

Cover Page

The handle http://hdl.handle.net/1887/97598 holds various files of this Leiden University
dissertation.

Author: Serbânescu, V.
Title: Software development by abstract behavioural specification
Issue Date: 2020-06-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/97598
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 7

ABS to Scala Compiler

Together with the runtime presented in Chapter 4, a source-to-source translation from ABS to Scala is
provided to support both the object-oriented and functional programming paradigms of ABS. The most
important features of the compiler are the correct translation of the core ABS semantics together with the
coroutines feature of ABS, the compilation of the Timed-ABS model extension and the translation of the
ABS extension that models deployment components and consumption of resources.

7.1 Translating Core ABS and its Extensions to the Proposed Run-
time

To provide a compiler for ABS for all the core features discussed in Chapter 3 a lot of the work that
already existed for state-of-the-art backends for Maude and Erlang in [absc] was reused. For parsing and
type-checking the Core ABS language we used the grammar and type system already in place to obtain
the Abstract Syntax Tree(AST) of the program. The syntactical and semantic analysis steps are the same
for every backend, the proposed compiler reuses these steps. The code generation step is backend specific
and generates Scala code that uses the proposed Java Runtime. This involves using a visitor pattern to
traverse the AST and generate code for each tree node. Most of the nodes do not present a difficult task,
as interfaces, classes, method signatures or bodies, control statements and expressions all have one-to-one
correspondents in Java or Scala. The exception to all these are the algebraic data types and the control
statement case (discussed in Section 3.2) which provide the functional part of ABS. For this paradigm of
ABS the translation must be done to the Scala language discussed in depth section 7.2. However, the rest
of the code-generation for the core ABS is one of the main challenges as it has to take into account all of
the particularities of ABS discussed in Chapter 3, which are:

• Instantiating objects as actors: all of the objects created using the new command behave like actors
and need to be separated in their own COGs unless indicated by the local option which specifies
sharing a COG with the parent object.

• Asynchronous communication: method invocations created using the “!” operator must be created
as lambda expressions and passed to the called object/actor.

• Continuations: when release points are met, actors need to know from which point and in what
state to resume execution of either the actor itself or a suspended message.

• Cooperative Scheduling: execution flow must be controlled to follow the semantics in Section 3.3
when encountering a get or await construct.

66

7.1.1 Objects as Actors in COGs
ABS objects are not just regular JVM objects, and require some changes when they are instantiated. First,
all interface declarations need to extend the Actor interface and all class declarations need to extend the
Local Actor default implementation such that newly instantiated objects can behave like actors. Extending
this base interface and class allows for the calling of the default constructor that initializes each object with
a message queue and a MainTask to iterate through it. It also makes available for each object the methods
send, spawn and getSpawn to be used for asynchronous communication and cooperative scheduling). A
simple layout of an interface and class declaration in ABS is given in Listing 7.1. According to ABS
semantics, all declarations need to be comparable, whether they are defined as ADTs or objects, mainly
due to the definitions and assumptions made in the ABS Standard Library. With respect to objects, there is
no particular rule to comparing objects, so this is left to the default ordering that Scala makes for objects.
For this to happen, all parent interfaces need to extend the Scala trait Ordered as shown in Listing 7.2.

Listing 7.1: An Interface and Class in ABS
1 interface Ping {
2 ...
3 }
4
5 class PingImpl(...) implements Ping {
6 ...
7 }

Second, we need to differentiate between the new and new local constructs. The presence of the
local option puts the newly created ABS object into the same COG as the object that created it, while the
absence of this option will place it a new COG. What this means for the generated code is that the actors
have to create new or share the messageQueue or mainTaskIsRunning variables discussed in Chapter 4
such they can emulate placement on a new COG or the same one. To add this support, the generated code
for each class adds a parameter destCOG as shown in Listing 7.2. This reference may point to the actor that
called new local such that the the messageQueue or mainTaskIsRunning will be shared, otherwise if
the reference is null, the variables will be created by the parent constructor. Depending on the location of
the new object, its constructor will call moveToCOG(callerofNewLocal) or moveToCOG(null) (line 10)
. The call to this method is very important as it needs to be done immediately after calling the super()
constructor of the LocalActor class. The generation of a statement like new local Ping(...); will look as
new Pingthis,...);)

Listing 7.2: COG and DC Assignment
1 trait Ping extends Actor with Ordered[Actor] {
2 ...
3 }
4
5 class PingImpl(var destCOG : LocalActor,var destDC : Actor,...)
6 extends LocalActor with Ping {
7
8 //constructor
9 {
10 moveToCOG(destCOG);
11 setDc(destDC);
12 }
13 }

67

Deployment Components Very closely related to COG assignment is the option to generate code
with resource model support. This generation is optional and can be activated as an argument in the
command line. To achieve this, the compiler automatically generates a second parameter for every
ABS class definition (destDC). Again this parameter determines on which resource the newly cre-
ated object will be placed through calling setDC(targetDC) (line 11). An ABS new construct with
resource model support can optionally have an annotation such as in Listing 3.12. This construct
looks like [DC: dc] Worker w = new CWorker() In this case the compiler will generate the a state-
ment with the correct deployment component location for the newly created object through a statement
new CWorker(null, dc, ...).

7.1.2 Asynchronous Communication
A very important focus of the code generation is translating the “!” operator. In ABS its syntax is
AsyncCall ∶∶= PureExp ! SimpleIdentif ier(PureExp, P ureExp) and the semantics is to create a
new task in the COG that contains the target object identified by PureExp. This means that the caller
task proceeds independently and in parallel with the callee task, without waiting for the result. The result
of evaluating an asynchronous method call expression (Listing 7.3) is a future of type (Fut<T>), where
T is the return type of the callee method m.

Listing 7.3: Asynchronous method call in ABS
1 Fut<Int> f = o!m(e);

This type of invocation needs to be wrapped as a lambda expression and sent as a message. The
problem here is that lambda expressions only take read-only parameters inside the functions, so all any
variables passed as function arguments need to be redeclared before creating the lambda expression. In
Java this restriction is defined in terms of the final predicate.

Listing 7.4: Asynchronous method call code generations
1 final Integer e1 = e;
2 msg: Callable[ABSFuture[Integer]] = ()=>o.m(e1);
3 f:ABSFuture[Integer] = o.send(msg);

To have the correct code generation of Fut<Int> f = o!m(e), where e is a variable of type Int, into
the code in Listing 7.4 we need to take the following steps:

1. Redeclare all variables that need to be passed to the lambda expression.
2. Create the lambda expression as either a Runnable or Callable.
3. Call the send method of the actor to which the asynchronous message is being sent and pass the

lambda expression as the argument.

Duplicate Variable Names and Renaming When pre-processing continuations the starting point can
be within any scope depth of the method, thus becoming the outer scope of the method wrapping the
continuation. The problem that arises here is that the variables declared in this inner scope in the
initial code are considered “dead” once the scope ends, therefore their names may be reused. The same
variables however are now in the most outer scope of the method that represents the continuation, resulting
in duplicate names and variable re-declaration once the names are reused. Also when sweeping the
parameters, it is possible that a parameter that is passed to a continuation signature may be re-declared
with the same name inside the continuation (i.e. in the case of preprocessing a while block. With all these
considerations we need a pattern to rename variables to avoid these name collisions.

68

7.2 Translation of ABS to Scala
This section covers the biggest challenges that were encountered translating the ABS Standard Library
when developing the compiler with the Scala backend support. The standard library is actually a good
benchmark for the functional paradigm of ABS as many of the predefined data types are ADTs and
many of the defined functions use case expressions and pattern matching. Another topic covered in this
section the efficient translation of built-in data types that are dependent on the backend in which they are
translated. The challenge for the Scala backend is to find as many corresponding types in Scala that have
they same semantic behavior that is specified in the ABS manual. The same goes for built-in functions
where ABS imposes backend specific semantics for which it is also better to identify an existing scala
function (either in the standard library or otherwise), rather than defining a specific one for the backend.

7.2.1 Sweeping Parameters
In Scala the parameters passed to a method are immutable (val) and because a continuation may change
swept parameters we create new local variables to save each parameter. To identify a temporary state
from which a message needs to resume, we have to SWEEPall of the variables that live in that scope.
There are two parts to the sweeping process:

1. During pre-processing, we have to sweep all the variables for their types that live in that scope in
order to create the correct method signature.

2. During code generation, we have to sweep for all variables as the pairs of type:value that live in the
scope such that we can make the correct method call to be execute when the message is released.

The sweeping process is presented in Figure 7.1. We consider that when SWEEP is inside a method
definition, we assume it returns tuples of type: value, but when it is inside a method call we assume that
it only returns value.

SW EEP (T m(p){S}) ∶∶= p ∪ SW EEP (S)
SW EEP (S1;S2) ∶∶= SW EEP (S1)

SW EEP (S1;S2) ∶∶= SW EEP (S2)

SW EEP (case e1 {P1 => {S1}}) ∶∶= PSP (P1), await or get statement in S1
SW EEP (T v1[= exp]) ∶∶= (type ∶ T , value ∶ v1)

SW EEP (_) ∶∶= {∅}
PSP (Literal) ∶∶= {∅}

PSP (QU) ∶∶= {∅}
PSP (V ar) ∶∶= (type ∶ _inferred, value ∶ var)

PSP (QU (p)) ∶∶= {PSP (a)|a ∈ p}
PSP (_) ∶∶= {∅}

Figure 7.1: Parameter Sweeping for a continuation triggered when encountering a given await

69

7.2.2 Compiling Algebraic Data Types and Pattern Matching
These particular features of ABS are the main reason behind using Scala as the backend for ABS rather
than Java. Scala provides in the core language constructs the means for translation support to the functional
programming paradigm described in Section 3.2. For the translation of an ADT declaration, the example
of the Maybe data type is very useful data Maybe<A> = Nothing | Just(A fromJust);. This examples
covers both types of ADT declarations: simple data types and data constructor types. This declaration
also incorporates a generic parameter that needs to be correctly translated. The snippet for the compiled
Scala code is given in Listing 7.5. The defined type itself (Maybe) must be an abstract class such that it
cannot be instantiated and only serve as a reference type.

Listing 7.5: Translation of the Maybe ADT
1 abstract class Maybe[A<%Ordered[_ >: A]] extends Ordered[Maybe[A]] {
2 var rank : Int;
3 }

Like ABS objects, ADTs also have to be comparable using a simple rule that orders the defined types
based on the order in which they appear in the declaration. An important observation to make here is that
ADTs do not have a superclass and unlike objects ABS does not force different ADTs to be comparable.
However, a rank (line 2) field needs to be defined to allow comparison between the types defined for
an ADTs based on their declaration order. A big advantage of using Scala is that the compiler forces
the instantiation of this field in all subclasses and as such can yield an error if anything went wrong
in the code generation of the declared ADT types. Coming back to this example the types are in the
following relation: Notℎing < Just(...). If two ADTs are of the same simple type, they are obviously
equal, while two ADTs that are of the same constructor type are compared recursively based on their
constructor arguments in a depth-first manner. With these aspects in mind, Listing 7.6 gives an overview
of the translation of the two types that the Maybe ADT has.

The two types are declared as sub case classes of the Maybe class such that they can be referenced
correctly. The benefit of using case classes is that they provide a default equals method and as such the
pattern matching feature of ABS can have a correspondent to the match construct in Scala. On lines 2
and 15 the rank variable is initialized with respect to the order of the declarations in the ABS code. In the
case of the data constructor type Just the compare method has to compare the arguments for a proper
ordering of two Just types (line 20).

7.2.3 Translating the Built-in Types of ABS
In the ABS standard library there are several data types and functions that only have a particular semantics
attached to them, without any definition or specification. The general purpose of the Scala backend is to
provide an efficient execution platform for ABS, and as such these built-in types must not be redefined in
Scala with the expected semantics, but rather already have an existing correspondent type. These are the
built-in data types and they are defined in Table 7.1 taken from the ABS Manual. This table is updated
with the corresponding type in Scala for a straightforward and efficient translation.

Rational Numbers There are two exceptions to these Scala corresponding types. The first one is for
futures which have a much more extensive behavior and semantics in ABS and for this purpose the
corresponding type is the Future class that is part of the ABS runtime in Java. The second problematic
type is the Rational type which does not have any pre-defined class in Scala and requires definition
of the type in the ABS runtime. A layout of this class is presented in Listing 7.7. The first challenge
with this class is that although a rational number may be small, it may be represented by a numerator and
denominator that exceed the size Int type in Scala. Added to this is that any mathematical operation

70

Listing 7.6: Translation of the Nothing and Just Types
1 case class Nothing[A<%Ordered[_ >: A]]() extends Maybe[A] {
2 final var rank : Int = 0;
3
4 def compare(that : Maybe[A]): Int= {
5 if(this.rank == that.rank) {
6 return 0;
7 }
8 else {
9 return this.rank−that.rank;
10 }
11 }
12 }
13
14 case class Just[A<%Ordered[_ >: A]](var fromJust : A) extends Maybe[A] {
15 final var rank : Int = 1;
16
17 def compare(that : Maybe[A]): Int= {
18 if(this.rank == that.rank) {
19 var jthat:Just[A] = that.asInstanceOf[Just[A]]
20 return fromJust.compare(jthat.fromJust)
21 }
22 else {
23 return this.rank−that.rank;
24 }
25 }
26 }

71

Table 7.1: ABS Built-in data types
Name Description Example Corresponding Type in

Scala
Unit The empty (void) type Unit Unit
Bool Boolean values True, False Boolean
Int Integers of arbitrary size 0, -15 Int
Rat Rational numbers 1/5, 22/58775 -

String Strings "Hello World" String
Fut <A> Futures the return type of an asyn-

chronous call
Future< A >

Float Floating point numbers 3.14, -100.5 Float

may also cause the resulting representation to overflow before it is simplified. For these reasons, both the
numerator and denominator are defined as BigInt (lines 5 and 6) to preserve correctness of the compiled
model. However this adds a significant performance penalty to programs using a large number of rationals,
and it is strongly recommended whenever possible to use the newly introduced ABS built-in type Float
which has a corresponding primitive in Scala with the same name. This is especially important for models
where high performance is required.

Listing 7.7: The Rational Class in the ABS Runtime
1 class Rational(n: BigInt, d: BigInt) extends Ordered[Rational] {
2 require(d != 0)
3
4 private val g = Rational.gcd(n.abs, d.abs)
5 val numer: BigInt = n/g ∗ d.signum
6 val denom: BigInt = d.abs/g
7
8 def this(n: Int) = this(n, 1)
9 def this(rational: Rational)= this(rational.numer,rational.denom);
10
11 override def toString = ""+ numer + (if (denom == 1) "" else ("/"+denom))
12
13 // default methods (for all math operations)
14 def +(that: Rational): Rational =
15 new Rational(number ∗ that.denom + that.number ∗ denom,
16 denom ∗ that.denom)
17 def +(that: Int): Rational =
18 new Rational(numer + (that ∗ denom), denom)
19
20 ...
21 }

Another challenge specific to the Rational type is that, because it does not have a pre-defined type in
Scala, it cannot be used together with other numerical types like the semantics of ABS require. As such
the Java ABS runtime has to define this behaviour for mathematical operations (line 18) and comparison
operations as shown in Listing 7.8. In these examples the methods are defined for operations between
rationals and integers and the same behaviour is defined for operations between rationals and floats.

Finally there will be certain instances where an integer will have to be "promoted" to a rational
such as on an assignment statement Rational x = 0;. The Rational object in Listing 7.9 defines in Scala

72

Listing 7.8: The Comparison Methods in the Rational Class
1 def equals(that: Rational) = {
2 (this.numer==0 && that.numer==0)||
3 (this.numer == that.numer && this.denom == that.denom)
4 }
5
6 def equals(that: Int) = {
7 (this.numer == that && this.denom == 1) || (this.numer == 0 && that == 0)
8 }
9
10 override def equals(obj: scala.Any): Boolean = {
11 if(obj.isInstanceOf[Int]){
12 return equals(obj.asInstanceOf[Int])
13 }
14 if(obj.isInstanceOf[Rational]){
15 return equals(obj.asInstanceOf[Rational])
16 }
17 return super.equals(obj)
18 }
19
20 override def compare(that: Rational) = {
21 val c = this.numer ∗ that.denom − that.numer ∗ this.denom
22 if(c.isValidInt)
23 c.toInt
24 else if(c<0)
25 Int.MinValue
26 else
27 Int.MaxValue
28 }

73

this implicit conversion (line 2), together with a constructor that creates a rational from an integer
parameter(line 6). Finally in order to reduce a rational number to its simplest form and also to avoid
storing too many BigInt numbers the Rational object provides a function for calculating the greatest
common divisor (gcd on line 3) to be applied straight after constructing the number. Another performance
issue that appears when using Rational numbers is that they are immutable, but they are not Scala
primitives so a large number of these objects are created when a lot of computation is performed with
them. As they are no pools of constants defined like String and Integer pools it is best to avoid using this
built-in type in favor of Float to model high-performance applications.

Listing 7.9: The Rational Object in the ABS Runtime in Java
1 object Rational {
2 implicit def intToRational(x: Int) = new Rational(x)
3 private def gcd(a: BigInt, b: BigInt) : BigInt = if (b == 0) a else gcd(b, a % b)
4
5 def apply(numer: Int, denom: Int) = new Rational(numer, denom)
6 def apply(numer: Int) = new Rational(numer)
7 }

7.3 Compiler Correctness
Implementing cooperative scheduling in ABS that scales in the number of active objects and messages
provides a major challenge (as described in Chapter 4). Furthermore, it also complicates considerably
reasoning about the correctness of ABS programs. This is evidenced by that no sound and complete
proof system for ABS has been introduced yet. The proof system in [DO14] for example is shown to be
complete only for the sublanguage that does not support cooperative scheduling. ABS itself has a formal
semantics, but the languages to which it is compiled, Java and Scala, do not have a full language formal
semantics. Therefore it is difficult to provide a formal correctness proof for the whole compiler and all the
challenges described in this chapter. As such, the focus is on investigating correctness of certain aspects
of the compiler, mainly the translation of the expressive power of cooperative scheduling in ABS. This
section shows that the powerful abstraction of cooperative scheduling in ABS can be modeled by a run to
completion model of active objects.

The essence of this compilation process is the spawning mechanism the translation is generalized to
a run to completion model described by a language GAC (Guarded ACtor) which provides a guarded-
command language ([Dij78]) for the description of the method bodies. The formal translation of ABS
into GAC is given by an intermediate language ABS-SPAWN which uses an explicit spawn operation to
model the execution of await statements. In the GAC language the operation of spawning local processes
can be modeled directly by asynchronous self-calls. Any source code written in ABS consists of a set
of classes, and each class consists of a set of method definitions. In this section we abstract from the
nominal type system of ABS and its functional layer, and focus on the control flow of ABS programs.
Figure 7.2 presents the formal syntax of ABS statements which are used to describe the method bodies.

The expression e denotes a local side-effect free expression (that is, its evaluation only depends on
the local state of the actor and does not affect this local state). For the purpose of providing a smooth and
clear proof, we can abstract from its syntax (which in general involves the functional layer of ABS). For
notational convenience we assume that every method call (asynchronous or synchronous self call) returns
a value. We assume these values typed according to the type system of ABS. A slight modification of
Listing 3.8 is shown is Listing 7.10 where it is imposed in the formal syntax that returned expressions are
side-effect free. As such, the return instructions is separated into the instructions on lines 10 and !11.

Further we restrict a guard g of an await statement by either a local side-effect free Boolean condition
b or a single a future variable. It is not difficult to see that this restriction does not restrict the expressive

74

S ∶∶= � empty statement
∣ x = e basic assignment
∣ y = x!m(ē) asynchronous method call
∣ y = m(ē) synchronous method call
∣ x = new C(ē) object creation
∣ await g await statement
∣ x = y.get get statement
∣ if b {S} else {S} conditional statement
∣ S;S sequential composition
∣ return e return statement

Figure 7.2: Syntax for ABS statements.
Listing 7.10: Synchronous Call in ABS

1 Worker getWorker(){
2 await !(emptySet(workers));
3 Worker w = take(workers);
4 }
5
6 Result sendWork() {
7 Worker w = this.getWorker();
8 workers = remove(workers, w);
9 Fut<Result> f = w ! doWork();
10 Result r = f.get;
11 return r;
12 }

power since any await statement on a guard which consists of a Boolean condition and a set {x1,… , xn}of futures can be implemented by a sequential composition:
1 await x1?; ...; await xn?; await b;
because a future is single-write shared data (note that the await on the Boolean condition should indeed
be executed last).

For technical convenience, we also abstract from the so-called Concurrent Object Groups (COG) as
provided by the ABS language. However, it is not difficult to generalize the main result to the language
including COG’s. More importantly, it should be noted that the syntax does not include the usual while
statement. A detailed discussion of the challenges of translating await statements occurring in the body
of a while statement will be presented in section 7.3.2. Note however that the while statement can be
modeled by tail recursion, using synchronous self calls.

To allow for this tail-recursion we assume for the ABS language to feature synchronous self calls of
the form m(ē).

7.3.1 ABS Operational Semantics
This section presents a different approach to the semantics of the ABS language using variable renaming
of local variables instead of local environments. This allows for a simple definition of a process as the
statement to be executed, which in turn allows for a transparent way of modeling cooperative scheduling.

We assume given an ABS program P where object configurations are of the form (�, S,Q):

75

• � assigns values to the instance variables (fields) of the class (we treat the keyword this as a
distinguished instance variable identifying the object) and all the fresh variables generated for the
local variables of the different method invocations. For any side-effect free expression e (including
Boolean conditions b) we denote by �(e) the value of e in �.

• S represents the current statement of the active process that is run by the actor denoted by �(this).
• Q is a (multi-)set of statements which represent suspended processes.
We define a global configuration G as a pair (F ,O) where F is a partial function which assigns to

each future identity f in its domain a value F (f) and O is a set of configurations (as defined above). By
F (f) =⟂ we denote that the future f has not been completed yet. For handling the completion of futures
by return statements, we introduce an implicit formal parameter dest which holds the value returned by
the method invocation. In the rules below we assume some mechanism for generating fresh variables.
Generating fresh variables is needed to distinguish between the dest variable of each method and also to
avoid name clashes when renaming local variables. To make the use of the dest variable explicit, we
replace every return statement in a method body with the auxiliary statement return e to dest.

The following rule describes the operation semantics of an assignment.

Assignment Rule

(F , {(�, x = e;S,Q)} ∪ O)→ (F , {(�[x = �(e)], S,Q)} ∪ O)

Here and in the sequel we denote by �[x = v] the update of � which assigns the value v to the variable x.

Asynchronous Invocation Rule The following rule describes the semantics of an asynchronous method
call.

(F , {(�, y = x!m(ē);S,Q), (�′, S′, Q′)} ∪ O)
→

(F [f =⟂], {(�[y = f], S,Q), (�′′, S′, Q′′)} ∪ O)

where:
• f is a new future which does not exist in the domain of F (and thus F [f =⟂] denotes the function
which results from extending the domain of F by assigning ⟂ to f)

• �(x) = �′(this).
• S′ is the current statement of the active process run by the target object x (the callee in x!m(ē))
• Q′′ extends Q′ with the body of method m where all the formal parameters (including the distin-

guished variable dest) are replaced by fresh (that is, not in use in (�′, S′, Q′)) variables.
• �′′ results from assigning the values of the actual parameters �(ē) to the corresponding fresh local

variables. Additionally �′′(dest′) = f where dest′ is the fresh local variable corresponding to the
destiny variable dest.

Synchronous Self Call Rule
(F , {(�, x = m(ē);S,Q)} ∪ O)→

(F [f =⟂], {(�′, S′; x = f.get;S,Q)} ∪ O)

where:

76

• f is a new future which does not exist in the domain of F (and thus F [f =⟂] denotes the function
which results from extending the domain of F by assigning ⟂ to f).

• f is the future that will hold the result of the asynchronous method invocation m.
• S′ is obtained by renaming the local variables in the body of method m (as above, including the
variable dest) by fresh variables and �′ assigns to these fresh variables the values of the actual
parameters �(ē). Additionally �′(dest′) = f where dest′ is the fresh local variable corresponding
to the destiny variable dest. This translation of the body replaces the return statement with an
auxiliary statement return e to dest. Freshness is defined as a variable not in use by any statement
in S′ and Q′ .

Note that we thus use simple inlining which works because we introduce fresh variables for the formal
parameters of methods. We use a future in order to get a uniform semantics for returning a value for
both synchronous calls and asynchronous calls. The get operation will always be enabled (because of the
assumption that any method body will end with a return statement), but it is used here instead of an await
because we want the process to proceed, as otherwise we would have a release point which breaks the
call stack.

In the case of a method which is declared void then the syntax would be return null to dest. By
means of this convention, every suspended statement is uniquely identified by its destiny variable,so that
we can model Q as a set..

Object Instantiation Rule

(F , {(�, x = new C(ē);S,Q)} ∪ O)→

(F , {(�[x = o], S,Q), (�′, S′, ∅)} ∪ O)

where:
• o is a fresh object identity (not appearing as value of a variable in the initial configuration).
• S′ is the constructor method body.
• �′(tℎis) = o and �′ assigns to the formal parameters of the constructor method the values �(ē).

Note that each object configuration assigns a new object identity to the instance variable tℎis. This
explains the usage of union in object configurations.

Conditional Statement Rule The conditional statement has the following two rules.
(F , {(�, if b then S1 else S2;S,Q)} ∪ O)→

(F , {(�, S1;S,Q)} ∪ O)

where �(b) = true.
(F , {(�, if b then S1 else S2;S,Q)} ∪ O)→

(F , {(�, S2;S,Q)} ∪ O)

where �(b) = false.

77

Return Rule

(F , {�, return e to dest′, Q)} ∪ O)→ (F [f = �(e)], {(�, �,Q)} ∪ O)

where f = �(dest′)

Get Rule
(F , {(�, x = y.get;S,Q)} ∪ O)→ (F , {(�[x = F (�(y))], S,Q)} ∪ O)

where F (�(y)) ≠⟂.

Await Rule
(F , {(�, await g;S,Q)} ∪ O)→ (F , {(�, �, {await g;S} ∪Q)} ∪ O)

where � represents the empty statement, denoting that the current executing statement has ended. This
rule "blindly" suspends the current statement without evaluating the guard. The evaluation of the guards
will be performed in the context of the scheduling rule below.

Scheduling Rule The following rules schedule enabled await statements of a Boolean and a future
variables respectively. For suspended statements that start with an await we have the following two rules.

(F , {(�, �, {await b;S} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

where �(b) = true
(F , {(�, �, {await y;S} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

where y is a future variable such that F (�(y)) ≠⟂.
For any other suspended statement that is in Q, e.g., that resulted from an asynchronous call, we have

the following rule:
(F , {(�, �, {S} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

7.3.2 ABS-SPAWN
In this section we introduce the ABS-SPAWN language which is obtained from the ABS language
discussed above by replacing the await statement with a statement spawn(g, S), the so-called spawn
statement, for spawning a new local process that executes the statement S. In ABS-SPAWN method
invocations are thus executed in a run-to-completion mode.

For the operational semantics of the ABS-SPAWN languagewe introduce the run-time syntax construct
(g → S) that represents a suspended statement (S) that is guarded by an enabling condition (g). We
thus make a distinction between the statement that spawns a process and resulting generated suspended
process. The guard in (g → S) is the enabling condition for scheduling the corresponding statement S for
execution. For its semantics we used the same notions for a global configuration and object configuration,
as introduced for the semantics of the ABS language, The semantics of the ABS-SPAWN language results
from the semantics of ABS by replacing the Await Rule with the rule Spawning Subtasks and changing
the Scheduling Rule, as described above.

Spawning Subtasks Spawning a sub-task simply consists of adding a corresponding statement with an
enabling condition to the set Q of suspended processes:

(F , {(�, spawn(g, S);S′, Q)} ∪ O)→ (F , {(�, S′, {(g → S)} ∪Q)} ∪ O)

78

Scheduling Rule The following rules describe the scheduling of an enabled suspended task. The first
two rules are for statement suspended by await.

(F , {(�, �, {(b→ S)} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

where �(b) = true.
(F , {(�, �, {(y→ S)} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

where y is a future variable and F (�(y)) ≠⟂.
The last rule is for statements that are suspended as a result of an asynchronous invocation and is the

same as in the ABS operational semantics:
(F , {(�, �, {S} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

Translating ABS into ABS-SPAWN We next introduce a formal translation from ABS programs into
ABS-SPAWN programs. This translation is applied to every class in the ABS program. For each class,
every method body is viewed as a sequential composition of the first instruction followed by its (sequential)
continuation and translated accordingly.

T (�) ∶= �
T (x = e; S) ∶= x = e; T (S)

T (await g; S) ∶= spawn(g, T (S))
T (if b {S1} else {S2};S) ∶= if b {T (S1; S)} else {T (S2; S)}

T (y = x!m(ē); S) ∶= y = x!m(ē); T (S)
T (y = m(ē); S) ∶= y = m(ē); T (S)

T (x = new C(ē);S) ∶= x = new C(ē); T (S)
T (x = y.get; S) ∶= x = y.get; T (S)
T (return e; S) ∶= return e; T (S)

Figure 7.3: Translation of ABS into ABS-SPAWN
The scheme is applied using a bottom-up approach starting at the level of statements using Figure 7.3.

The scheme is then lifted to the level of method bodies. Finally a translation of a class simply consists of
the translation of its method definitions.

In Figure 7.3 the empty statement is denoted by � (we assume here the syntactical equivalence
S; � ≡ S). The translation of an await construct with guard g followed by a (sequential) continuation
S results simply in a spawn statement with two parameters: the guard g and the task representing the
translation applied to the continuation (T (S)). A conditional statement is translated by “absorbing” the
sequential continuation that follows into the two branches of the statement. This general pattern also
would apply to, for example, the translation of the ABS case statement (or pattern matching statement)
where the continuation has to capture for each possible pattern (Pi) both the block to be executed on that
pattern branch (Si) as well as the rest of the control flow that follows the statement (S). The translation
thus captures the whole syntactic continuation that follows an await statement as the new task to be
spawned. Therefore the translation of the method containing the await statement will terminate directly
after having spawned the corresponding subtask, thus emulating an implicit suspension point.

79

The While Statement. We describe next the problem of translating a repetitive loop or the while
statement. Intuitively, to capture the syntactic continuation that follows an await statement occurring in
the body of the while statement, the translation could simply “unfold" the loop. However this would
result in a recursive translation. Instead, we can model while statements by means of a tail recursive
method. Note that such a method should capture in its formal parameters the execution context (that is,
all the local variables used in the loop body).

Listing 7.11: While Loop in ABS
1 { List<Fut<Int>> futuresList = Nil;
2
3 //ABS code that fills the futuresList with
4 //futures resulting from asynchronous calls
5
6 this.sum=0;
7 while(!emptyList(futuresList)){
8 Fut<Int> f = head(futuresList);
9 await f?;
10 Int x = f.get;
11 this.sum = this.sum + x;
12 futuresList = tail(futuresList);
13 }
14 if(this.sum > 0){
15 //do work
16 }
17 }

To describe this in more detail, we look at an example in Listing 7.11 that computes the sum of
numbers generated by asynchronous calls whose results are captured in a list of futures. In ABS, lists are
part of the functional layer and all functions applied on them (head, tail, emptyList) are side-effect
free. We note that in this particular program the variables x, f are local variables declared inside the
repetitive loop, futuresList is a local variable defined in the method’s body prior to the loop scope
and sum is a class member variable.

This repetitive loop can naturally be “unfolded" by defining a new method m with a formal parameter
of type List< Fut<Int», as we observe it is the only local variable declared prior to the loop. This is
shown in Listing 7.12. We can see that this way of “unfolding"" the loop works because the state of
execution (in this case, the continuously processed list) is passed to the next call as formal parameters.
Listing 7.13 then shows the translation of tail-recursive method modeling the while statement. Note that
the syntactic continuation of the await statement is captured in this translation by the recursive call.

Listing 7.13: Translation Tail Recursion
1 Unit m(List<Fut<Int>> futuresList){
2 if(!emptyList(futuresList)){
3 Fut<Int> f = head(futuresList);
4 spawn(f?, {
5 Int x = f.get;
6 this.sum = this.sum + x;
7 futuresList = tail(futuresList);
8 m(futuresList)
9 });
10 }
11 }

80

Listing 7.12: Re-written While Loop in ABS using tail recursion
1 //new method
2 Unit m(List<Fut<Int>> futuresList){
3 if(!emptyList(futuresList)){
4 Fut<Int> f = head(futuresList);
5 await f?;
6 Int x = f.get;
7 this.sum = this.sum + x;
8 futuresList = tail(futuresList);
9 m(futuresList);
10 }
11 }
12
13 { //original method scope
14 this.sum=0;
15 m(futuresList);
16 if(this.sum > 0){
17 //do work
18 }
19 }

To conclude the presentation of ABS-SPAWN, we apply the translation scheme to the WorkerPool
class written in ABS in Listing 3.6. The resulting code in ABS-SPAWN is illustrated in Listing 7.14.

Listing 7.14: The Worker Pool Class in ABS-SPAWN
1 class WorkerPool(){
2 Set<Worker> workers;
3
4 Result sendWork() {
5 spawn (!(emptySet(workers)) , {
6 Worker w = take(workers);
7 workers = remove(workers, w);
8 Fut<Result> f = w ! doWork();
9 spawn (f?, {
10 Result result = f.get;
11 return result;
12 }) ;
13 });
14 }
15
16 Unit finished(Worker w) {
17 workers = insertElement(workers, w);
18 }
19 }

Correctness of the ABS Translation In order to show the correctness of the above translation of
ABS programs into ABS-SPAWN programs, we use G to denote a global ABS configuration as well as

81

ABS-SPAWN configurations. We introduce the notation:
G →abs G′

to differentiate between transitions in pure ABS and transitions in ABS-SPAWN which are denoted as:
G → G′

Let T (G), for any global ABS configuration G, denote the result of applying the translation to all the
executing ABS statements in G and translating any suspended await statement await g;S in G by
g → T (S). We now can state the following theorem which states the correctness of the translation of
await statements in ABS, the proof of which proceeds by a straightforward case analysis of the first
instruction of an executing statement.
Theorem 1. For any configuration G of an ABS program we have:

G →abs G′ iff T (G)→ T (G′)

Proof. The proof proceeds by a case analysis of the transition rules. We treat the following main cases.
We only need consider those statements that are affected by the translation, because for statements like
the assignment and empty statement, the semantics of ABS coincides with that of ABS-SPAWN. We
only consider the main case of translating the await statement, because the translation of the conditional
statement is correct because of standard programming equivalences.

Figure 7.4: Execution of an Await Statement
Σ[(�, await g; S,Q)] Σ[(�, �, {await g; S} ⊎ Q)]

T (Σ)[(�, spawn(g; T (S)), T (Q))] T (Σ)[(�, {g → T (S)} ⊎ T (Q))]

T
ABS

ABS-SPAWN

T

The proof is divided into two parts. The first part is presented by the diagram in Figure 7.4 and treats
the translation of the await statement that appears as an instruction in a context Σ, that is, Σ[(�, S,Q)]
describes a global configuration (F ,O), with (�, S,Q) ∈ O. The upper transition corresponds to
the application of the Await Rule, the result of which, namely that the process await g; S is added
to the suspended processes Q (of the executing active object), is denoted by the corresponding global
configurationΣ[(�, �, {await g; S}⊎Q)]. The lower transition results from the definition of the translation
scheme to global configurations, and a corresponding application of the Spawning Tasks rule in ABS-
SPAWN.

Figure 7.5: Scheduling a Suspended Statement
Σ[(�, �, {await g; S} ⊎ Q)] Σ[(�, S,Q)]

T (Σ)[(�, �, {g → T (S)} ⊎ T (Q))] T (Σ)[(�, T (S), T (Q))]

T
ABS

ABS-SPAWN

T

82

Conversely, the second part is presented by the diagram in Figure 7.5 and shows the correctness of
translating the await statement as part of a suspended process which conforms to the semantics of the
Scheduling Rules in ABS and ABS-SPAWN, respectively.

7.4 The GAC Language
It is worthwhile to note that by the above translation scheme we can actually embed ABS in a language
without any await statements (that allow for cooperative scheduling) by encoding spawn(g, S) itself as
an asynchronous self call of the form this!m(), where m() is an unique method name with defining body
g → S.

In Figure 7.6 we introduce so-called guarded command statements (following [Dij78]) as statements
for describing the method bodies in ABS.

S ∶∶= � empty statement
∣ x = e basic assignment
∣ y = x!m(ē) asynchronous method call
∣ y = m(ē) synchronous method call
∣ x = new C(ē) object creation
∣ x = y.get get statement
∣ (∗)□n

i=1 gi → {Si} guarded command
∣ case e ̄{e ⇒ S} case statement
∣ S;S sequential composition
∣ return e return statement
Figure 7.6: ABS guarded command statements.

The semantics of the statement □n
i=1 gi → Si consists of a non-deterministic selection of one of the

statements Si for which the associated guard gi is enabled. It blocks the execution of the active object if
none of the guards are enabled. A guard itself in the GAC language consists of a Boolean condition and a
set of futures. Such a guard is enabled if the Boolean condition holds and all its futures are completed
(that is, for all of them the return value has been produced). Its iterated version (indicated by the asterisk)
consists of repeatedly executing the marked guarded choice as long as one of its guards is enabled. It
terminates as soon as none of the guards is enabled. Formally, the semantics of the guarded command
statements is described by the following rules (the semantics of the other statements are described as in
the ABS semantics).

Guarded Choice Rule

(F , {(�,□n
i=1 gi → {Si};S,Q)} ∪ O)→ (F , {(�, Sj ;S,Q)} ∪ O)

provided gj is enabled in � and F .
For its iterated version we have the following two transitions.

Iterated guarded Choice Rule

(F , {(�, ∗ □n
i=1 gi → {Si};S,Q)} ∪ O)→

(F , {(�, Sj ; ∗ □n
i=1 gi → {Si};S,Q)} ∪ O)

83

provided gj is enabled in �.
(F , {(�, ∗ □n

i=1 gi → {Si};S,Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

provided none of the gj is enabled in � and F .
Further, we have the following scheduling rules.

Scheduling Rules

(F , {(�, �, {□n
i=1 gi → {Si};S} ∪Q)} ∪ O)→ (F , {(�, Sj ;S,Q)} ∪ O)

provided gj is enabled in � and F .
(F , {(�, �, {∗ □n

i=1 gi → {Si};S} ∪Q)} ∪ O)→

(F , {(�, Sj ; ∗ □n
i=1 gi → {Si};S,Q)} ∪ O)

provided gj is enabled in � and F .
The resulting GAC language thus follows a strict run to completion mode of execution of the methods

by active objects, like the Rebeca language)[Sir07]). Differently from the Rebeca language, it features
guarded command statements which allow to associate an enabling condition with a suspended process.
Note that such a suspension mechanism avoids modeling a suspended process g → S by a recursive
method definition

m(){if g {S} else {this!m()}}

which involves busy waiting (and which assumes testing a future as a Boolean condition).
As an overall conclusion we illustrate in Figure 7.15 the translation of the WorkerPool into GAC.

Note the need to wrap the statements of the guarded commands into separate methods. Thus these methods
can be called asynchronously and stored as suspended messages into the queue of the WorkerPool until
their guards are enabled. As such, execution of other enabled statements can continue without blocking
the actor.

84

Listing 7.15: The Worker Pool Class in GAC
1 class WorkerPool(){
2 Set<Worker> workers;
3
4 Result sendWork() {
5 ! emptySet(workers) → this ! m1(workers);
6 }
7
8 Result m1(Set<Worker> workers){
9 Worker w = take(workers);
10 workers = remove(workers, w);
11 Fut<Result> f = w ! doWork();
12 f → this ! m2(f);
13 }
14
15 Result m2(Fut<Result> f){
16 Result result = f.get;
17 return result;
18 }
19
20 Unit finished(Worker w) {
21 workers = insertElement(workers, w);
22 }
23 }

85

