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Chapter summary 

In this chapter, we focus on presenting the general idea of our research interest and topics. 

It starts with the importance of three-dimensional imaging techniques in biomedical 

research, providing a broad view of the selection of imaging instruments according to the 

research requirements. Subsequently, we introduce the three-dimensional imaging system 

used in our research, i.e. optical projection tomography, and thoroughly elaborate it from 

the imaging schema, experimental setup, imaging software and sample preparation. 

Beside the imaging aspects, the computational approaches of optical projection 

tomography are explained, including three-dimensional reconstruction, segmentation and 

quantification. Following, seven research questions are formulated from our research 

perspective.        
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1.1 Importance of three-dimensional imaging in biomedical research 

Microscopes are our eyes for things beyond our sight. Therefore, in research this 

instrument is indispensable. The standard microscope was designed to produce a two-

dimensional (2D) image of a sample that would otherwise remain unobservable by the 

eyes. In this manner, an intuitive representation of details and structures can be easily 

transformed to an image. In the life sciences the requirement for imaging is far beyond 

just a qualitative description. Quantitative approaches for measurements are required. 

Advances in molecular genetics have enabled molecular imaging to visualize 

processes in cells, cell cultures, tissues, organs and organisms with a resolution from less 

than a micrometer to centimeters. These possibilities are making a tremendous impact on 

biology and medical research. Genetic engineering technologies such as in situ 

hybridization as well as fluorescence staining permit the qualitative, quantitative and 

localization analysis of protein and gene expression patterns in animals and plants. 

With respect to cells and cell cultures, the application of genetic engineering to cells 

allows studying signaling processes in cells and mono-layer cell cultures.  However, 

these mono-layer cell cultures may exhibit non-physiological behavior within their 

artificial planar environment. Hence, there is a trend from in vitro to in vivo 

experimentation and thus a trend of understanding biology at the level of the scale of 

tissue or whole organism. Imaging modalities need to support this trend 
[1], [2]

. 

In order to understand spatial organization and gene expression, three-dimensional 

(3D) imaging is required. On the level of tissues and organisms this has been 

accomplished by making physical thin sections and producing a 3D image through 

reconstructing from these physical sections. This technique, referred to as invasive 

imaging, is laborious and sometimes complicates an understanding of the sample through 

artefacts that are introduced in the process of sample preparation and imaging.  

In the past decades, studies on disease mechanisms and drug discovery have also 

benefited from the high-resolution fluorescence microscopy techniques such as confocal 

laser scanning microscopy (CLSM) or multiphoton laser scanning microscopy (MLSM), 

enabling the visualization of parts of the cell signaling network 
[3], [4]

. The sample in 3D is 

scanned in a plan parallel fashion using the optics in a smart manner. This approach, of 

non-invasive imaging, works well with cellular mono layers and relatively thin samples, 

i.e. in the range of tens of micrometers to a millimeter.  Samples that are larger and 

thicker are less suitable for this kind of approach, i.e. samples larger than 2 millimeters to 

one centimeter. As indicated, one approach for imaging would be an invasive technique 

like serial sectioning. However, there are other options. 

Classical non-invasive in vivo imaging tools such as computed tomography (CT), 

magnetic resonance imaging (MRI), positron emission tomography (PET) or single-

photon computed tomography (SPECT) provide a spatial resolution in the  millimeter 

scale at organ-level in living specimens and patients. These imaging techniques make 

significant contribution especially for disease models of the central nervous system 
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(CNS), such as brain tumours, Alzheimer’s disease, or multiple sclerosis.  

In terms of biology and optical imaging an efficient non-invasive instrument for 

imaging biological tissue, organ and organism is optical projection tomography (OPT). In 

the recent years, cancer progression 
[5]–[7]

, drug discovery 
[8] 

and development studies 

such as skeleton, teeth and blood vessels have successfully used OPT imaging 
[9]–[12]

. 

Figure 1.1 briefly summarizes the range of resolution at which imaging techniques in 

bio-medical research operates. It ranges from nanometers to centimeters with imaging 

scale from protein to whole organism. The white color shown between two different 

types of imaging indicates some overlapping in scale where both types are being applied, 

depending on the experimental setup and research requirement. 

With respect to OPT imaging, signal acquired covers 2D information. For this device, 

3D imaging is archived by rotating the samples over a full revolution (360°) and at each 

step capture an image. The collection of these images is known as the tomogram. From 

the tomogram a 3D image is reconstructed. This reconstruction process is a 

computational process and requires design of smart algorithms and efficient computation 

strategies. An example of such reconstruction algorithm is the filtered back projection 

(FBP) algorithm
 [13]

.  

The research in this thesis focusses on the application of OPT in biomedical research. 

Therefore, it deals with design and implementation of algorithms and computational 

strategies to deal with data, i.e. images that are acquired with an OPT microscope. 

 

 
Figure 1.1. Overview of sample scale and the corresponding microscope applicable. The 

representations of different imaging levels are shown on the top from protein to organism, 

inspired by Alanis et al. 
[14]

.     
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1.2 Introduction of OPT imaging system   

With respect to CLSM 
[15]

 we are confronted with a limitation of size of the specimen for 

whole-mount imaging. With MRI 
[16]

 the strength of the magnetic field determines the 

resolution that can be obtained for a whole-mount imaging. The OPT technique 
[17]

 for 

that matter, can overcome these shortcomings. It can visualize gene expression or 

specific staining in bright-field or fluorescence channel, while the specimen as a whole 

can be imaged. In that manner, OPT adds an important range of scale that can be imaged. 

It allows for the acquisition of high resolution full body images of animal/plant tissues as 

well as organs/organisms 
[18], [19]

. It has been studied for the capability of imaging with 

good spatial resolution and contrast and minimal shadowing artefacts produced after 

reconstruction of a tomogram.  

1.2.1 Introduction of OPT imaging schema  

In Figure 1.2, we describe our imaging system conform the original set up as presented in 
[17]

. We will focus on the OPT of zebrafish as this is the main specimen that we work 

with. The specimen is fixed for imaging in an agarose cylinder that can be rotated, 

mounted to a step motor unit using a magnet. Light transmitted (purple lines) is focused 

by the lenses onto the digital camera, i.e. Charge-Coupled Device (CCD). The apparatus 

is adjusted so that light emitted from a slice that is perpendicular to the rotation axis (red 

ellipse), is focused onto a single row of pixels on the CCD (red line). The slice 

highlighted as a red ellipse in (A) is seen as a red circle in (B). Different from CT 

imaging, in optical imaging system a pixel on the CCD contains the information of the 

specific slice of the specimen in the cone-shaped region (purple region). Points far from 

the focal plane will not be focused and will, as a consequence, not produce a sharp image. 

Contrarily, only the point closer to focal plane yields a high-quality image. The depth of 

the cone-shaped region is defined as depth of focus (DoF) which is determined by the 

property of lenses. For good OPT imaging the cone is ideally as narrow as possible and 

the DoF is expected to be large enough to include the whole specimen. But in practice, 

there is a trade-off between them; i.e, large DoF corresponds to wide cone. One typical 

way to solve this problem is to adjust the position of rotation centre so that only the front 

half of the specimen is in focus. This ensures that every part of the specimen is imaged in 

focus during a full revolution (360◦ rotation of the specimen). The sampled regions (C) 

from adjacent pixels are distributed across the section as an approximation of parallel line 

integrals. 
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Figure 1.2. The schema of OPT microscopy imaging system. (A) The general imaging schema of a 

single pixel on a specific slice (red circle). (B) The optical explanation of a pixel of the image on 

CCD. (C) The formation of adjacent pixels of the image on a specific slice, i.e. the red line in (A). 

1.2.2 Experimental OPT imaging setup  

The flow diagram of our OPT imaging system is illustrated in Figure 1.3. It consists of a 

Leica MZ16 FA stereomicroscope with a Plan 0.5 and 135mm working distance objective 

lens (Leica 10446157). Images are acquired by a thermos electronically cooled Retiga 

Exi CCD camera with a chip size of  1036 × 1360. The images are saved as 16 bit tiff 

files but are effectively 12-bit from the Analog to Digital (AD) conversion. A full 

revolution of 400 images over 360◦ results in a 1.13Gb tiff-file. The acquisition is 

realized by a rotation of the specimen driven by a stepper unit, meaning that the stepper 

accomplishes a step of 0.9◦. The OPT imaging system has imaging modules: for the 

bright-field imaging, specimen is illuminated with a LED and for fluorescence imaging a 

100W mercury lamp attached to the microscope housing is used in combination with a 

filter block. The optical path of the bright-field channel is shown in yellow while that of 

the fluorescence channel is illustrated in blue and green depending on configuration of 

the filter block for green fluorescent protein (GFP), e.g. as presented in Figure 1.3. In our 

imaging system there are three fluorescence channels available including GFP, YFP and 

TRX. The switch between the bright-field and fluorescence module is controlled by 

software through an Arduino controller that is integrated in the system.  
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Figure 1.3. The diagram of the homemade OPT imaging system. The optical path of the bright-

field channel is illustrated in yellow. The fluorescence optical path from Hg lamp goes through the 

filter block producing the required excitation wavelength (in blue). The emission wavelength (in 

green) is produced when the excitation light is excited by fluorescence protein such as GFP.    

The details of the OPT imaging system are explained in Figure 1.4. As follows: (A) 

presents the overall view of the imaging units which consist of control unit (blue line), 

light path unit (purple line) and sample unit (red line). The control unit includes 

microcontroller Arduino and manual controller that are described in (B). The manual 

controller can be used for manual magnification adjustment by rolling zoom wheel. The 

focus wheel is used for focusing at a specific magnification. The filter change and shutter 

are combined to determine and change the filter for working in fluorescence mode. Set 

button stores the current positions of magnification/focus/filter changer/double iris 

diaphragm for five combinations. (C) and (D) elaborate the sample unit in which the 

sample is mounted and imaged. The sample, e.g. zebrafish, is embedded in agarose prior 

to a clearing process and after clearing glued to a cylindrical plastic stub with a metal 

ending. As shown in (C) the metal ending can be mounted to a magnet with a stepper 

motor, through a full revolution of the sample over 360◦. Taking into account the 

refraction of light, the specimen is located in a clearing solution inside a cuvet which has 

the same refractive index as the sample after clearing. When the specimen is mounted to 

the stub its position can be adjusted by using the position bar. The sample unit is 

contained in a black casing to block off ambient light. To further avoid ambient light in 

fluorescence mode, a plastic shield is used.   
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Figure 1.4. Explanation of experimental setup for the OPT imaging system. (A) The whole view of 

the imaging system excluding computer. (B) Unit of microcontroller chip (Arduino) and manual 

control. (C) Unit of imaging environment in which the specimen is located. (D) Unit for mounting 

specimen.  

1.2.3 OPT imaging software  

The graphical user interface (GUI) of the OPT imaging system contains three parts, i.e. 

calibration, experiment settings and imaging as depicted in Figure 1.5. The calibration 

parameters include camera rotation, prism rotation and prism tilt. They are combined to 

determine the position of the specimen in the Field of View (FoV). The camera rotation  
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Figure 1.5. OPT imaging software. (A) The calibration user interface. (B) GUI for the 

experimental settings. (C) GUI for the bright-field and fluorescence imaging. 

can be adjusted by the knob near the camera as annotated in Figure 1.4 (A), and the prism 

rotation and tilt adjustment can be completed by the knob as shown in Figure 1.4 (C). 

They can be adjusted separately, but the parameters calculated after each adjustment, are 

dependent on each other. The GUI for experimental setting specifies the number of 

rotation steps for a full revolution which is determined by the stepper motor. It starts with 

the selection for imaging mode or channel. In fluorescence mode GFP1, TXR and UV are 
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supported. Regarding to the imaging GUI, it first works for fluorescence imaging if both 

modes are selected. Each tomogram includes background correction, which means the 

specimen should be removed from the FoV by using two knobs as shown in Figure 1.4 

(A). Figure 1.5 (C) elaborates the parameters that are required in the specimen imaging 

process and some useful information with respect to the image quality such as a life 

histogram informing on the intensity range that is employed with the current illumination 

settings.                

1.2.4 Experimental sample preparation 

Sample preparation refers to the protocols used on the specimen to assure the acquisition 

of useful information with OPT microscopy. It is the most time-consuming process in the 

OPT imaging workflow, allowing preparation of a few samples per day. Researchers, in 

general, need to image a lot of specimens to obtain good and statistically valid 

observations.  We, therefore, have to considerably speed up this process. 

Therefore, a protocol for efficient sample preparation including counterstaining, 

embedding of specimen in agarose, and optical clearing is essential to make the OPT 

suitable. The optimisation of the sample preparation step has been thoroughly studied 
[20]

. 

This optimisation is out of the scope of our research but it significantly contributes to the 

quality of our image acquisition and data. Counterstaining (toluidine blue), cylindrical 

agarose and clearing agents (benzyl alcohol: benzyl benzoate, BABB) are mostly used 

for sample preparation of samples presented in this thesis. 

1.3 Computational approaches of OPT imaging 

From proper OPT sample preparation and imaging, we acquire the tomogram data that is, 

in fact, a collection of axial 2D images. For further processing and visualization we need 

to have the data on a regular 3D grid. Therefore computational approaches are required. 

These computational approaches cover 3D reconstruction, 3D segmentation, optimisation 

of iterative reconstruction based on segmentation performance and fluorescence 

quantification. For this thesis our main sample will be zebrafish. 

1.3.1 3D reconstruction 

The process of going from a tomogram to a 3D image defined on a regular rectangular 

grid is referred to as 3D reconstruction. There is no standardized manner of specimen 

mounting and nor do we have full control over the experimental environment; therefore a 

framework is needed including both fast reconstruction and accurate reconstruction to 

comply for different requirements. The fast reconstruction provides an efficient solution 

for specimens with dispersed signals, while the accurate reconstruction produces a more 

precise reconstruction with lesser artefacts at the expense of computation time. Fast 

reconstruction solves the reconstruction problem but fails to reduce artefacts. In 

tomography, a known category is the streak artefacts that due to local intensity loss of the 
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beam as a result of dense materials such are metal components. If the fast reconstruction 

is satisfactory, the reconstruction framework is completed. If accuracy is required and 

streak artefact need be removed, iterative reconstruction must be considered. Our 

workflow for 3D reconstruction is illustrated in Figure 1.6, with the top and bottom of the 

diagram showing the two different reconstruction methods. Optimisation in iterative 

reconstruction including initialization and iterative step, and GPU-based implementation 

will be explored in the research presented in this thesis, and upon evaluation, integrated 

in our reconstruction framework.  

 

Figure 1.6. The scope of reconstruction and optimisation for OPT 3D imaging.  

1) Fast reconstruction and optimisation 

For fast reconstruction a framework is set up that takes into account, reconstruction, 

artefact reduction, 3D deconvolution and parallelization implementation.  

The Radon transform 
[21]

 is widely applied to tomography which is produced from the 

projection associated with cross-sectional scans of an object, we first explore the 

applicability of Radon transform to our OPT imaging. The Radon transform represents, 

de facto, the projection data obtained as the scan from the OPT and the output is the 

tomogram. The inverse Radon Transform can be used to reconstruct to the initial object. 

The process of reconstruction with inverse Radon Transform is called back projection. 

The most frequently applied reconstruction algorithm for back projection is known as 

Filtered Back Projection (FBP) by Nygren and Anders 
[13]

. In our fast reconstruction 

framework FBP will employed because of its wide applicability and efficiency.   

In a previous study 
[22]

, it has been acknowledged that artefacts occurring in 3D images 

in OPT imaging systems are mainly introduced through two reasons. One is from the 

imaging setup such as non-uniform illumination, signal decay and CCD imperfection. 

Another sort of artefacts comes from the computational process including the centre of 

rotation (CoR) misalignment and limitations in the number of tomographic images that 

are available for the reconstruction algorithm. The artefacts from the second group, 

however, are more noticeable and salient; these will be studied in the following sections.  
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Limited by the diffraction of light in the optical imaging system, the images are 

unavoidably blurred in imaging process. Unlike a confocal imaging system, in 

tomographic images this imperfection cannot be deblurred directly from a systematic 

point spread function (PSF). An OPT imaging system has variant PSFs for points that are 

located within different distances to focal plane. How we can model the variant PSFs and 

take them into account in 3D image for deblur is one of our research topics of interest for 

optimisation in fast reconstruction.  

The core for fast reconstruction is to apply parallel and distributed computing. The 

parallelization can efficiently decrease the computing time of the reconstruction process. 

We accomplish this by distributing all the slices to different processors of a computer 

cluster, ensuring that the 3D data is processed in a parallel manner. 

2) Iterative reconstruction and optimisation  

Iterative reconstruction refers to iterative algorithms used to reconstruct 2D or 3D 

images from tomographic imaging techniques such as CT and OPT. Iterative 

reconstruction was developed for CT imaging in order to improve the noise profiles and 

suppress streak artefacts that commonly show up with FBP. These algorithms are also 

considered superior when there is a lack of uniform angular projections or when 

projections are sparse. There is a large variety of iterative reconstruction algorithms, but 

they all have in common that it starts with an assumed initial image, computes 

projections from the image via a project function and updates the image according to the 

difference between calculated and actual projections. According to the updating strategy 

for the image, iterative algorithms can be categorized into four different approaches, i.e. 

algebraic reconstruction technique (ART) 
[23]

, iterative sparse asymptotic minimum 

variance (SAMV) 
[24]

, statistical reconstruction 
[25]

 and learned iterative reconstruction 
[26], 

[27]
. Among all categories, statistical reconstruction and learned iterative reconstruction 

show relatively better performance with respect to a combination of effectiveness and 

robustness.  

In general, iterative reconstruction can lead to a more accurate reconstruction 

compared to FBP. However, a large number of iterations may be required to generate an 

acceptable reconstruction and each of the iteration may take about the same amount of 

time as one FBP reconstruction does. Thus, to some extent the effectiveness of iterative 

reconstruction is achieved at the expense of huge computation time. One approach to 

reduce the number of iterations is to organize the projection data into a series of ordered 

subsets of evenly spaced projections and update the current estimate of the object after 

each subset rather than after the complete set of projections. The most commonly used 

algorithm that employs the subset strategy is referred to as ordered subset expectation 

maximization (OSEM) 
[28]

. It improves the efficiency of iterative reconstruction with 

respect to computation time.   

Iterative reconstruction methods have superior performance which shows by resistance 

to noise and streak artefacts in CT reconstruction. These algorithms, therefore are 
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supposed to have promising results on our OPT reconstruction where the streak artefacts 

are limiting the results. There are two sources for the streak artefacts with FBP 

reconstruction in our OPT imaging system. One is the relative lack of projections 

compared to perfect reconstruction without streak artefacts. This means that 400 samples 

over a full revolution are still not enough for FBP reconstruction in OPT because it has 

stronger light attenuation, comparing to CT. Another source for streak artefacts with FBP 

normally exists in emission OPT when the fluorescence signal is relatively small and 

highly concentrated, which is similar to the artefacts produced by metal components in 

the specimen with FBP in CT. With the aim to eliminate the streak artefacts in OPT, we 

will implement one of the iterative reconstruction algorithms, i.e. statistical 

reconstruction, for our data and optimize the results based on parameters required. 

Notably, there are two customary parameters to optimize. One is the initial image, in this 

thesis defined as initialization. It can be either none (meaning zero) or the result of fast 

reconstruction in our workflow (cf. dashes in Figure 1.6). The other one is the number of 

iteration steps for deciding the endpoint of iterative reconstruction. The impact of 

different parameters on reconstruction will be studied in Chapter 4.  

In terms of evaluation, reconstruction, as a typical inverse problem, is characterized by 

the lack of benchmarks for a real imaging data. Researchers often measure the 

reconstruction performance by qualitatively comparing the results from different 

reconstruction approaches. Specifically, the qualitative measurement could either be less 

noises and artefacts or better image quality in terms of sharpness. With a lack of 

quantitative measurements for reconstruction performance, we take a first step to explore 

the possibility of transferring the problem of reconstruction evaluation to the 

segmentation evaluation. This evaluation is particularly applied to optimize the 

parameters for iterative reconstruction. We assume that in iterative reconstruction, 

reconstructions of the type of same data (e.g. zebrafish) from different parameters 

provide different inputs for segmentation, thus resulting in different segmentation 

performance for the resulting model, e.g. zebrafish. The reason why segmentation 

evaluation is employed as a reference for the optimisation of iterative reconstruction is 

that we need a good reconstruction of the specimen for a segmentation model and the 

segmentation performance can give us an intuitive and quantitative feedback about how 

good the reconstruction is. This framework works under the assumption that the same 

segmentation model is used. In terms of parameters in iterative reconstruction, there are 

several ones required but number of iterations and initialization are seen as the most 

customary ones. Theoretically, by applying this alternative reconstruction measurement, 

i.e. the segmentation performance, to the parameter optimisation of the iterative 

reconstruction algorithm, a more accurate reconstruction will be achieved.  

1.3.2 3D segmentation of OPT reconstructions with applications to zebrafish  

The OPT is particularly useful for imaging of specimen/objects in the mm range; so, 

zebrafish is a specimen typically suitable for this type of imaging. The zebrafish model 
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system is very popular in bio-medical research. Zebrafish can be easily embedded in 

large scale projects as sufficient amounts of samples can be made available. In 

experimental setup we are interested in the phenotype and the gene expression of the 

phenotype in a zebrafish sample. Measurements in zebrafish OPT reconstructions require 

a clean image; noise and debris should be avoided but in the practice of the imaging this 

is difficult to achieve. Therefore, a segmentation of the specimen is required. An OPT 

image can contain multiple channels. The bright-field channel typically provides the 

possibility for generating a whole-mount mask of the zebrafish, or any specimen in 

general. Noises, debris in the image and transparency of the zebrafish complicate 

segmentation. These facts limit the success of conventional segmentation algorithms, i.e. 

adaptive thresholding, mean shift to name a few. In the application of segmentation 

methods on zebrafish, we observe inaccurate body boundaries and the fainter transparent 

parts make a distinction between the foreground and the background difficult. 

In order to obtain reasonably good segmentation results of zebrafish, a more advanced 

and intelligent segmentation approach is required. We therefore employ machine learning 

strategies and, for our studies, a supervised segmentation framework is presented as 

illustrated in Figure 1.7. The application of supervised machine learning requires a 

training process from examples and prior to the training procedure images of different 

specimens are reconstructed and labelled. Because of the information redundancy among 

adjacent slices in a 3D image, the training data is manually labelled in equidistant 

intervals. We will investigate the use of a convolutional neural network (CNN) for the 

training process. 

 

 
Figure 1.7. The diagram of training a zebrafish model for segmentation. The images used for 

training segmentation network and testing are from bright-field channel.       

The labelling of all slices in the 3D image for training segmentation network is optional; 

if necessary, it can be obtained by either using interpolation technique or predicting from 

the segmentation network, such as U-net convolutional networks 
[29]

. We investigate how 
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such network for 3D image segmentation could be trained either on parts of the 3D image 

or on the whole 3D image. A typical network that has been successfully employed for 

segmentation in bio-medical research is the U-net convolutional neural network 
[29]

. The 

differences between training on manually labelled slices or whole 3D images are the 

training time and accuracy; this is extensively studied in Chapter 5. Previous results from 

U-net convolutional neural network have shown its usefulness in bio-medical image 

segmentation 
[30]

. For training the 3D segmentation network, both 2D U-net and 3D U-net 

convolutional networks will be employed. The differences in performance on the data 

between the two networks will be explored. With the trained zebrafish segmentation 

network, any 3D bright-field OPT image can be semantically segmented as zebrafish or 

none-zebrafish. Masking the zebrafish in 3D with the corresponding 3D fluorescence 

channel image accomplishes general fluorescence quantification, providing valuable 

information for bio-medical research. 

1.3.3 Quantification of volumetric fluorescence in zebrafish 

We consider zebrafish as a prototypical example for OPT imaging in which we both use 

the bright-field as well as the fluorescent channels. The rapid development of fluorescent 

microscope imaging technologies in the past years, enables high-throughput 2D 

fluorescent imaging platforms now in widely use on both gene expression and proteome 

scale 
[31]

. High data volumes for protein and/or gene expression benefit the statistical 

analysis. This is typically the case for such zebrafish. The 2D quantification of the 

fluorescence provides a relatively rough measurement for analysis. It fails to reconstruct 

the real, particularly spatial, distribution of fluorescence, thereby losing much useful 

information.  

Therefore, 3D fluorescent imaging techniques, such as CLSM, OPT and MicroCT, 

play a significant role in obtaining insights in 3D quantification of fluorescence so that 

real and relatively accurate protein and/or gene expression can be computed. Due to the 

large amount of data in 3D imaging, high-throughput scale is currently limited by the 

computing and memory power. To some extent, throughput in 3D imaging and 

quantification is possible under the condition of efficient sample preparation and 

reconstruction.  

In general, a correct and accurate 3D fluorescent quantification largely depends on 

sample preparation, reconstruction performance and image processing i.e. segmentation. 

The protocol of sample preparation varies depending on different imaging techniques but 

the common demand for a good sample preparation is supposed to suppress noise and 

highlight fluorescence as much as possible. In this case, prior knowledge is typically 

required to distinguish between the noise and the fluorescence signal we are interested in. 

The segmentation process supports in understanding the information about what is useful 

or significant to the quantification. In order to achieve reliable 3D quantification of 

fluorescence in a smaller data volume, segmentation can be manually accomplished using 

prior knowledge. This approach is however, not feasible for larger scale of data, for 
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instance some-throughput imaging of zebrafish in our OPT system. This is a motivation 

for us to investigate the utility of a trained 3D zebrafish reference structure for the 3D 

quantification of fluorescence in zebrafish. In this thesis we present the framework of 3D 

quantification of fluorescence in zebrafish, but it can be easily transferred to other 

applications such as 3D quantification of fluorescence in zebrafish/mice brain, liver, 

kidney, etc.   

1.4 Research questions and perspectives 

RQ1: To what extent is it possible to increase the processing speed of OPT imaging and 

reconstruction in an integrated manner? 

The 3D reconstruction as a post-imaging process, is therefore separated from OPT 

imaging system. This separation can be physical, i.e. computations on different 

computers. The time of one reconstruction varies from minutes to hours depending on the 

reconstruction algorithm and computation resources. This means that in a worse case it 

may take multiple hours to generate one 3D OPT image. With the further development of 

data science in bio-medical research the availability of data becomes increasingly 

important. To provide more bio-medical data, i.e. 3D OPT images in our case, it is of 

great importance to decrease the imaging time and increase the efficiency of 3D imaging 

process. Therefore, we investigate integrating the imaging and reconstruction as a whole 

and implementing the reconstruction in a parallel fashion. With respect to the 

reconstruction algorithm, the fast and efficient reconstruction, i.e. FBP is first taken into 

account. What interests us is how much improvement can be achieved regarding the 

imaging time and efficiency of computation.  

 

RQ2: To what extent is it possible to reduce the artefacts of 3D image introduced during 

reconstruction process by misalignment of CoR? 

According to Singh et al. 
[19]

, there are several types of artefacts in OPT reconstruction. 

One of them is the edge blur artefacts introduced by CoR misalignment. It means that the 

rotation centre of the imaging system is shifted off the centre of FoV. This shift 

inevitably exists unless a very accurate mechanical calibration is included. This 

mechanical calibration process is typically time consuming and requires a lot of operator 

interaction. Instead of eliminating the shift in the pre-imaging calibration process, we are 

interested in correcting it in the post-imaging process before reconstruction. 

The aforementioned pre-imaging shift will introduce a problem that the CoR is not 

accordance with the image centre. This means that the reconstructed slices will 

consequently be corrupted by the edge blur artefacts after application of the 

reconstruction algorithm. The motivation for this research is to detect and correct the 

CoR shift in tomogram and further eliminate the corresponding artefacts in the 

reconstruction process. To this end, a fast and accurate CoR correction algorithm is 
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needed. How much improvement will be achieved should be qualitatively and 

quantitatively analysed and explored. 

 

RQ3: Can the PSF of the OPT imaging system can be modelled and applied for 

deblurring of an OPT reconstruction? 

In general, an imaging system is described by the ability of giving a response to a point 

light source or object, commonly referred to as the point spread function (PSF). A more 

general term for the PSF is a system's impulse response, being the impulse response of a 

focused optical system. For OPT imaging and reconstruction, the DoF is expected to be 

large enough to contain the specimen to be visualized as much as possible. According to 

the previous studies 
[32], [33]

, however, large DoF subsequently results in low in-focus 

image quality. The trade-off between DoF and image quality should be considered when 

selecting a lens for the OPT imaging system. A lens with small NA will produce large 

DoF, allowing imaging of larger specimens but it will result in a relatively low-quality 

image. Contrarily, a lens with large NA yields relatively high-quality images but cannot 

image the whole specimen with respect to its size. 

One typical way to improve the image quality of 2D imaging system to the best 

possible resolution, is to apply deconvolution to the images, using a constant theoretical 

or experimental PSF as the kernel for deconvolution. However, this approach is not 

strictly suitable for OPT images. Because first, the tomogram normally integrates the 

information of a specimen at different depths within a wide field, not a fixed depth on the 

focal plane. Second, the imaging PSF within the field varies at different depths along the 

optical axis. This means that different PSF is produced when locating the point source at 

different depths. While the conventional 2D PSF and deconvolution are not feasible for 

OPT imaging system, we are interested in how a variable PSF could be modelled in OPT 

imaging system and how much image quality improvement can be achieved when using 

it in deconvolution of the 3D image. 

 

RQ4: Can the iterative reconstruction eliminate the streak artefacts produced in the fast 

reconstruction? 

With the fast FBP reconstruction, a 3D image can be obtained. For specimens with sparse 

and large-area signals, it produces satisfactory reconstruction when CoR misalignment is 

solved. However, when imaging specimens with a dense and concentrated signal such as 

concentrated fluorescent GFP signal, the FBP algorithm will produce streak artefacts 

because of the sample limitation. There are several methods such as linear interpolation 

(LI) and the state-of-the-art normalized metal artefacts reduction (NMAR) to decrease 

the streak artefacts in CT in an FBP framework 
[30]

, which may be useful for OPT 3D 

reconstruction. But these approaches seem to reduce the artefacts in the reconstruction 

but do not eliminate the artefacts. In order to eliminate the streak artefacts, iterative 

reconstruction has proven to be promising in CT reconstruction 
[34]–[36]

. Inspired by the 

https://en.wikipedia.org/wiki/Point_source
https://en.wikipedia.org/wiki/Point_source
https://en.wikipedia.org/wiki/Impulse_response
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results in CT imaging, we are interested in exploring if iterative reconstruction can help 

to eliminate the streak artefacts in OPT reconstruction and how it works. In our work 

both reconstruction frameworks are available, depending on application of what a certain 

reconstruction algorithm is chosen.  

 

RQ5: How and to what extent the initialization and the number of iteration steps 

influence the results in iterative reconstruction? 

Iterative reconstruction can eliminate the streak artefacts, thus it could be used as a 

prospective method to produce an accurate OPT reconstruction at the expense of time 

compared to fast reconstruction such as FBP.  Sometimes these accurate reconstructions 

are essential. Considering the non-deterministic process of iterative reconstruction, the 

results are influenced by the parameters of algorithm. In this research we investigate the 

most customary parameters, i.e. iteration steps and initialization. To explore the effect of 

iteration steps on reconstruction, we reconstruct the tomogram with different iteration 

steps. With respect to initialization, we compare the results produced with a setup of no 

initialization to those with an initial reconstruction that are obtained by fast 

reconstruction as described in Chapter 2.  

With the different reconstructions to compare, an evaluation criterion is required.  In 

bio-medical research it is not always possible to construct a benchmark for both 2D and 

3D imaging because of different specimens and experimental setups. For instance, to 

assess the various reconstructions in our study, there is no theoretically ideal 

reconstruction that can typically be used as benchmark for evaluation. Therefore, instead 

of assessing the reconstructions directly, we investigate a framework to assess the 

segmentation results of the reconstruction indirectly. The benchmarks of the 

segmentation are easier to obtain by labelling the data. The evaluation of reconstructions 

of different experimental setups is transferred to the evaluation of the corresponding 

segmentation results.  

 

RQ6: Is it possible to “learn” a 3D reference structure of zebrafish for 3D fluorescence 

quantification in zebrafish? 

Zebrafish are valuable for studies of a multitude of diseases including cancer, heart 

disease, obesity, muscular dystrophy and narcolepsy. They are easy to maintain and cost-

effective. One key feature is that, following fertilization, zebrafish embryos are 

transparent and their rapid embryonic development can be observed. Another important 

reason is that zebrafish as a vertebrate is similar to human, making it a suitable model for 

many human diseases
 [37]

. 

Because of the imperfections in sample preparation and experimental imaging 

environment, a specific fluorescence may exist around a specimen in the background. It 

is therefore required to segment the specimen from the background. For our study in 

zebrafish, segmenting and recognizing zebrafish volume from background are of great 
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importance for fluorescence quantification. For the volume, the fluorescent signal must 

be counted and quantified just there where zebrafish sample is, otherwise it should not be 

considered. The segmentation of zebrafish also plays an important role in reference 

structure detection for high-throughput quantification where relative measurement is 

considered. This will be elaborated in Chapter 5. To train and learn a theoretically robust 

segmentation model for 3D reference structure detection, a large number of zebrafish are 

acquired at different stages and in different experimental environments. By using the 

trained segmentation model as a classifier, the 3D image reconstructed from a specimen 

can be identified as reference structure or not. The 3D fluorescent signal, e.g. tumour in 

Chapter 5, can be quantified and normalized referring to the reference structure that is 

identified. Compared to 2D, such accurate 3D fluorescence quantification helps to 

improve the research results in for instance drug discovery.     

 

RQ7: How much 3D information can be achieved and identified from bright-field images 

of zebrafish and to what extent can the identification of parts be automated? 

In the OPT imaging system, bright-field image contains some extent of structures or 

context information of zebrafish. It also represents the minimum of details of zebrafish 

structure without any staining techniques. Some structures, e.g. eyes play an important 

role in accurate positioning analysis of protein and gene expression patterns. In order to 

explore how much structural detail within zebrafish can be identified for such analysis, 

we manually label the 3D image of zebrafish in two different very distinct developmental 

stages, i.e. 5 dpf and 25 dpf. The results are visualized and the two developmental stages 

are qualitatively compared to provide an intuitive clue for phenotype analysis of these 

structures. Furthermore, in view of the trends in order to study the possibility of trending 

high-throughput analysis in 3D, we are curious about how automated 3D structure 

detection algorithm can facilitate and accelerate the manual labelling process, as well as 

how much accuracy can be achieved by using the automated detection. If the accuracy is 

not satisfactory, how can we propose the possible solutions to improve it for further 

advanced analysis?                 

1.5 Thesis structure 

This thesis is structured along the research questions presented in the previous paragraph. 

In Chapter 1 “Introduction” a brief introduction on the 3D imaging, reconstruction 

framework in OPT microscopy is given. Besides that, our scope for reconstruction 

optimisation, 3D segmentation and its application value are elaborated. To clarify these 

research topics, seven research questions are proposed.  

Chapter 2 “Fast Post-processing Pipeline for Optical Projection Tomography” 

presents a fast reconstruction framework to improve the effectiveness and efficiency of 

OPT 3D reconstruction. It is implemented in a parallel manner and the experiments show 
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that the average run time for each tomogram is less than 5 minutes in our current setup. 

In the framework a novel CoR correction method based on interest point detection in 

sinogram, is proposed by taking the principle of OPT imaging into account. To quantify 

and compare the reconstructed results of different CoR correction approaches the 

coefficient of variation (CV) instead of the variance is employed. 

Chapter 3 “Deblurring Images from 3D Optical Projection Tomography Using 

Point Spread Function Modelling” focuses on the deblurring of the reconstructed 3D 

image. When imaging large specimens with OPT imaging system, a large depth of field 

is required. This normally results in blur, i.e. compromises the image quality. Yet, it is 

important to obtain the best possible quality 3D image from the OPT, thus deblurring the 

image is vital. To this end we first model the PSF along optical axis at different depths. 

Meanwhile the magnification is taken into account in the PSF modelling. Subsequently, 

deconvolution in the coronal plane based on the modelled PSF is implemented to 

accomplish deblurring of the OPT image. Experiments with the proposed approach based 

on 25 3D images including 4 categories of specimens, indicate the effectiveness of 

quality improvement assessed by image blur measures in both spatial and frequency 

domain. 

Chapter 4 “Segmentation-driven Optimisation for Iterative Reconstruction in 

Optical Projection Tomography: An Exploration” introduces GPU based iterative 

reconstruction aiming for the best possible, reconstructed from an OPT tomogram. Here 

possible streak artefacts produced by FBP reconstruction should be eliminated. The 

reconstruction performance with different initializations and iteration steps is evaluated 

indirectly based on the segmentation results of the reconstruction, instead of the 

reconstruction itself. Aiming at producing good segmentation results, a deep learning 

model is employed. The iteration step and initialization of the iterative reconstruction are 

considered optimal when evaluation measurement reaches a maximum. The model is 

trained and tested on three 25 dpf 3D zebrafish image from bright-field tomograms. 

Chapter 5 “Automated Detection of Reference Structures for Fluorescent Signals in 

Zebrafish with a Case Study in Tumour Quantification” aims at automatically 

detecting the reference structure to relatively quantify the 3D fluorescence within a 

zebrafish. We will build and train a segmentation model to automatically detect the 

zebrafish Body and Eye reference structure in two different data spaces (i.e. 2D slice and 

3D volume, c.f. Chapter 5) and optimize the segmentation model individually. 

Subsequently, the segmentation performances are compared and evaluated. The approach 

with the best performance will be considered for the automated detection of reference 

structure for tumour quantification as a case study for drug research. 
Chapter 6 “Exploration of 3D Structure Annotation and Visualization of Zebrafish 

Reconstructions from Optical Projection Tomography Imaging” explores the 
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possibility of volume region annotation in OPT imaging. The aim of this chapter is to, 

first give an idea of how much volume region information can be acquired and 

reconstructed using our OPT imaging system on whole-mount specimen. Second, it 

explores the possibility of automated annotation of volume region within zebrafish, 

which are potentially important for the high-throughput research at level of organ 

systems. In the first case, up to 9 parts or volume regions of a 25 dpf zebrafish can be 

segmented and visualized using OPT. Nevertheless, automated segmentation of such 

volume regions has proven to be challenging and is still limited by data size and 

segmentation algorithm.  

Chapter 7 “Conclusions & Discussion” summarizes our contribution for 3D OPT 

imaging, reconstruction, structure detection and visualization framework and states some 

drawbacks of the framework. Future improvements of our framework are discussed 

guaranteeing the integrity of the framework.  
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Chapter 2 

Fast Post-processing Pipeline for Optical 

Projection Tomography 
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Chapter summary 

In order to improve the effectiveness and efficiency of 3D reconstruction for optical 

projection tomography, we present a fast post-processing pipeline. This pipeline includes 

image cropping, background subtraction, centre of rotation correction and 3D 

reconstruction. For OPT imaging, with respect to the centre of rotation correction, a 

novel algorithm based on interest point detection in the sinogram is proposed. Instead of 

locating the centre of rotation on single sinogram, we intermittently and evenly select 

sinograms in the detected full range of a sample to make the located centre of rotation 

more robust. The post-processing pipeline presented is implemented on a parallel manner 

and experiments demonstrate that the average runtime for images of size 1036×1360×400 

pixel can be less than 1 minute on a computer cluster of which 5 compute nodes are used. 
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2.1 Introduction 

In this section we will state our research question and introduce our perspective on 

optical projection tomography (OPT) imaging and reconstruction framework. It includes 

a brief introduction of our contribution to this research as well as related work in this 

field of research.    

2.1.1 Research problem 

The aim of an OPT imaging system is to obtain a 3D volume image, so that this volume 

image can be used for analysis and visualization. This is accomplished by a 

reconstruction algorithm that is applied on the sinograms derived from the OPT image. 

With an OPT imaging system a so called tomogram is acquired. The tomogram is a 

collection of images of a specimen taken at regular angular intervals. For OPT this 

typically comprised a stepwise acquisition of the images over a full revolution of the 

sample. The tomogram is transformed to a sinogram in which all projections are 

represented.  

The reconstruction process could, however, introduce various artefacts depending on 

different imaging setups. This means that for each individual OPT imaging system, 

exploration and elimination of reconstruction artefacts are necessary. In this chapter, we 

will focus on the artefacts resulting from the misalignment of centre of rotation (CoR).  

Another important issue for OPT imaging system is the speed of reconstruction 

process. In order to be able to apply OPT in a high-throughput setting as well as to allow 

quick reconstruction of the imaging, research on fast and efficient reconstruction is 

important. These two issues represent the general motivation for the work in this chapter. 

With the two research questions, we propose a fast post-processing pipeline that is 

integrated into reconstruction software. In this pipeline, cropping and background 

subtraction are the first two steps for image pre-processing, followed by a fast and 

efficient CoR correction and a 3D reconstruction algorithm. This significantly contributes 

to the innovation in our OPT applications. With the application of cropping and CoR 

correction, the sample can be placed at any position of the field of view (FoV), 

decreasing the time for post-processing of tomogram and avoiding the calibration process 

prior to tomogram acquisition. Originally, a calibration helps to align the CoR to the 

centre of FoV, which normally takes several minutes. In this pipeline, we implement a 

parallel computation of both CoR correction and 3D reconstruction to further accelerate 

the post-processing of OPT tomogram. 

2.1.2 Related work 

In the recent years, cancer progression 
[5]–[7]

, drug discovery 
[8]

 and development studies 

for organ system such as skeleton 
[9], [10]

, teeth 
[38]

 and blood vessels 
[12]

 have benefited 

from the further development of OPT microscopy. Kumer et al. 
[5]

 applied OPT to adult 
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zebrafish to study the synchronous development of cancer and vasculature in adult 

zebrafish. McGinty et al. 
[8]

 proposed a fluorescence lifetime optical projection 

tomography in 2011 for biological research and drug discovery, the time for image 

acquisition and post-processing including 3D reconstruction were both reported to be ~20 

minutes. Later, in 2012, Fieramonti et al. 
[9]

 extended OPT to optically diffusive samples 

for studying skeletal and nervous structures in zebrafish, improving the acquisition time 

to something like ~3 minutes but without considering the artefacts produced when the 

CoR is inconsistent with the centre of the tomogram. Agarwal et al. 
[7]

 presented a 

diagnosis method of early cancer by reconstructing 3D cellular image with OPT. The 

high resolution of single cells was achieved by using a large NA and scanning the 

objective focal plan contributed to the extension of DOF, which consequently increased 

the light dose and acquisition time. More recent, in 2015, Correia et al. 
[12]

 introduced 

accelerated OPT by decreasing the number of rotations at tomogram acquisition, aiming 

to improve the efficiency of OPT system and decrease the light dose the sample is 

exposed to. In similar fashion, aiming at improving the efficiency of OPT imaging, we 

present a fast OPT post-processing pipeline which contains pre-processing, CoR 

correction and 3D reconstruction taking ~1 minute with tomogram size of 

1036×1360×400 pixels.  

Before applying the inverse radon transform to the sinogram for reconstruction, by 

definition the position of the CoR should be in the middle of the sinogram, achieved by 

CoR correction. This was first studied in 1990 
[39]

 in computational CT. Previous studies 

showed that shifted CoR could introduce severe artefacts or even incorrect results 
[40]

. 

Furthermore, correcting CoR based on images can bypass the calibration prior to 

tomogram acquisition, improving the efficiency of the imaging system. In terms of 

methodologies for CoR correction, there are two mainstream approaches. The first 

approach is based on signal match for pairs of projection data (180° opposed to each 

other) 
[39], [41]–[43]

. This is widely used in CT because the intensities from two opposite 

projected angles are theoretically equivalent in CT imaging. Unfortunately, this method 

may not be directly suitable for OPT images, as opposite projected data may vary at 

different sample angles. The differences are caused by the fact that the lens introduces a 

DoF and only images the front half of the sample 
[44]

. Moreover, feasibility is hampered 

as the sinogram is often disturbed by fixation artefacts and/ or random noise; both 

frequently occur in OPT imaging.  

The second approach both for CT and OPT is based on iterative reconstruction of the 

sinogram 
[22], [45], [46]

. The vertical axis that is producing the smallest variance in the 

reconstructed image is chosen as the CoR, cf. 
[46]

. This approach is however time-

consuming and therefore less used in CT. Furthermore, both approaches chose only one 

sinogram for CoR correction, whereas the CoR fluctuation produced by different 

sinograms was not taken into account, to some extent resulting in unconvincing CoR. 

 



Chapter 2 

 

27 
 

2.2 Materials and methods 

An OPT system that is used for 3D imaging in biomedical research, e.g. embryo or 

skeleton development, requires the sample, i.e. a zebrafish larvae, first to be prepared for 

imaging. A clearing of the sample is accomplished with the BABB protocol, cf. § 1.2.4. 

The data flow of a sample goes from preparation, to OPT image acquisition using our 

dedicated imaging software, cf. § 1.2.3, to the production of the OPT tomogram. This 

tomogram is then reconstructed to 3D image by using the OPT reconstruction software 

which will be further elaborated in this section. The OPT reconstruction software 

integrates the whole reconstruction pipeline. For the CoR correction and 3D 

reconstruction tasks, it provides the interface to submit the tasks to our compute cluster, 

i.e. the Leiden Life Science Cluster (LLSC).   

2.2.1 OPT imaging 

Our OPT imaging system supports both bright-field and fluorescence illumination. The 

acquisition time for a bright-field tomogram is less than 3 minutes, and for a fluorescence 

tomogram it varies depending on the strength of the fluorescence and exposure time; but 

normally it is less than 10 minutes for a sample in a full revolution, cf. § 1.2.3. 

Optimisation of sample preparation protocol and image acquisition were implemented as 

described in chapter 1, cf. § 1.2.4. The tomogram of a single channel from the OPT is a 

16-bit image of size 1036×1360×400 pixels, with a file size of 1.05GB. Image of 

1036×1360 is acquired over 400 rotation angles in [0°, 360°). For each tomogram, 10 

background images of the same size are acquired for the post-processing. The acquisition 

of the tomogram is separated from the computationally more demanding post-processing. 

This is accomplished on a cluster computer and communication to the cluster application 

is realized via a web-service that is available on the acquisition computer. 

Application of the post-processing pipeline, implies that the acquired OPT tomograms 

will be first cropped to the region of interest (RoI). It is followed by a background 

subtraction of the median of the background images for each channel. Subsequently, CoR 

correction and 3D reconstruction are applied. The user interface of the post-processing 

software is shown in Figure 2.1 with an example of a zebrafish in bright-field. Cropping 

and background subtraction are implemented locally on the left side, and on the right we 

can upload the data to our computer cluster (LLSC) for CoR correction and 

reconstruction. Once the task is finished, the resulting 3D image will be automatically 

stored on the LLSC file server and a file link for downloading is returned. At the same 

time the reconstructed 3D image is downloaded to the local computer, cf. right panel in 

the user interface as shown Figure 2.1. Users can also visualize the x-projection and y-

projection using the Details button. The file link for users to download the 3D image is 

provided under the Details button on the right of user interface.  
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2.2.2 OPT reconstruction software 

 

Figure 2.1. The user interface of the post-processing software; it includes cropping, background 

subtraction, CoR correction and 3D reconstruction. Once the tomogram is opened, cropping and 

background subtraction can be done with buttons on the left. With a Start Reconstruction button, 

the data are automatically uploaded to a dedicated cluster computer. The CoR correction and 

reconstruction are distributed on the cluster. The reconstructed results and maximum intensity 

projections are sent to the local computer after completion (right panel).    

2.2.3 Cluster computing: the LLSC 

The LLSC is a computer cluster for bioinformatics applications. As displayed in Figure 

2.2, it consists of three user nodes, 20+ compute nodes and a file server. Each compute 

node consists of multiple two Intel Xeon dual- or quad-core processors with 16GB RAM, 

forming a cluster of 108 processors in total. The separate file server has 36TB storage. 

The nodes and file server are connected using Gigabit Ethernet. The LLSC currently uses 

the TORQUE job scheduler 
[47]

 to allocate the computational tasks, but a future upgrade 

to the SLURM workload Manager 
[48]

 is planned. To ensure consistent performance 

measurements we will be using the nodes that contain two Intel Xeon 5150 dual-core 

processors and two Intel Xeon e5430 dual-core processors, given that most of the 

currently operational nodes in the cluster are of these types.  
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Figure 2.2. The LLSC cluster with three user nodes, 20 computing nodes (108 processors) and a 

file server. 

2.3 Implementation 

In this section we present our specific contributions to the post-processing pipeline, i.e. 

the CoR correction algorithm and Reconstruction on the LLSC system.    

2.3.1 CoR correction 

CoR correction involves CoR localization for each of the channels and the CoR 

alignment of these multiple channels. Considering the artefacts from CoR shift depicted 

in 
[22], [49]

 and the computationally expensive problem of the traditional CoR localization 

method by using iterative reconstruction 
[46]

, a novel CoR localization approach is 

presented. The CoR localization for each channel is defined as searching for most 

frequently occurring value from the obtained CoRs of multiple sinograms, which are 

localized based on interest point detection and CoR optimisation function. 

1) Sinogram selection   

To make the CoR localization in each channel convincing, multiple sinograms are 

selected. We select these multiple sinograms by investigating the slice range NS from 4 

valid sinogram ranges using:  
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Figure 2.3. The 4 orthogonal sinogram ranges  𝐍𝐒𝟎, 𝐍𝐒𝟗𝟎, 𝐍𝐒𝟏𝟖𝟎 and 𝐍𝐒𝟐𝟕𝟎  are from the 4 

orthogonal tomogram images (𝟎°, 𝟗𝟎°, 𝟏𝟖𝟎°, 𝟐𝟕𝟎°) of an adult zebrafish brain. 

                                            𝑁𝑆 = 𝑁𝑆0 ∩ 𝑁𝑆90 ∩ 𝑁𝑆180 ∩ 𝑁𝑆270                                        (1) 

𝑁𝑆0, 𝑁𝑆90, 𝑁𝑆180  and 𝑁𝑆270  respectively represent the 4 slice ranges of 4 orthogonal 

tomogram images of size 1360 × 1036, as shown in Figure 2.3. Here, as an example we 

look at the brain of an adult zebrafish. Within NS, the step for selecting a sinogram 

𝑠𝑡𝑒𝑝 = 𝑐𝑒𝑖𝑙(
𝑁𝑆

𝜌
) is experimentally determined and approximately 𝜌 sinograms from the 

range NS are evenly selected. The selected set of sinograms is defined as S. In this 

manner, specimen samples have approximately the same number of selected sinograms 

for CoR localization regardless of their different sizes.  

2) Interest point detection 

According to the design of our OPT imaging system, only the front half of the 

sample is in the DoF, so the projected data from opposite angles may vary differently 

depending on the rotation angle, specimen size and shape. However, a voxel projected at 

the left or right boundary of the specimen shares approximately the same image intensity 

with the opposite projection of the same sample location. This equivalence is shown as a 

peak and a trough along the sinogram. To illustrate our assumption, a sinogram from the 

fluorescence tomogram of a zebrafish larva is depicted as an example in Figure 2.4. Point 

O, A and B are the fluorescence signals of the 6 days post fertilization (dpf) zebrafish eye 

from 3 different angles, and O*, A* and B* are their corresponding opposite projections. 
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Figure 2.4. A sinogram of a zebrafish embryo showing the differences among pairs of opposite 

projected data. O and O*, A and A*, B and B* are pairs respectively. O and O* are interest 

points; while A and A*, B and B* are not. 

The projected data for a voxel in the eye should be formed as a sine function passing 

through O, A, B, O*, A* and B* in CT system, but in OPT only O and O* remain 

equivalent; while A and A* as well as B and B* differ significantly, being consistent with 

the assumption above. With this assumption, the CoR should be located with the 

oppositely projected pairs that are similar to O and O*. The problem of locating the CoR 

is therefore transformed as search for peaks and troughs on the sinogram edge; in our 

case defined as interest points. 

A sinogram is defined as 𝑆(𝜉, 𝜑) where 𝜑 is the rotation angle, and 𝜉 is the phase in 

each angle. The size of the sinogram is 𝜙 × 𝑝 in our case, with 𝜙 being the number of 

sample angles and 𝑝  being the tomogram height after cropping. As depicted in the 

flowchart in Figure 2.5, the procedure for detecting interest point is based on point 

selection from initial points 𝐸 = {𝜉𝑘 ,  𝜑𝑘},   𝑘 ∈ [1,𝑀]. 𝐸 is the collection of points using 

edge detection in a sinogram with M being the number of initial points. 𝑆𝑏(𝜉, 𝜑) refers to 

the binary sinogram. After point selection, the detected interest points are  𝑃 =

{𝜉𝑗 , 𝜑𝑗},   𝑗 ∈ [1, 𝑁], and 𝑁 ≤ 𝑀. In Figure 2.5, the detailed algorithm for point selection 

is presented in the flowchart. 

As shown in Figure 2.5, 𝑊0𝑘  and 𝑊𝑘  are the window patches of an initial point 

(𝜉𝑜𝑛𝑒 , 𝜑𝑜𝑛𝑒) 𝜖 𝐸, meeting different conditions. 𝐸𝐷𝑘 is the image edge detected from 𝑊𝑘. 

In 𝑊𝑘  we define 𝜃 as the angle passing through the 0-labeled centre (ξzero, φzero) and 

the 1-labeled centre (𝜉𝑜𝑛𝑒 , 𝜑𝑜𝑛𝑒) that are separated by edge 𝐸𝐷𝑘. If 𝐸𝐷𝑘 is enclosed, we 
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set a constraint of tan 𝜃 <
1

3
√3, where arctan

1

3
√3 = 30°, therefore only points with  

𝜃 < 30° will remain. The peak and trough within 𝑊𝑘 (indicated with red stars in Figure 

2.6) are defined as follows:  

                Peak:

{
  
 

  
 

  

𝜉𝑧𝑒𝑟𝑜 > 𝜉𝑜𝑛𝑒        
|𝐷𝜑| = (𝑤1 − 1)

𝐷(𝐷𝜉) < 0         

1 ∉ 𝑠𝑖𝑔𝑛(𝑑𝜉1)   

1 ∉ 𝑠𝑖𝑔𝑛(𝑑𝜉2)   

                     Trough:

{
 
 

 
 

  

𝜉𝑧𝑒𝑟𝑜 < 𝜉𝑜𝑛𝑒        
|𝐷𝜑| = (𝑤1 − 1)

𝐷(𝐷𝜉) > 0         

−1 ∉ 𝑠𝑖𝑔𝑛(𝑑𝜉1)

−1 ∉ 𝑠𝑖𝑔𝑛(𝑑𝜉2)

                     (2)            

𝐷𝜑 symbolizes the sum of derivatives of 𝐸𝐷𝑘  in the 𝜑 direction along the edge curve, 

while 𝐷(𝐷𝜉) is the sum of second derivatives of 𝐸𝐷𝑘 in the 𝜉 direction along the edge 

curve. When 𝐷(𝐷𝜉) < 0 , the function of the 𝐸𝐷𝑘  sequence is constrained as being 

convex, and if 𝐷(𝐷𝜉) > 0 , it is concave, corresponding to the peak and trough, 

respectively. We break  𝐸𝐷𝑘 into upper and lower edges: 𝐸𝐷𝑘1 and 𝐸𝐷𝑘2, both of which 

are started at the middle of 𝐸𝐷𝑘 in the φ direction. Now, 𝑑𝜉1 and 𝑑𝜉2 are separately the 

derivatives of  𝐸𝐷𝑘1 and 𝐸𝐷𝑘2 in the 𝜉 direction.  

Applying the definition from Eq. (2), false-peak and false-trough (indicated with 

purple stars in Figure 2.6) are not kept as interest points, as they are not true sine peaks 

but rather intersections of different sine functions, which should therefore be discarded. 

Furthermore, when a true trough satisfies R (yellow star in Figure 2.6), 

                                             𝑅 =

{
  
 

  
 

  

𝜉𝑧𝑒𝑟𝑜 < 𝜉𝑜𝑛𝑒        
|𝐷𝜑| = (𝑤1 − 1)

𝐷(𝐷𝜉) = 0         

𝑠𝑖𝑔𝑛(𝑑𝜉1) = 0  

𝑠𝑖𝑔𝑛(𝑑𝜉2) = 0  

                                                       (3) 

or a true peak satisfies Q, 

                                             𝑄 =

{
  
 

  
 

  

𝜉𝑧𝑒𝑟𝑜 > 𝜉𝑜𝑛𝑒        
|𝐷𝜑| = (𝑤1 − 1)

𝐷(𝐷𝜉) = 0          

𝑠𝑖𝑔𝑛(𝑑𝜉1) = 0  

𝑠𝑖𝑔𝑛(𝑑𝜉2) = 0  

                                                       (4) 

The edge 𝐸𝐷𝑘 in 𝑊𝑘 of size 𝑤1 is strictly vertical. Then it does not satisfy the definition 

of peak or trough in Eq. (2). The reason for the inconsistency is caused by the size of 𝑊𝑘. 

Therefore, to solve this problem, a bigger patch (set as 2𝑤1+1 in our experiment) is set to 

satisfy Eq. (2) in a bigger patch, following the same steps for interest point detection in 

Figure 2.5. 
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Figure 2.5. Flowchart of the algorithm for interest point detection. The binary sinogram and 

initial points are obtained through OSTU segmentation 
[50]

 and the  Sobel edge detector 
[51]

  

respectively.  

 



Chapter 2 

 

34 
 

3) CoR localization and alignment 

According to the definition of CoR localization above, CoR for single sinogram 

should be first localized. With the interest points P = {ξj, φj},   j ∈ [1, N]  detected in 

single sinogram, the CoR range is obtained as  [ξmin, ξmax] , where ξmax  and ξmin  are 

respectively the maximum and minimum of ξj in the interest points P. For a specific CoR 

value c, we locate the corresponding opposite points for P as Pc
′ = {(ξj , φj)c

′
},   j ∈ [1, N], 

which are symmetric by c and have an interval of π in projection. To find a mathematical 

metric between P and Pc
′, we define the neighbors of (ξj , φj) and (ξj , φj)c

′
 as rc(ξj, φj) 

and rc
′(ξj, φj). As shown in Figure 2.4, the projection data between interest point (ξj , φj) 

and its opposite point (ξj , φj)c
′
 should be approximately equivalent, so we localize the 

optimal CoR in the range of [ξmin, ξmax] for the ith sinogram by formulating: 

                              𝐶𝑖
∗ = min𝑐

1

𝑁
∑ (𝑟𝑐(𝜉𝑗 , 𝜑𝑗) − 𝑟𝑐

′(𝜉𝑗 , 𝜑𝑗))
𝑁
𝑗                                    (5) 

For the selected 𝜌 sinograms, the localized optimal CoRs are 𝐶 = {𝐶1
∗, 𝐶2

∗, … , 𝐶𝜌
∗}; so the 

most frequently occurring value 𝐶∗ in C is referred to as the CoR for a single channel, 

either the bright-field or fluorescence channel.  

 

 

Figure 2.6. A bright-field sinogram (displayed inverted) from a chicken heart images with interest 

points detected (shown as red and yellow stars). Edge points, i.e. initial points, are shown in cyan; 

while false-peaks are shown as purple stars. 
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For multiple channels the sinograms should be aligned to the same size with the same 

CoR before 3D reconstruction. The disparity between different channels may be a result 

of a mechanic drift, when images are recorded at different time. We illustrate our 

alignment scheme in two channels (fluorescence and bright-field), but it is also suitable 

to multiple channels. The ith sinogram 𝑆𝑖  of size 𝜙 × 𝑝  in each channel is aligned 

centered by C∗ as Si
′ of size  𝜙 × 𝑞. This is accomplished by using:  

                                                 𝑞 = {
2 × 𝐶∗ ,               𝐶∗  <

𝑝

2

2 × (𝑝 − 𝐶∗ ),   𝐶∗  ≥
𝑝

2

 ,                                            (6) 

and   

     𝑆𝑖
′
= {

 𝑆𝑖(1: 2𝐶
∗ , 𝜑),             𝐶∗  <

𝑝

2

 𝑆𝑖(2𝐶
∗  − 𝑝: 𝑝, 𝜑),      𝐶∗  ≥

𝑝

2

                                        (7) 

As illustrated in Eq. (6), q is calculated to be smaller than p to preserve sufficient 

sinogram information, as well as to avoid redundant background reconstruction, i.e. 𝑆𝑖 is 

truncated instead of being extended, which consumes more time for reconstructing the 

background. With Eq. (6) and Eq. (7), the ith sinogram for the fluorescence and bright-

field channel are 𝑆𝑓𝑖
′  and  𝑆𝑏𝑖

′  with size of  𝜙 × 𝑞𝑓  and  𝜙 × 𝑞𝑏  respectively. They are 

aligned to the same CoR with the same size as 𝑆𝑓𝑖
∗  and 𝑆𝑏𝑖

∗  by using: 

                                       {
𝑆𝑓𝑖
∗ = (𝑧0, 𝑆𝑓𝑖

′ , 𝑧0); 𝑆𝑏𝑖
∗ = 𝑆𝑏𝑖

′ ,         𝑞𝑓 < 𝑞𝑏

𝑆𝑓𝑖
∗ = 𝑆𝑓𝑖

′ ;  𝑆𝑏𝑖
∗ = (𝑧0, 𝑆𝑏𝑖

′ , 𝑧0),         𝑞𝑓 > 𝑞𝑏
                               (8) 

where z0  is a Zero matrix with size of   𝜙 × |Cf
∗ − Cb

∗ | , and  Cf
∗  and  Cb

∗  represent the 

located CoRs for the fluorescence and bright-field channel. 

2.3.2 Reconstruction and fusion 

Next, from the corrected sinogram, now we have a new sinogram. Applying inverse 

radon transform or filtered back projection (FBP) 
[52]

 to both the bright-field and the 

fluorescence channel of the obtained samples, the reconstructed images are formed  as 

𝑅𝑏
𝑡 = {𝑅𝑏1, … , 𝑅𝑏𝑙 , … , 𝑅𝑏𝐿} and 𝑅𝑓

𝑡 = {𝑅𝑓1, … , 𝑅𝑓𝑙 , … , 𝑅𝑓𝐿} respectively. L is the number 

of sinogams at imaging time t. The intensities in 𝑅𝑓𝑙 and 𝑅𝑏𝑙 refer to the fluorescence and 

bright-field signals. For transparent specimens, such as the zebrafish larvae from our 

experiments, the bright-field signals are generally distributed in vertebra and cartilage, 

providing a description of the silhouette of the zebrafish. Therefore, by fusing 𝑅𝑓
𝑡 and 𝑅𝑏

𝑡 , 

fluorescence signals, for instance a pattern of gene expression could be located and 

analysed within specimens at the specific time t. 𝑅𝑓
𝑡 and 𝑅𝑏

𝑡  are fused according to their 

equivalent slice number l and imaging time t. For each voxel in the fused 4D image, 

𝑉(𝑥,𝑦,𝑙,𝑡) = (𝐼𝑓 , 𝐼𝑏) describes its signals of different channels, and (𝑥, 𝑦, 𝑙, 𝑡) symbolizes 
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the coordinate in 4D space. (𝑥, 𝑦) corresponds to the pixel of the reconstructed image 

slice, while l and t symbolize the slice number and imaging time. 𝑉(𝑥,𝑦,𝑙,𝑡)  could be 

further used in a 3D segmentation procedure and quantification of fluorescence, i.e. gene 

and/or protein activity,  in the specific specimen or organs. 

2.3.3 Parallel setting   

 

Figure 2.7. Parallel framework for CoR correction and 3D reconstruction. Processor 0 is 

responsible for sinogram selection, broadcast and collective communication, as well as 

normalization before image writing. 
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In order to speed up computations, we implemented a parallel computing scheme on our 

cluster computers, i.e. LLSC, for both the CoR correction as well as for the 3D 

reconstruction. This scheme is an essential part of our proposed pipeline. The specific 

implementation is illustrated in Figure 2.7. K represents the number of available 

processors. Processor 0 is defined as the Master processor unit responsible for sinogram 

selection, broadcast and collective communication. The selected sinograms S are then 

distributed to the K processors for localizing the corresponding CoRs using Eq. (5). All 

the CoRs from different processors are gathered by the Master processor unit to calculate 

the 𝐶∗ of each channel. Subsequently, the CoR alignment  of the different channels using 

Eq. (6), Eq. (7) and Eq. (8) is also processed on the Master processor unit. After CoR 

correction, the Master processor unit distributes the L slices of aligned sinograms to the K 

processors for the 3D reconstruction. The reconstructed image slices will be gathered 

again to the Master processor unit for normalization before image writting.  

2.4 Experiments 

In this section, we first evaluate the reconstruction pipeline without the CoR correction, 

qualitatively and quantitatively comparing the results with the pipeline considering the 

CoR correction. The runtimes of distributed computing for both experimental setups are 

measured and compared. We present a new CoR correction algorithm in this chapter, 

therefore further performance comparisons with previous CoR correction algorithm are 

also included.     

2.4.1 Experiments on the fast post-processing pipeline 

Instead of calibration of CoR based on adapting the adequate parts in the imaging system, 

we acquired a tomogram of a zebrafish sample and reconstructed it using the proposed 

pipeline. The raw 1036×1360×400 OPT tomogram was first cropped, producing a 

smaller image size of 506×1360×400, followed by a background subtraction from the 10 

background images acquired, cf. § 2.2.2. The cropping and background subtraction 

normally take less than 1 second, the average time of each channel for CoR correction 

and 3D reconstruction is 15.05s and 18.81s respectively with 5 nodes of 8-core 2.66 GHz 

CPU+ 16G RAM and 8 nodes of 4-core 2.66 GHz CPU+16G RAM. The number of 

selected sinograms is set to 𝜌 = 40  to balance the effectiveness and computational 

complexity of CoR localization, and the patch size is  𝑤1 = 15. The visualizations of 3D 

reconstruction without and with the CoR correction are respectively shown in Figure 2.8 

(a), (b), (c) and Figure 2.9 (a), (b), (c). It is obvious that Figure 2.9 (a), (b) and (c) contain 

distinct signals in both channels while Figure 2.8 (a), (b) and (c) show blurred 3D models 

and signals. Maximum projections of 10 slices of cross-section image selected from the 

combination model in (c) are magnified in Figure 2.8 (d) and Figure 2.9 (d). Figure 2.9 (d) 

accurately represented the zebrafish spinal cord and specific GFP fluorescent signals.  
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Figure 2.8. An example of 3D reconstruction for a zebrafish without CoR calibration prior to 

image acquisition . The results are obtained based on the proposed pipeline without CoR 

correction. (a) , (b) 3D image in bright-field and Fluorescence channel. (c) The combination of (a) 

and (b). (d) Reconstructed slices between 410 and 419 of (c). The bright-field and fluorescence 

signals are shown in red and green and the intersections of them are in yellow. (e) The coefficient 

of variation of all slices corresponding to (c). (f) Normalized histograms for the average of the 10 

slices selected from (c) and (e) . black arrows indicate the statistical characteristics of the 

reconstructed silhouette for the zebrafish.  

Figure 2.9. 3D reconstruction for the same zebrafish sample as Figure 2.8, without CoR 

calibration prior to image acquisition , but the omission of the calibration is  compensated  with 

the proposed  pipeline with CoR correction. (a), (b) 3D image in bright-field and Fluorescence 

channel. (c) Combination of (a) and (b). (d) Reconstructed slices between 410 and 419 of (c). The 

bright-field signals (in red) show the outline of the zebrafish. The fluorescence signals (GFP) are  
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shown in green and the brightness of color indicates the strength of GFP signals, decribing the 

fluorescent texture. (e) coefficient of variation of all slices corresponding to (c). (f) Normalized 

histograms for the average of the 10 slices selected from (c) and (e). The peaks (background) are 

higher and the edges (black arrow) are much sharper compared to those in Figure 2.8 (f). 

To quantitatively compare the difference between the reconstructed slices without and 

with CoR correction, coefficient of variation (CV): CV =
σ

μ
 is calculated for each 

reconstructed slice as shown Figure 2.8 (e) and Figure 2.9 (e). It should be noted that the 

CVs calculated in our experiments are based on the raw reconstruction without scaling. 

In terms of reducing artefacts produced in the reconstruction, we aim to simultaneously 

maximize the variance and minimize the mean of bright-field and fluorescence signals, 

presenting the specimen with the least of blur. By comparing Figure 2.8 (e) with Figure 

2.9 (e), we can see that after CoR correction CV increases significantly on all slices in 

both channels. 

To observe more details in the reconstructed image slices, the histograms for the 

average image of the selected 10 slices without and with CoR correction are illustrated in 

Figure 2.8 (f) and Figure 2.9 (f). The pixel value corresponds to the bright-field or 

fluorescence signal strength. In practice, the bright-field image is inverted to satisfy the 

correspondence of pixel value and signal strength. In Figure 2.8 (f) and Figure 2.9 (f), the 

peaks of the histogram indicate the pixel values of the background, and values for signals 

are on the right of the peak. We can observe that the background boundary of the 

histogram (black arrow) in Figure 2.9 (f) is sharper than that in Figure 2.8 (f). The peaks 

in Figure 2.9 (f) are both higher than peaks in Figure 2.8 (f), indicating that CoR 

correction clears the background which is smeared by blurred artefacts. This is consistent 

with the refined and distinct silhouette and texture of reconstructed image with CoR 

correction.  

    To illustrate the over-all runtime of the pipeline in our system, we repeat the 

experiments on 10 more sample specimens including zebrafish, zebra-finch embryo and 

adult chicken heart. These samples are acquired at different magnifications. The 

parameters for the CoR correction and the configuration of parallel computing are set as 

the same as the experiments above. The only difference is that we fixed the image size to 

the original 1036×1360×400 pixels without cropping to exclude the influence of different 

image sizes on the runtime. Figure 2.10 describes the runtime of 3D reconstruction (Rec) 

and that of 3D reconstruction with CoR correction (Rec&CoR). Over all, Rec takes an 

average time of 26.91s and Rec&CoR takes 54.66s for all the 10 dataset tested. 
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Figure 2.10. The runtime (solid axis) of the pipeline implemented on the cluster. Rec represents 

the runtime for 3D reconstruction and Rec&CoR indicates the runtime that includes CoR 

correction as well. The increasing runtime of REC&CoR corresponds to the increasing number of 

interest points (dashed axis) detected in the CoR correction algorithm on different data.   

2.4.2 Comparison of different CoR corrections on different data 

Three previous CoR correction approaches are analysed and compared to our method on 

the 12 OPT images. The Pixel Match method 
[42]

 and the Cross Correlation Operation 

(CCO) method 
[43]

 are based on signal match for pairs of projection, both of which are 

successfully used in CT CoR correction. The most commonly used method for CoR 

correction in OPT, as described in 
[46]

, here referred to as the Automated method. As the 

results of CoR correction depend on the selection of sinograms, the comparisons of 

different CoR correction methods are implemented on multiple sinograms selected with 

the proposed strategy above. For our experiments, the 12 OPT datasets consisting of 

whole-mount organisms as well as dissected organs. As the developmental stages differ, 

the size and shape differs. The samples comprise zebrafish embryo (ZE), chicken heart 

(CEH) and zebra finch embryo (ZFE) using both the bright-field (B) and fluorescence (F) 

channel. The samples are part of researches in embryo development, skeleton 

development and heart defection.  
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Figure 2.11. The comparison of average coefficient of variation (CV) for reconstruction with 4 

different CoR correction methods on 12 datasets. For each dataset, larger CV corresponds to 

discrimination of information and less artefacts introduced by reconstrution. ZE: zebrafish 

embryo; CEH : chicken heart; ZFE: zebra finch embryo; Different prefixes refer to different 

developmental stages of the sample specimens at acquisition. B and F are the bright-field and 

fluorescence channel. 

Table 2.1. Runtimes of different CoR alignment aprroaches in each sinogram on different datasets 

Datasets Pixel Match(s) CCO(s) Automated(s) Ours(s) 

ZE01(F) 0.6897 102.8966 1043.1034 10.3448 

ZE01(B) 0.6765 102.7941 1042.7941 12.2941 

ZE02(F) 0.6897 102.9310 1043.3793 11.7241 

ZE02(B) 0.6786 102.8929 1042.8214 11.7241 

H36CEH (F) 0.6774 102.9032 1043.2580 2.2258 

H36 CEH (B) 0.6667 102.9333 1042.8444 6.2888 

H28 CEH (F) 0.6800 103.1200 1043.1200 5.2000 

H26 CEH (F) 0.7200 103.2000 1043.2000 4.3200 

H30 CEH (B) 0.6774 103.5484 1043.1935 4.1612 

H34 CEH (B) 0.6897 103.5517 1043.0344 3.3793 

Tg228 ZFE (B) 0.7143 103.1786 1042.8571 2.6785 

Tg225 ZFE (B) 0.7857 103.2143 1042.7857 2.7857 

Average 0.6955 103.097 1043.0326 6.4272 
 

In Figure 2.11 the results are depicted. These indicate the measurement of CV 

considering both the variance and mean of the reconstructed results, which are more 

convincing and reliable. The data used for CV calculation is the raw data after 

reconstruction but before image normalization, excluding the effect of scaling. We 
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should consider that the CV is only a criterion for evaluating the performance of different 

reconstruction of the same specimen. It is not suitable for comparing the reconstruction 

performance across specimens, because the variance and mean value differs in the 

different specimen structures. However for the same specimen, the CV is very suitable 

for evaluating reconstruction performance than variance in 
[46]

. In Figure 2.11, the 

Automated method  
[46]

 and our method obtained maximum values for the CV in all the 

12 datasets, because both methods achieved the optimal and equivalent CoR in each 

dataset. The Pixel Match 
[42]

 and CCO methods 
[43]

 gained different reconstruction and 

CV performance on the different data. The reason for this variation is that the algorithms 

in 
[42]

 and 
[43]

 strongly depend on the symmetry of all opposite projected pixel pairs. In the 

process of OPT imaging system, however, most of the pairs are not symmetrical. 

Achieving competitive performance to the Automated method regarding to 

reconstruction quality in Figure 2.11, our method performs significantly superior to CCO 

method and Automated method in terms of its computational complexity; cf. Table 2.1. 

With the computer configuration of 16Gb RAM and 8-core 3.4GHz CPU, the average 

runtime of different CoR correction methods for single sinogram are 0.6955s, 103.097s, 

1043.0326s and 6.4272s respectively. The Pixel Match method 
[42]

 achieves highest 

runtime performance, but its capability of optimal CoR correction is limited. Overall, our 

method outperforms the other three by considering the effectiveness and complexity of 

synchronous computation. It is noteworthy that in our method the runtime of different 

datasets varies due to the differences in the number of interest points. The other three 

approaches, however, consume approximately the same runtime for each sinogram 

because they are considering a fixed number of sinogram pixels. 

2.5 Conclusions 

In this chapter we presented a fast post-processing pipeline for OPT tomograms including 

cropping, background subtraction, CoR correction and 3D reconstruction, with focus on 

parallel computing. For CoR correction, a new automated CoR correction method was 

proposed, outperforming the other three CoR correction approaches in terms of general 

efficiency. In terms of 3D reconstruction, we have implemented the inverse radon 

transform on our cluster computer, i.e. LLSC, to achieve faster reconstruction. A pipeline 

was implemented using parallel computation and the average runtime based on the 10 

datasets with a fixed image size of 1036×1360×400 is 54.66s, using 5 nodes of 8-core 

2.66 GHz CPU+16G RAM and 8 nodes of 4-core 2.66 GHz CPU+16G RAM. 

Furthermore, the proposed CoR correction methodology could suppress random or fixed 

noise in background, because only peaks and troughs of the sinogram from foreground 

are detected as interest points. Importantly, the proposed pipeline and CoR correction are 

also suitable for 3D CT image reconstruction and comparison when used in medical 

therapy. Currently, the integrated system including imaging, data transfer, pre-processing, 

CoR correction, 3D reconstruction and visualization is being optimized as a distributed 
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application. With this integrated system, a profile of the organism/organ enhanced 

fluorescence probes within it can be imaged, reconstructed and visualized in a very short 

period of time. In our future work, a quantitative model for locating, calculating and 

tracking fluorescent signals (gene and/or protein activity) will be established. 
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Chapter 3 

Deblurring Images from 3D Optical Projection 

Tomography Using Point Spread Function 

Modelling  
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Chapter summary 

Optical projection tomography is successfully used in the life-sciences for 3D imaging of 

specimens of size between 1 𝑚𝑚 and  10 𝑚𝑚. However, this requires imaging of large 

specimens at a large depth of field, which normally results in blur in imaging process, i.e. 

it compromises the image quality or resolution. Yet, it is important to obtain the best 

possible quality 3D image from the OPT, therefore deblurring of the image is important. 

The imaging process is modelled through the point spread function: the imaging of a 

point light source through the lens system. In this chapter we first model the point spread 

function along optical axis which varies at different depths in the OPT imaging system. 

Subsequently, the magnification is taken into account in the point spread function 

modelling. Deconvolution in the coronal plane based on the modelled point spread 

function is implemented to correct for blurring. Experiments with the proposed approach 

based on 25 3D images including 4 different categories of samples, indicate the 

effectiveness of quality improvement assessed by image blur measures from both the 

spatial and frequency domain. 
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3.1 Introduction 

Here we introduce the origin for imaging blur in optical projection tomography (OPT) 

and elaborate our motivation of deblurring the 3D image using the point spread function 

(PSF). The aim of our contribution is to improve the visual resolution by deblurring the 

3D OPT image by means of deconvolution based on the modeled PSF of the imaging 

system. This will, for large samples with a focal plane being at or away from the centre 

of rotation (CoR), recuperate the imperfections of 3D image resulting from the imaging 

system. The method for the PSF modelling will be explained in Section 3.2 and the 

qualitative and quantitative image comparison will be presented in Section 3.3. In Section 

3.4 we will give our conclusions.  

3.1.1 Background: 3D image deconvolution 

As mentioned in Chapter 1 (cf. § 1.1), OPT is an optical 3D imaging technique typically 

for objects at tissue-, organ- and organism-level in the magnitude range of millimeters, 

thereby filling a gap between confocal and computational tomography imaging in the 

resolution range. We use depth of field (DoF) to assess the image quality - DoF is 

defined as the distance between the nearest and the furthest objects in an image that are in 

acceptable sharp focus. A point object located within the DoF of the optical system is 

considered to be in focus, but not necessarily in optimal focus. Beyond the DoF, the 

object is out of focus 
[32]

. DoF in OPT imaging system is shaped as a double fan 

symmetric around the focal plane. For OPT imaging and reconstruction, the DoF is 

expected to be large enough to contain as much of the sample as possible. In this manner 

the parts of the sample located in the DoF will result in an image more or less in focus. 

However according to previous studies 
[32],[33]

, a large DoF subsequently introduces 

image blur resulting in low in-focus image quality. The image quality in this chapter is 

also referred to as image resolution according to some literatures 
[53]

, i.e. the extent to 

which detail can be observed. The trade-off between DoF and image quality should be 

considered when selecting lens for an OPT imaging system. A lens with low numerical 

aperture (NA) will produce a large DoF, allowing imaging of larger samples but results 

in a relatively blurred image. 
 

A 3D image is reconstructed from the OPT tomogram that are obtained by rotating the 

specimen and acquiring a series of wide-field images at regular angular intervals. This is 

accomplished over a full revolution of the specimen. The Filtered Back Projection (FBP) 

algorithm is typically used for 3D image reconstruction 
[54]

 in this case, cf. § 2.2. 

Deconvolution applied to the reconstructed 3D image is defined as 3D image 

deconvolution in this thesis. 

A typical way to improve the image quality to meet the resolution in the best possible 

way is the application of deconvolution on each reconstructed slice at individual depth, 

using a constant theoretical or experimental PSF. This is commonly used in 3D scanning 

microscopy, e.g. confocal laser scanning microscopy (CLSM), where the images 
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acquired from microscopy are actually a subset of reconstruction slices. However, this 

approach, in terms of constant PSF deconvolution, is not strictly suitable for OPT 

imaging. Because the imaging PSF within the DoF in OPT system, varies at different 

depths along the optical axis. It is, therefore, necessary to model this variation in OPT 

imaging, which can be subsequently used for 3D image deconvolution. This explains our 

motivation for PSF modelling in OPT imaging system.      

According to Chen et al. 
[55]

, OPT is typically performed with specimens that extend 

beyond the Rayleigh length or Rayleigh range of the imaging lens. Therefore, the 

tangential resolution of the reconstructed 3D image decreases away from the focal plane 

in a radial manner. When the focal plane coincides with CoR, the tangential resolution, 

centred at the CoR, decreases in a radial-symmetrical fashion. For an imaging system 

with a focal plane located away from the CoR the decrease in resolution is more 

complicated but the highest resolution is still found around the focal plane. In this case 

the focal plane in the reconstructed slice corresponds to a circle centred at the CoR, rather 

than a point coincident with the CoR. This subsequently appears as a cylindrical surface 

in the 3D image centred at the CoR. 

The tangential resolution of the OPT 3D image slice decreases radially around the 

focal plane. Theoretically, the best resolution of the reconstructed 3D image can be 

achieved by combining all the coronal deconvolutions of different sample angles. The 

coronal deconvolution means deconvolving the 3D image with the PSF slice by slice in 

the coronal plane along its depth axis. This depth axis is parallel to optical axis of the 

modelled PSF. We will only implement the coronal deconvolution in 2 opposite angles, 

i.e. the reconstructed 3D image and its opposite sample at 180° centred at the CoR, in 

parallel considering the enormous time consumption of 3D matrix rotation in N angles 

and the symmetry of the focal plane. When the focal plane is off the CoR during the 

imaging process, the shift is accounted for by a shift in the model of the PSF.  

In this chapter we focus on the presentation of the concept of PSF modelling and 

coronal deconvolution on 3D OPT data, accompanied by some initial experimental 

results based on 25 3D images including 4 different categories of samples. Further 

evaluations on a larger number of data are point of our current research. 

3.1.2 Related work 

Accounting for the trade-off between large DoF and high resolution, previous studies 

have proposed several methods to this problem. One possibility is choosing a high NA 

lens to acquire a high-resolution image and combining multiple focal planes in a 

simultaneous manner 
[56]

 or scanning the focal plane through the sample 
[57]

 (Miao et al., 

2010) . These multiple focal plane approaches solve the issue of narrow DoF, but the 

mechanism of multiple measurements and scanning increases the acquisition time and the 

complexity of the imaging system. Another direction is to use a reasonable NA lens and 

deblur the image by employing a deconvolution or filter on images before or after 

reconstruction. Walls et al. 
[32]

 first applied the frequency-distance relationship (FDR) 
[58]
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in OPT. The corresponding filter was implemented on the sinogram prior to 

reconstruction. The quality of the 3D image can be further improved with weighted 

filtered back projection (WFBP) 
[59]

; this is accomplished by considering the intensity 

distribution of multiple fluorescent spheres of known size along the optical axis. But the 

implementation of evenly placing each sphere along the optical axis is rather difficult to 

achieve. Chen et al. 
[55]

 proposed a way to determine the modulation transfer function 

(MTF) that contributed to MTF-mask filter and MTF-deconvolution filter in the 

reconstruction process. The former filter significantly reduced the artifacts produced by 

sparse projection but the latter filter had limited improvement on tangential image 

resolution. Additionally, a spatial-invariant experimental PSF was investigated by 

McErlean et al. 
[60]

 in order to improve the spatial resolution. However, spatial-invariance 

of the PSF is not entirely convincing for OPT. Most recently, a new deconvolution 

approach based on the reconstructed 3D image was proposed by Horst et al. 
[53]

. In their 

approach the PSF was modelled and as such they achieved significant improvement on 

the reconstructed slice. Nevertheless, they focused on the deconvolution of vertically 

independent slices and omitted the PSF diffractions along the optical axis that concerns 

the interaction of different slices.  

In this chapter, we present our contribution by modelling an experimental PSF from a 

single sphere along optical axis, thereby considering the interaction of contiguous slices 

from the reconstructed volume. At the same time, the magnification, as obtained from a 

zoom lens, is taken into account in the experiments.  

3.2 Materials and methods 

In order to model the PSF for our OPT imaging system, we first propose a protocol to 

prepare for the imaging of a point source, i.e. a fluorescence sphere or bead. The 

modelling approach will then be introduced and elaborated. This approach will be 

subsequently used for the deconvolution of 3D image in OPT.   

3.2.1 Sample preparation of a single fluorescence sphere 

To image the specimens in the range of several millimeters small-valued NA lens is used 

to obtain the large DoF in our OPT imaging system, i.e. effective NA: 0.0105~0.0705 as 

part of a Leica Stereo Microscope. The resolution of an optical system is defined as the 

minimum distance 𝑟 at which two separate points can be distinguished as individuals. 

According to the Rayleigh criterion 𝑟 = 0.61 ∗ 𝜆/𝑁𝐴 for a circular aperture with 𝜆 =
509 𝑛𝑚 is the emission wavelength, the minimum size of the experimental fluorescence 

sphere is supposed to be in the range between 4.40 𝜇 and 29.57 𝜇. To make it visible in 

the image the sphere size is supposed to exceed this range. In our case, we choose the 

fluorescence sphere of size 43.2 𝜇𝑚 and diluted it to a concentration of 360 𝑏𝑒𝑎𝑑𝑠/𝑚𝑙. 
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Figure 3.1. The injection protocol with green spots indicating the injection position of fluorescence 

spheres. The cylinder corresponds to the shape of the agarose block as mounted in the OPT. 

To image and model the PSF along optical axis we have developed an injection-based 

protocol to place the spheres into agarose as follows: 

 1% low melting point (LMP) agarose, cool down to ~37°; 
 Drill cylindrical agarose shapes when it is semi-solidified in a petri dish; 

 Inject the diluted spheres into the outer wall of the agarose along a line parallel to the 

central axis, preferably with a small size syringe. We use a 0.5 ml syringe with a 

needle length of  13 𝑚𝑚 and diameter of  0.29 𝑚𝑚, as shown in Figure 3.1; 

 Keep the agarose at 4℃ until it is fully solidified (~3 hours); 

 Clear the sample with 70%, 80%, 90%, 96%, 100% ethanol, 100% ethanol: BABB 

(benzyl alcohol: benzyl benzoate = 2: 1) = 1: 1 and BABA. 

Our goal is to acquire the images of a single sphere placed at different depths along 

optical axis. Therefore, randomly sprinkling the spheres into the agarose in a traditional 

way is not feasible. The main reason is that there may be interactions and overlap 

between different spheres either at the same or different depths. This makes the selection 

for imaging of a single sphere image difficult or even impossible. The images of each 

single sphere at different depths are acquired by means of sample rotation. Each rotation 

corresponds to a different depth in the OPT imaging system. The sphere injection method 

in of our protocol significantly reduces the probability of overlapping between different 

spheres. In this way the images of the same sphere in a full revolution can be easily and 

efficiently acquired. The OPT imaging system and environment is configured as 

explained in chapter 1 cf. § 1.2. 

3.2.2 PSF modelling concerning different magnifications 

For our experiments the acquisition of a single sphere comprises a full revolution in 0.9° 
steps resulting in 400 images. In Figure 3.2 the processes of sphere image acquisition and 

PSF modelling are depicted. In Figure 3.2(a) and (b), the green dot represents the sphere 

and the red arrow indicates the sphere rotation. The excitation and emission beams are 

regarded to be parallel. This is indicated by blue and green arrows in Figure 3.2(a). For
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 PSF modelling, the focal plane is set at the CoR. The 3D image whose focal plane is 

shifted from the CoR, requires an equal shift in the PSF. With the protocol (cf. section 

3.2.1) the physical rotation radius of the sphere 𝑟𝑏 can be easily measured. To this end, 

we first measure the radius of the cylindrical agarose 𝑟𝑐 and image it in the bright-field 

mode with short exposure time. In the same experimental environment, the sphere is 

afterwards imaged in the fluorescence mode. 𝑟𝑏 is calculated as: 

                                                               𝑟𝑏 =
𝑑𝑏𝑖

𝑑𝑐𝑖
∙ 𝑟𝑐                                                         (1)    

with 𝑑𝑏𝑖 representing the rotation diameter of the sphere in the tomogram, achieved by 

measuring the distance of two opposite sphere centres that are both in focal plane. 𝑑𝑐𝑖 is 

the diameter of the cylindrical agarose in the bright-field image. Dividing 𝑟𝑏  by the 

number of steps required for a rotation of  𝜋/2, i.e. the rotation radius 𝑟𝑏, the depth of 

each rotation step along optical axis is approximately determined as 𝑟𝑏/100 
*
. In our case 

the measured  𝑟𝑐 = 4 𝑚𝑚 , 𝑑𝑏𝑖/𝑑𝑐𝑖 = 0.751 , producing 𝑟𝑏 ≈ 3 𝑚𝑚 . Therefore, the 

physical distance of two adjacent rotations along optical axis is approximately 30 𝜇𝑚.   

 
Figure 3.2. Image acquisition and PSF modelling of a single fluorescence sphere. (a) The light path 

of the OPT imaging system that passes through fluorescence sphere (green dot). The excitation 

beams and emission beams are separately shown as blue and green arrows. (b) Images of the 

single sphere acquired at different angles. (c) Images of the single sphere stacked according to the 

defocus. Half rotation with defocus range [−𝒓𝒃,  +𝒓𝒃] is required, in our experiment  𝐫𝐛 = 𝟑 𝒎𝒎 

as calculated from Eq. (1). (d) The experimental and discrete PSF with defocus [−𝒓𝒃,  +𝒓𝒃]. (e) 

The modelled and continuous PSF with defocus [−𝒓𝒃,  +𝒓𝒃].  
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Figure 3.3. PSF modelling along the optical axis. (a), (d) Experimental PSFs acquired from images 

at magnification of 12.5 × and 25.0 ×. (b), (e) The corresponding modelled PSFs using Eq. (4) and 

Eq. (5). All the voxels of experimental data in (a) and modelled data in (b) are respectively 

transformed to blue and red dots in 1D functional in (c) to visualize the modelling performance. 

The vertical axis in (c) displays the intensity that corresponds to the voxel intensity in (a) and (b). 

Similarly, voxels in (d) and (e) are transformed to the data in (f). 

According to the definition, the optical imaging PSF is assumed as a focused 

Gaussian-like beam 
[61]

, i.e:  

                                              𝑝(𝑠, 𝑡, 𝑑) =
1

2𝜋𝜎(𝑑)2
∙ 𝑒𝑥𝑝 (−

𝑠2+𝑡2

2𝜎(𝑑)2
)                                    (2) 

Where 𝑠, 𝑡, 𝑑 are the three axes in 3D space, with 𝑑 being the optical axis. The 𝜎(𝑑) is 

beam waist (Figure 3.2) given by: 

                                                      𝜎(𝑑) = √𝜎0
2 + (

𝜆𝑑

𝜋𝜎0
)2                                                 (3) 

with σ0 the Gaussian beam waist defined as the 1/e value of the field amplitude in focus, 

λ the emission wave length of fluorescence spheres and 𝑑 the defocus along optical axis.  

For a specific magnification, σ0 is constant, but it varies when imaging with different 

magnifications. Additionally, in Eq. (2) and Eq. (3) the beam waist σ(d) is typically 

regarded as the standard deviation of the Gaussian model in previous studies 
[53]

. 

Different from the Gaussian model 
[53]

, we can further generalize the model by 

employing parameters ρ1, ρ2 and ρ3 as follows: 
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                                𝑝(𝑠, 𝑡, 𝑑) = 𝜌1 ∙
1

2𝜋𝜎(𝑑)2
∙ exp (−

s2+t2

2σ(d)2
)𝜌2 + 𝜌3                                (4)   

Instead of equalizing the beam waist and standard deviation as described in [53] and 

[61], we investigate the relationship between them by multiplying a parameter 𝑎 with 

beam waist, thereby considering different magnifications; thus,  

                                              𝜎(𝑑) = 𝑎 ∙ √𝜎0
2 + (

𝜆𝑑

𝜋𝜎0
)2                                                   (5)   

To relate the beam waist in focus 𝜎0 and the scale parameter a to the magnification, 6 

magnifications i.e. 12.5 ×, 15.0 ×, 17.5 ×, 20.0 ×, 22.5 ×, 25.0 ×, are configured to 

acquire the images of the same sphere. The magnifications are obtained through zooming. 

The magnification of 12.5 × approximately corresponds to the minimum magnification 

that renders the sphere visible in our experiment, while 25.0  ×  approximates to the 

maximum magnification that confirms that a full revolution of the sphere remains in the 

field of view (FoV). The PSF of each magnification is modelled by creating an 

optimisation problem and solving it with least square curve fitting. The overall fitting 

error of the 6 experimental PSFs is 5.00%. The experimental PSFs acquired from images 

with magnification of 12.5 × and 25.0 × are shown in Figure 3.3 (a) and (d) respectively. 

The color of the voxel indicates the intensity of PSF response. (b) and (e) represent the 

modelled PSFs of the two magnifications. Voxels in 3D space are converted to a 1D 

space with horizontal axis approximating the optical axis and vertical axis displaying the 

intensity. The 3D voxels on the slice in (a) and (b) match the 1D points in the box in (c) 

according to the same color. The experimental PSF differentiation between two 

magnifications is evident in (a) and (d). By transforming the 3D space to 1D functional, 

we can intuitively visualize and understand the distribution of the experimental PSF (blue 

dots) and the modelled PSF (red dots), as well as showing the differences between them. 

     With the proposed modelling approach on our data, the parameters 𝜌1, 𝜌2 and 𝜌3 have 

proven to be constant regardless of magnification: 𝜌1 ≈ 0.0041 , 𝜌2 ≈ 1.0549  and 

𝜌3 ≈ 2.9 × 10
−5. The beam waist 𝜎0 and parameter a related to the magnification range 

are estimated as depicted in Figure 3.4. We imply to the model that the fitting errors on 

the observed data are minimal. We, therefore, employ exponential and a quadratic 

function respectively. As shown in Eq. (6) and Eq. (7),  𝑥 represents magnification and 

𝑝1 to 𝑝5 are the model parameters.  

                                                           𝜎0 = 𝑝1 ∙ 𝑒
𝑝2𝑥                                                        (6) 

                                                       𝑎 = 𝑝3𝑥
2 + 𝑝4𝑥 + 𝑝5                                                (7)  

The PSF of any 3D image between −∞ and +∞ along optical axis can be modelled as 

depicted in this section. The modelling is implemented with the focal plane set at the 

CoR. However, we acknowledge that in most circumstances of imaging acquisition the 

focal plane is not in line with the CoR, i.e. with a shift η. Consequently, the modelled 

PSF will be shifted along the optical axis by η from the focal plane to meet the imaging 

setup. Besides, the length of the PSF along optical axis is determined by the size of 3D 

image and the resolution 𝑟, because in 3D reconstruction each voxel in the 3D image 



Chapter 3 

 

54 
 

corresponds to each pixel in the 2D images. The NA is the effective value achieved from 

interpolation relating to the magnification. The relationship between effective NA and 

magnification is determined by the Leica objective lens. 

 

Figure 3.4.  Fitting of the parameter 𝛔𝟎 and 𝑎 estimated from 6 magnifications. 𝛔𝟎 can be fitted best 

by an exponential function as shown in (a) while 𝑎  can be  fitted best by a quadratic function in (b). 

3.2.3 Deconvolution of 3D images in coronal plane  

The modelled PSF consists of multiple 2D Gaussian patterns along optical axis. 

Therefore, the 3D image can be deconvolved slice by slice along its depth axis that is 

parallel to the optical axis. As the slices are coronal sections, the deconvolution is 

implemented on the 3D image 𝑅 in the coronal plane as follows: 

                                             𝐷(𝑥,𝑦,𝑑) = 𝑅(𝑥,𝑦,𝑑) ∗/∗ 𝑝(𝑠,𝑡,𝑑)                                              (8) 

R is the reconstructed 3D image with the depth axis d parallel to the optical axis of the 

PSF. ∗/∗ stands for the operation of deconvolution. Considering the shifted focal plane 

and the reconstruction symmetry, deconvolution of 𝑅′, the opposite view of R projected 

along d, is executed by applying: 

                                          𝐷(𝑥,𝑦,𝑑)
′ = 𝑅(𝑥,𝑦,𝑑)

′ ∗/∗ 𝑝(𝑠,𝑡,𝑑)                                              (9)  

The transform from 𝑅 to 𝑅′ is conducted by a matrix rotation of  𝜋 centred at the CoR. 

The 3D image with the deconvolution is then achieved by combining 𝐷  and 𝜋  back 

rotation of 𝐷′. 
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3.3 Experiments 

The deconvolution performances of the PSF model on 3D OPT images are presented in 

three different ways. We first give a qualitative comparison between image slices with 

and without the proposed deconvolution approach. To further quantify the performance 

differences, we use three image blur metrics to measure the image blur and calculate the 

performance based on these metrics, in a slice manner. Finally, we present a holistic 

metric for 3D image deblurring improvement and implement it for performance 

comparisons. The samples used for the experiments are prepared according to our 

standard protocol, cf. § 1.2.4. 

3.3.1 Image comparison of deconvolution 

With respect to the magnifications, the experiments were conducted on images at 2 

different magnifications. One is a zebra finch embryo in fluorescence mode with 

magnification 13.83 × and focal plane shifted by −0.93 𝑚𝑚. Taking the resolution limit 

and the 3D image size into consideration, the calculated defocus of the PSF along the 

optical axis ranges from  −6.303 𝑚𝑚  to  8.063 𝑚𝑚 . The deconvolution is performed 

using the Lucy-Richardson algorithm 
[62]

 with a same number of iterations; here 10 is 

used based on the balance between reconstruction quality and computational time. The 

result for one coronal slice is shown in Figure 3.5 (c) and for the horizontal slice in 

Figure 3.5 (d). The corresponding slices prior to deconvolution are displayed in Figure 

3.5 (a) and (b). The comparisons of intensity profile along a line with (red) and without 

(blue) deconvolution are presented in (e) and (f) respectively. The comparisons of the 3D 

visualization results are shown in Figure 3.6.   

In Figure 3.7 another sample is depicted; a specimen of zebrafish larvae. The 3D 

visualizations of reconstructions with and without deconvolution are displayed in Figure 

3.7. Figure 3.8 compares two orthogonal image samples of the zebrafish in detail. The 

magnification and the shifted focal plane are separately 49.98 × and−0.5 𝑚𝑚, with the 

computed defocus of the PSF being between  −2.242 𝑚𝑚 and 3.246 𝑚𝑚. Figure 3.8 (a) 

and (b) are the slices prior to deconvolution in two orthogonal planes, while (c) and (d) 

correspond to the deconvolution results. From visual assessment between (c) and (d), we 

can appreciate that the performance in the horizontal plane is almost as good as it is in 

coronal plane. This means that deconvolution in the coronal plane simultaneously 

improves the quality of the image in the horizontal plane to some extent. From a 

comparison of the quantitative intensity profile in the graph, we state that the proposed 

deconvolution sharpens and refines the 3D reconstructed images. It enhances the strong 

signals and makes the intensity profile more distinct. 
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Figure 3.5. Deconvolution results. (a) The coronal slice of the 3D zebra finch with obvious blur 

around the ribs. (c) Distinct texture appears around the ribs after the deconvolution. (e) The 

comparison of intensity profiles along a line in (a) and (c). (b) and (d) The horizontal slice 

comparisons with the line intensity profiles shown in (f). In (c) and (d), more textures are 

observable in comparison with (a) and (b). In (e) and (f), the red thinner intensity profile, explains 

the more image sharpness along the red line in (c) and (d), comparing to (a) and (b) separately. 
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              (a)                                                                 (b)         

Figure 3.6. Deconvolution results. (a) 3D visualization of the zebra finch embryo without 

deconvolution. (b) 3D visualization of zebra finch with deconvolution. The visualization is made 

with Amira software
 [63]

.  

 
(a) 

 
(b) 

Figure 3.7. Deconvolution results. (a) 3D visualization of the zebrafish without deconvolution. (b) 

3D visualization of zebrafish with deconvolution, visualized with Amira software 
[63]

.  
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Figure 3.8. Coronal and horizontal slices of 3D zebrafish before ((a) and (b)) and after ((c) and (d)) 

deconvolution. The deconvolution highlights the strong signals and makes the texture more visible. 

(e) compares the intensity profile of the same line before ( labelled as blue in (a)) and after 

(labelled as red in (c)) deconvolution, so does (f). 

3.3.2 Image blur measurement on slices 

To quantify the image blur of each slice, three metrics, known from the literature, were 

selected; i.e. the just noticeable blur (JNB) 
[64]

, the cumulative probability of blur 

detection (CPBD) 
[65]

 and the frequency measure (FM) 
[66]

. These three metrics are 

employed to evaluate the performance of our method. Both the JNB and CPBD measure 

represent a sharpness metric by detecting and quantifying the blur in the spatial domain. 

Different from JNB and CPBD, the FM measure quantifies the sharpness in the 

frequency domain with an easier and more efficient approach. All the three metrics 

characterize the sharpness of an image, so the measure increases at improved image 

quality. 
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Figure 3.9. (a) JNB measure on the zebra finch data with magnification 13.83 ×. (b) JNB Measure 

on the zebrafish data with magnification 49.98 ×. Coronal and horizontal are the two orthogonal 

planes displaying the 3D image. 

 

Figure 3.10. (a) CPBD measure on the zebra finch with magnification 13.83 ×. (b) CPBD Measure 

on the zebrafish with magnification 49.98 ×. 

Whilst experiments in section 3.3.1 give us a qualitative comparison between the 

deconvolved slices and non-deconvolved slices, in this section we quantitatively look 

into all the slices in different orthogonal planes (coronal and horizontal) with the three 

image sharpness metrics (i.e. JNB, CPBD and FM). In the graphs depicted in Figure 3.9 - 

3.11 we can observe that with all the three metrics the deconvolved slices on both planes 

show higher measurement values compared to the image slices without deconvolution. 

This means that for all the slices, regardless of orientation, the deconvolution holistically 

deblurs the images and thereby significantly improves the image quality. 
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Figure 3.11. The FM before and after deconvolution on the two 3D image data. (a) FM measure 

on the zebra finch with magnification 13.83  × . (b) FM Measure on the zebrafish with 

magnification 49.98 ×. 

3.3.3 Quantitative 3D image quality improvement of deblur 

To further quantify the deblur of the deconvolution results on the original reconstructed 

3D data across the planes, we present the 3D image quality improvement criterion of 

deblur as 𝐼3d in Eq. (10). Improvement in three orthogonal individuals are combined and 

encoded as a whole and each of them are represented as: 

                    𝐼3𝑑 = √(
1

𝑁𝑥
∑ 𝐼𝑖𝑥
𝑁𝑥
𝑖𝑥=1 )2 + (

1

𝑁𝑦
∑ 𝐼𝑖𝑦
𝑁𝑦
𝑖𝑦=1 )2 + (

1

𝑁𝑧
∑ 𝐼𝑖𝑧
𝑁𝑧
𝑖𝑧=1 )2                       (10) 

                                                            𝐼𝑖𝑥 =
𝑀𝑖𝑥
𝑑 −𝑀𝑖𝑥

𝑟

𝑀𝑖𝑥
𝑟  ,                                                       (11) 

                                                           𝐼𝑖𝑦 =
𝑀𝑖𝑦
𝑑 −𝑀𝑖𝑦

𝑟

𝑀𝑖𝑦
𝑟  ,                                                        (12) 

                                                           𝐼𝑖𝑧 =
𝑀𝑖𝑧
𝑑−𝑀𝑖𝑧

𝑟

𝑀𝑖𝑧
𝑟  ,                                                        (13) 

Where i is the slice number and x, y and z are the coordinate axises in 3D space. 𝐼𝑖𝑥, 𝐼𝑖𝑦 

and  𝐼𝑖𝑧 indicate the deblurring performance of slice i on the three different axises. 𝑀𝑖𝑥
𝑑  

and 𝑀𝑖𝑥
𝑟  are respectively the ith deconvolved and original reconstructed slice on axis x. 

𝑀𝑖𝑦
𝑑 , 𝑀𝑖𝑦

𝑟 , 𝑀𝑖𝑧
𝑑  and 𝑀𝑖𝑧

𝑟  are defined in a similar way on the two different axises. By 

employing the deblur performance 𝐼3𝑑 , deconvolution performance of two different 

methods on the same data should be comparable.  

Next, we apply our deconvolution method to 23 more 3D data sets, which contains 3 

categories of samples i.e. zebrafish larvae, the adult zebrafish brain and the chicken 

embryo heart. They are in different stages of development and are acquired at different 

magnifications. It is important to realize that the metrics in this chapter cannot assess the 
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image blur across different data, but using the same data they are able to evaluate the 

performance of different deblurring approaches. Taking advantage of this, we compare 

the presented deconvolution method with the most commonly used Gaussian-based blind 

deconvolution 
[67]

. According to our observation of the results for blind deconvolution, 

the kernel size does not make a visible difference on our 3D images. Therefore, we 

present our results for blind deconvolution with the kernel size set as 7, taking acceptable 

computation time into account. From the 3 metrics, i.e. CPBD, JNB and FM, we have 

selected the most robust metric JNB to measure the image blur of each slice. The results 

of the 3 categories of samples are presented in Table 3-1 to Table 3-3. For all the 23 data, 

our deconvolution approach outperforms the Gaussian-based deconvolution, thereby 

indicating the success of the method. 

Table 3.1. 3D image quality improvement of 10 zebrafish embryos based on JNB Measure. 

 01 02 03 04 05 06 07 08 09 10 
G 0.16 0.21 0.15 0.21 0.29 0.24 0.22 0.16 0.20 0.25 

PSFm 1.35 2.10 1.41 3.23 1.54 1.50 1.50 1.37 1.45 1.70 

⋆ G -- Gaussian-based blind deconvolution. PSFm -- PSF based modelling deconvolution. 10 zebrafish 

embryos correspond to 01-10 with age from 3 dpf to 7 dpf.  

Table 3.2. 3D image quality improvement of 6 zebrafish brain based on JNB Measure. 

 01 02 03 04 05 06 

G 0.25 0.29 0.26 0.24 0.01 0.21 

PSFm 0.41 0.49 2.55 0.17 1.15 1.20 

⋆ 6 adult zebrafish brains correspond to 01-06 with different magnifications. 

Table 3.3. 3D image quality improvement of 7 chicken heart based on JNB Measure. 

 01 02 03 04 05 06 07 
G 0.24 0.16 0.19 0.26 0.27 0.18 0.32 

PSFm 0.93 0.49 0.29 1.15 0.49 0.38 1.07 

⋆ 7 chicken embryo hearts at different stages correspond to 01-07.  

3.4 Conclusions 

In this chapter we have focused on 3D image deblur and quality improvement, under the 

condition of the limitation of small NA for imaging of large sized samples. We 

investigated and modeled the PSF along the optical axis, exploring the influence of 

magnification on PSF. The sample of a single fluorescence sphere is prepared with the 

protocol in section 3.2.1. The experimental PSF is then modelled to deconvolve the 3D 

image in a coronal plane. A number of measures for image blur are employed to 

convincingly evaluate the performance of the deconvolution. They provide quantitative 

information about how much improvement is achieved. The overall improvement  𝐼3𝑑 
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gives us a criterion to compare image quality improvement regardless of different data. 

All the experimental results including the image comparisons and quantitative measures 

sustain the effectiveness of the proposed PSF modelling and deconvolution methodology.  

The deconvolution results presented represent a proof of concept. The datasets used in 

the experiments are composed of 25 samples, i.e. 4 categories: zebrafish embryo, zebra 

finch embryo, adult zebrafish brain and chicken embryo heart. Regarding the evaluation 

of performance on a large volume of different datasets, our data are far from perfect in 

terms of ‘large dataset’. However, it presents a clear idea that our model is not 

constrained by samples of one particular type, it also works on many other types of 

specimens. This will help to explain its potential capability of improving image quality 

with similar performance on more 3D data, including those from other OPT imaging 

systems, which is a part of our current work. In the future we will take further efforts on 

generalizing the model to other imaging set-ups. In addition, the fluorescent sphere used 

in the experiments is fixed-size. The effect of sphere size on PSF modelling and deblur 

performance need to be given more attentions. 
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Chapter summary 

The reconstruction of a tomogram to a 3D image has some drawbacks in that there are 

artefacts introduced in the reconstruction that affect the quality of the image. We have 

been using the filtered back projection algorithm for the reconstruction; but iterative 

reconstruction algorithms demonstrate a superior performance as far as artefacts are 

concerned. In computerized tomography these iterative algorithms are successfully 

applied. These iterative algorithms will, however, require much more computation time.  

In this chapter we study capability of iterative algorithms to remove streak artefacts 

from reconstructions of optical projection tomograms. Moreover, we explore possible 

ways to optimize the most customary parameters of the iterative reconstruction 

algorithms so as to improve its reconstruction performance. Due to the lack of 

benchmarks for direct reconstruction evaluation in optical projection tomography we 

consider the assessment according to the performance of segmentation in the 

reconstruction. We use the zebrafish model, the model system for which our OPT system 

is used a lot, as we can easily obtain data and build a benchmark. For the segmentation 

approach we employed the 2D U-net convolutional neural network as it is known for 

good performance in biomedical image segmentation. 
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4.1 Introduction 

Three dimensional (3D) image reconstruction in OPT can play a crucial role in giving 

insight into protein distribution and/or gene expression within a research model, e.g. 

zebrafish, at a tissue and organ level. Given the specific data, a good reconstruction 

algorithm typically produces a reliable and effective 3D reconstruction, whereas a simple 

reconstruction technique may introduce computational artefacts that hamper the 

interpretation of the data. These kinds of artefacts are introduced during the 

reconstruction process because of imperfection of the data prior to the imaging process. 

There are two categories of approaches to reduce or eliminate these artefacts. One is 

considering the perspective of the imaging process, meaning trying to avoid the imaging 

imperfections that results in artefacts, either from the sample side or from the instrument 

side. This approach is, however, sometimes quite expensive or even unachievable in 

some cases. Another category is to computationally improve the reconstruction from an 

imperfect tomogram. It can be either applying a powerful reconstruction algorithm or 

employing pre-processing and/or post-processing of a specific algorithm.    

In 2005, Walls et al. 
[22]

 first presented the possible artefacts in the Filtered Back 

Projection (FBP) reconstruction existing in an OPT imaging system. The main 

contribution of this work lies in the study of the origins of the reconstruction artefacts 

from the imaging source, for instance signal decay, CCD imperfection, etc. He studied 

the reasons why these imperfections in imaging would result in reconstruction artefacts 

within the FBP 
[68]

 framework, but not yet explain if more advanced reconstruction 

algorithms, such as iterative reconstruction, can reduce or even eliminate these artefacts.  

In addition to the work of Walls et al., we explain the so called streak artefacts in the 

FBP reconstruction and briefly explain the imaging source reason. OPT imaging is 

characterized by its wide depth of field (DoF) compared to high-resolution microscopes, 

e.g. confocal microscopy 
[69], [70]

. This means that a point source that is properly focused 

in one angle of rotation may be blurred or even invisible in its opposite angle. This will 

result in streak artefacts in the FBP reconstruction because of the severe asymmetry of 

tomograms.  

In CT imaging, the so called metal artefacts can be either reduced with artefacts 

reduction algorithm within the FBP framework or eliminated by using other 

reconstruction methods such as iterative reconstruction. With respect to reduction of 

artefacts, in the last two decades a variety of approaches have been proposed for CT 
[71]–

[75]
. These approaches, however, can only decrease the artefacts rather than eliminate 

them. As for streak artefacts, elimination using other reconstruction methods, the iterative 

reconstruction stands out. Inspired by the superior performance of metal artefacts 

elimination when using iterative reconstruction in CT 
[35], [76]–[78]

, we are interested in 

exploring its capability of streak artefacts elimination in OPT.  

Iterative reconstruction refers to iterative algorithmic approaches used to reconstruct 

2D or 3D images from tomographic imaging techniques. Generally, it starts with an 
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assumed image, computes projections from the image via a projection function and 

updates the image according to the difference between the calculated and the actual 

projections. According to the updating schema for image, it can be categorized into four 

kinds of approaches, i.e. algebraic reconstruction techniques (ART) 
[23]

, iterative sparse 

asymptotic minimum variance (SAMV) 
[24]

, statistical reconstruction 
[25]

 and learned 

iterative reconstruction 
[26], [79]

. They are considered superior when there is a lack of 

uniform projections or when the projections are sparse, which to some extent fits the 

character of imaging source for the aforementioned streak artefacts in OPT. Compared to 

its application in CT, iterative reconstruction was less studied in OPT. Correia et. al 
[12]

 

applied the iterative reconstruction to achieve relatively reasonable results on a sparse 

collection of projections in 2015. One possible reason for impeding prevalence of 

iterative reconstruction in OPT is the high computation time. Nevertheless, with the rapid 

development of computational strategies, e.g. parallel computing and GPU, iterative 

reconstruction will be more widely used in OPT.  

The common approach for evaluating reconstruction performance in tomographic 

imaging is accomplished by producing and projecting a simulated object, e.g. phantom in 

CT, and assessing the performance of a reconstruction algorithm based on the projections 
[80]

.  Nevertheless, due to the DoF in OPT imaging the projection function is much more 

complicated than that in CT. In this case, simulating the projections of a phantom as 

benchmark has, to our best knowledge, never happened in OPT. Therefore, as an 

alternative we use images from real-life samples for experiments.  

Iterative reconstruction has great potential for image reconstruction in OPT. However, 

there is an intrinsic disadvantage for image reconstruction in OPT in that a good 

quantitative evaluation on the reconstruction is difficult. This disadvantage mainly results 

from the lack of benchmarks for samples. In such a situation formulating an alternative 

evaluation method according to the specific research problem is considered applicable 

and feasible. With this idea we transfer the evaluation of reconstruction to that of 

segmentation which can be easily obtained given the reconstruction data; in our 

experiments we use zebrafish. The inspiration of the transfer originates from the fact that 

we are expecting better segmentation results from different reconstructions on the same 

data. Therefore, this transfer can be valid under the assumption that the reconstruction 

with better segmentation result is preferred, given effect of the same segmentation 

algorithm. By transferring the evaluation of reconstruction to segmentation, we can 

approximate the best parameters for reconstruction. Thus, our approach can be 

interpreted as an optimisation of iterative reconstruction for OPT.  

In this chapter we focus on iterative reconstruction in OPT so as to avoid streak 

artefacts, and furthermore we explore the possibility of segmentation evaluation to 

optimize the parameters for iterative reconstruction. In section 4.2 the implementation of 

iterative reconstruction will be briefly introduced. We will focus on the parameter 

optimisation in section 4.3. The specific scheme and approach for parameter optimisation 

will be exhaustively discussed there, which will be followed by the experimental results 
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and discussion. Finally we present our conclusions, as well as raise some limitations and 

future work.  

4.2 Iterative reconstruction for OPT 

In general, iterative reconstruction can lead to a more accurate OPT 3D image than that 

obtained by the FBP 
[68]

. However, a large number of iterations may be required to 

generate an acceptable result, with each iteration taking about the same amount of time as 

the FBP. Thus to some extent the effectiveness of iterative reconstruction is achieved at 

the expense of more computation time. One approach to reduce the number of iterations 

is to organize the projection data into a series of ordered subsets of evenly spaced 

projections and update the current estimate of the object after each subset rather than 

after the complete set of projections. The most commonly used algorithm employing 

subset is referred to as ordered subset expectation maximization (OSEM) reconstruction 
[28], [81]

. It improves the efficiency of iterative reconstruction with respect to 

computational time. 

According to the expectation maximization (EM) algorithm in iterative reconstruction 
[82]

, the intensity of an object projected to the detector follows the Poisson distribution 

with expected value 𝜇 = 𝐸(𝐼(𝑧,𝛽,𝜃) ) = 𝑃(𝑧,𝛽,𝜃) × 𝑅(𝑥,𝑦,𝑧)). The object to be reconstructed 

is assumed as 𝑅(𝑥,𝑦,𝑧) and will be updated in an iterative way as follows:  

𝑅(𝑥,𝑦,𝑧)
𝑙+1 = 𝑅(𝑥,𝑦,𝑧)

𝑙
∑ (𝐼(𝑧,𝛽,𝜃𝑡) /(𝑃(𝑧,𝛽,𝜃𝑡) × 𝑅(𝑥,𝑦,𝑧)

𝑙 ))𝜃𝑡∈𝐼𝑡

∑ 𝑃(𝑧,𝛽,𝜃𝑡)𝜃𝑡∈𝐼𝑡

                             (1) 

with P being the projection function while 𝐼(𝑧,𝛽,𝜃)  symbolizes the tomogram at the angle  

𝜃 in OPT. (𝑧, 𝛽, 𝜃) and (𝑥, 𝑦, 𝑧)are separately the tomogram and 3D image coordinate, 

with 𝛽  being the detector axis and 𝜃  being the projection angle; whilst 𝑧  is the slice 

number and  (𝑥, 𝑦) indicates the image size of a reconstructed slice. The EM based 

iterative reconstruction is based on the idea that the reconstruction 𝑅(𝑥,𝑦,𝑧) of an object in 

3D space can be estimated with the observed or measured data 𝐼(𝑧,𝛽,𝜃) by iteratively 

updating 𝑅(𝑥,𝑦,𝑧) with the EM algorithm, with l being the iteration step. The conventional 

EM iterative reconstruction updates 𝑅(𝑥,𝑦,𝑧) based on a full set of observation 𝐼, while the 

OSEM splits the full set into T ordered subsets 𝐼 = {𝐼𝑡: 𝑡 = 1,2,… , 𝑇}, 𝐼𝑡 = 𝐼(𝑧,𝛽,𝜃𝑡) and 

implements the updating based on 𝐼𝑡 in each iteration step 
[82]

.  

In the OPT imaging system, the light is approximately considered as parallel rather 

than conical. In this case the projection function 𝑃(𝑧,𝛽,𝜃𝑡) remains the same at different 𝑧 

positions or on different reconstructed slices. Then the update can be implemented on a 

slice by slice basis, with each slice updated using:   

𝑅(𝑥,𝑦)
𝑙+1 = 𝑅(𝑥,𝑦)

𝑙
∑ (𝐼(𝛽,𝜃𝑡) /(𝑃(𝛽,𝜃𝑡) × 𝑅(𝑥,𝑦)

𝑙 ))𝜃𝑡∈𝐼𝑡

∑ 𝑃(𝛽,𝜃𝑡)𝜃𝑡∈𝐼𝑡

                                  (2) 
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Figure 4.1. Workflow of iterative reconstruction in OPT. Example is given on a zebrafish larvae of 

6 days post fertilization (dpf). 

In Figure 4.1 the workflow of iterative reconstruction is depicted as applied on a 

zebrafish sample on a slice-by-slice basis. The observed projections, are acquired from 

the OPT imaging system and are here defined as the sinogram 𝐼(𝛽,𝜃𝑡) . By using the 

OSEM algorithm, the reconstructed slice 𝑅(𝑥,𝑦)
𝑙 is updated based on the differences 

between the observed projection and the simulated projection in reconstruction space 

using Eq. (2), with a initial reconstruction slice 𝑅(𝑥,𝑦)
0 . The simulated projection is 

updated as 𝐸(𝐼(𝛽,𝜃𝑡)
𝑙 ) = (𝑃𝜃𝑡 × 𝑅(𝑥,𝑦)

𝑙 )and 𝐸(𝐼(𝛽,𝜃𝑡)
0 ) = (𝑃𝜃𝑡 × 𝑅(𝑥,𝑦)

0 ) for the first update. 

This difference 𝐼(𝛽,𝜃𝑡) /𝐸(𝐼(𝛽,𝜃𝑡)
𝑙 ) in projection space is reconstructed to 3D image space 

using back projection 𝑃𝜃𝑡
−1, which is finally used for updating the slice 𝑅(𝑥,𝑦)

𝑙  as shown in 

Eq. (2). As we can see from Figure 4.1, in the iterative framework both the end point and 

the initial reconstruction 𝑅(𝑥,𝑦)
0  play an important role in the final results, which will be 

studied in the following sections. 
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4.3 Parameter optimisation for iterative reconstruction 

Parameters for iterative reconstruction can be optimized based on the performance 

assessed on reconstructed results. Nevertheless, due to the lack of benchmark for direct 

reconstruction evaluation in optical projection tomography we consider the assessment 

according to the segmentation performance of the 3D images reconstructed with different 

parameters. To this end, the framework for this idea will be first elaborated. It is 

proposed under the assumption that the segmentation method used is reliable and 

effective. In order to guarantee this, we employ a convolutional neural network (CNN) as 

it is known for its high performance in image segmentation. In Figure 4.2, an example 

slice (head part) of 25 dpf zebrafish is given, explaining how different reconstruction 

parameters influence the segmentation performance. Figure 4.2 (a) and (b) are two slices 

reconstructed from the iterative reconstruction using different parameters. Figure 4.2 (c) 

and (d) show the corresponding segmentation results based on the reconstructed slices 

from Figure 4.2 (a) and (b). The benchmark of this slice is displayed in (e), which is 

obtained from the manual segmentation. When visually comparing the reconstructed 

slices and the segmentation performance, we observe that different reconstruction 

parameters could produce different 3D image slices, which will consequently result in 

distinct segmentation results. For instance the slice in (b) has better segmentation 

performance shown in (d), comparing to the performance (c) from the slice in (a). With 

this assumption, we can optimize the parameters based on the segmentation performance 

of the 3D image slices that are reconstructed with different parameters.    

 
Figure 4.2. An example showing the effect of reconstruction parameters on segmentation 

performance. (a) and (b) The slices reconstructed from two different parameters. (c) and (d) The 

corresponding segmentation results. (e) The benchmark of segmentation for comparison. 
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4.3.1 Framework of parameter optimisation for iterative reconstruction  

The framework of parameter optimisation for iterative reconstruction integrates the 

reconstruction and segmentation process as a whole as shown in Figure 4.3. In OPT a 

tomogram is referred to as 𝐼(𝑧,𝛽,𝜃) , with 𝑧  and 𝛽  representing the pixel position of 

tomogram at the projection angle 𝜃. The 3D image is obtained by implementing the 

iterative reconstruction algorithm 𝑓(𝛼) on the tomograms as 𝑅(𝑥,𝑦,𝑧)
𝛼 = 𝑓(𝛼) 𝐼(𝑧,𝛽,𝜃) with 

𝛼 being the parameters required for iterative reconstruction. The reconstructed results can 

further be segmented according to a specific criterion given the data, achieving the 

segmentation result 𝑆(𝑥,𝑦,𝑧)
𝛼  depicted in Figure 4.3, where 𝑆(𝑥,𝑦,𝑧)

𝛼 = 𝑔(𝑅(𝑥,𝑦,𝑧)
𝛼 )𝑅(𝑥,𝑦,𝑧)

𝛼 . 

Therefore, the segmentation result can be formulated as: 

                         𝑆(𝑥,𝑦,𝑧)
𝛼  = 𝑓(𝛼)𝐼(𝑧,𝛽,𝜃) 𝑔 [𝑓(𝛼) 𝐼(𝑥𝜃,𝑦𝜃,𝜃) ]                                          (3) 

 

 
Figure 4.3. The framework for parameter optimisation for iterative reconstruction based on the 

corresponding segmentation performance. The 2D U-net 
[29]

  convolutional neural network is 

applied to train the segmentation model within each parameter group.  

with 𝑔 indicating the global function term for segmentation. Taking its high performance 

in biomedical image segmentation into account, we use the 2D U-net 
[29]

 convolutional 

neural network for our segmentation work. This means that, given the same tomogram, 

training the segmentation network with the 3D image reconstructed from different 𝛼 will 

produce different network outputs for segmentation. However these differences originally 

result from the reconstruction parameter 𝛼 rather than the network itself given the same 

configuration. From this notion the optimisation of 𝛼 can be approximately transferred to 
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a search for a better 𝛼 that produces 3D image for a better segmentation, with the idea 

that the benchmark of the segmentation is known; e.g. the zebrafish model in our work. 

The diagram of the pipline for the optimisation is depicted in Figure 4.3. For the same 

tomogram set, it is assumed that there are N 3D image groups {𝑅(𝑥,𝑦,𝑧)
𝛼1 ,…, 𝑅(𝑥,𝑦,𝑧)

𝛼𝑁 } 

produced from iterative reconstruction functions { 𝑓(𝛼1),…, 𝑓(𝛼𝑁)} with {𝛼1,..., 𝛼𝑁} 

representing the variation of parameters. By evaluating the N 3D image groups based on 

their segmentation performances, we can achieve the best reconstruction parameter 

ranging from 𝛼1 to 𝛼𝑁. If there are K samples for reconstruction and segmentation, then 

we have 𝑅(𝑥,𝑦,𝑧)
𝛼 = {𝑅1(𝑥,𝑦,𝑧)

𝛼 , … , 𝑅𝑘(𝑥,𝑦,𝑧)
𝛼 , … , 𝑅𝐾(𝑥,𝑦,𝑧)

𝛼  and 𝑆(𝑥,𝑦,𝑧)
𝛼 = {𝑆1(𝑥,𝑦,𝑧)

𝛼 , … , 𝑆𝑘(𝑥,𝑦,𝑧)
𝛼 , 

… , 𝑆𝐾(𝑥,𝑦,𝑧)
𝛼 }. It is worth mentioning that the segmentation network used in each 3D 

image group is internally trained rather than training it in a global scale across groups. 

This is because it is considered from an experimental perspective, more practical and 

valuable to train a segmentation network based on the data from the same reconstruction 

method, excluding the network preference when training it on the data across 

reconstruction approaches. With respect to segmentation network we employ the U-net 

CNN 
[29]

 because of its high performance in bio-medical image segmentation, generating 

a segmentation network group {𝑔(𝑅(𝑥,𝑦,𝑧)
𝛼1 ) ,…, 𝑔(𝑅(𝑥,𝑦,𝑧)

𝛼𝑛 )…,𝑔(𝑅(𝑥,𝑦,𝑧)
𝛼𝑁 }. With the 

internal-trained segmenation network, evaluation will be performed to choose the group 

which has the highest performance, simultaneously finding the optimal iterative 

reconstrucion parameter 𝑓(𝛼∗) . There are several parameters required in the OSEM 

iterative reconstruction algorithm, but we focus on the two most customary ones, i.e. 

iteration number and initial reconstruction, as η and γ respectively. The different 

combinations of η and γ comprise { 𝛼1 ,..., 𝛼𝑛 ,...,  𝛼𝑁 }, meaning that if 

𝜂 = {𝜂1, … , 𝜂𝑖 , … , 𝜂𝑝} and 𝛾 = {𝛾1, … , 𝛾𝑗 , … , 𝛾𝑞}, then 𝛼𝑛 = (𝜂𝑖, 𝛾𝑗) and 𝑁 = 𝑝 × 𝑞.  

4.3.2 Segmentation approach 

In order to provide a reliable and effective segmentation approach for reconstructed slices, 

CNN is employed as a result of its recent promising performance in medical image 

segmentation. As for our data, the zebrafish samples are transparent. It is challenging for 

traditional segmentation approaches to segment the foreground from the background 

when their intensities are very similar. A CNN can learn the structural and context 

information at different scales of resolution and, in that, it differs from traditional 

segmentation methods. For this reason, a CNN is very suitable for our research questions. 

We define our segmentation task as a binary segmentation on transparent samples in 

intensity image space. This means a small network such as 2D U-net rather than a 

complex network, is more desirable for our problem.        
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1)  Network structure  

The 2D U-net segmentation network 
[29]

 feeds 2D images as input layer, i.e. the 

reconstructed slices from the 3D image. Overall, the network contains encoder, decoder 

and a Merge layer between them as shown in Figure 4.4. In both the encoder and the 

decoder, there are 4 Convolutional layers and within each individual layer two 3x3 Conv- 

 

Figure 4.4. The structure of the 2D U-net network for zebrafish slices. Each slice is fed into the 

network as a single sample. The network contains both encoder (down layers) and decoder (up 

layers) for the deep CNN. The encoder is accomplished by a convolution and a max pooling 

operation while the decoder consists of a convolution and an upsampling operation. The 

Maxpooling and Upsampling layers are separately represented by red and green arrows. The 

Convolution layers are implemented with a 3x3 kernel at each depth of the encoder and decoder. 

Between similar layers on both sides there is a merge operation, allowing deep convolution layers 

to be merged with more shadow convolutional layers. c is the concatenation operation to merge 

layers from different depths.  

olution layers and one Dropout layer are integrated. Different depths in the encoder and 

the decoder are separately connected by Maxpooling and Upsampling layers. The bridge-

like Merge layer between the symmetric layers combines deep convolution layers and 

shadow ones. This typically improves the performance in segmentation problem. As the 

Output layer, the map activated by Sigmoid function 
[83]

, reflects the response to the 

zebrafish segmentation ranging from 0 to 1. The segmentation mask is generated when 

implementing a threshold on the map.  
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2) Network training 

A. Training scheme 

The segmentation network for zebrafish in each 𝛼𝑛 -specified 3D image group is 

independently trained. The number of segmentation networks for the parameter 

optimisation framework is dependent on the parameter combination, as 𝑁 = 𝑝 × 𝑞 for 

two parameters in our case. For a specific group 𝑅(𝑥,𝑦,𝑧)
𝛼𝑛 , a certain ratio, typically small,  

of reconstructed slices from the 3D image are sampled at even intervals for training while 

the rest, a large ratio, are used for testing. The rationale for training on a small rather than 

large ratio of data is due to the fact of information redundancy among adjacent slices in 

3D. Moreover, this can, to a large extent, reduce the workload of manual labelling. With 

a smaller ratio of data for training, the labelling for a single zebrafish could still be 

hundreds of slices. The image size of a typical OPT image is 512x512x1360. Here 1360 

indicates the number of slices in the image of 512x512 per slice. To further decrease the 

labelling workload and make it more efficient, an interpolation approach is applied. The 

tool for interpolation labelling is available in software 
[63]

. The results of interpolation 

labelling can be further verified manually and efficiently. The 3D images from the FBP 

reconstruction are used for labelling because of its capacity of offering comprehensive 

information. 

Within each group the training slices and the corresponding labelled maps are used to 

train the segmentation network that is constructed referring to the work in 
[29]

. Different 

from their network, the size of feature map after each convolutional layer maintains the 

same. The ReLU activation is used for all convolutional layers except for the last one 

which employs the sigmoid activation such that the output of the network ranges from 0 

to 1. Another difference between the U-net network and ours is that we employ the 

simplest binary cross entropy as the loss function without considering the weight of each 

pixel in the image. The loss energy function would be:  

𝐸 = ∑ 𝑦(𝑋)log (�̂�(𝑋)) + (1 − 𝑦(𝑋))log (1 − �̂�(𝑋))

𝑋∈𝛺

                             (4) 

where 𝑦(𝑋) is the labelled value at the pixel position 𝑋 ∈ 𝛺 with 𝛺 ⊂ 𝑍2, i.e. 𝑦(𝑋) ∈
{0,1}. �̂�(𝑋) represents the predicted value at the same pixel position. The network is 

trained with the Adam optimizer 
[84]

 implementing Keras 
[85]

.  

B. Learning rate 

In the framework of stochastic gradient descent (SGD) 
[86],[87]

 optimisation technique for 

machine learning problem, the learning rate is considered to be carefully chosen to 

guarantee the convergence of the loss function. In order to set an effective learning rate to 

train the segmentation network, we first need to observe the intrinsic correlation between 

the data and the learning rate. Therefore, the different-fixed-learn-rate scheme is first 

applied to the data to investigate the different loss decay profiles. The profile of the loss 

function with an increasing epoch, using different fixed learning rates,  is presented  in  
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Figure 4.5. The profiles of the decay loss for different learning rates in 100 epochs. The learning 

rates observed are from 𝟏𝟎−𝟏 to 𝟏𝟎−𝟕.  

Figure 4.5. It easily and quickly falls into local minimum when the learning rate is set to 

or larger than 1e-5. To avoid this, the learning rate is supposed to be smaller than 1e-5. 

But when the learning rate is equal or smaller than 1e-7, the loss decreases extremely 

slow. 1e-6 is therefor considered to be a good initial learning rate for the data. However, 

as the epoch increases and the loss decreases, the loss decreases very slowly with the 

small learning rate 1e-6.  

We observe a correlation between our data and learning rate. This can be seen in 

Figure 4.5, where loss curves for decreasing learning rate are plotted. As the learning rate 

increases, the learning process quickly drops to the local minimum.  To avoid the 

learning process from falling into the local minimum, a small learning rate is required in 

the beginning of the training process while a relatively larger learning rate is lately 

needed to avoid the cost of extremely slow convergence. Moreover, the learning rate 

increase is supposed to be flat in the beginning to avoid the local minimum, while much 

steeper in the end to decrease the convergence cost. To meet these requirements, the 

learning rate scheme is designed as:    

                           𝑙𝑟(𝑖+1)𝑒 = 𝑙𝑟𝑖𝑒 ∗ λ1+𝑁𝑖𝑒                                                        (5) 

where 𝑙𝑟(𝑖+1)𝑒 and 𝑙𝑟𝑖𝑒 represent the learning rate at the ith and (i+1)th effective epoch 

respectively. An epoch is considered to be effective only when it decreases the loss 

function. For an effective epoch the learning rate will be recorded and used for the next 

update, while the learning rate of ineffective epoch will be propagated to the next epoch. 
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This means that if the current epoch fails to decrease the loss function, the same learning 

rate will be used for the next epochs until an effective epoch emerges. In Eq. (5) 𝑁𝑖𝑒 

counts the effective epochs and λ indicates the base of the exponential function which is 

much close to 1 but greater than 1, which is set as 1.001 for our experiments. We use the 

effective epoch count rather than epoch as the exponential power, to prevent the loss 

function from falling into the local minimum at the early stage and to limit the growth 

rate of learning rate at the late stage around the global optimal solution, resulting from a 

number of ineffective epochs. The initial learning rate is set as 1e-6 and we set the upper 

limit as 1e-4 to avoid divergence as the learning rate increases. 

In Figure 4.6 we compare the loss decrease profiles between the fixed learning rate 

(1e-6) and the proposed learning rate in Eq. (5). It is observed that the proposed scheme 

starts from a point in the network which has a larger loss, but as the learning rate tardily 

increases the loss decreases slowly avoiding the local minimum. However, as the epoch 

increases, the loss rapidly falls down and reaches a smaller level that a fixed learning rate 

10−6 fails to obtain. 

 

 
Figure 4.6. The comparison of the decay loss between learning rate 𝟏𝟎−𝟔  and the proposed 

learning rate scheme in 100 epochs. The proposed learning rate increases from 𝟏𝟎−𝟔 to 𝟏𝟎−𝟒. 
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3) Segmentation 

The segmentation describes the process of implementing the trained network on the 

kth test voxel 𝑅𝑘(𝑥,𝑦,𝑧)
𝛼𝑛 . We have a 2D kernel for training the segmentation network. It 

shows limited ability to consider the relationship between slices. It is assumed that the 

segmentation from network 𝑔(𝑅(𝑥,𝑦,𝑧)
𝛼𝑛 )  is indicated as  𝑀(𝑥,𝑦,𝑧)

𝛼𝑛 ∈ {0, 1} , a binary map 

corresponding to the testing voxel. Considering the correlation between adjacent slice, a 

refining post-processing is introduced as follows. If 𝑀(𝑥,𝑦,𝑧)
𝛼𝑛 ⊕𝑀(𝑥,𝑦,𝑧−1)

𝛼𝑛 = 1 

and 𝑀(𝑥,𝑦,𝑧)
𝛼𝑛 ⊕𝑀(𝑥,𝑦,𝑧+1)

𝛼𝑛 = 1, then 𝑀(𝑥,𝑦,𝑧)
𝛼𝑛  is set to equal to 𝑀(𝑥,𝑦,𝑧−1)

𝛼𝑛  and 𝑀(𝑥,𝑦,𝑧+1)
𝛼𝑛 . 

This process particularly works for correcting the isolated segmentation error in Z 

direction. The segmentation result after the refined process refers as 𝑆(𝑥,𝑦,𝑧)
𝛼𝑛 . 

4.3.3 Evaluation criterion  

The evaluation component as depicted in Figure 4.3 is accomplished by figuring out the 

group which has the best segmentation performance using the internally trained network, 

given the 3D zebrafish data and N different parameter groups { 𝛼1,…,𝛼𝑁}. Different 

from 2D image segmentation, evaluation of image segmentation in 3D should be 

implemented based on a unit of 3D image because the slices are well ordered. This means 

that each 3D sample should be independently evaluated, rather than evaluating all the 

slices in 2D across samples. Because what interests us is not only the overall 

performance of segmentation on image slices but also the profile of performance change 

along the ordered slices, such as how the performance varies from the tail to head for 

zebrafish. Taking this into account the objective function for optimisation is formulated 

as follows:  

  𝛼∗ = min
𝛼

1

𝐾
∑

𝜎−(𝐹1(𝑆𝑘(𝒙,𝒚,𝒛)
𝜶 ))

𝐹1(𝑆𝑘(𝒙,𝒚,𝒛)
𝜶 )

𝐾
𝑘=1                                                  (6)  

K is the number of samples used for evaluation. For each sample, i.e. a zebrafish 3D 

image excluding the training slices in our experiment, both the overall performance in 3D 

and negative deviation 𝜎− of all slices to the overall performance are considered. The 

criterion in Eq. (6) for evaluation is defined as the modified coefficient of variation of 

F1-score (MCVF1). The negative deviation 𝜎−(𝐹1(𝑆𝑘(𝒙,𝒚,𝒛)
𝜶 )) is defined as the standard 

deviation of F1 score 
[88]

 for the slices that perform worse than that of the overall 3D 

volume.  𝐹1(𝑆𝑘(𝒙,𝒚,𝒛)
𝜶  ) gives the overall segmentation performance of the 3D volume for 

sample k with reconstruction parameter 𝛼 . In our work this is accomplished by 

calculating the F1 scores for the whole segmentation volume 𝑆𝒌(𝒙,𝒚,𝒛)
𝜶 .  The aim of the 

parameter optimisation is to find the optimal 𝛼 which produces 3D image group that has 

a maximum overall performance for segmentation as well as minimum negative 

deviation for performance. The details of experimental implement regarding to the 

segmentation evaluation of 3D image will be presented in the experimental section. 
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4.4 Experiments 

In this section, we will first give an example to show the streak artefacts produced in the 

FBP reconstruction, for comparison followed by a result with artefacts eliminated, using 

iterative reconstruction method. The second part of the experiments is the parameter 

optimisation for iterative reconstruction, implemented on two zebrafish datasets cleared 

with different protocols. In the third experiment, we investigate the effects of different 

reconstruction methods, i.e. the FBP and iterative reconstruction, on segmentation 

performance, taking the streak artefacts into account.   

4.4.1 Streak artefacts and elimination 

In this section an intuitive comparison between the FBP 
[68]

 and iterative reconstruction 
[28]

 on a zebrafish for our OPT imaging system is given. There are quite dense but small-

sized GFP 
[89]

 signals inside the zebrafish, which provides an extreme case regarding to 

how the streak artefacts are produced in OPT imaging and reconstruction.  Figure 4.7 (a) 

and 4.8 (a) show the same tomogram which is one of the 400 ones evenly acquired in a 

full revolution. The corresponding reconstructed volumes are presented in Figure 4.7 (b) 

and 4.8 (b) from which a large difference can be observed. To further zoom in and 

visualize the difference we use both maximum projection along Z direction (Figure 4.7 (c) 

and 4.8 (c)) and 3D volume visualization (Figure 4.7 (d) and 4.8 (d)).  

With the results in Figure 4.7 and 4.8, for both algorithms the pre-processing on the 

tomograms includes background subtraction and centre of rotation (CoR) correction in 

Chapter 2. The FBP reconstruction is implemented as elaborated in cf. § 2.3.2. For 

iterative reconstruction the iteration number η is set as 10 and the 3D image from the 

FBP is used as the initial reconstruction γ in this example. From the observation of 

different reconstructed results, we can see that the iterative reconstruction, in a superior 

manner, outperforms the FBP in terms of artefact suppression on the given data. 

4.4.2 Parameter optimisation 

To implement the experiments for the parameter optimisation, first the dataset and 

experimental settings are introduced. The iteration number and initial reconstruction are 

studied and optimized for reconstruction process. In this section, the details of 

experiments for optimizing these two parameters are explained.    

1) Dataset and experimental settings 

In order to implement the experiments for parameter optimisation, 6 zebrafishes are used 

for OPT imaging. They are split into two groups and are prepared with different 

protocols that result in different contrast and intensity distributions. Figure 4.9 shows two 

example images of zebrafish in bright-field mode of which each sample corresponds to a 
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Figure 4.7. Streak artefacts existing in OPT reconstruction with the FBP reconstruction. (a) The 

tomogram of zebrafish in fluorescence mode. (b) Streak artefacts existing in the reconstructed 

slices using the FBP algorithm. (c) Z-projection of all reconstructed slices along with streak 

artefacts. (d) 3D volume rendering with streak artefacts. 

 
Figure 4.8. Streak artefacts eliminated with OSEM reconstruction in OPT. (a) The tomogram of  
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zebrafish in fluorescence mode. (b) Streak artefacts removed in the reconstructed slices using 

OSEM algorithm. (c) Z-projection of all reconstructed slices without streak artefacts. (d) 3D 

volume rendering with no streak artefacts. 

different protocol for sample preparation. The motivation for using bright-field rather 

than fluorescence images is that, in our imaging system, bright-field images provide the 

outline information of a zebrafish. This can provide more prior knowledge to benchmark 

for segmentation. Figure 4.9 (a) corresponds to the tomogram of 5 dpf cleared zebrafish 

with BABB protocol 
[20]

, while (b) displays the 25 dpf zebrafish with CUBIC protocol 
[90],[91]

. In the bright-field mode, we can easily observe the difference of intensity 

distribution between them. For each preparation protocol or dataset, there are three 

zebrafishes studied for parameter optimisation. Each reconstructed sample, i.e. zebrafish 

3D image, consists of 1360 slices produced from a 400 tomogram image set using the 

reconstruction algorithm, compromising 4080 slices for each group or experimental 

implement. 

We study the two most problematic parameters, i.e. iteration number η and initial 

reconstruction γ. First, for each dataset the effect of iteration number on segmentation 

performance is investigated. To this end, 5 groups of 3D images reconstructed from 

different iteration numbers are generated, combing the cost of computation and 

effectiveness of the reconstruction. Each group corresponds to one of five iteration 

numbers, i.e. 𝜂 = {5, 10, 15, 20,25}. We consider 5 to be a reasonable step size for the 

assessment of reconstruction performances based on different numbers of iteration, 

concerning the computational expense and experimental requirements.  

 

Figure 4.9. Samples of zebrafish with different preparation protocols in the bright-field mode. (a) 

One example of a tomogram for the 5 dpf zebrafish clearing with BABB 
[20]

 protocol. (b) One 

example of tomogram for the 25 dpf zebrafish cleared with CUBIC 
[90], [91]

 protocol. 

The iteration number η is optimized by comparing the segmentation performance of 

each group. For initial reconstruction γ we compare the performance with an initial 3D 
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image from the FBP results (FBP-initial) and zeros (No-initial). To obtain the 

segmentation network all the zebrafish slices within each group are evenly distributed 

into training set (20%) and test set (80%). The segmentation network within each group 

is trained with the validation rate as 10%. The segmentation ground truths are labelled 

based on the FBP results. The segmentation performance MCVF1 of each group consists 

of overall F1 scores in 3D scale and the corresponding negative deviation on the test data 

as depicted in cf. § 4.3.2. 

2) Iteration number and initial reconstruction 

A. Experiments on 5 dpf zebrafish 

The first data used in the experiments are three 5 dpf zebrafish are prepared with the 

BABB protocol 
[20

]. The MCVF1 performance of each group defined in cf. § 4.3.2 and 

the performance of individual samples are presented in Table 4.1 and Table 4.2. The two 

tables show the performance differences of different initial reconstruction settings, with 

Table 4.1 presenting the results with the No-initial reconstruction setting while Table 4.2 

corresponding to the FBP-initial results. Results are obtained based on the same training 

configuration of segmentation network.  

For each sample with a particular iteration number, the performance consists of overall 

3D F1 score 𝐹1 and negative deviation 𝜎−(𝐹1) of all slices. Such as for the Fish1 with 5-

iterations, 98.23% represents 𝐹1 and 2.78% is 𝜎−(𝐹1). The smaller the MCVF1 is, i.e. 

higher 𝐹1 and smaller 𝜎−(𝐹1), the higher segmentation performance is. The results of 

the highest segmentation performance for each sample across iteration numbers are in 

bold. From the results obtained on the 3 zebrafishes, 10-iterations achieves the best 

overall performance for both No-initial and FBP-initial reconstruction. Regarding the 

different initial schemes, the FBP-initial method outperforms the No-initial approach in 

terms of three segmentation performances yielded with the same iteration number.  

Table 4.1 and Table 4.2 present quantitative measures for segmentation performance 

on the 3D images. It, however, does not provide performance details of each slice inside 

of the 3D volume. In order to achieve these segmentation performances of all slices 

within each sample, each individual 3D image needs to be investigated. Figure 4.10 and 

4.9 provides an example with that on the first zebrafish. Slices from the left to the right 

correspond to the zebrafish from the head to the tail. The F1_score of each slice ranges 

from 0 to 1. Each point in Figure 4.10 and 4.9 stands for a F1 score of one slice. The 

value of 1.0 on the left and right side of the figures implies a background slice in the 

reconstructed 3D data. Close to the background slices are the critical slices which are 

indistinguishable for segmentation. That is why they have quite low F1 score 

performances on both sides of the 3D data, i.e. the critical slices between the head or tail 

and background.  
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Table 4.1. Segmentation performance of iterative reconstruction implemented with various 

iteration numbers and No-initial reconstruction on the three 5 dpf zebrafishes. 

No-initial Fish1 

(%) 

Fish2 

(%) 

Fish3 

(%) 

MCVF1 

(%) 

5-iterations 98.23 

(-2.78) 

97.94 

(-2.77) 

97.88 

(-3.35) 

3.03 

10-iterations 98.24 

(-2.82) 

98.14 

(-2.69) 

97.94 

(-3.37) 

3.02 

15-iterations 97.54 

(-3.19) 

97.38 

(-3.63) 

97.25 

(-3.98) 

3.70 

20-iterations 97.34 

(-3.10) 

97.11 

(-3.40) 

96.91 

(-3.84) 

3.57 

25-iterations 97.74 

(-3.84) 

97.70 

(-3.10) 

97.69 

(-3.50) 

3.56 

 

 

Table 4.2. Segmentation performance of iterative reconstruction implemented with various 

iteration numbers and FBP-initial reconstruction on the three 5 dpf zebrafishes. 

FBP-initial Fish1 

(%) 

Fish2 

(%) 

Fish3 

(%) 

MCVF1 

(%) 

5-iterations 98.29 

(-2.79) 

98.01 

(-2.56) 

97.95 

(-3.18) 

3.55 

10-iterations 98.39 

(-2.63) 

98.27 

(-2.61) 

98.17 

(-3.16) 

2.85 

15-iterations 98.29 

(-2.82) 

98.14 

(-2.68) 

98.06 

(-3.18) 

2.95 

20-iterations 98.36 

(-2.77) 

98.04 

(-2.77) 

97.95 

(-3.30) 

3.00 

25-iterations 98.31 

(-2.76) 

98.01 

(-2.88) 

98.02 

(-3.57) 

3.13 
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Figure 4.10. Segmentation performance of reconstructed slices with different iteration numbers in 

a No-initial setting on the 5 dpf Fish1. Each point represents the F1 score of each slice for 

segmentation. The rectangular area is zoomed.   

 

Figure 4.11. Segmentation performance of reconstructed slices with different iteration numbers in 

a FBP-initial setting on the 5 dpf Fish1. Each point represents the F1 score of each slice for 

segmentation. The rectangular area is zoomed.   
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By comparing the distribution of F1_score on all slices in Figure 4.10, we can also see 

that the 3D image group with 10-iterations has more points with larger F1_score and less 

with smaller F1_score, compared to other groups. This is in correspondence with the 

results of Fish1 in Table 4.1, i.e. larger 𝐹1 and smaller 𝜎−(𝐹1) value. Similar results can 

be observed in Figure 4.11 for FBP-initial reconstruction. The comparisons of 

segmentation performance on the 5 dpf zebrafishes reconstructed with different iterations, 

both for No-initial and FBP-initial, indicate that the reconstruction with the 10-iterations 

produces the most desirable results. 

B. Experiments on 25 dpf zebrafish 

As far as the variation of intensity distribution and experimental environment are 

concerned, three 25 dpf zebrafishes cleared with CUBIC protocol 
[90],[91]

 are also used for 

experiments. The performances of each sample and each 3D image group are 

demonstrated in Table 4.3 and 4.4, with MCVF1 corresponding to the performance of 

each group while 𝐹1 and smaller 𝜎−(𝐹1) showing the performance of each sample. As 

with Table 4.1 and 4.2, the best performance of individual sample and group is given in 

bold. Overall, the segmentation performance indicates that the FBP-initial reconstruction 

method outperforms the No-initial approach. Furthermore, in both cases, 10 iterations 

outperform other number of iterations, according to the MCVF1, 𝐹1 and 𝜎−(𝐹1) values. 

This is consistent with the observations regarding the 5 dpf zebrafishes.  

However, compared to the 5 dpf zebrafishes, segmentation performances on the 25 dpf 

zebrafishes are generally lower and more deviated across 3D image groups. For example 

if we compare the Fish1 of both dataset in the No-initial case (in Table 4.1 and 4.3), the 

Fish1 of 5 dpf zebrafish as shown in Figure 4.9 (a), has a 𝐹1 range of [97.34, 98.24] that 

outperforms the range of [97.37, 97.97] for the Fish1 of 25 dpf zebrafish in Figure 4.9 (b). 

𝜎−(𝐹1) of the 5 dpf Fish1 in Table 4.1 ranges from 2.78 to 3.84, smaller than that of 25 

dpf Fish1 in Table 4.3 with the range from 3.51 to 4.83. Similar comparisons between the 

two datasets, corresponding to the two protocols, can be made for the other samples. In 

general, we conclude that the CUBIC clearing protocol makes the zebrafishes more 

transparent for OPT imaging compared to the BABB protocol. We need to acknowledge 

that a higher transparency of sample results in a higher similarity or a lower contrast 

between the foreground (zebrafish) and background tomograms and the 3D images, 

particularly at the object edge. Such 3D image will consequently have a lower 

segmentation performance and will be more sensitive to the number of iterations in the 

process of reconstruction. 
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Table 4.3. Segmentation performance of iterative reconstruction implemented with various 

iteration numbers and No-initial reconstruction on the three 25 dpf zebrafishes. 

No-initial Fish1 

(%) 

Fish2 

(%) 

Fish3 

(%) 

MCVF1 

(%) 

5-iterations 97.81 

(-3.72) 

96.51 

(-9.24) 

97.73 

(-3.69) 

5.72 

10-iterations 97.97 

(-3.51) 

96.72 

(-5.78) 

97.84 

(-2.23) 

3.95 

15-iterations 97.87 

(-3.86) 

95.18 

(10.56) 

97.89 

(-2.29) 

5.79 

20-iterations 97.86 

(-4.40) 

85.83 

(-30.4) 

97.82 

(-3.32) 

14.44 

25-iterations 97.37 

(-4.83) 

76.08 

(-40.2) 

96.99 

(-4.47) 

20.79 

 

 

 

Table 4.4. Segmentation performance of iterative reconstruction implemented with various 

iteration numbers and FBP-initial reconstruction on the three 25 dpf zebrafishes. 

FBP-initial Fish1 

(%) 

Fish2 

(%) 

Fish3 

(%) 

MCVF1 

(%) 

5-iterations 98.08 

(-3.45) 

97.21 

(-6.07) 

98.17 

(-3.08) 

4.30 

10-iterations 98.29 

(-3.11) 

97.18 

(-5.75) 

98.38 

(-2.58) 

3.90 

15-iterations 97.71 

(-3.99) 

94.15 

(-10.7) 

97.48 

(-3.76) 

6.4 

20-iterations 97.90 

(-4.21) 

91.56 

(-25.4) 

98.02 

(-2.77) 

11.60 

25-iterations 97.90 

(-3.73) 

83.30 

(-32.7) 

97.84 

(-3.28) 

15.47 
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Figure 4.13. Segmentation performance of reconstructed slices with different iteration numbers in 

a No-initial setting on the 25 dpf Fish1. Performance is represented by F1 score of each slice. The 

rectangular area is zoomed.   

 
Figure 4.14. Segmentation performance of reconstructed slices with different iteration numbers in 

a FBP-initial setting on the 25 dpf Fish1. Performance is represented by F1 score of each slice. The 

rectangular area is zoomed.      
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Figure 4.12. The tomogram of the 25 dpf Fish1, Fish2 and Fish3. They are shown in mounting 

orientation in the OPT imaging system. Fish2 has a lower contrast than the other two, with 

comparable background noise. 

In Table 4.3 and 4.4 we can readily see that as iteration number increases the 

performance of sample Fish2 decreases dramatically whilst sample Fish1 and Fish3 

decrease much less. This is because Fish2 has a lower contrast or a higher transparency 

as we can see from Figure 4.12. When the iteration number increases the information loss 

of the zebrafish body in the reconstruction is much more obvious. This makes it more 

difficult to be segmented correctly.      

Regarding the performance of individual slices within the 25 dpf Fish1 for both No-

initial and FBP-initial configuration, they are separately shown in Figure 4.13 and 4.14. 

For both cases, 10-iterations reconstruction outperforms other groups from either 2D 

slice or 3D volume scale. 

4.4.3 Comparison of segmentation performance between OSEM and FBP 

In this section the segmentation performance from the FBP reconstruction and the 

iterative reconstruction (OSEM) will be compared, experimented on the same datasets as 

for parameter optimisation, cf. § 4.4.2. In order to eliminate the contingency of gaining a 

good performance based a segmentation network that is trained on a fixed training set, 

different training sets are taken into account. They are evenly sampled from the 3D 

reconstruction slices with a different step size from 2 to 20, corresponding to the training 

ratio from 50% to 5%. 50% is considered to be a reasonably high training ratio for 

training a segmentation network in 3D OPT image, considering both accuracy and 

training cost.  Higher training ratio might produce a bit higher accuracy, yet the training 

cost increases dramatically. As the aim of the comparisons among different 

reconstruction groups is to find the best-performed reconstruction parameters, rather than 

search for the global highest accuracy. Therefore, it is not necessary to train each network 
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with the highest training cost, e.g. a training ratio of 90%. The comparisons for both data 

are shown in Table 4.5 and 4.6. The performances are obtained with the same 

configuration for training segmentation networks. 

In this experiment, the iteration number is set to 10 for the iterative reconstruction, 

because of its good performance, cf. § 4.4.2. In the training process of segmentation 

network, the number of epochs is set as 500 with batch size of 12 and each training 

process starts from a similar point in the network which can be seen from the loss and 

accuracy value. The MCVF1 of each 3D image group is calculated from individual 

samples, cf. § 4.3.2. The reconstruction method that has the smallest MCVF1 for each 

training ratio (bold) performs the best. By comparing the average MCVF1 we conclude 

that on both zebrafish datasets the FBP-initial iterative reconstruction achieves the best 

segmentation performance and are most desirable. 

We further investigate the effect of streak artefacts on the segmentation performance. 

The average MCVF1 of different ratios of training set, produced with a specific 

reconstruction method, is seen as the criterion for assessing the overall performance of 

the reconstruction method. For the 5 dpf zebrafishes, the overall performances of the 

three reconstruction methods are 6.00, 3.90, and 3.83. Because the 5 dpf zebrafishes are 

cleared with the BABB protocol that maintains high specimen contrast; the pigments on 

the zebrafish skin are more concentrated, cf. Figure 4.9 (a). This introduces more streak 

artefacts in the FBP reconstructed slices. This explains the reason why iterative 

reconstruction methods (both No-initial and FBP-initial) highly outperform FBP method 

in Table 4.5. Different from the BABB protocol, the 25 dpf zebrafishes are cleared with 

CUBIC protocol. In this case, we obtain tomograms with lower contrast and the pigments 

are also less concentrated, introducing less streak artefacts in the FBP reconstruction. 

This allows the FBP reconstruction to produce 3D images achieving comparable overall 

performance (5.51) for segmentation, comparing to the iterative reconstructions (5.81 and 

5.32).  

Excluding the effect of streak artefacts on segmentation, we only look at the overall 

performance of OSEM reconstruction on the two different datasets in Table 4.5 and 4.6. 

The 5 dpf less transparent zebrafishes outperform the 25 dpf zebrafishes which are more 

transparent. When we compare the performances between the OSEM and FBP, it can be 

seen that the results for the 25 dpf zebrafishes are comparable, but the OSEM achieves 

better performance than the FBP for the 5 dpf zebrafishes. The reason for the difference 

is that the FBP reconstructions for the 5 dpf zebrafishes have much more streak artefacts 

than the 25 dpf zebrafishes do, which deteriorates the segmentation performance.  
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4.4.4 Discussion 

In this section an overall experimental discussion will be given. In § 4.4.1 the qualitative 

comparison between the FBP and iterative (OSEM) reconstruction is presented, in terms 

of the elimination of artefacts in one specific zebrafish. This inspired and motivated us to 

go one step further and study the parameter optimisation for the iterative reconstruction 

with respect to its potential performance in OPT reconstruction. This means that the 

effect of different reconstruction parameters needs to be investigated. We accomplished 

this in § 4.4.2 by studying the two most problematic parameters, i.e. the number of 

iterations and the initial reconstruction, on two zebrafish datasets with different image 

intensity distributions. According to these experiments, the combination of 10-iterations 

and FBP-initial is proved to produce the most desirable and preferable 3D image, 

compared to the other combinations. Additionally, 10-iterations are also acceptable for 

reconstruction implementation concerning the computation cost. When comparing the 

segmentation performances across datasets, we find that the contrast rich dataset 

performs better, which is reasonable from theoretical perspective. Because a highly 

transparent sample produces a more indistinguishable intensity distribution in both 

tomogram and 3D image in OPT, therefore bringing more complications for the 

segmentation.  

Followed by parameter optimisation, comparisons of segmentation performance 

between the FBP and iterative reconstruction are displayed in a quantitative manner. It is 

known that sample preparation plays a crucial role in the OPT imaging, as well as the 3D 

reconstruction process. One should realize that the BABB protocol provides higher 

specimen contrast that generally leads to a better 3D image from the iterative 

reconstruction and consequently achieves a higher segmentation performance, however 

introduces streak artefacts when using the FBP reconstruction. Moreover, with the BABB 

clearing protocol, the iterative reconstruction can eliminate the streak artefacts during the 

reconstruction process, so the segmentation result outperforms that of the 3D images 

from the FBP algorithm. With the CUBIC clearing protocol, both reconstruction methods 

are able to avoid the streak artefacts in the 3D image, therefore obtaining a comparable 

segmentation performance between different approaches. In this work the experiments 

are implemented on finite zebrafish samples. With the trend of high-throughput analysis 

on zebrafish, in the near future more samples will be considered to confirm this tendency. 

4.5 Conclusions 

The research presented in this chapter is the development and implementation of an 

iterative reconstruction, specifically OSEM, and the further exploration of approaches to 

optimize the reconstruction parameters. The OSEM algorithm produces superior 3D 

image in comparison with FBP algorithm in terms of streak artefact elimination when the 

signals in the tomograms are very concentrated. The method used for further improvement 

of the reconstruction is realized by optimizing the parameters for the OSEM algorithm, 
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which requires the evaluation of reconstructed 3D image. Restricted by the lack of 

benchmarks for reconstruction in real-life imaging, we have used an alternative approach 

that is inspired by the segmentation evaluation. Notably, the way of integrating 

segmentation evaluation into parameter optimisation for iterative reconstruction, may not 

result in the achievement of the globally optimal parameters. But to our best knowledge, it 

provides a good and reasonable way for guaranteeing an optimized and efficient 

reconstruction result, considering both the reconstruction quality and computational cost. 

It is worth point out that, even though the OSEM produces promising results for highly 

transparent samples, e.g. the 25 dpf Fish2 with 10 iterations, it could also be possible that 

a sample is too transparent to produce any significant reconstruction results with the same 

OSEM parameters. In such an extreme case, decreasing the iteration number might help 

recover more information in compromise with image blur.    
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Chapter summary 

Zebrafish as a vertebrate model plays an important role in biomedical researches such 

as development, disease, toxicological and drug discovery studies. In this chapter we 

assume that fluorescent markers represent a specific signal of interest. We aim to 

quantify these signals in zebrafish, to provide accurate experimental information, for 

e.g. drug discovery, in an automated and efficient way. We first define the 

quantification approaches with a case study in tumour growth. Based on the definition, 

the reference structures for the quantification, obtained from bright-field images, are 

studied.  

In order to automatically detect the reference structures from 3D bright-field 

images with a high performance, we use the deep learning approach to obtain a 

segmentation of the reference structures for each sample. The 3D images are obtained 

and reconstructed from the optical projection tomography imaging.  According to our 

experiments, the automated approach for detecting reference structures is a promising 

method for the relative quantification of fluorescent signals in zebrafish.  
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5.1 Introduction 

In this chapter we will focus on the application of imaging of zebrafish in OPT for 

disease modelling. In biomedical research, zebrafish has become a widely used model 

organism in the last decade because of its fecundity, its physiological and genomic 

similarity to mammals, the existence of many genomic tools and the ease with which 

large, phenotype-based screens can be performed 
[92]

. Mammalian models of absorption, 

distribution, metabolism and excretion (ADME) or pharmacokinetics and efficacy, are 

considered expensive and laborious and consume quantities of precious compounds. 

Compared to this, zebrafish is more cost-effective and can therefore be a useful 

alternative to mammalian models.  

5.1.1 Research questions 

Drug discovery involves a complex iterative process of biochemical and cellular assays, 

working up to in vivo validation in animal models and ultimately in humans. Zebrafish is 

considered promising in accelerating the process of drug discovery with a comprehensive 

advantage of scale, high-throughput screening and physiological complexity. In disease 

modelling and treatment, e.g. drug discovery for tumour treatment, zebrafish has revealed 

its effectiveness and advantages 
[93]

. Using zebrafish as disease model for tumour means 

exposures to different levels of drug treatment. The performance of this drug treatment 

can be expressed in qualitative terms, i.e. using the visual signal, as well as in 

quantitative terms, i.e. measurements of the intensities and extend of the signal. 

    To this end a specific fluorescent signal, i.e. the expression of a representative gene is 

used. However, compared to visual qualitative assays, quantitative assessment is more 

comparable and transferable and hence more convincing. The quantification of the 

expression of specific disease within zebrafish such as tumour 
[93]

 can give a direct and 

accurate insight of tumour size and shape, as well as make the precise comparison of 

different treatment groups. 

Depending on different research demands and available facilities, the disease 

phenotype can be represented as 2D or 3D microscope images. For a whole-mount 

zebrafish, 2D images from a stereo-fluorescence microscope can provide fast information 

on the structure of a tumour in a single specimen; de facto this is a projection of 3D 

information. For measurement and phenotypical description, this should be considered 

with caution. Projecting and imaging a zebrafish from a different angle will result in a 

different 2D image. This difference can result in inaccurate and biased quantification. In 

contrast, 3D imaging of disease phenotype reconstructs the 3D structure, therefore 

potentially more accurate for disease phenotype quantification. Therefore, we take it as a 

research question: given a 3D image, what are the possible solutions for the 

quantification of disease phenotype and to what extent the quantification process can be 

automated.   
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5.1.2 OPT as a solution for whole-mount imaging 

As mentioned, zebrafish is a good model system for the disease studies. For overview of 

disease and disease progression in zebrafish, whole-mount imaging is indispensable. 

With confocal laser scanning microscopy (CLSM), light microscopy (LM) and, to a 

lesser extent, scanning electron microscopy (SEM) the size of the specimen limits the 

application of whole-mount imaging 
[15], [94]

. With MRI 
[16]

 the strength of the magnetic 

field determines the resolution that can be obtained for whole-mount imaging and a mm-

scale object requires quite a strong magnet. With a right choice of optics, optical 

projection tomography (OPT) 
[95]

 can conveniently operate with mm-scale objects. It can 

display gene expression or a specific staining in the bright-field or fluorescence channel, 

while the specimen as a whole can be visualized. In this manner OPT adds an important 

range of scale that can be investigated. It allows for the acquisition of whole-mount 

images of animal/plant tissues as well as organs/organisms 
[18], [19]

. OPT has also been 

studied for its capability of imaging with excellent spatial resolution and contrast and 

minimal shadowing artefacts produced from back-projection reconstruction after 

tomogram acquisition. Therefore, we take OPT into account to assess the whole-mount 

3D imaging of zebrafish.  

5.1.3 Multi-channel analysis of whole-mount zebrafish 

In order to exclude biological variation and individual differences, large scale analysis of 

zebrafish for disease treatment is necessary. This means that multiple zebrafishes will 

need to be quantified and averaged to describe the disease progression or the 

performance of drug exposure at different time-points in disease. 

To our best knowledge, two methodologies are used for the quantifying of a disease 

model. One is measuring a read-out in absolute sizes of the disease marker in either 2D 

or 3D, named as absolute quantification. This involves a segmentation of the signal that 

is representing the disease, i.e. the marker, and pixel/voxel size calibration. For absolute 

quantification, only the fluorescence channel, with fluorescent disease marker, is required. 

In this particular case, the pixel/voxel size calibration for the imaging system is required 

so as to make measurements comparable and transferrable between different systems.  

Another approach is calculating the relative ratio of disease phenotype, i.e. fluorescent 

signal, referring to a specific structure such as Body or Eye. This is mostly depending on 

detection of the reference structure (RS) and has generality across imaging systems and 

between specimens. In this case often both modalities, i.e. fluorescence and bright-field, 

are required; with one for the fluorescent marker and the other for the RS. Taking 

advantage from computational techniques and resources, in this chapter we construct and 

detect RS for relative quantification of disease phenotype. To that end we introduce two 

definitions so as to support our approach for relative quantification. 
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Definition 1 Phenotype: The total appearance of an organism determined by 

interaction during development between its genetic constitution (genotype) and the 

environment 
 [96]

. 

Definition  2  Reference Structure (RS):  a structure that is a part of the organism 

under study that is used for a relative comparison over scale and/or time. Usually, the RS 

is used in a normalization to establish an effect in a phenotype.  

 

Relative quantification of 2D disease phenotype for each zebrafish can be achieved by 

standard image analysis tools
 [97]

. When considering throughput of the data, a more 

automated approach is preferred. However, quantification of 3D disease phenotypes for a 

zebrafish specimen is much more difficult to obtain than it is in 2D. Therefore, in order to 

prevent manual labor and enable application of analysis on a larger scale, automated 

image analysis is necessary. We focus on the automation of obtaining RS to accelerate 

the throughput of the 3D analysis of zebrafish. 

The research presented in this chapter concentrates on relative quantification of disease 

phenotyping, specifically constructing 3D reference structures in zebrafish. We have 

chosen to work with two RSs that are always visible: the Body and the Eye. The Body 

represents the overall phenotype of a sample, providing a normalization standard for all 

the samples. The Eye is a local RS with less deviation among specimens of the same 

stage, it is also easier to detect because of its clear texture. The goal of this research is to 

automatically detect both RSs and using them for the calculation of the relative 

quantification of fluorescent signals. Here we focus on the 3D quantification of signals 

from a disease. The automated RS detection can be generalized to other 3D fluorescent 

signals in zebrafish. 

The RSs we need for the 3D relative quantification are automatically detected from the 

bright-field 3D image by using segmentation techniques. Concerning the large-scale 

requirement, we are into exploring an approach for automated detection of the RSs. The 

transparency and inhomogeneity of the zebrafish make segmentation performance 

cumbersome, particularly in 3D, when using traditional segmentation algorithms; i.e. 

threshold-based, region growth, graph cut and traditional machine learning techniques. 

The challenge must be seen in the high similarity of intensity between voxels inside and 

outside zebrafish, as well as the edge/surface discontinuities 
[98]

. Fortunately compared to 

Body, Eye has a more dense tissue, therefore more discriminative. To meet our 

requirements for automated RS detection, advanced segmentation approaches will have 

to be explored.  

5.1.4 Related work 

During the last twenty years, to our best knowledge there were just a few research topics 

on automated analysis in zebrafish. Mikut et al. 
[99]

 contributed a survey on automated 

processing of zebrafish-related data and generalized the workflow for analysis of 

biomedical research on zebrafish model. They showed some examples of automated 
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image analysis, including cell tracking during embryogenesis, heartbeat detection, 

anatomical landmarks, dead embryo detection, recognition of tissues, and quantification 

of behavioral patterns. In general, the microscopy images could be classified into two 

categories as mentioned: bright-field images and fluorescence images. Analysis of the 

fluorescence images is relatively easy compared to bright-field because fluorescent 

intensity typically reflects specific information of interest. 

Previous work on fluorescent imaging varies with the specific research topic. 

Understanding bacterial infection was accomplished with a template-based segmentation 

method through which the shape of a zebrafish larva was detected. The bacterial load was 

obtained from the fluorescent channel and normalized to the size of the larva, or specific 

parts thereof 
[100]–[103]

. An automated segmentation was utilized to zebrafish heart based 

on 2D light-sheet fluorescent images, accompanied by 3D reconstruction in the second 

stage 
[104]

. They followed the pipeline that 3D volume is reconstructed based on the 

segmentation results of tomograms. Segmentation of the  axial skeleton and spine of the 

zebrafish are also common in developmental research 
[105],[106]

. Their segmentation was 

implemented on images of fluorescent maker in notochord sheath cells and with 

conventional segmentation techniques acceptable results have been achieved
 [105], [106]

. 

More lately segmentation of developing zebrafish vasculature was proposed from light 

sheet fluorescence microscopy imaging 
[107]

. They used the open source software Fiji 
[97]

 

for segmentation of the fluorescent marker and achieved satisfied results 
[107]

. Different 

from the aforementioned non-learning algorithms, Zhang et al. 
[108]

 first brought the deep 

learning technique to vessel segmentation on images from 3D confocal imaging in 2019. 

They obtained promising results on accurate segmentation of challenging vessel data that 

were labelled with green fluorescent protein (GFP). The 3D image data were acquired 

with confocal microscopy and the segmentation was implemented on the reconstructed 

slices 
[108]

.  

In addition, whole-mount specimen segmentation can be achieved using the bright-

field image of the sample. It is typically related to phenotype and behavior analysis in the 

research of development and drug discovery
 [98], [109]–[111],

. Wu et al. 
[109]

 proposed a hybrid 

method which integrates region and boundary information into an active contour model 

considering the ambiguity of edges for 2D image segmentation. Later, Xiong et al. 
[110]

  

presented the level-set model to segment zebrafish on image slices from confocal 

microscopy and achieved promising results on 3D images. Inspired by the good 

performance of level-set model, Guo et al. 
[98]

 integrated mean shift to level-set model for 

accurate 2D zebrafish image segmentation in bright-field channel, and then used the 

segmented masks for 3D reconstruction of zebrafish surface. Recently, instead of 

phenotype analysis, Ishaq et al. 
[111]

 classified zebrafish deformation, i.e. normality or 

deformation, based on 2D bright-field images for drug discovery using a deep neural 

network.                         
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5.1.5 Structure of this chapter 

The research presented in this chapter is to explore a segmentation approach, aiming at 

automated detection of the RSs for fluorescent signals in zebrafish. The detected RS is 

able to help with relative quantification of fluorescent signals in zebrafish. In section 5.2 

we present the materials and methods used for our research. In section 5.3 we further 

elaborate the design and implementation of the segmentation approach for automated 

detection of the two 3D RSs that we use here. In section 5.4 the experiments and results 

will be presented, with a case study in tumour quantification, followed by conclusions 

and discussion in section 5.5. 

5.2 Materials and methods 

Here, we will first explain the specimen and sample preparation of zebrafish used for 

automated RS detection. The 3D imaging and reconstruction framework will follow 

afterwards. Based on the reconstructed 3D image, the approach to the relative 

quantification of fluorescent signals will be formed.   

5.2.1 Zebrafish 

Both for the Body and Eye reference structures, 38 zebrafish samples are used to learn 

parameters of the segmentation approach for automated detection. These zebrafishes are 

from three different stages including 5 dpf, 6 dpf and 7 dpf and all of them are cleared 

with the BABB protocol (cf. [20]). As we are only interested in the bright-field image for 

the detection, the samples are not necessarily stained or marked with fluorescent markers. 

For our experiments we have eight 5 dpf zebrafishes, fifteen 6 dpf and fifteen 7 dpf 

zebrafish without staining.  

5.2.2 OPT imaging and reconstruction 

3D imaging with OPT is suitable for zebrafish imaging as it can deal with the size range 

to produce whole-mount images. With OPT both bright-field and fluorescence modalities 

can be accomplished and the acquisition of these channels is done in a sequential manner. 

In confocal microscopy the details are inspected at cellular level but it compromises 

information at the global level 
[112],[113]

. The strength of OPT is that it enables observation 

of the whole specimen, i.e. the zebrafish, at a tissue level with depth ranging from 

millimeter to centimeter. This character of a large depth and field of view (FoV) enables 

the analysis the zebrafish as a whole on volumetric level. This also explains the 

conditions of our research work for detecting the RSs for fluorescent signals in zebrafish. 

The bright-field images from the 38 samples are acquired using the OPT imaging 

system as depicted in chapter 1, cf. § 1.2, producing a 3D tomogram of 1360 × 1036 ×
400 for each sample; 1360 × 1036 per image over 400 angles in full revolution.  The 

3D bright-field image of each zebrafish is obtained from the corrected tomogram set by 
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using the iterative reconstruction algorithm as described in chapter 4, cf. § 4.2. The 

transform from original OPT tomogram set to corrected ones are accomplished by 

applying the centre of rotation (CoR) correction approach in chapter 2, cf. § 2.3. The 

application of the iterative reconstruction 
[28]

 results in a  3D image  sized  𝑅 × 𝑅 × 1360, 

where R is the determined by the CoR value and 1360 refers to the number of slices in 

3D. The 3D images of all the 38 zebrafishes are subsequently used to learn the 

parameters of segmentation approach for RS detection. This design of the automated RS 

detection will be elaborated in the section on design and implementation.    

5.2.3 Relative quantification 

The relative quantification of fluorescent signals is based on the reconstructed 3D images 

from both the bright-field and fluorescence channel. Specifically, the fluorescent signals 

from the 3D image of the fluorescence channel are first segmented through a threshold-

based algorithm. In this manner, a sub-volume is produced from which the fluorescent 

signal is quantified. For RS detection, we need first to segment or identify the RS from 

the 3D bright-field image, producing the sub-volume of the reference structure. The ratio 

of the two volumes obtained from the segmentation results is defined as the relative 

quantification of the fluorescent signal.      

5.3 Design and implementation  

In this section, we focus on the design and implementation of automated RS detection for 

3D quantification. With the 3D bright-field image of zebrafish, cf. § 5.2.2, the RS, i.e. 

Body or Eye will be identified by the supervised segmentation approach. We investigate 

how this can be accomplished by a convolutional neural network. For each of the RSs 

binary ground truth is realized with annotation software, such as TDR or Amira. In order 

to train  a high-performance segmentation network for each RS, we employ U-net 

segmentation network 
 [29], [114]

 implemented in both 2D and 3D image space.  

5.3.1 Segmentation of reference structures 

In order to reduce the computational load, we rescale the 3D image to 512 × 512 × 680 

for the 2D U-net segmentation and to 128 × 128 × 340 for the 3D U-net segmentation, 

thereby compromising resolution. To our best knowledge, 3D U-net has the highest 

performance when each 3D image is directly fed into the network. However, constrained 

by the memory, this is not feasible for our 3D image due to its large size. Alternatively, 

we resized and cropped the 3D image as 128 × 128 × 340 and feed the 3D U-net in a 

patch way. From the 38 samples as introduced in§ 5.2.1, 35 samples are used for training 

and validating the segmentation network, whilst 3 samples for testing or evaluating the 

performance of the segmentation approach. So, there are 23800 slice samples in total for 

training and validating the 2D U-net, but much less volume patches for 3D U-net training. 

In order to increase the sample size for 3D U-net, we decrease the patch size to 64 ×
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64 × 64 with an overlap of 16 to cover 3D context well. This results in 1113 cubic patch 

samples for training and validation. Concerning the high imbalance of voxels between 

RS and background, in particular for Eye, we exclude the patches that have no object in 

the ground truth data. For the remaining patch samples, data augmentation including 

distortion and flip is employed before being fed into the network. 

1) 2D Unet 

The 2D U-net network 
[29]

 feeds 2D images in the Input layer. As our starting point 

is 3D images, we need a slice extractor to provide the 2D images to the net.  In this 

manner, the slice extractor also contributes in stacking all slices back to 3D volumetric 

images after Output layer. The network structure has been elaborated in chapter 4, cf. § 

4.3.2.  

2) 3D Unet 

In the 3D U-net 
[114]

, different from the 2D U-net, 3D image are used as Input layer. 

This is schematically depicted in Figure 5.1. As we now work in 3D, a slice extractor is 

no longer required, and instead a cubic patch is used. The equation operation fits the 

cubic patch into the Input or Output layer. The Output layer of the network is named as 

the segmentation map. This will, to some extent simplify the description of network 

layers including 3D Input and number of kernels. Besides the features on each 

reconstruction slice, the encoder and decoder in 3D U-net also considers the correlation 

between adjacent slices by using 3D Maxpooling, Convolution and Upsampling layers. 

Compared to a 2D U-net approach, this produces smoother segmentation results. Similar 

to 2D U-net there is one more Convolution layer before each Maxpooling or Upsampling 

layer (not shown in Figure 5.1). The Merge layer after each Upsampling layer integrates 

shadow layer into a deeper one, this yielding even more informative layers. The 

segmentation result of the volumetric patch is achieved based on the thresholding of 3D 

segmentation map, the Output layer of network.  

5.3.2 Learning scheme 

A CNN can only be successful when it is properly designed and parameterized. For this, 

the proper loss functions, optimizers and learning rate will be employed. In this section, 

we elaborate on these schemes and how they should be applied. 

1) Loss & Metrics 

Loss and metrics functions play an important role in training networks, because they 

provide a criterion for measuring the similarities between prediction and truth, and 

determine the level of convergence for the training process. With the Sigmoid activation 

function at the Output layer and the binary segmentation problem for both RSs, we first  
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Figure 5.1. The 3D U-net framework for volumetric segmentation of the Body RS in zebrafish. A 

volumetric patch of reconstructed 3D image, i.e. 64x64x64, is fed into the network as Input layer. 

It inherits the characteristics of Max pooling, Upsampling and Convolution layers; moreover, it 

includes the concatenation operation to merge similar layers of different depths. In this structure, 

every operation is implemented in 3D.  The equations operation at Input and Output layer help to 

overcome the visualization gap between 3D image and 4D network layers. The values of the 

segmentation map at the Output layer are in the range of [0, 1], representing the network response 

to the Body RS. By applying threshold=0.5 to the segmentation map, the binary 3D Body RS is 

obtained as shown in the 3D image patch.   

use the binary cross entropy loss 
[115],[116]

 and accuracy metrics. In this case, the 

segmentation performance of both background and RS, i.e. foreground, are taken into 

account for updating the network weights according to: 

 𝐸𝐿 = ∑ 𝑔𝑖
𝑟 log(𝑝𝑖

𝑟) + (1 − 𝑔𝑖
𝑟) log(1 − 𝑝𝑖

𝑟)𝑁
𝑖=0                                   (1) 

where 𝐸𝐿 is the loss, whilst 𝑝𝑖
𝑟 represents the probability of voxel i being predicted as the 

RS 𝑟, and 𝑔𝑖
𝑟 symbolizes the corresponding ground truth. This normally results in very 

small losses and high accuracies during training process when the classes are highly 

imbalanced. In classification problems, class imbalance exists if the number of samples 

for each class varies. Such imbalance may have a different impact on the classification 

results depending on the level of imbalance. For the 3D images in our work, the number 

of voxels for RS class is generally smaller compared to the background class.  

With respect to segmentation map in both networks, it only records the response of the 

positive class, i.e the RS. This means that the network can be updated according to the 

assessment of the segmentation performance for the positive class. To this end, the Dice 

coefficient and Dice loss 
[117]

 are applied for the training of the network. With the 

Sigmoid activation, the Output layer consists of one plane for the RS. Now P and G are 
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the set of predicted and ground truth binary labels. The Dice similarity coefficient 

between two volumes is defined as 
[117], [118]

:  

𝐷(𝑃, 𝐺) =
2|𝑃⋂𝐺|

|𝑃| + |𝐺|
                                                          (2) 

It weighs FP and FN (precision and recall) equally. The Dice coefficient loss is then 

defined as follows:  

𝐷𝐿 = 1 −
2 ∑ 𝑝𝑖

𝑟𝑔𝑖
𝑟𝑁

𝑖=1 + 𝜖

∑ 𝑝𝑖
𝑟𝑁

𝑖=1 + ∑ 𝑔𝑖
𝑟 + 𝜖𝑁

𝑖=1

                                        (3) 

where 𝑝𝑖
𝑟  represents the probability of voxel i being predicted as the RS and 𝑔𝑖

𝑟 

symbolizes that of the ground truth. 𝜖 is a secondary functional term which helps the loss 

function converge more effectively.  

Considering the high imbalance of 3D image for RS detection, in addition the Tversky 

loss function 
[119]

 is also applied. This metric was formulated based on the Tversky index 
[120]

, which gives FP higher weights than FN in the training of the network. The Tversky 

index between prediction and ground truth volume is formulated as:  

𝑇(𝑃, 𝐺;  𝛼, 𝛽) =
|𝑃⋂𝐺|

|𝑃⋂𝐺| + 𝛼|𝑃 − 𝐺| + 𝛽|𝐺 − 𝑃|
                              (4) 

where 𝛼  and 𝛽 control the magnitude of penalties for FP and FN, respectively. 

Accordingly, the Tversky loss function is formulated as: 

𝑇𝐿 = 1 −
 ∑ 𝑝𝑖

𝑟𝑔𝑖
𝑟𝑁

𝑖=1 + 𝜖

∑ 𝑝𝑖
𝑟𝑔𝑖

𝑟𝑁
𝑖=1 + 𝛼∑ 𝑝𝑖

𝑟𝑔𝑖
0 + 𝛽∑ 𝑝𝑖

0𝑔𝑖
𝑟 +𝑁

𝑖=1 𝜖𝑁
𝑖=1

                    (5)  

Here 𝑝𝑖
𝑟  and 𝑔𝑖

𝑟  have the same meaning with Dice coefficient loss, and 𝑝𝑖
0 and 𝑔𝑖

0  are 

separately the probability of voxel i belonging the background (label = 0) in prediction 

and ground truth. According to the literature 
[119]

, for  𝛼 = 0.3 and 𝛽=0.7 the Tversky 

loss function has the best performance in managing highly imbalanced data. Therefore, 

we adopt these values to the CNN for our segmentation.  

The aforementioned three state-of-the-art metrics and loss functions are widely used in 

biomedical image segmentation 
[121]

 because of their stability and robustness. In the 

results section we will apply the three metrics and loss functions to our data and 

segmentation network, and explore how they perform on the results. 

2) Optimizer & Learning rate 

An Optimizer is an optimisation algorithm that regulates and determines the route of 

converging for the loss function. Our volumetric data exhibit sparseness, i.e. compared to 

the object voxels the ratio of the background voxels is high. The Adam optimizer 
[122]

 is 

typically useful for such sparse data. Adam was designed to combine the advantages of 

Adagrad 
[123],[124]

 and RMSprop 
[125],[126]

 with momentum 
[122]

 as an improved version of 

stochastic gradient decent (SGD) 
[87]

 for training deep learning models.  This makes it 

suitable to work with sparse gradients on noisy data. Another advantage of Adam is that 
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the rule for step size updating, is invariant to the magnitude of gradient. This helps to go 

through areas with low gradients such as saddle points and ravines 
[122]

. 

 In order to accelerate training process and to some extent improve the performance of 

the deep network 
[127]

, we employ the stochastic gradient descent with warm restarts 

(SGDR) 
[128]

 in a cyclical learning rate scheme. The idea of this strategy is to decay the 

learning rate from maximum 𝑙𝑚𝑎𝑥
𝑖  to minimum 𝑙𝑚𝑖𝑛

𝑖   in a cyclic fashion, using:  

𝑙𝑡 = 𝑙𝑚𝑖𝑛
𝑖 +

1

2
(𝑙𝑚𝑎𝑥
𝑖 − 𝑙𝑚𝑖𝑛

𝑖 ) (1 + cos (
𝑇𝑡
𝑇𝑖
𝜋))                                (6) 

where i is the current cycle for learning decay. The beginning of each cycle is referred to 

as a restart. 𝑇𝑖 is the length of the i
th
 cycle, deciding the number of epochs in this cycle. 

Experimentally, it is preferred to increase 𝑇𝑖 as i increases during training. The increasing 

step for each restart cycle is controlled by 𝑇𝑚𝑢𝑙𝑡.  𝑇𝑡 accounts for the number of epochs 

that have been performed since the last restart or in the current cycle i. This means that 

the learning rate will decay for each epoch within each cycle, and the decay speed will 

decrease as the cycle progresses. Experimentally we set 𝑙𝑚𝑎𝑥
𝑖 = 10−4 , 𝑙𝑚𝑖𝑛

𝑖 = 10−6 , 

𝑇𝑚𝑢𝑙𝑡 = 1.5 and number of epochs as 500. In this manner we are achieving reasonable 

results. For more information about the learning rate, we refer to 
[128]

.             

5.4 Experiments and results  

The experiments are first applied to the 3D bright-field images of the 38 zebrafish 

samples to train and evaluate the RS segmentation network (cf. § 5.3.1). Both networks 

and different metrics are used for comparison to achieve the highest performance of the 

segmentation network. This network is then employed for the case study in tumour 

quantification (cf. § 5.2.4) as a test for automated RS detection and phenotype 

quantification.  

5.4.1 Detection of 3D reference structures 

In order to use the segmentation network for automated detection of the RSs from the 3D 

bright-field image, we first need to train and optimize the segmentation network with the 

35 training samples. This means that the performance of the segmentation network needs 

to be evaluated first on the 3 testing samples with evaluation metrics, before it can be 

used further for 3D quantification. To this end, we introduce the evaluation metrics, 

followed by optimisation and evaluation experiments implemented on both RSs for this 

study.     

1) Evaluation metrics 

To evaluate the performance of different loss functions on both networks for each 

RS, we spilt the 38 samples into three sets: 28 samples for training the networks, 7 

samples for validation and 3 samples for testing. The performance is compared by 
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applying five different evaluation metrics to the 3 test samples from individual prediction. 

The evaluation metrics we employ include the Dice similarity coefficient (DSC) 
[117]

 or 

F1 score, sensitivity, specificity, F2 score and area under the Precision-Recall curve, i.e. 

APR score
 [129]–[131]

:  

𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                      (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                    (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                    (9) 

𝐹2 =  
5𝑇𝑃

5𝑇𝑃 + 𝐹𝑃 + 4𝐹𝑁
                                                   (10) 

where TP, TN, FP and FN are the true positive, true negative, false positive and false 

negative rates, respectively. Sensitivity or recall, measures the proportion of actual 

positives that are correctly identified as such and it also quantifies the ability to avoid 

false negatives. Specificity or precision, quantifies the ability to avoid false positive. The 

F2 score is an effective measure for cases where recall is more important than precision 

compared to F1 that equally measures the recall and precision. To critically evaluate the 

segmentation performance of different networks for highly unbalanced data, in our case 

in particular for Eye, we use the APR score.   

2) Detection of 3D Body reference structure 

Compared to 2D, the 3D segmentation of the Body RS is more complicated. 

Specifically, 3D data contains both image information of each slice and correlation 

between adjacent slices. By using 3D based segmentation techniques such as 3D U-net, 

we can collect and extract, to some extent, both kinds of information. To this respect it 

offers more features compared to the 2D Body RS. However, because of the transparency 

of the specimen in the bright-field channel, the difficulty of segmentation in zebrafish, 

especially the surface, also increases; even more so from 2D to 3D. Figure 5.2 (a) gives 

us an intuitive idea of what transparency means in a single reconstructed slice of a 3D 

image. Due to the intensity similarity between background and transparent tissue, the 

difficulty of segmentation with transparencies in the specimen on a single slice can be 

assessed by comparing Figure 5.2 (a) and (b). 

To investigate the ability of the U-net based segmentation network on transparent 

specimens, we evaluate both 2D U-net network excluding correlations between adjacent 

slices and 3D U-net network including correlations between adjacent slices. Both are 

trained based on the three different loss functions (cf. § 5.3.2). Figure 5.3 shows the 

results of a test sample achieved from different methods, i.e. two networks with three loss 
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functions, and the corresponding errors (yellow for FP and red for FN), compared to the 

ground truth. From these qualitative results, it is difficult to conclude which methodology 

performs best on the data. However, we observe that the loss function has an impact on 

the segmentation errors. From binary cross-entropy loss 
[116]

 to Tversky loss 
[119]

, 

regardless of different networks used, the FN error decreases whilst the FP error 

increases. This means that both segmentation networks have the highest ability to avoid 

FN errors when using the aforementioned Tversky loss, and the highest capability to 

avoid FP errors when using binary cross-entropy loss. 

 

Figure 5.2. An Example for the reconstructed slice of 3D zebrafish image and the corresponding 

segmentation result for the slice of the Body. 

To further quantify the performances of different methods and loss functions, five 

evaluation metrics are reported in Table 5.1 based on the average performance of the 

three tested samples. The best result of each individual metric across different 

segmentation networks and loss functions is presented in bold. Since in our work 

avoiding FP errors is equally important as avoiding FP errors, the combination of 

network and loss function that has the most bold results in the DSC and APR metrics, is 

regarded as the overall best performing method. By evaluating and assessing the results 

in Table 5.1, we concluded that 3D U-net with Dice loss has the best performance on the 

current dataset. It achieves the highest DSC/F1 and APR score as 93.9% and 88.4% 

separately. 
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Figure 5.3. Comparison of the detected Body (volume rendering), as a RS on a zebrafish sample. 

The results from different segmentation networks and loss functions are displayed on the top row, 

as well as the ground truth model manually labelled on the top right. On the bottom there are six 

errors (volume rendering), corresponding to different segmentation methods or metrics, with 

yellow showing FP and red for FN. 

3) Detection of 3D Eye reference structure 

The tissues in Eye are relatively dense, which guarantees a sufficiently distinct range 

of image intensities for Eye. One should, however, be aware that similar intensity 

patterns also exist in other parts of the zebrafish.  A good segmentation method is 

supposed to discriminate Eye from other tissues considering the 3D specific 

configuration of that shape. The experiments for Eye segmentation are implemented 

according to the description in § 5.3. Ground truth labels for Eye are obtained through 

manual labelling using annotation software; i.e. TDR
 [132]

 and Amira 
[63]

.    

Figure 5.4 presents the comparisons of segmentation results on the same sample, when 

applying the 2D/3D networks and various loss functions. When assessing the 

segmentation results, we conclude that 2D U-net with Dice loss and 3D U-net with 

binary cross entropy loss fail to identify or segment the volume of Eye correctly. 2D U-
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net with binary cross entropy loss is able to identify parts of Eye, whilst with Tversky 

loss there is an over-segmentation of the volume. Similar to the Body, the best 

performing methods for the Eye are also 3D U-net with Dice loss, with much less errors 

both in the volume and on the surface. In order to identify the best segmentation 

performance for Eye, a quantified evaluation on the dataset is required. 

 
Table 5.1. The average evaluation results of the Body detection on three test samples. We compare 

6 methods including 2D U-net and 3D U-net across three different loss functions. In order to 

evaluate the results in a comprehensive and critical way, five evaluation metrics are employed. 

Referring to the visible errors in Figure 5.3, it is easier to understand the differences. The bold 

number represents the highest accuracy among 6 approaches for each individual evaluation 

metric. 

 

Network 

 

Metrics 

Loss_function 

Cross_entropy
[116]

 Dice 
[117]

 Tversky
 [119]

 

 

 

2D U-net 

DSC 92.80% 93.03% 92.47% 

Sensitivity 92.37% 94.20% 95.70% 

Specificity 99.88% 99.84% 99.79% 

F2 92.53% 93.70% 94.40% 

APR 86.37% 86.73% 85.83% 

 

 

3D U-net 

DSC 90.60% 93.90% 92.37% 

Sensitivity 90.53% 94.47% 97.47% 

Specificity 99.83% 99.87% 99.74% 

F2 90.50% 94.27% 95.40% 

APR 82.60% 88.40% 85.63% 

 

 
Table 5.2. The evaluation of Eye detection on three test samples. Five evaluations with 6 

approaches for segmentation are presented. The bold number in represents the highest accuracy 

among 6 approaches for each individual evaluation metric. 

 

Network 

 

Metrics 

Loss_function 

Cross_entropy 
[116]

 Dice
[117]

 Tversky
[119]

 

 

 

2D U-net 

DSC 54.70% 0% 35.00% 

Sensitivity 43.00% 0% 99.70% 

Specificity 99.98% 100% 99.21% 

F2 46.87% 0% 55.47% 

APR 34.43% 0.20% 22.03% 

 

 

3D U-net 

DSC 0% 91.80% 90.64% 

Sensitivity 0% 90.78% 93.62% 

Specificity 100% 99.99% 99.98% 

F2 0% 91.17% 92.40% 

APR 0.20% 84.53% 82.40% 
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Figure 5.4. Comparison of the detected Eye (volume rendering), as a RS on the same zebrafish 

sample. Similar to Figure 5.3, the detected results and ground truth are presented on the top, 

while the segmentation errors are showing on the bottom with yellow showing FP and red for FN. 

A qualitative report on the evaluation results on the three test samples is given in Table 

5.2. Because the 2D U-net with Dice loss and 3D U-net with binary cross entropy loss 

fail to detect Eye, the accuracies of DSC, sensitivity, F2 and APR are 0%. But 

specificities are reported 100% because they are able to avoid FP errors. 2D U-net with 

Tversky loss performs best for sensitivity at 99.7%, but not best for specificity at 99.21%, 

meaning it has the highest ability to prevent FN errors but lowest ability to avoid FP 

errors. 3D U-net with Tversky loss has best performance for F2 score at 92.40%. 

However, overall we conclude that the 3D U-net with Dice loss performs best, achieving 

a DSC score of 91.80%, specificity of 99.99%, and APR of 84.53%. 

5.4.2 Case study in tumour 

Tumour growth and remission of neuroblastoma in zebrafish can be observed in a 

controlled experiment with and without a tumour inhibitor. The experimental condition 

includes a longitudinal exposure to the tumour inhibitor isotretinoin so that the relative 

quantification can be used for determining the tumour size at a specific stage of treatment. 

In this manner the measurements are independent of the variation in the individual 
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samples and imaging environment (e.g. exposure time and magnification). The 

performance of the treatment at that stage will be statistically averaged based on the 

quantification of multiple samples. In this section we describe the 3D relative 

quantification of tumour as a case study. Prior that, 2D relative quantification is 

explained for comparison. 

1) 2D relative quantification with manual labelling 

2D quantification provides a fast and intuitive view of fluorescent signals (tumour) 

and the RS, i.e. Body or Eye, in zebrafish in terms of a projection from the sample in both 

channels. We wish to obtain a measurement with which we can compare samples. 

Therefore, in 2D we normalize a tumour for a sample n by dividing the tumour area 𝑡𝑛 by 

area of a RS 𝑓𝑛, achieving the area ratio 𝑟𝑛 = 𝑡𝑛/𝑓𝑛 , which is depicted in Figure 5.5 (A) 

and (B) for a different RS. In the example of Fish 1, the area ratios from the two different 

RSs are separately 0.3694% and 3.5006%, with threshold-based segmentation for the 

tumour and manual labelling for the RSs. The performance of a treatment at stage i is 

determined by the average ratio of the N samples,   𝑅𝑖 =
1

𝑁
∑ 𝑟𝑛
𝑁
𝑛=1 . A satisfactory 

segmentation of the tumour in the fluorescence channel is basically easy to achieve by 

using traditional threshold-based algorithms. However, for the segmentation of the RSs, 

more advanced methods 
[109],[98],[111]

 are needed.  

When averaging the relative ratios of N samples, the treatment performance of all 

samples 𝑅𝑖  should be calculated at the same projection angle, which is difficult to 

achieve. Another drawback of 2D quantification is that it fails to provide information 

about the shape of the tumour and the RSs. This limits its capability of representation in 

true 3D space. Therefore, we change to 3D quantification.        

2) 3D relative quantification with manual labelling 

Before 3D quantification, the OPT tomograms from individual channel are reconstructed 

to a 3D image, cf. § 5.2.2. This 3D reconstruction is required for the volumetric analysis. 

The pipeline of 3D relative quantification for each sample is similar to that of the 2D 

quantification, so is tumour segmentation in the fluorescence channel. The challenge of 

the 3D quantification lies in obtaining the volumetric RS. Specifically, the large number 

of reconstructed slices in 3D image makes manual labelling of a 3D RS impractical. Thus 

there is a demand for automated RS detection. Figure 5.6 presents an example of 

workflow for 3D tumour quantification at treatment stage i using the individual RS. In 

the next section, the state-of-the-art automated segmentation strategy based on 

convolutional neural network (CNN), cf. § 5.4.1, will be presented and implemented. In 

the same example of Fish 1, the 3D relative quantification results of tumour from the two 

different RSs are separately 0.1865% and 2.6962%.   
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Figure 5.5. 2D relative quantification of tumour at a specific treatment stage i using Body (A) and 

Eye (B) RS labelled from the OPT tomogram. Each zebrafish sample is represented as a 2D image 

in the two channels (tumour in fluorescence channel and zebrafish structure in bright-field 

channel). The segmentation of tumour and the manual labelling of RS (Body or Eye) are used for 

the quantification. In the example of Fish 1 with 𝒓𝒏 = 𝒕𝒏/𝒇𝒏, the 2D relative quantification results 

𝒓𝒏 for the Body and Eye are separately 𝒓𝟏 = 𝟎. 𝟑𝟔𝟗𝟒% and 𝒓𝟏 = 𝟑. 𝟓𝟎𝟎𝟔%. By averaging the 2D 

relative quantification 𝒓𝒏 of N samples, the performance of treatment at time-point i, i.e. 𝑹𝒊 is 

achieved. 
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Figure 5.6. 3D relative quantification of tumour using two different 3D RSs. Each zebrafish 

sample is represented in two different channels, with the fluorescence channel for the tumour and 

the bright-field channel for the RS. (A) The 3D quantification based on the Body. (B) The 3D 

quantification based on the Eye. The 3D quantification is obtained by calculating the volume ratio 

between the tumour and RS. Specifically, in this example the 3D quantification results for Fish 1 

are 𝐫𝟏 = 𝟎. 𝟏𝟖𝟔𝟓% and 𝐫𝟏 = 𝟐. 𝟔𝟗𝟔𝟐%, calculated based on the two different RSs. As with 2D 

quantification the performance of treatment at time-point i, i.e. 𝐑𝐢 is achievable by averaging the 

𝒓𝒏 of N different samples.    
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3) Comparisons of automated detection and manual labelling of RS for 3D 

quantification 

Studies of tumour growth in zebrafish require measurements of the size and shape of 

the tumour. In our work the relative quantification of tumour is based on images in the 

fluorescent and bright-field channel (cf. § 5.2.4). Here we use the output of experiments 

on the automated detection method to automatically detect the RSs, i.e. Body or Eye, for 

a case study in tumour growth. Manual labelling a volume such as the Body normally 

takes at least 1-2 hours for one sample, while automated detection takes a few seconds. 

Figure 5.7 and 5.8 provide the comparisons of tumour quantification performance based 

on the RSs from automated detection and manual labelling. Because of its good 

performance for both RSs, we adopt 3D U-net to the tumour quantification for this case 

study. The sample compared in this section is a 25 dpf zebrafish and it is not included in 

the 38 samples mentioned before. The tail was not included in the imaging process 

because as a higher magnification is used, this results in an incomplete zebrafish. 

However, the segmentation method succeeds to detect the incomplete zebrafish even 

though it is trained and validated on the 35 complete zebrafishes.  

For the Body RS, the automated detection using 3D U-net with Dice loss, achieves best 

overall performance when referring to the manual labelling result as the ground truth. 

Therefore, we use this segmentation network to automatically detect the Body in this case 

study. The relative ratios of the tumour referring to the Body from automated detection 𝑟 

and manual labelling 𝑟𝑓  (§ 5.2.4), are separately 0.1883% and 0.1865%, with a 

quantification error of 0.9651%. The quantification error 𝐸𝑟  explains the relationship 

between the FP and the FN error. A positive error in this case, i.e. the volume from 

automated detection is larger than the ground truth, means that the FN error is more than 

the FP error. With respect to Eye, the automated method has the best performance of 

95.04% for DSC score, 93.77% for sensitivity, 99.98% for specificity, 94.27% for F2 

score and 90.37% for APR, using Dice loss function. Dividing the number of tumour 

voxels by Eye volume, we obtain the relative ratio as 𝑟 = 2.7679%, larger than 𝑟𝑓  = 

2.6962% from manual labelling as the ground truth, resulting in the positive ratio error 

𝐸𝑟 = 2.7261%. This is consistent with the fact that the FN error exceeds the FP error 

shown on the right of Figure 5.8.  
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Figure 5.7. Comparison of tumour quantification based on the volumetric Body RS obtained from 

automated detection and manual labelling.  

 

Figure 5.8. Example of tumour quantification based on the volumetric Eye RS obtained from 

automated detection and manual labelling. 
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5.5 Conclusions and discussion 

In the previous sections, we introduced the concept of 2D and 3D relative quantification 

for fluorescent signals in zebrafish and focused on the technical solution of automated 

reference structure detection for the 3D quantification. In § 5.4, we compared the 

detection performances of different segmentation methods for both RSs and conclude 

that the 3D U-net segmentation network with Dice loss function performs best for 

automated detection of both RSs on the 38 samples. An overall promising accuracy of 

over 90% is achieved with respect to five evaluation metrics for both RSs. Subsequently, 

we compared the relative quantification of tumour between the automatically detected 

RSs and manually labelled ones. We further investigated how the segmentation errors 

influence the relative ratio r, compared to the ground truth ratio 𝑟𝑓. From our experiments 

it is shown that when FN exceeds FP this results in positive quantification error. Whereas, 

an FN smaller compared to FP results in a negative quantification error. The overall 

quantification error that we have established is 0.9651% for the zebrafish body RS and 

2.7261% for the zebrafish eye RS. Given the experimental setting this is acceptable and 

reasonable. Nevertheless, given these acceptable outcomes we still can do the effort of 

further automation of the laborious manual labelling. Moreover, based on the results of 

the automated detection, further improvement can be accomplished by a careful manual 

error correction. In this case, the hybrid of artificial intelligence (AI) and human 

intelligence (HI) gains the best performance. 

In this research project we focused on quantification of tumour growth, but the 

approach can be generalized to the quantification of fluorescent signals in zebrafish. 

Ideally, they are labelled with fluorescent markers for OPT imaging and reconstruction. 

With the promising results of automated detection on the limited dataset, better results 

can be achieved when training the network with a larger dataset. This way we can further 

improve the accuracy of automated detection of the RSs. Additionally, another 

contribution of this research is the introduction of a pipeline for relative quantification 

using automatically detected RSs. This pipeline can be transferred to high-throughput 

analysis of zebrafish. In the case study for tumour quantification, we presented and 

evaluated the pipeline for just one sample. Once more samples are available, we would 

continue with a statistical analysis of the performance of treatment using the proposed 

pipeline. This is motivated by the fact that statistical analysis of samples at either the 

same stage or different stages is getting increasingly important for drug discovery.  
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Chapter 6 

Exploration of 3D Structure Annotation and 

Visualization of Zebrafish Reconstructions from 

Optical Projection Tomography Imaging 
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Chapter summary 

In this chapter we investigate the last parts of 3D optical projection tomography 

imaging pipeline: annotation and visualization. Our results focus on zebrafish samples 

without specific staining from the bright-field channel of the OPT. With respect to 

annotation, we first present the manual method from different software packages 

including our own annotation software. This provides a clue about how much 3D 

information within zebrafish can be obtained from the optical projection tomography 

3D imaging system. Beside manual annotation, an automated 3D annotation method 

is explored to give an insight in the extent to which deep learning can automate 3D 

annotation process. With the results the limitations are analysed and new perspectives 

are presented.   
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6.1 Introduction 

The zebrafish is an important vertebrate model organism that is widely used in 

biomedical research, e.g. developmental biology, disease biology, toxicology and 

behaviour. In this research, the identification and quantification of marker signals from 

genes and proteins have been providing basic evidence for gene analysis 
[133]

. 

Detailed analysis of genes includes the identification of certain proteins in organs 

rather than looking at a whole-mount study of zebrafish
 [134]

. Moreover, these organs can 

be physically dissected for an individual proteomic analysis 
[134]–[137]

. Such techniques 

aim to answer the questions, e.g. is a gene X is expressed in an organ and how much of 

the corresponding proteins can be identified in this organ. From imaging, and multi-

channel OPT in particular, expression patterns can be visualized in situ so that location 

and distribution of genes and proteins can be established.  

 Spatial analysis of patterns of gene expression from whole-mount zebrafish has been 

applied in the last decades
 [11], [138]–[141]

. This has often been done using in situ 

hybridization (ISH). In this manner the localization of gene-expression has been 

accomplished. However, research on detailed analysis within organs is limited by the 

techniques available for the imaging of organs and subsequent annotation. To overcome 

these limitations, we explore annotation with experiments to detect zebrafish organs or 

volume regions from optical projection tomography (OPT).  

In the application of imaging with OPT, we assume that patterns of gene expression 

can be visualized in the fluorescence channel through fluorescent in situ hybridization 

(FISH) or using a fluorescent reporter gene (e.g. GFP) . In general, the bright-field 

channel provides structural information for zebrafish and this includes some of the organs. 

Our research questions therefore are: (1) to what extent the organs or volume regions can 

be annotated from OPT 3D images of whole-mount zebrafish; (2) to what extent this 

annotation process can be automated.   

In order to answer these questions, we have manually annotated 5 dpf and 25 dpf 

zebrafish from 3D images obtained from the OPT imaging system. In addition, 

automated annotation is explored on the 5 dpf zebrafish for the annotation of 4 labels. 

The results of the annotation are presented with different visualization software packages.   

In order to set the terminology right for the remainder of this chapter, three definitions 

are introduced. First, we define (1) The anatomical domain as a demarcation of an 

anatomical structure and this structure is being generally accepted as a named structure in 

anatomy of a species. We consider (2) named structures to follow unambiguous labels 

that are organised in controlled vocabularies or curated ontologies. An annotation label 

for an anatomical domain is extracted from either of these curated namespaces. In 

addition to the anatomical domains we distinguish (3) the volume region as volumetric 

part of an organism presenting a dedicated region that is not coinciding with a recognized 

anatomical domain but it can be addressed for its named location.  
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With these definitions in hand we can make annotation in zebrafish with the intention 

to detect volume regions and anatomical domains that can be found in the bright-field 3D 

image without any specific contrast techniques being employed. 

This chapter is structured as follows. In section 6.2 we will introduce the sample 

preparation, the OPT imaging system, the annotation methods and the visualization 

software. In section 6.3 we explain the annotation and experiment with visualization 

using different software packages. The results include both manual and automated 

annotation methods. Conclusions and discussion are summarized in section 6.4.   

6.2 Methods and materials 

In order to visualize and quantify a region of interest within a zebrafish, samples need to 

be first prepared and imaged. With the tomograms acquired from the OPT imaging 

system, 3D reconstruction is applied to obtain a 3D image. This 3D image is used for 

segmentation to find the structures for annotation, e.g. zebrafish Eye that can 

subsequently be visualized as a label. The workflow is shown in Figure 6.1. 

 
Figure 6.1. The workflow summary of OPT 3D imaging system. 

6.2.1 Zebrafish and OPT 3D imaging system 

During zebrafish development from larva to juvenile, structures and organs become more 

distinct and can be visualised using the OPT imaging system. In order to visualize and 

compare them, we use a 5 dpf and a 25 dpf zebrafish for our experiments. Each sample is 

prepared with the BABB or the CUBIC protocol (cf. § 4.4.2). The samples are prepared 

and imaged only with the clearing solution for the sole purpose of making the specimen 

transparent. No additional staining is used, meaning that the 3D structures of the 

zebrafish that we can obtain from our OPT imaging system represent the minimum 

information. With a counterstaining or a specific staining, the visualization of more 

structures can be accomplished. The OPT imaging system and reconstruction 

configurations as described in § 5.2.2 are used. 

6.2.2 Annotation method 

With the 3D image obtained from the reconstruction, manual annotation is first 

considered to provide a clue about how much 3D information within zebrafish can be 

identified without staining, using the OPT imaging on both zebrafishes. A manual 

annotation of the 3D image is accomplished with annotation software, e.g. Amira
 [63]

, 

TDR-3Dbase 
[12]–[14]

, Vaa3D 
[144]

, etc. In our work, Amira and TDR-3Dbase software are 

used for manual annotation. Aside from the manual annotation, we also explore the 

possibility of automated annotation for the visualization. The approach we used for the 
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automated annotation is semantic segmentation using the 3D U-net, which is set up 

according to chapter 5 (cf. § 5.3). Differently, multi-label segmentation rather than binary 

segmentation (cf. § 5.3) is required.  

6.2.3 Visualization software 

With respect to the descriptive parameters for phenotype characterisation of a volume 

region within zebrafish, visualization supports the qualitative information of the shape, 

size and context. Quantitative information is obtained from image analysis software.  For 

visualization we use Amira
 [63]

, TDR-3Dbass
 [132], [142], [143]

 and MeshLab
 [145]

 software to 

visualize the individual regions in the 3D image, using several annotation methods.        

6.3 Experiments  

The first experiment is a manual annotation of zebrafish of different developmental 

stages and subsequent visualization of the annotated volume regions from the 3D OPT 

images. This aims to answer the question on the extent to which organs and/or volume 

regions can be annotated from a whole-mount zebrafish 3D image. The second part of the 

experiments focuses on the exploration of automated 3D annotation in 5 dpf zebrafish. As 

the 25 dpf zebrafish has more visible structures but fewer samples, the automated 

annotation of all parts is more challenging. Therefore, we start a simple with the 5dpf 

zebrafish that has much less distinct anatomical domains.     

6.3.1 Manual annotation and visualization 

1) Amira  

In order to visualize a 5dpf zebrafish in 3D or further do quantitative  analysis on it, 

as a point of departure, the bright-field tomogram from the OPT imaging system is used. 

This tomogram consists of 400 images in our OPT setup. In Figure 6.2 (a) the tomogram 

is depicted that composes the input for the reconstruction algorithm. By using an 

effective reconstruction algorithm (cf. § 4.2), the tomogram is transposed to a raw 3D 

volumetric image of the zebrafish with a reduced amount of artefacts/noise. The raw 3D 

image is manually annotated and visualized using Amira 
[63]

 software (Figure 6.2 (b)). 

For volume region quantification in zebrafish annotation is required.  Figure 6.2 (c) 

expresses an intuitive concept of 3D volume region segmentation or detection on a 5 dpf 

zebrafish. Obvious annotation labels are the zebrafish Eye, Head, Muscle and Belly; the 

latter three are location domains whereas Eye is an anatomical domain. The volume 

regions in this example are obtained based on manual segmentation of raw 3D image and 

subsequently visualized using Amira. Because of young age, transparency, and 

preparation method, most internal organs are not very well visible for zebrafish at this 

stage.  
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Figure 6.2. Workflow for 3D OPT imaging, reconstruction and segmentation on a 5 dpf zebrafish. 

(a) OPT tomogram of 400 images over  𝟑𝟔𝟎° in OPT used for reconstruction. (b) Reconstructed 

3D image from the 3D reconstruction algorithm. (c) Manually annotated 4 volumetric parts: Eye 

(blue), Head (light blue), Muscle (pink) and Belly (dark green).    

Different from the 5 dpf zebrafish embryo in Figure 6.2, in Figure 6.3 the result of the 

imaging of a 25 dpf zebrafish with more internal structures is depicted. After 

reconstruction and semantic segmentation, the visualization is realized. This sample, i.e. 

tomogram, contains quite some noise, resulting in more background noise in the 

reconstruction as we can see from Figure 6.3 (b). The visualization results of the 

reconstruction are achieved by using a threshold in Amira as for 5 dpf zebrafish in Figure 

6.2. The volume regions and anatomical domains we can distinguish from this sample are  

9 different parts: Eye (blue), Head (light blue), Muscle (pink) and Fin (purple) in Figure 

6.3 (c); Blood vessel (red) and Belly (dark green) in Figure 6.3 (d); Notochord & Spinal 

cord (yellow), Swim bladder (green) and Intestine (brown) in Figure 6.3 (e). As we can 

see, the Swim bladder has shrunk as a result of deflation. The volume regions and 

anatomical domains can provide significant information such as location or reference for 

fluorescent markers. It helps to understand volumetric structures of zebrafish in the OPT 

imaging system. Each individual part of the 25 dpf zebrafish is shown in Figure 6.4, 

using a surface rendering technique for visualization. 
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Figure 6.3. 3D OPT imaging, reconstruction and annotation on a 25 dpf zebrafish. (a) and (b) 

showing the projections and reconstruction respectively. (c), (d) and (e) visualizing 9 parts of 

zebrafish: Eye, Head, Fin, Muscle, Blood vessels, Belly, Notochord & Spinal cord (N&SC), Swim 

bladder (SB) and Intestine. V1, v2 and v3 represent three visualizations with increasing depth 

from outside to inside, with v1 showing the Eye, Head, Fin and Muscle, v2 showing the Blood 

vessels and Belly, and v3 showing the N&SC, SB and Intestine.    
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(a) 

 

 
(b) 

Figure 6.4. The individual part of the 25 dpf zebrafish. (a) The parts of Head, Eye, Muscle and 

Blood vessel, with Muscle being visualized transparently. (b) The parts of Swim bladder, Belly, 

Intestine, Fin and Notochord & Spinal cord, with Belly being visualized transparently.  
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(a) 

 

(b) 
Figure 6.5. Annotation of another 25 dpf zebrafish from OPT 3D image using TDR-3Dbase 

software. In this whole-mount OPT imaging of the zebrafish, 9 parts are identified. (a) The parts 

of Head, Eye, Muscle, Belly and Fin. (b) Blood vessel, Swim bladder, Intestine and Notochord & 

Spinal cord are annotated within the zebrafish.  

2) TDR-3Dbase and MeshLab 

In Figure 6.5, another example of the annotation on a 25 dpf zebrafish from OPT 3D 

image is depicted. The annotations are done with the TDR-3Dbase 
[132], [142], [143]

 software. 

With TDR-3Dbase, manual annotation is well incorporated through the use of an LCD-
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tablet with a pen (Wacom Cintiq). Similar to the previous results, nine labels are 

identified including Eye (blue), Head (light blue), Muscle (pink), Belly (dark green), Fin 

(purple), Blood vessel (red), Swim bladder (green), Intestine (brown) and Notochord & 

Spinal cord (yellow). As we can see from the example in Figure 6.5, TDR-3Dbase 

provides an informative and smooth visualization from a triangulation employing a 

surface rendering technique. Further refinement can be accomplished in other software. 

The annotation result of TDR-3Dbase is then transferred to MeshLab 
[145]

. Now, the 

whole-mount zebrafish can be visualized with the volume regions (Head, Muscle, Belly 

and Fin) being transparent.  This is depicted in Figure 6.6.  

 

Figure 6.6. Visualization of the 25 dpf zebrafish using MeshLab software. The Head, Muscle, Belly 

and Fin are visualized as transparency in 4 different colours, whilst the Blood vessel, Swim bladder, 

Intestine and Notochord & Spinal cord are visualized with iso-surface technique. The mesh is 

obtained from TDR-3Dbase.  

6.3.2 Automated 3D annotation of 5 dpf zebrafish 

From the motivation of accelerating image analysis for zebrafish from biomedical 

experiments, segmentation of volume regions is explored. This has not been described in 

earlier literature. Inspired by the promising results achieved with 3D U-net segmentation 

network for binary tasks as applied in Chapter 5; i.e. on the zebrafish Muscle and Eye, we 

are interested in the performance for multi-label segmentation. 

Different from the segmentations in Chapter 5, for a multi-label segmentation, i.e. the 

four volume regions we are using, the segmentation outputs four competing segmentation 

maps or classes excluding background. Voxels are labelled as one of the four classes that 

produce the highest prediction value from the segmentation network (cf. § 5.3). If this 

highest value is smaller than a specified threshold, the voxel will be recognized as 

background. The four prediction maps from the segmentation network, relevant to four 

volume regions accordingly, are trained from the manually labelled zebrafish in a 
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supervised way. The high class imbalance, e.g. Eye and Muscle, however typically results 

in a preferred segmentation for class with more positive samples, i.e. voxels. The 

learning schemas for this four-label segmentation are set similar to the approach of 

Chapter 5. Based on the results of Chapter 5, we use Dice loss 
[117]

 to train and validate 

the network on the same 35 zebrafish and test it with 3 zebrafish. The results are shown 

in Figure 6.7 and Table 6.1. In Figure 6.7 the qualitative performance between manual 

and automated segmentation on the three test zebrafish is compared. In Table 6.1 the 

quantitative evaluation with the five metrics similar to those used in Chapter 5 (cf. § 5.4.1) 

is presented. In each of the test samples, the performance of each volume region is 

quantified. By comparing the performance of different volume regions, it shows that the 

volume region Muscle has the highest segmentation performance with an average 

accuracy of 70.39% on the 3 test samples. Limited by the high class imbalance, i.e. very 

different numbers of voxels for the different parts, the network fails to detect the volume 

regions for Eye because it has much less voxels for the classifier.     

 

Figure 6.7. Comparisons between the performance of manual and automated segmentation on 4 

parts of the 5 dpf zebrafish: Eye, Head, Muscle and Belly, where (a), (b) and (c) correspond to 

three different test samples respectively. The manually labelled models are displayed in the top 

row and the automated labels are in the bottom row. 
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Table 6.1. Quantitative evaluation of the three test samples of zebrafish. The results are obtained 

using the multi-label 3D U-net segmentation network. The evaluation metrics are the same as used 

in Chapter 5. The best performed volume region for each test sample across different metrics is 

printed in bold. 

 Fish1(%) Fish2(%) Fish3(%) 
Muscle Belly Head Eye Muscle Belly Head Eye Muscle Belly Head Eye 

DSC 78.43 47.22 70.82 0 63.58 40.15 29.64 0 69.15 30.12 64.41 0 

Sensitivity 91.34 36.90 87.96 0 85.10 41.14 25.01 0 96.36 28.73 57.76 0 

Specificity 99.69 99.91 99.66 1 99.46 99.58 99.83 1 99.49 99.76 99.85 1 

F2 85.70 40.44 80.20 0 74.95 40.74 26.68 0 83.26 29.27 60.25 0 

APR 62.84 24.46 52.20 0.18 43.29 16.51 9.39 0.17 51.98 9.36 42.34 0.17 

 

6.4 Conclusions and discussion 

In this chapter, we explored the last parts of our OPT imaging pipeline, the annotation 

and the visualization of 3D images. The outcome can be further used for phenotype 

characterisation. We presented examples to show to what extent the organs or regions can 

be annotated from a whole-mount zebrafish based on both manual and automated 

segmentation. With the annotation software packages, e.g. TDR-3D base 
[132], [142], [143],

 

Amira 
[63]

 or Vaa3D 
[144]

, the advantage of manual annotation is that it can provide 

accurate segmentation including the expert-knowledge. The process is, however, quite 

laborious. Achieving comparable segmentation accuracies with automated annotation is 

challenging. Nevertheless, it can save a huge amount of labour and time. For instance, for 

a 3D OPT bright-field image of one single zebrafish, manual annotation normally takes 

hours to days depending on the level of detail. The automated annotation takes several 

seconds and sufficiently reasonable results are achieved. In practice, the combination of 

automated and manual method is recommended for an organ or volume region annotation.  

With the best parameters and configurations achieved from the segmentation method 

described in Chapter 5, the performance for automated multi-label annotation task is not 

yet satisfactory. In future work further improvement need be accomplished by improving 

segmentation method and using larger set of images.  

Based on the results, we analyse and discuss the reasons from the perspective of the 

data, algorithms and resources, and give further insights into performance improvement 

for each individual aspect. Furthermore, possible directions for further improvement are 

given. 

1) Data limitation: We categorize the data limitation into three types: data 

characteristics, data quality and data size. Data characteristics represent the 

inherent structure of zebrafish as represented in a computer and it is further 

determined by using a specific 3D imaging technique. The data characteristic is, in 

proactive, determined by individual samples and imaging techniques. It defines an 

upper limit of the performance of segmentation of a given algorithm. Because of 
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the transparency of zebrafish, 3D segmentation of boundary between some parts, 

e.g. Head and Muscle, Muscle and Belly, in itself is challenging. The image quality 

related to noise in the background is segmented as foreground, with an example 

shown in Figure 6.7. (c). Noise is often introduced during sample preparation. Any 

remains, dust or bubbles during the sample preparation could result in artefacts in 

the 3D image. Because of the high intensity similarity between noise and some 

parts of zebrafish in this example, 3D U-net segmentation network fails to 

distinguish them when feeding the network with volume patches. In order to 

decrease the segmentation error resulting from noise, a cautious sample 

preparation process is required. With respect to data size, the performance is 

achieved with 35 training and validation samples. In our view this is still 

insufficient for training a good 3D segmentation network. To improve the 

segmentation performance, more zebrafish samples will be added in the next steps.    

2) Algorithm limitation: The huge difference of performance between different 

parts/classes is raised by the class imbalance. The segmentation can be treated as a 

multi-label classifier in 3D U-net, with each voxel representing a classification 

sample. The segmentation task is interpreted as classifying all the voxels of a 3D 

image into 4 classes with a probability assigned to each class. The network fails to 

segment or detect the Eye, but it performs reasonably for Muscle segmentation or 

detection. This is probably because in all the training voxels for classification, the 

number of voxels as Muscle is much larger than that as Eye. This gives the Muscle 

class an unfair advantage over Eye. Further research and exploration that aim to 

solve this problem include data resampling and loss rebalancing. In data 

resampling, voxels of lower frequency class can be repeatedly sampled until all the 

classes reach to an approximate balance. Another possible solution for class 

imbalance would be assigning each voxel with a class weight (i.e. reciprocal of 

class frequency) and integrating it into prediction when implementing loss function. 

For both possible solutions the improvement performance need to be further 

verified because of the high imbalance between some classes.  In 3D and multi-

label classification, this imbalance research problem has become a hot and 

challenging topic in the recent years in medical imaging field for MRI/CT images.    

3) Resource limitation: Constrained by the limitation of the GPU memory, the 

training and validation batches are fed into the network. In this way the structural 

and spatial information among patches are not taken into account for training. This 

means the smaller the patch size is, the less structures will be trained and learnt, 

resulting in lower performance of segmentation. In our segmentation task of four 

labels, the patch size is set as 64x64x64, while the image size is 128x128x340 with 

GPU memory size of 12GB. An increase of the GPU memory can be another 

improvement to the segmentation accuracy. This generally means a change of the 

GPU setup and it comes with a cost that need be assessed. However, given the 

number of different images this might be a good investment. 
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All considered, the research described in this chapter gives insights in future 

development of automation of the annotation process. In some cases, for very specific 

structures, a manual annotation would still be the most efficient manner of obtaining an 

accurate result. From the visualization examples it can be assessed that each of the 

software packages has its own advantages. But with a dedicated annotation software 

package like TDR-3Dbase
 [132], [142], [143]

, good results can be accomplished while 

refinements in the visualization can be accomplished with other software packages. 

We have also given our considerations the respect to limitations that are imposed on 

the data. With time these might change, however, when method improvement is 

considered it is good to be aware of these limitations in an assessment for further 

developments. 
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Conclusions & Discussion 
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Chapter summary 

In this thesis, we have addressed seven research questions regarding four themes: 3D 

imaging, 3D reconstruction, 3D segmentation and applications in the biomedical 

domain. In this chapter we concisely answer and summarize these seven research 

questions from the research presented in the previous chapters. Subsequently, 

limitations that we have found are addressed and possible solutions with respect to 

data, algorithms and theory are discussed. Lastly, ideas on future research are 

presented. 
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7.1 Main contributions 

The main contributions of the work presented in this thesis can be summarized by 

answering the seven research questions as follows: 

RQ1: To what extent is it possible to increase the processing speed of OPT imaging and 

reconstruction in an integrated manner? 

We have made an attempt to make the process of tomogram reconstruction convenient 

for users by offering an efficient and reliable way of 3D imaging for OPT. Our OPT 

system enables to acquire a tomogram and reconstruct a sample in the millimetre scale, 

e.g. zebrafish larvae, in a few minutes. By using the OPT reconstruction software as 

presented in Chapter 2 (cf. § 2.2.2), an OPT tomogram is uploaded to our computer 

cluster for reconstruction. The computations for reconstruction from tomogram to 3D 

image are parallelized over the cluster through a smart scheduling schema. With the 

current image size, the time for reconstruction is around one minute using 5 compute 

nodes of 8-core 2.66 GHz CPU+16G RAM and 8 nodes of 4-core 2.66 GHz CPU+16G 

RAM. The exact time used for a specific sample is determined by the CPU resources 

available in the cluster as well as the image intensity distribution of a sample. OPT users 

will receive the reconstructed data through a web interface (link) provided by the 

software after the completion of the computation.  By the increased sample throughput, 

more samples can be processed and thereby the integrated system brings facilitates the 

statistical analysis of the biological samples.  

 

RQ2: To what extent is it possible to reduce the artefacts of 3D image introduced during 

reconstruction process by misalignment of Centre of Rotation (CoR)? 

In the exploration of OPT imaging and reconstruction, we found that the misalignment 

between the CoR and the image centre normally introduces ring artefacts around the 

object edges of the reconstructed slices. This is independent of the reconstruction 

algorithm used. This means that the prerequisite for a good quality reconstruction, i.e. the 

3D image, is to correct for this misalignment. We investigated how to apply for this 

correction and we have presented a fast and accurate CoR correction algorithm, cf. § 

2.3.1. The algorithm is implemented on the OPT tomograms and it corrects the sinograms 

in a straightforward way. Similar to the 3D reconstruction, the CoR correction is also 

implemented in a parallel manner. By using the proposed CoR correction before 

reconstruction, the ring artefacts are effectively eliminated from the reconstructed slices. 

Besides the qualitative comparison of the ring artefacts, quantitative improvement is 

analysed and evaluated cf. § 2.4.1 and § 2.4.2.     
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RQ3: Can the Point Spread Function (PSF) of the OPT imaging system be modelled and 

applied for deblurring of an OPT reconstruction? 

This question is answered in Chapter 3. It is of interest to know the relationship between 

projection blur and imaging depth, therefore we propose a protocol to acquire a 

tomogram image set of a single fluorescent bead. Our protocol accommodates for a 

decrease in the probability of overlap between different point sources in a full 3D 

revolution. We model the PSF using a generalized 3D Gaussian model. We have 

simplified this model in a workable manner and relate the model to magnification. The 

model can be easily used for 3D image deconvolution and deblur from just the value of 

magnification. In Chapter 3 both qualitative and quantitative comparisons are given 

based on different magnifications and different specimens including zebrafish larvae, 

zebra finch embryo, chicken heart etc. Moreover, we found that the performance of the 

proposed deconvolution and deblur approach increases on samples imaged with larger 

magnifications. This is because smaller magnifications correspond to flatter 3D deblur 

models whilst larger magnifications relate to steeper, i.e. sharper, models. The results are 

shown in the modelling section of Chapter 3.           

 

RQ4: Can the iterative reconstruction eliminate the streak artefacts produced in the fast 

reconstruction? 

Iterative reconstruction is implemented in a way that takes the observed projections, i.e. 

tomogram images, into account and uses it as a reference for updating the current 

reconstruction. If there are streak artefacts in the current reconstruction, through an 

iterative reconstruction workflow these will be propagated and reflected on simulated 

sinogram and be further compared to the observed projection. Aiming at minimizing the 

error between simulated and observed projection, the algorithm guarantees that the new 

reconstruction will converge in the correct direction. In Chapter 4, an example of streak 

artefacts in zebrafish is given and we present the effectiveness of iterative reconstruction 

on streak artefact elimination based on the results of multiple samples we have tested.    

  

RQ5: How and to what extent the initialization and the number of iteration steps 

influence the results in iterative reconstruction? 

We explore the effects of iteration steps and initial reconstruction having on the 

reconstructions. Thereby, we focus in particular on the zebrafish specimen. By using the 

reconstructions for segmentations, we measure the segmentation performance in 

zebrafish. By evaluating the segmentation performance, we quantify the influences of 

iteration steps and initial reconstruction and further optimise the parameters for the 

iterative reconstruction. To achieve this, a highly reliable segmentation algorithm is 

required, that takes the transparency of the samples into account. Based on the 

experimental results, we find that the combination of 10-iteration and FBP-initial 
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reconstruction has the best performance with the current preparation protocol and data. 

We further demonstrated that without a phantom for reference of quality, and empirical 

approach provides sufficient information on quality of the reconstruction. 

 

RQ6: Is it possible to “learn” a 3D reference structure of zebrafish for 3D fluorescence 

quantification in zebrafish? 

This research question deals with the application domain of OPT; here we have focussed 

on our typical model system, i.e. the zebrafish. In order to avoid influence of the 

variation in individual samples and imaging environment, i.e. exposure time and 

magnification, on tumour quantification for drug discovery, relative quantification is 

proposed and defined in Chapter 5. This quantification approach can be further 

generalized to other fluorescent signals in zebrafish. In terms of 3D relative 

quantification of fluorescence in zebrafish, we focus on the automated detection of 

reference structures. This detection is defined as “learn” as we aim to avoid the laborious 

manual labelling in a volume image. By using the current state-of-the-art volumetric 

segmentation approaches in biomedical imaging, we trained a robust segmentation 

approach to detect the two reference structures, i.e, Body and Eye. Based on the 38 

training samples we have achieved promising results. For both reference structures we 

achieve an accuracy of over 90%. We think that the accuracy can be further improved by 

adding more data in the training procedure.  

 

RQ7: How much 3D information can be achieved and identified from bright-field 

zebrafish OPT imagery and to what extent such identification can be automated? 

From an unstained zebrafish 3D OPT bright-field image we are able to distinguish a 

number of well-defined regions in the volume. For a 5dpf zebrafish we can observer four 

volume regions:  i.e. Eye, Head, Muscle and Belly. Whilst in a 25dpf zebrafish, a more 

advanced developmental stage, more comprehensive volume regions can be observed: i.e.  

Eye, Head, Belly, Fin, Muscle, Blood vessel, Notochord & Spinal cord, Swim bladder and 

Intestine, cf. § 6.3.1. In order to explore the automated detection of 3D structures, we 

trained 35 zebrafish samples aged from 5dpf to 7dpf and independently tested the 

automated detection method on 3 samples. The average accuracy for Head, Muscle, Belly 

and Eye is 54.96%, 70.39%, 39.16% and 0% respectively. Constrained by the 

transparency characteristics, data availability, benchmark labelling, computational 

resources and algorithm intelligence, automated 3D detection on zebrafish is still in its 

infancy and remains a challenge. 
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7.2 Achievements of research presented in this thesis. 

All considered, we set out to study the use of OPT and pondered on how to maximize the 

information that can be obtained from an OPT image. In order to do so, we reviewed the 

quality of the images that are obtained from OPT.   

The quality is influenced by the reconstruction algorithm, the artifacts that are 

introduced from the reconstruction and the artifacts that are introduced from the imaging. 

We have shown from our research questions that we have addressed, in addition, the 

speed of operation as we consider this an important asset of OPT imaging in a research 

workflow.  

We have shown that the artifacts from the reconstruction, i.e. rings and streaks can be 

corrected in an efficient manner. The imperfections in the imaging causing deblur can be 

restored by a specifically designed process of deconvolution. It is clear from the 

algorithms that are designed and probed that OPT imaging is a typical form of 

computational imaging. It requires sufficient computational resources and smart 

algorithmic approaches in order to be efficient and valuable. 

In the chapters on optimisation of the images we have used several different samples 

typical for the range of magnitude common to OPT. In the chapters on application of 

OPT we use zebrafish and worked on typical manners to support the analysis of OPT 

images from zebrafish. In that we have invoked machine learning approaches that are 

state-of-the-art. The rationale behind the use of the machine learning in segmentation is 

to be able to automate these processes. That is, now that we can obtain good quality 

images from the OPT, we must develop the processing of these images. We have shown 

that is approach can be successful.  

7.3 Limitations and possible solutions 

Further to the presentation of the results we here consider some of the limitations as well 

as manners how to overcome these limitations. To that end we take for perspectives in 

the next paragraphs, i.e. data, hardware, algorithms and theory.  

7.3.1 Data perspective 

(1)  The amount of biomedical image datasets, especially 3D images are, in general, 

relatively insufficient for existing computational architectures. Large image resources 

such as ImageNet 
[146]

 do have a better performance for this matter. In this data-limited 

context, typical for scientific research, we accelerate and facilitate the process of 

producing 3D OPT microscopy images. By employing the use of cluster and parallel 

computing with a fast reconstruction algorithm, i.e. FBP, we created a fast reconstruction 

system. It enables users to obtain 3D images fast with a reasonable quality for most cases, 
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yet it fails to avoid streak artefacts at locations where small and concentrated signals 

appear. To completely eliminate the possible streak artefacts, iterative reconstruction is 

applied on top of the fast reconstruction. Currently, the iterative reconstruction is, 

however, explored on GPU without parallel optimisation. This means that in terms of 

speed of 3D image data acquisition, the iterative reconstruction work is far from optimal. 

The combined optimisation of implementation on GPU and parallel computing for 

iterative reconstruction will be considered in the further research now that we know how 

to combine fast and precise reconstruction methods. 

(2)  In Chapter 3, the deblur experiments are implemented and reported on 25 3D images. 

The size of the data we have is far from sufficient with respect to requirements for 

statistical analysis and big data. The effectiveness of the proposed methods needed to be 

further verified as more data become available. In Chapter 4, parameters of iterative 

reconstruction are optimized based on experiments of zebrafish with two different 

clearing protocols. By using each protocol we image three zebrafish, which are utilized 

for reconstruction with different parameters. Even though the test performance of single 

zebrafish reaches up to more than 98%, with the training ratio of 20% and test ratio of 

80%, it might be more convincing if more samples can be used. In Chapter 5 we train the 

two reference models based on 35 zebrafishes and achieve promising results on 3 test 

data, but there is room for improvement to achieve a higher accuracy. We will therefore 

consider keeping adding training samples as they become available and then regularly 

retrain the model, so as for the automated annotation in Chapter 6. 

7.3.2 Hardware perspective 

Imaging resources: The 3D imaging process is accomplished in a full revolution and 

samples are manually mounted in the FoV. Because of the manual operation, a perfect 

mount of the sample to meet the requirements for reconstruction cannot be guaranteed. 

To address this problem, three imaging parameters are introduced. The camera rotation 

and prism tilt in the microscopy synergistically determine the direction of CoR in the 

image space. Ideally, the CoR is supposed to be parallel with one of the image axes for 

reconstruction, but, in practice of imaging this is difficult to accomplish. The operator 

can, however, decrease the differences between them by adjusting two screws, a 

laborious operation. Another parameter is the prism rotation which determines the 

distance between CoR and image centre in the parallel axis. It is also difficult and time 

consuming to adjust this distance to an ideal value of 0. We solve this problem by 

presenting the CoR correction in Chapter 2.  

From our perspective, there are two possible solutions for these problems. One is 

keeping the manual placement and fixing the cameral rotation and prism tilt screw after a 

satisfactory CoR direction is reached. The other solution would be replacing the manual 

mounting of the sample with a fixed automated mounting of the sample. In such way the 

three imaging parameters and sample mounting are fixed and optimized. This is 



Chapter 7 

  

140 
 

promising in terms of both imaging quality and efficiency. It requires, however, accurate 

mechanical motorized parts, for example how to guarantee the accurate and same 

position when placing each sample. This is absolutely challenging now but might be 

feasible in the near future.  

7.3.3 Algorithmic perspective 

(1)  CoR correction: The CoR correction algorithm is dependent on the signal intensity of 

sample from the imaging system. This means that if signals are weak the tomogram 

cannot provide the algorithm with sufficiently strong signals to calculate the CoR. This is 

the main drawback of our CoR correction approach and currently we cannot establish a 

generic solution to avoid this drawback. However, the combination of bright-field and 

fluorescence channels can give sufficient information. 

(2)  3D PSF modelling: The 3D PSF in Chapter 3 is modelled based on a fluorescently 

labelled bead of fixed size, which is larger than but close to the resolution of the imaging 

system. In such case we approximate the model built from the sphere as the PSF model at 

the specific resolution, but a theoretical PSF is considered more powerful. In this work 

we assume that PSF model is linearly related to sphere size.  The effect of the bead size 

on the modelling and deblur is not taken into account. But the theoretical relation 

between them needs be further investigated. With respect to the magnification effect, the 

model is constructed based on 6 different magnifications. Subsequently, we estimated the 

PSF model on the 3D image according to magnification consistency, which is 

theoretically regarded as reasonable. However, if we critically think about this rationale, 

we need prove the optimality of implementation based on magnification consistency. 

This means performance comparison of deblur with different magnifications 

implemented on the same 3D image needs to be considered, for experimental evidence of 

the abovementioned optimality.     

7.3.4 Theoretical perspective 

(1)  3D PSF modelling: In Chapter 3 we generalize the 3D Gaussian model with more 

parameters for the PSF modelling and deblur tasks. In practice, it works well for both 

tasks. The generalized 3D Gaussian model we used for deblur is supported by previous 

work and experimental observations, which is based on statistical assumption rather than 

imaging theory. This means that there is a lack of theoretical proof showing the 

expediency and effectiveness of PSF modelling from the aspect of imaging process. This 

question motivates us to think is if there is another model working for OPT image deblur, 

benefiting from the inference of the imaging process. To answer this question, knowledge 

of optical physics and inferential mathematics are required. This might be an interesting 

and challenging research to continue with.  



Chapter 7 

  

141 
 

(2)  3D segmentation: The challenge of zebrafish segmentation in 3D image is a good 

estimation of the location of the surface based on the limited surface information such as 

pigments. The ground truth of zebrafish model for training are estimated based on human 

knowledge, i.e. manual labelling. There is no benchmark model for a zebrafish, so the 

manually labelled model is regarded as the closest to a benchmark. Under this 

assumption, we trained the zebrafish model based on the approximate benchmark and 

used it for evaluation. From practice in machine learning we know that when sufficient 

data is available the learnt model can achieve a very high accuracy but never reach to 

100%, compared to manually labelled benchmark. One possible addition is to combine 

information from phenotypes of zebrafish such as smoothness, connectivity, etc., to 

evaluate the estimation of the rather transparent surface.  

7.4 Outlook 

Some 3D imaging techniques are non-invasive and at the same time provide sufficient 

interior information of the biological sample. This makes 2D imaging of physical 

sections less necessary. Stepping up one dimension, i.e. from 2D to 3D, with large image 

sizes introduces a big challenge for both hardware and software.  

For image acquisition in OPT, the automated mounting of samples is a promising 

direction of research. Given automated mounting, a calibration becomes obsolete with 

the assumption that samples can be ideally placed for obtaining an approximately perfect 

reconstruction. Another point is that automated mounting will shorten the overall time for 

imaging each sample. Both aspects contribute a large decrease in imaging time and 

accelerate the imaging process. Taking advantage of this automation process, the system 

will be suitable for high throughput screening. But the challenge is that the progress of 

automation is determined by the collaborative development of mechanical engineering 

and computer technology. 

The fast reconstruction algorithms in the OPT system have yielded reconstructions for 

hundreds of samples. From these samples we observed two kinds of artefacts in our work. 

But there might be more artefacts for OPT imaging. The scientific literature in this field 

is still limited. A systematic analysis of artefacts in OPT would be an interesting research 

topic. To this end an example can be taken from models that have been used for artefacts 

reduction in CT imaging.  

The research presented in this thesis has addressed several research areas, from 

microscopy, algorithms, image processing and analysis, distributed and parallel 

computing to machine learning and AI. This shows that research can progress if state-of-

the-art methodology is merged and applied. In the future progress for the field of OPT, 

this will also be the case. Merging the different aspects of OPT in a smart manner will 

allow application of OPT in biomedical research to flourish and grow. 

In the workflow of imaging the OPT takes a niche for its ability to produce good 

images of samples in the range of magnitudes of millimetres. Efforts to further optimize 



Chapter 7 

  

142 
 

this will be beneficial in understanding of biological phenomena as well as in imaging 

workflows in general. 
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Summary 
Optical projection tomography (OPT) is a tomographic 3D imaging technique used for 

specimens in the millimetre scale. 3D images are computed from a tomogram and 

therefore OPT is considered as computational imaging. In order to provide imaging and 

image analysis solutions for large scale biomedical research, optimisation of the OPT 

reconstruction is required. The aim of the optimisation presented in this thesis includes: 

(1) accelerate the reconstruction process; (2) reduce the reconstruction artefacts; (3) 

improve the image quality of 3D image; (4) Find optimal parameters for the iterative 

reconstruction.  

Starting from the optimisations that we have elaborated and implemented in the OPT 

imaging workflow, we have worked on case studies in zebrafish imaging. In this thesis 

we present one such particular case study (5) as it falls nicely in the order of magnitude 

for specimens in OPT imaging. The case study is on quantification of tumours in 

zebrafish and it is explored with image segmentation and object detection using artificial 

intelligence (AI) techniques. 

The acceleration of the reconstruction process (ad. 1) aims to reduce the time of 

imaging process from tomogram to reconstruction. This supports biomedical research in 

high-throughput or large-scale imaging. In our work, we accelerate the OPT 3D 

reconstruction by implementing filtered back projection (FBP) in a parallel manner. In 

this thesis, we refer to this approach as fast reconstruction. With our (current) 

computational resources users are able to acquire a millimetre scale whole-mount 3D 

image in several minutes.  

The reduction of the artefacts in OPT reconstruction (ad. 2) aims to provide a 3D 

solution of reconstruction with less artefacts that are introduced during the reconstruction 

process as a result of limitations of the reconstruction algorithm and the imaging setup. In 

this thesis, two different types of artefacts are covered, i.e. ring artefacts and streak 

artefacts. With respect to these artefacts, both the cause and the solution are addressed in 

this thesis. In the FBP algorithm, the ring artefacts are introduced by the misalignment of 

centre of rotation (CoR), whilst the streak artefacts are results of absence of sufficient 

signal in a tomogram. As a solution, a CoR correction algorithm is proposed in the FBP 

reconstruction framework. In order to eliminate the streak artefacts, iterative 

reconstruction is explored in OPT imaging.   

The improvement of the image quality of an OPT 3D image (ad. 3) in this thesis aims 

to find a method for deblurring of the reconstructed images. This is done by 

deconvolving the 3D image with an empirically derived point spread function (PSF). The 

qualitative and quantitative comparisons of the results that are obtained with our 

deconvolution method illustrate the effectiveness of the improvements that are 

accomplished.   
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The Optimisation of the parameters for iterative reconstruction (ad. 4) aims at gaining 

the best possible 3D images suitable for segmentation and detection of structures within 

the sample. This is essential for the signal quantification, e.g. tumour quantification in the 

later developmental stages. The most customary parameters including iteration number 

and initial reconstruction are explored and optimised based on the segmentation 

performance of corresponding reconstructions.  

The case study on tumour quantification (ad. 5) demonstrates an application of the 

optimised OPT imaging system. Compared to 2D quantification, we expect to provide 

some new insights to the tumour quantification in 3D for drug research. Based on the 

samples we have available for tumour quantification, we conclude that the relative ratio 

of tumour to a specific organism or organ in 3D, is much smaller than that in 2D. This to 

a large extent justifies the reason why the OPT 3D imaging is necessary for specimens in 

the millimetre scale. Supported by more computational resources and advanced analytical 

techniques, we are confident about its prospect and popularity of OPT in the area of 

biomedical research.      
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Nederlandse samenvatting 
Optische projectietomografie (OPT) is een tomografische 3D-beeldvormende techniek 

die wordt gebruikt voor objecten ter grootte van millimeters. Op basis van een tomogram 

wordt een 3D-beeld berekend; daarom wordt OPT dan ook beschouwd als zogenaamde 

computationele beeldvorming. Om oplossingen te bieden voor het maken van beelden en 

het doen van  beeldanalyse op die beelden  voor  biomedisch onderzoek op grote schaal, 

is optimalisatie van de OPT-reconstructie vereist. Het doel van de optimalisatie zoals 

beschreven in dit proefschrift omvat: (1) het versnellen van het proces van reconstructie; 

(2) het verminderen van artefacten uit de reconstructie; (3) het verbeteren van de 

beeldkwaliteit van het 3D-beeld; (4) het vinden van optimale parameters voor  iteratieve 

reconstructie. 

Met  optimalisaties die we hebben uitgewerkt en geïmplementeerd in de OPT-

beeldvormingsworkflow als uitgangspunt, hebben we gewerkt aan casestudy's in (3D) 

beeldvorming van zebravissen. In dit proefschrift presenteren we één  specifieke case-

study (5), aangezien deze goed past in de orde van grootte van  objecten geschikt voor 

toepassing in OPT. Deze case-study gaat over de  kwantificering van tumoren in 

zebravissen. Er wordt specifiek gebruik gemaakt van beeldsegmentatie en objectdetectie 

met behulp van technieken uit de kunstmatige intelligentie (AI).  

De versnelling van het reconstructieproces (ad. 1) heeft tot doel de tijd van het 

beeldacquisitie- en beeldbewerkingsproces van tomogram tot reconstructie te verkorten. 

Dit ondersteunt met name biomedisch onderzoek in high-throughput beeldbewerking. In 

ons werk versnellen we de OPT 3D-reconstructie door  het Filtered Backprojection 

algoritme (FBP) parallel te implementeren. In dit proefschrift wordt deze aanpak de 

snelle reconstructie genoemd. Met onze (huidige) computationele middelen kunnen 

gebruikers in enkele minuten een 3D-beeld verkrijgen van het complete object. 

De vermindering van de artefacten in OPT-reconstructie (ad. 2) heeft tot doel een 3D-

oplossing voor reconstructie te bieden met minder artefacten zoals die tijdens het 

reconstructieproces worden geïntroduceerd als gevolg van beperkingen van het 

reconstructie-algoritme en de OPT-opstelling. In dit proefschrift komen twee 

verschillende soorten artefacten aan bod, namelijk ring-artefacten en streak-artefacten. In 

dit proefschrift wordt aandacht besteed aan zowel de oorzaak als de oplossing met 

betrekking tot deze artefacten. In het FBP-algoritme worden de ring-artefacten 

geïntroduceerd door een verkeerde uitlijning van het centrum van rotatie (CoR), terwijl 

de streak-artefacten het gevolg zijn van het ontbreken van voldoende signaal in een 

tomogram. Als oplossing wordt een CoR-correctiealgoritme gepresenteerd binnen de 

FBP reconstructie. Om de streak-artefacten te elimineren, zijn iteratieve 

reconstructiemethoden voor OPT-reconstruction onderzocht. 

De verbetering van de beeldkwaliteit van een OPT 3D-beeld (ad. 3) wordt 

gerealiseerd met het formuleren van  een methode  voor het verscherpen van de 
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gereconstrueerde beelden. Dit wordt gedaan door het 3D-beeld te deconvolueren met een 

empirisch afgeleide point-spread functie (PSF). De kwalitatieve en kwantitatieve 

vergelijkingen van resultaten die met deze methode zijn verkregen illustreren de 

effectiviteit van de bereikte verbeteringen. 

De optimalisatie van de parameters voor iteratieve reconstructie (ad. 4) is gericht op 

het verkrijgen van de best mogelijke 3D-beelden die geschikt zijn voor segmentatie en 

detectie van structuren binnen het object van onderzoek. Dit is essentieel voor de 

kwantificering van het specifieke signaal, b.v. tumor kwantificering in late stadia van 

ontwikkeling,  De meest gebruikelijke parameters, waaronder iteratie aantal  en de 

zogenaamde initiële reconstructie, worden verkend en geoptimaliseerd op basis van de 

prestaties van segmentatie van vergelijkbare reconstructies. 

De case-study over kwantificering van tumoren (ad. 5) laat een toepassing van 

geoptimaliseerde bewerkingen van beelden uit het OPT-systeem zien. In vergelijking met 

de gebruikelijk 2D-kwantificering verwachten we een aantal nieuwe inzichten te kunnen 

verschaffen door de kwantificeting van de tumor in 3D;  voor geneesmiddelenonderzoek 

is dit van groot belang. Op basis van de zebravisjes die we hebben kunnen gebruiken 

voor tumorkwantificatie, concluderen we dat de relatieve verhouding van tumor tot een 

specifiek organisme of orgaan in 3D veel kleiner is dan hetgeen gemeten wordt in 2D. 

Dit rechtvaardigt in grote mate de reden waarom de 3D OPT techniek nodig is voor 

objecten in de orde grootte van millimeters. Met verdere ondersteuning door meer 

computationele middelen en geavanceerde analytische technieken, hebben we veel 

vertrouwen in de OPT techniek qua toepasbaarheid in het biomedische onderzoeksgebied. 
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