Cover Page

The handle http://hdl.handle.net/1887/97598 holds various files of this Leiden University
dissertation.

Author: Serbanescu, V.

Title: Software development by abstract behavioural specification
Issue Date: 2020-06-10


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/97598
https://openaccess.leidenuniv.nl/handle/1887/1�

10.

STELLINGEN
Propositions belonging to the Ph.D. dissertation
Software Development by Abstract Behavioural Specification

by Vlad-Nicolae Serbdnescu

. The concurrency model of Java is an extension of the sequential model. The basic sequential

model is that of synchronous calls, making it very difficult to express asynchronous calls as they
are defined as a primitive concept in the actor-based model of concurrency. (Chapter 2)

Recent versions of Java include more functional features like lambda expressions which are a
powerful means for emulating asynchronous calls. (Chapter 4)

. There is a trade-off between using ABS directly by means Java library and through a compiler

which translates ABS into Java. The first approach allows for integration with existing Java-based
libraries and data structures, but requires reverse-engineering to extract the software model. Using
ABS through a compiler allows for usage of formal analysis tools on the model directly.(Chapter 5)

The powerful abstraction of cooperative scheduling can be, in theory, modeled by a run to completion
model of active objects, but it is difficult to put in practice due to the overhead added to maintain
correct actor semantics. (Chapter 7)

An important challenge for formal models is to have an efficient code generation process from the
modeling language to maximize the benefits of the model.

In a functional programming approach a process can be stored as data, and data can be executed
like a process. This allows more efficient use of the stack and heap memory in multi-threaded
models.

Coroutines are a very important programming concept in object-oriented programming for organiz-
ing control flow of a large number of small tasks. Support in JVM requires explicit resumption
that can be prone to errors as a coroutine may be resumed more than once, in contrast to modeling
where resumption can be made implicit and handled by an underlying scheduler to avoid these
errors.

Reasoning about the full correctness of a compiler is a very difficult process and it is a step-by-step
process that requires formal investigation into separate parts of the translation.

While software development is always striving to keep up with the rapidly evolving hardware, in
the special current circumstances it is the hardware that requires the necessary infrastructure to
support an online virtual world.

Although some of the aspects of human interaction can equally be covered by online meetings,
research and development is highly dependent on physical interaction and expertise exchange.



