
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/97598 holds various files of this Leiden University 
dissertation. 
 
Author: Serbânescu, V. 
Title: Software development by abstract behavioural specification 
Issue Date: 2020-06-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/97598
https://openaccess.leidenuniv.nl/handle/1887/1�


Summary

The development process of any software has become extremely important not just in the IT industry, but
in almost every business or domain of research. The effort in making this process quick, efficient, reliable
and automated has constantly evolved into a flow that delivers software incrementally based on both the
developer’s best skills and the end user’s feedback.

Software modeling and modeling languages have the purpose of facilitating product development
by designing correct and reliable applications. The concurrency model of the Abstract Behavioural
Specification (ABS) Language with features for asynchronous programming and cooperative scheduling
is an important example of how modeling contributes to the reliability and robustness of a product. By
abstracting from the implementation details, program complexity and inner workings of libraries, software
modeling, and specifically ABS, allow for an easier use of formal analysis techniques and proofs to support
product design. However there is still a gap that exists between modeling languages and programming
languages with the process of software development often going on two separate paths with respect to
modeling and implementation. This potentially introduces errors and doubles the development effort.

The overall objective of this research and thesis is bridging the gap betweenmodeling and programming
in order to provide a smooth integration between formal methods and two of the most well-known and
used languages for software development, the Java and Scala languages. The research focuses mainly on
sequential and highly parallelizable applications, but part of the research also involves some theoretical
proposals for distributed systems. It is a first step towards having a programming language with support
for formal models. The contributions of this thesis are divided in three parts aimed at achieving this
overall objective.

The first part is about developing a runtime that implements the proposed concurrency model of
ABS its features with the main focuses being on performance and scalability of the implementation.
The runtime has the purpose of optimal thread management in the Java language and provides a full
integration of actors and futures with asynchronous programming.

The second part of this research brings the high-level modeling constructs, especially those that model
asynchronous programming and concurrent behavior in ABS to the level of the Java language through an
API. The base API, called JAAC is exposed Java and presents some constructs which are quite permissive
with regards to type checking of the proposed asynchronous call and vulnerable to unwanted code being
run on actors. The API is extended to Scala syntax, called ASCOOP, where all (a)synchronous method
calls are now type checked by the Scala compiler allowing only calls to methods that are exposed by a
class or interface.

The third part focuses on the development of a compiler from the software model to Java and extended
to Scala that provides a formally correct translation and behavior. This translation fully supports the
semantics of the core modeling language which includes modeling actors and actor groups as software
components. The compiler support includes asynchronous communication, coroutine suspension and
resume constructs. Finally the compiler translates the ABS language extensions for timed-models and
resource consumption.

104


