◦. Taking into account the 

refraction of light, the specimen is located in a clearing solution inside a cuvet which has 

the same refractive index as the sample after clearing. When the specimen is mounted to 

the stub its position can be adjusted by using the position bar. The sample unit is 

contained in a black casing to block off ambient light. To further avoid ambient light in 

fluorescence mode, a plastic shield is used.   
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Figure 1.4. Explanation of experimental setup for the OPT imaging system. (A) The whole view of 

the imaging system excluding computer. (B) Unit of microcontroller chip (Arduino) and manual 

control. (C) Unit of imaging environment in which the specimen is located. (D) Unit for mounting 

specimen.  

1.2.3 OPT imaging software  

The graphical user interface (GUI) of the OPT imaging system contains three parts, i.e. 

calibration, experiment settings and imaging as depicted in Figure 1.5. The calibration 

parameters include camera rotation, prism rotation and prism tilt. They are combined to 

determine the position of the specimen in the Field of View (FoV). The camera rotation  
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Figure 1.5. OPT imaging software. (A) The calibration user interface. (B) GUI for the 

experimental settings. (C) GUI for the bright-field and fluorescence imaging. 

can be adjusted by the knob near the camera as annotated in Figure 1.4 (A), and the prism 

rotation and tilt adjustment can be completed by the knob as shown in Figure 1.4 (C). 

They can be adjusted separately, but the parameters calculated after each adjustment, are 

dependent on each other. The GUI for experimental setting specifies the number of 

rotation steps for a full revolution which is determined by the stepper motor. It starts with 

the selection for imaging mode or channel. In fluorescence mode GFP1, TXR and UV are 
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supported. Regarding to the imaging GUI, it first works for fluorescence imaging if both 

modes are selected. Each tomogram includes background correction, which means the 

specimen should be removed from the FoV by using two knobs as shown in Figure 1.4 

(A). Figure 1.5 (C) elaborates the parameters that are required in the specimen imaging 

process and some useful information with respect to the image quality such as a life 

histogram informing on the intensity range that is employed with the current illumination 

settings.                

1.2.4 Experimental sample preparation 

Sample preparation refers to the protocols used on the specimen to assure the acquisition 

of useful information with OPT microscopy. It is the most time-consuming process in the 

OPT imaging workflow, allowing preparation of a few samples per day. Researchers, in 

general, need to image a lot of specimens to obtain good and statistically valid 

observations.  We, therefore, have to considerably speed up this process. 

Therefore, a protocol for efficient sample preparation including counterstaining, 

embedding of specimen in agarose, and optical clearing is essential to make the OPT 

suitable. The optimisation of the sample preparation step has been thoroughly studied 
[20]

. 

This optimisation is out of the scope of our research but it significantly contributes to the 

quality of our image acquisition and data. Counterstaining (toluidine blue), cylindrical 

agarose and clearing agents (benzyl alcohol: benzyl benzoate, BABB) are mostly used 

for sample preparation of samples presented in this thesis. 

1.3 Computational approaches of OPT imaging 

From proper OPT sample preparation and imaging, we acquire the tomogram data that is, 

in fact, a collection of axial 2D images. For further processing and visualization we need 

to have the data on a regular 3D grid. Therefore computational approaches are required. 

These computational approaches cover 3D reconstruction, 3D segmentation, optimisation 

of iterative reconstruction based on segmentation performance and fluorescence 

quantification. For this thesis our main sample will be zebrafish. 

1.3.1 3D reconstruction 

The process of going from a tomogram to a 3D image defined on a regular rectangular 

grid is referred to as 3D reconstruction. There is no standardized manner of specimen 

mounting and nor do we have full control over the experimental environment; therefore a 

framework is needed including both fast reconstruction and accurate reconstruction to 

comply for different requirements. The fast reconstruction provides an efficient solution 

for specimens with dispersed signals, while the accurate reconstruction produces a more 

precise reconstruction with lesser artefacts at the expense of computation time. Fast 

reconstruction solves the reconstruction problem but fails to reduce artefacts. In 

tomography, a known category is the streak artefacts that due to local intensity loss of the 
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beam as a result of dense materials such are metal components. If the fast reconstruction 

is satisfactory, the reconstruction framework is completed. If accuracy is required and 

streak artefact need be removed, iterative reconstruction must be considered. Our 

workflow for 3D reconstruction is illustrated in Figure 1.6, with the top and bottom of the 

diagram showing the two different reconstruction methods. Optimisation in iterative 

reconstruction including initialization and iterative step, and GPU-based implementation 

will be explored in the research presented in this thesis, and upon evaluation, integrated 

in our reconstruction framework.  

 

Figure 1.6. The scope of reconstruction and optimisation for OPT 3D imaging.  

1) Fast reconstruction and optimisation 

For fast reconstruction a framework is set up that takes into account, reconstruction, 

artefact reduction, 3D deconvolution and parallelization implementation.  

The Radon transform 
[21]

 is widely applied to tomography which is produced from the 

projection associated with cross-sectional scans of an object, we first explore the 

applicability of Radon transform to our OPT imaging. The Radon transform represents, 

de facto, the projection data obtained as the scan from the OPT and the output is the 

tomogram. The inverse Radon Transform can be used to reconstruct to the initial object. 

The process of reconstruction with inverse Radon Transform is called back projection. 

The most frequently applied reconstruction algorithm for back projection is known as 

Filtered Back Projection (FBP) by Nygren and Anders 
[13]

. In our fast reconstruction 

framework FBP will employed because of its wide applicability and efficiency.   

In a previous study 
[22]

, it has been acknowledged that artefacts occurring in 3D images 

in OPT imaging systems are mainly introduced through two reasons. One is from the 

imaging setup such as non-uniform illumination, signal decay and CCD imperfection. 

Another sort of artefacts comes from the computational process including the centre of 

rotation (CoR) misalignment and limitations in the number of tomographic images that 

are available for the reconstruction algorithm. The artefacts from the second group, 

however, are more noticeable and salient; these will be studied in the following sections.  
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Limited by the diffraction of light in the optical imaging system, the images are 

unavoidably blurred in imaging process. Unlike a confocal imaging system, in 

tomographic images this imperfection cannot be deblurred directly from a systematic 

point spread function (PSF). An OPT imaging system has variant PSFs for points that are 

located within different distances to focal plane. How we can model the variant PSFs and 

take them into account in 3D image for deblur is one of our research topics of interest for 

optimisation in fast reconstruction.  

The core for fast reconstruction is to apply parallel and distributed computing. The 

parallelization can efficiently decrease the computing time of the reconstruction process. 

We accomplish this by distributing all the slices to different processors of a computer 

cluster, ensuring that the 3D data is processed in a parallel manner. 

2) Iterative reconstruction and optimisation  

Iterative reconstruction refers to iterative algorithms used to reconstruct 2D or 3D 

images from tomographic imaging techniques such as CT and OPT. Iterative 

reconstruction was developed for CT imaging in order to improve the noise profiles and 

suppress streak artefacts that commonly show up with FBP. These algorithms are also 

considered superior when there is a lack of uniform angular projections or when 

projections are sparse. There is a large variety of iterative reconstruction algorithms, but 

they all have in common that it starts with an assumed initial image, computes 

projections from the image via a project function and updates the image according to the 

difference between calculated and actual projections. According to the updating strategy 

for the image, iterative algorithms can be categorized into four different approaches, i.e. 

algebraic reconstruction technique (ART) 
[23]

, iterative sparse asymptotic minimum 

variance (SAMV) 
[24]

, statistical reconstruction 
[25]

 and learned iterative reconstruction 
[26], 

[27]
. Among all categories, statistical reconstruction and learned iterative reconstruction 

show relatively better performance with respect to a combination of effectiveness and 

robustness.  

In general, iterative reconstruction can lead to a more accurate reconstruction 

compared to FBP. However, a large number of iterations may be required to generate an 

acceptable reconstruction and each of the iteration may take about the same amount of 

time as one FBP reconstruction does. Thus, to some extent the effectiveness of iterative 

reconstruction is achieved at the expense of huge computation time. One approach to 

reduce the number of iterations is to organize the projection data into a series of ordered 

subsets of evenly spaced projections and update the current estimate of the object after 

each subset rather than after the complete set of projections. The most commonly used 

algorithm that employs the subset strategy is referred to as ordered subset expectation 

maximization (OSEM) 
[28]

. It improves the efficiency of iterative reconstruction with 

respect to computation time.   

Iterative reconstruction methods have superior performance which shows by resistance 

to noise and streak artefacts in CT reconstruction. These algorithms, therefore are 
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supposed to have promising results on our OPT reconstruction where the streak artefacts 

are limiting the results. There are two sources for the streak artefacts with FBP 

reconstruction in our OPT imaging system. One is the relative lack of projections 

compared to perfect reconstruction without streak artefacts. This means that 400 samples 

over a full revolution are still not enough for FBP reconstruction in OPT because it has 

stronger light attenuation, comparing to CT. Another source for streak artefacts with FBP 

normally exists in emission OPT when the fluorescence signal is relatively small and 

highly concentrated, which is similar to the artefacts produced by metal components in 

the specimen with FBP in CT. With the aim to eliminate the streak artefacts in OPT, we 

will implement one of the iterative reconstruction algorithms, i.e. statistical 

reconstruction, for our data and optimize the results based on parameters required. 

Notably, there are two customary parameters to optimize. One is the initial image, in this 

thesis defined as initialization. It can be either none (meaning zero) or the result of fast 

reconstruction in our workflow (cf. dashes in Figure 1.6). The other one is the number of 

iteration steps for deciding the endpoint of iterative reconstruction. The impact of 

different parameters on reconstruction will be studied in Chapter 4.  

In terms of evaluation, reconstruction, as a typical inverse problem, is characterized by 

the lack of benchmarks for a real imaging data. Researchers often measure the 

reconstruction performance by qualitatively comparing the results from different 

reconstruction approaches. Specifically, the qualitative measurement could either be less 

noises and artefacts or better image quality in terms of sharpness. With a lack of 

quantitative measurements for reconstruction performance, we take a first step to explore 

the possibility of transferring the problem of reconstruction evaluation to the 

segmentation evaluation. This evaluation is particularly applied to optimize the 

parameters for iterative reconstruction. We assume that in iterative reconstruction, 

reconstructions of the type of same data (e.g. zebrafish) from different parameters 

provide different inputs for segmentation, thus resulting in different segmentation 

performance for the resulting model, e.g. zebrafish. The reason why segmentation 

evaluation is employed as a reference for the optimisation of iterative reconstruction is 

that we need a good reconstruction of the specimen for a segmentation model and the 

segmentation performance can give us an intuitive and quantitative feedback about how 

good the reconstruction is. This framework works under the assumption that the same 

segmentation model is used. In terms of parameters in iterative reconstruction, there are 

several ones required but number of iterations and initialization are seen as the most 

customary ones. Theoretically, by applying this alternative reconstruction measurement, 

i.e. the segmentation performance, to the parameter optimisation of the iterative 

reconstruction algorithm, a more accurate reconstruction will be achieved.  

1.3.2 3D segmentation of OPT reconstructions with applications to zebrafish  

The OPT is particularly useful for imaging of specimen/objects in the mm range; so, 

zebrafish is a specimen typically suitable for this type of imaging. The zebrafish model 
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system is very popular in bio-medical research. Zebrafish can be easily embedded in 

large scale projects as sufficient amounts of samples can be made available. In 

experimental setup we are interested in the phenotype and the gene expression of the 

phenotype in a zebrafish sample. Measurements in zebrafish OPT reconstructions require 

a clean image; noise and debris should be avoided but in the practice of the imaging this 

is difficult to achieve. Therefore, a segmentation of the specimen is required. An OPT 

image can contain multiple channels. The bright-field channel typically provides the 

possibility for generating a whole-mount mask of the zebrafish, or any specimen in 

general. Noises, debris in the image and transparency of the zebrafish complicate 

segmentation. These facts limit the success of conventional segmentation algorithms, i.e. 

adaptive thresholding, mean shift to name a few. In the application of segmentation 

methods on zebrafish, we observe inaccurate body boundaries and the fainter transparent 

parts make a distinction between the foreground and the background difficult. 

In order to obtain reasonably good segmentation results of zebrafish, a more advanced 

and intelligent segmentation approach is required. We therefore employ machine learning 

strategies and, for our studies, a supervised segmentation framework is presented as 

illustrated in Figure 1.7. The application of supervised machine learning requires a 

training process from examples and prior to the training procedure images of different 

specimens are reconstructed and labelled. Because of the information redundancy among 

adjacent slices in a 3D image, the training data is manually labelled in equidistant 

intervals. We will investigate the use of a convolutional neural network (CNN) for the 

training process. 

 

 
Figure 1.7. The diagram of training a zebrafish model for segmentation. The images used for 

training segmentation network and testing are from bright-field channel.       

The labelling of all slices in the 3D image for training segmentation network is optional; 

if necessary, it can be obtained by either using interpolation technique or predicting from 

the segmentation network, such as U-net convolutional networks 
[29]

. We investigate how 
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such network for 3D image segmentation could be trained either on parts of the 3D image 

or on the whole 3D image. A typical network that has been successfully employed for 

segmentation in bio-medical research is the U-net convolutional neural network 
[29]

. The 

differences between training on manually labelled slices or whole 3D images are the 

training time and accuracy; this is extensively studied in Chapter 5. Previous results from 

U-net convolutional neural network have shown its usefulness in bio-medical image 

segmentation 
[30]

. For training the 3D segmentation network, both 2D U-net and 3D U-net 

convolutional networks will be employed. The differences in performance on the data 

between the two networks will be explored. With the trained zebrafish segmentation 

network, any 3D bright-field OPT image can be semantically segmented as zebrafish or 

none-zebrafish. Masking the zebrafish in 3D with the corresponding 3D fluorescence 

channel image accomplishes general fluorescence quantification, providing valuable 

information for bio-medical research. 

1.3.3 Quantification of volumetric fluorescence in zebrafish 

We consider zebrafish as a prototypical example for OPT imaging in which we both use 

the bright-field as well as the fluorescent channels. The rapid development of fluorescent 

microscope imaging technologies in the past years, enables high-throughput 2D 

fluorescent imaging platforms now in widely use on both gene expression and proteome 

scale 
[31]

. High data volumes for protein and/or gene expression benefit the statistical 

analysis. This is typically the case for such zebrafish. The 2D quantification of the 

fluorescence provides a relatively rough measurement for analysis. It fails to reconstruct 

the real, particularly spatial, distribution of fluorescence, thereby losing much useful 

information.  

Therefore, 3D fluorescent imaging techniques, such as CLSM, OPT and MicroCT, 

play a significant role in obtaining insights in 3D quantification of fluorescence so that 

real and relatively accurate protein and/or gene expression can be computed. Due to the 

large amount of data in 3D imaging, high-throughput scale is currently limited by the 

computing and memory power. To some extent, throughput in 3D imaging and 

quantification is possible under the condition of efficient sample preparation and 

reconstruction.  

In general, a correct and accurate 3D fluorescent quantification largely depends on 

sample preparation, reconstruction performance and image processing i.e. segmentation. 

The protocol of sample preparation varies depending on different imaging techniques but 

the common demand for a good sample preparation is supposed to suppress noise and 

highlight fluorescence as much as possible. In this case, prior knowledge is typically 

required to distinguish between the noise and the fluorescence signal we are interested in. 

The segmentation process supports in understanding the information about what is useful 

or significant to the quantification. In order to achieve reliable 3D quantification of 

fluorescence in a smaller data volume, segmentation can be manually accomplished using 

prior knowledge. This approach is however, not feasible for larger scale of data, for 
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instance some-throughput imaging of zebrafish in our OPT system. This is a motivation 

for us to investigate the utility of a trained 3D zebrafish reference structure for the 3D 

quantification of fluorescence in zebrafish. In this thesis we present the framework of 3D 

quantification of fluorescence in zebrafish, but it can be easily transferred to other 

applications such as 3D quantification of fluorescence in zebrafish/mice brain, liver, 

kidney, etc.   

1.4 Research questions and perspectives 

RQ1: To what extent is it possible to increase the processing speed of OPT imaging and 

reconstruction in an integrated manner? 

The 3D reconstruction as a post-imaging process, is therefore separated from OPT 

imaging system. This separation can be physical, i.e. computations on different 

computers. The time of one reconstruction varies from minutes to hours depending on the 

reconstruction algorithm and computation resources. This means that in a worse case it 

may take multiple hours to generate one 3D OPT image. With the further development of 

data science in bio-medical research the availability of data becomes increasingly 

important. To provide more bio-medical data, i.e. 3D OPT images in our case, it is of 

great importance to decrease the imaging time and increase the efficiency of 3D imaging 

process. Therefore, we investigate integrating the imaging and reconstruction as a whole 

and implementing the reconstruction in a parallel fashion. With respect to the 

reconstruction algorithm, the fast and efficient reconstruction, i.e. FBP is first taken into 

account. What interests us is how much improvement can be achieved regarding the 

imaging time and efficiency of computation.  

 

RQ2: To what extent is it possible to reduce the artefacts of 3D image introduced during 

reconstruction process by misalignment of CoR? 

According to Singh et al. 
[19]

, there are several types of artefacts in OPT reconstruction. 

One of them is the edge blur artefacts introduced by CoR misalignment. It means that the 

rotation centre of the imaging system is shifted off the centre of FoV. This shift 

inevitably exists unless a very accurate mechanical calibration is included. This 

mechanical calibration process is typically time consuming and requires a lot of operator 

interaction. Instead of eliminating the shift in the pre-imaging calibration process, we are 

interested in correcting it in the post-imaging process before reconstruction. 

The aforementioned pre-imaging shift will introduce a problem that the CoR is not 

accordance with the image centre. This means that the reconstructed slices will 

consequently be corrupted by the edge blur artefacts after application of the 

reconstruction algorithm. The motivation for this research is to detect and correct the 

CoR shift in tomogram and further eliminate the corresponding artefacts in the 

reconstruction process. To this end, a fast and accurate CoR correction algorithm is 
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needed. How much improvement will be achieved should be qualitatively and 

quantitatively analysed and explored. 

 

RQ3: Can the PSF of the OPT imaging system can be modelled and applied for 

deblurring of an OPT reconstruction? 

In general, an imaging system is described by the ability of giving a response to a point 

light source or object, commonly referred to as the point spread function (PSF). A more 

general term for the PSF is a system's impulse response, being the impulse response of a 

focused optical system. For OPT imaging and reconstruction, the DoF is expected to be 

large enough to contain the specimen to be visualized as much as possible. According to 

the previous studies 
[32], [33]

, however, large DoF subsequently results in low in-focus 

image quality. The trade-off between DoF and image quality should be considered when 

selecting a lens for the OPT imaging system. A lens with small NA will produce large 

DoF, allowing imaging of larger specimens but it will result in a relatively low-quality 

image. Contrarily, a lens with large NA yields relatively high-quality images but cannot 

image the whole specimen with respect to its size. 

One typical way to improve the image quality of 2D imaging system to the best 

possible resolution, is to apply deconvolution to the images, using a constant theoretical 

or experimental PSF as the kernel for deconvolution. However, this approach is not 

strictly suitable for OPT images. Because first, the tomogram normally integrates the 

information of a specimen at different depths within a wide field, not a fixed depth on the 

focal plane. Second, the imaging PSF within the field varies at different depths along the 

optical axis. This means that different PSF is produced when locating the point source at 

different depths. While the conventional 2D PSF and deconvolution are not feasible for 

OPT imaging system, we are interested in how a variable PSF could be modelled in OPT 

imaging system and how much image quality improvement can be achieved when using 

it in deconvolution of the 3D image. 

 

RQ4: Can the iterative reconstruction eliminate the streak artefacts produced in the fast 

reconstruction? 

With the fast FBP reconstruction, a 3D image can be obtained. For specimens with sparse 

and large-area signals, it produces satisfactory reconstruction when CoR misalignment is 

solved. However, when imaging specimens with a dense and concentrated signal such as 

concentrated fluorescent GFP signal, the FBP algorithm will produce streak artefacts 

because of the sample limitation. There are several methods such as linear interpolation 

(LI) and the state-of-the-art normalized metal artefacts reduction (NMAR) to decrease 

the streak artefacts in CT in an FBP framework 
[30]

, which may be useful for OPT 3D 

reconstruction. But these approaches seem to reduce the artefacts in the reconstruction 

but do not eliminate the artefacts. In order to eliminate the streak artefacts, iterative 

reconstruction has proven to be promising in CT reconstruction 
[34]–[36]

. Inspired by the 

https://en.wikipedia.org/wiki/Point_source
https://en.wikipedia.org/wiki/Point_source
https://en.wikipedia.org/wiki/Impulse_response
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results in CT imaging, we are interested in exploring if iterative reconstruction can help 

to eliminate the streak artefacts in OPT reconstruction and how it works. In our work 

both reconstruction frameworks are available, depending on application of what a certain 

reconstruction algorithm is chosen.  

 

RQ5: How and to what extent the initialization and the number of iteration steps 

influence the results in iterative reconstruction? 

Iterative reconstruction can eliminate the streak artefacts, thus it could be used as a 

prospective method to produce an accurate OPT reconstruction at the expense of time 

compared to fast reconstruction such as FBP.  Sometimes these accurate reconstructions 

are essential. Considering the non-deterministic process of iterative reconstruction, the 

results are influenced by the parameters of algorithm. In this research we investigate the 

most customary parameters, i.e. iteration steps and initialization. To explore the effect of 

iteration steps on reconstruction, we reconstruct the tomogram with different iteration 

steps. With respect to initialization, we compare the results produced with a setup of no 

initialization to those with an initial reconstruction that are obtained by fast 

reconstruction as described in Chapter 2.  

With the different reconstructions to compare, an evaluation criterion is required.  In 

bio-medical research it is not always possible to construct a benchmark for both 2D and 

3D imaging because of different specimens and experimental setups. For instance, to 

assess the various reconstructions in our study, there is no theoretically ideal 

reconstruction that can typically be used as benchmark for evaluation. Therefore, instead 

of assessing the reconstructions directly, we investigate a framework to assess the 

segmentation results of the reconstruction indirectly. The benchmarks of the 

segmentation are easier to obtain by labelling the data. The evaluation of reconstructions 

of different experimental setups is transferred to the evaluation of the corresponding 

segmentation results.  

 

RQ6: Is it possible to “learn” a 3D reference structure of zebrafish for 3D fluorescence 

quantification in zebrafish? 

Zebrafish are valuable for studies of a multitude of diseases including cancer, heart 

disease, obesity, muscular dystrophy and narcolepsy. They are easy to maintain and cost-

effective. One key feature is that, following fertilization, zebrafish embryos are 

transparent and their rapid embryonic development can be observed. Another important 

reason is that zebrafish as a vertebrate is similar to human, making it a suitable model for 

many human diseases
 [37]

. 

Because of the imperfections in sample preparation and experimental imaging 

environment, a specific fluorescence may exist around a specimen in the background. It 

is therefore required to segment the specimen from the background. For our study in 

zebrafish, segmenting and recognizing zebrafish volume from background are of great 
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importance for fluorescence quantification. For the volume, the fluorescent signal must 

be counted and quantified just there where zebrafish sample is, otherwise it should not be 

considered. The segmentation of zebrafish also plays an important role in reference 

structure detection for high-throughput quantification where relative measurement is 

considered. This will be elaborated in Chapter 5. To train and learn a theoretically robust 

segmentation model for 3D reference structure detection, a large number of zebrafish are 

acquired at different stages and in different experimental environments. By using the 

trained segmentation model as a classifier, the 3D image reconstructed from a specimen 

can be identified as reference structure or not. The 3D fluorescent signal, e.g. tumour in 

Chapter 5, can be quantified and normalized referring to the reference structure that is 

identified. Compared to 2D, such accurate 3D fluorescence quantification helps to 

improve the research results in for instance drug discovery.     

 

RQ7: How much 3D information can be achieved and identified from bright-field images 

of zebrafish and to what extent can the identification of parts be automated? 

In the OPT imaging system, bright-field image contains some extent of structures or 

context information of zebrafish. It also represents the minimum of details of zebrafish 

structure without any staining techniques. Some structures, e.g. eyes play an important 

role in accurate positioning analysis of protein and gene expression patterns. In order to 

explore how much structural detail within zebrafish can be identified for such analysis, 

we manually label the 3D image of zebrafish in two different very distinct developmental 

stages, i.e. 5 dpf and 25 dpf. The results are visualized and the two developmental stages 

are qualitatively compared to provide an intuitive clue for phenotype analysis of these 

structures. Furthermore, in view of the trends in order to study the possibility of trending 

high-throughput analysis in 3D, we are curious about how automated 3D structure 

detection algorithm can facilitate and accelerate the manual labelling process, as well as 

how much accuracy can be achieved by using the automated detection. If the accuracy is 

not satisfactory, how can we propose the possible solutions to improve it for further 

advanced analysis?                 

1.5 Thesis structure 

This thesis is structured along the research questions presented in the previous paragraph. 

In Chapter 1 “Introduction” a brief introduction on the 3D imaging, reconstruction 

framework in OPT microscopy is given. Besides that, our scope for reconstruction 

optimisation, 3D segmentation and its application value are elaborated. To clarify these 

research topics, seven research questions are proposed.  

Chapter 2 “Fast Post-processing Pipeline for Optical Projection Tomography” 

presents a fast reconstruction framework to improve the effectiveness and efficiency of 

OPT 3D reconstruction. It is implemented in a parallel manner and the experiments show 
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that the average run time for each tomogram is less than 5 minutes in our current setup. 

In the framework a novel CoR correction method based on interest point detection in 

sinogram, is proposed by taking the principle of OPT imaging into account. To quantify 

and compare the reconstructed results of different CoR correction approaches the 

coefficient of variation (CV) instead of the variance is employed. 

Chapter 3 “Deblurring Images from 3D Optical Projection Tomography Using 

Point Spread Function Modelling” focuses on the deblurring of the reconstructed 3D 

image. When imaging large specimens with OPT imaging system, a large depth of field 

is required. This normally results in blur, i.e. compromises the image quality. Yet, it is 

important to obtain the best possible quality 3D image from the OPT, thus deblurring the 

image is vital. To this end we first model the PSF along optical axis at different depths. 

Meanwhile the magnification is taken into account in the PSF modelling. Subsequently, 

deconvolution in the coronal plane based on the modelled PSF is implemented to 

accomplish deblurring of the OPT image. Experiments with the proposed approach based 

on 25 3D images including 4 categories of specimens, indicate the effectiveness of 

quality improvement assessed by image blur measures in both spatial and frequency 

domain. 

Chapter 4 “Segmentation-driven Optimisation for Iterative Reconstruction in 

Optical Projection Tomography: An Exploration” introduces GPU based iterative 

reconstruction aiming for the best possible, reconstructed from an OPT tomogram. Here 

possible streak artefacts produced by FBP reconstruction should be eliminated. The 

reconstruction performance with different initializations and iteration steps is evaluated 

indirectly based on the segmentation results of the reconstruction, instead of the 

reconstruction itself. Aiming at producing good segmentation results, a deep learning 

model is employed. The iteration step and initialization of the iterative reconstruction are 

considered optimal when evaluation measurement reaches a maximum. The model is 

trained and tested on three 25 dpf 3D zebrafish image from bright-field tomograms. 

Chapter 5 “Automated Detection of Reference Structures for Fluorescent Signals in 

Zebrafish with a Case Study in Tumour Quantification” aims at automatically 

detecting the reference structure to relatively quantify the 3D fluorescence within a 

zebrafish. We will build and train a segmentation model to automatically detect the 

zebrafish Body and Eye reference structure in two different data spaces (i.e. 2D slice and 

3D volume, c.f. Chapter 5) and optimize the segmentation model individually. 

Subsequently, the segmentation performances are compared and evaluated. The approach 

with the best performance will be considered for the automated detection of reference 

structure for tumour quantification as a case study for drug research. 
Chapter 6 “Exploration of 3D Structure Annotation and Visualization of Zebrafish 

Reconstructions from Optical Projection Tomography Imaging” explores the 
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possibility of volume region annotation in OPT imaging. The aim of this chapter is to, 

first give an idea of how much volume region information can be acquired and 

reconstructed using our OPT imaging system on whole-mount specimen. Second, it 

explores the possibility of automated annotation of volume region within zebrafish, 

which are potentially important for the high-throughput research at level of organ 

systems. In the first case, up to 9 parts or volume regions of a 25 dpf zebrafish can be 

segmented and visualized using OPT. Nevertheless, automated segmentation of such 

volume regions has proven to be challenging and is still limited by data size and 

segmentation algorithm.  

Chapter 7 “Conclusions & Discussion” summarizes our contribution for 3D OPT 

imaging, reconstruction, structure detection and visualization framework and states some 

drawbacks of the framework. Future improvements of our framework are discussed 

guaranteeing the integrity of the framework.  
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