

Cover Page

The handle http://hdl.handle.net/1887/97598 holds various files of this Leiden University
dissertation.

Author: Serbânescu, V.
Title: Software development by abstract behavioural specification
Issue Date: 2020-06-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/97598
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

Asynchronous Programming in the
Java Virtual Machine (JVM)

The Java language is one of the mainstream object oriented programming languages that supports a
programming to interfaces discipline [Lea00]. It has evolved into a platform to design and implement
applications in several domains of both research and industry [VLFGL01, PS12, NAB+11], along with
supporting its community with new language constructs and features. With applications reaching exascale
dimensions in terms of data volumes and requiring a lot of computing power, focus has increased towards
the development of numerous libraries and frameworks with an attempt to provide distribution and
concurrency at the level of Java language [SPCA14, SPCA15]. Java is an object-oriented language, that
is based on high-level concepts of interfaces and classes. These classes contain fields and methods to
encapsulate state and behavior. At runtime, dynamically generated class instances (objects) are created
and interact with each other via method calls. The general behavior of these calls is synchronous, as a
caller object will block its execution until it receives a result from the execution of the method’s block
inside the callee object. A Java program’s entry point is the main method which creates a single thread
with its own stack and context. The basic sequential execution model generates a stack of method calls
between objects that run on a single thread.

The Java Virtual Machine(JVM) allows an application to have multiple user and daemon threads
of execution running concurrently. All threads have an assigned priority in the JVM that orders the
scheduling of threads. When it is created initially, a thread receives the same priority as its parent, so in
general application-level threads have the same priority. A thread may also be marked as a daemon before
it is started, allowing the JVM to stop when only daemon threads are left running in the application. This
daemon property is also inherited from the parent thread, if not explicitly set. When a JVM is started, a
single user thread is created and its execution begins with the block in the main method defined in a class.
From that point the JVM continues to create, start, suspend and stop threads by following the control flow
of the program. The JVM is then stopped either when the System.exit() method is explicitly called
by the user or all user threads have completed execution, either normally or exceptionally.

Multi-threaded execution is an essential feature of the Java platform. Parallel execution takes place by
spawning a thread that runs code asynchronously on the same JVM. The basic approach of asynchronous
execution in Java is to extend the Thread class and specify the behavior by overriding its run method.
This method’s body is empty by default and will run on a separate thread. Listing 2.1 contains an example
of creating a new Thread object. Once the thread is instantiated, the user needs to explicitly call the
start method to execute the body of run in parallel.

In Java, the most straightforward way of communication between threads is via the state of shared
variables in the program memory, as there is no direct manner in which a thread can invoke an instruction

8

Listing 2.1: Explicit Thread Creation
1 class MyThread extends Thread{
2
3 @Override
4 public void run() {
5 //thread control flow
6 }
7 }
8
9 //main block or another class
10 MyThread t = new MyThread();
11 t.start();

on another thread. All objects that are instantiated in a program may be accessed and modified by the
running threads which hold a reference to them and it is up to the programmer to ensure that concurrent
access is synchronized. Accesses and modifications to objects by more than one thread at a time will lead
to corrupting data and race conditions.

In Java, class fields can be defined using the static keyword making their scope global. Static fields
are loaded and instantiated only once when the class is loaded without requiring an object instance of that
class. As such they may be accessed from anywhere in the program by existing threads.

When a new thread is spawned it has a separate call stack and context of execution. The call stack is
used to save the frames generated by sequences of nested synchronous method calls between objects. The
stack size in general limits the depth of these sequences to the point where a StackOverFlowError is
generated when there is not enough space to allocate a new frame. The size of each stack depends on the
JVM and Operating System(OS) and can also be specified by the user through the program’s environment
variables and virtual machine (VM) arguments. A typical default value for 64bit Operating Systems is
1MB, and can easily reach as large as 2MB as object references now require 8 bytes of space compared
to the 4 bytes required on 32bit systems. With a 2MB stack size, a program that runs 500 threads can
allocate 1GB of main memory for the threads alone, even though just a small percentage of those threads
would require the full 2MB stack to execute its control flow. This makes the basic mechanism for a block
of code to be run asynchronously very expensive memory-wise. The problem further increases when an
application requires multiple context switches between several threads keeping the suspended threads
living in the system. As this number becomes very large, the thread explosion affects the main memory
thus the application’s performance.

The first part of this chapters covers the concurrency utilities extending the above basic multi-threaded
model to facilitate asynchronous programming and communication in Java. The second part of the
chapter presents the motivation for extending the research towards the Scala language by illustrating
its lightweight and easy-to-use syntax for concurrent programming through two abstractions: actors
and futures. The last part of this chapter covers related work on introducing coroutines in JVM based
languages and the challenges encountered when to ensure correct functionality together with actors and
futures.

9

2.1 Java Concurrency Utilities
Java, by design, does not have a straightforward way of specifying asynchronous method calls in pro-
gramming code. As mentioned before a method call implicitly blocks the caller, and unless specified
through the basic thread model (see Listing 2.1), the flow of a program is sequential and on a single thread.
However, Java does provide interfaces and classes together with constructs that offer more flexible and
intuitive ways of coding asynchronous communication, spawning and managing threads. There are also
many Java packages that offer the programmer utilities for specifying synchronization points between
threads based on state or method return values. This section summarizes the main classes that facilitate
thread management and synchronization from the programmer’s perspective.

Spawning Threads Java offers two interfaces that define tasks that are to be run asynchronously and
allow the user to specify the piece of code to be run on a separate thread. These are the Runnable and
Callable interfaces that offer the run and call methods respectively, that contain the control flow to be
executed in parallel. The difference between the two interfaces is that objects that implement Callable
execute methods that return a value, while Runnable objects have methods that do not a return value.
Listing 2.2 shows how an anonymous class that extends the Runnable interface can be passed as a
parameter to a Thread constructor. This offers a much more compact way of specifying a block of code
to run asynchronously, but still requires an explicit start of the thread.

Listing 2.2: Thread Creation using Anonymous Classes
1 Thread t = new Thread(new Runnable() {
2 @Override
3 public void run() {
4 // thread control flow
5 }
6 });
7
8 t.start();

An anonymous class allows instantiation of an object that implements an interface (in this case
Runnable) without specifying a class name and the behavior of the overridden method (in this case run)
will only apply to this object. As such, the user bypasses the need to explicitly create a separate class
that either implements Runnable or extends Thread, being especially useful when needing to create
small asynchronous tasks. The behavior of the threads is now defined as part of the arguments passed
to the new construct rather than in a separate class prior to running the task in parallel. This provides
programatically more flexibility, the possible parallel behaviors do not need to be defined separately for
small functions. Starting with Java 8, instances of Runnable and Callable can also be created using
lambda expressions [Lam]. An example of creating a Runnable using a lambda expression is given in
Listing 2.3. The code in this listing allows the user to express an instance of a class (like MyThread)
containing a single method even more compactly. This instance can then be passed as well to a Thread
constructor or other concurrency utilities to be discussed further in this section.

Listing 2.3: Declaring a Runnable using a lambda expression
1 Runnable task = ()−>{
2 //thread control flow
3 }

Managing Threads Already since Java version 5, there has been support for concurrent programming
through its java.util.concurrent package and throughout its development the Java platform has also

10

introduced new high-level concurrency Application Programming Interfaces (APIs) to facilitate user
experience when developing parallel applications. This package introduces data structures with high-level
wrappers to allow creation and management of thread pools to facilitate creating and starting threads.
Thread pools allow dynamic control of the number of threads created in the application as well as control
over the tasks that are accepted. They also expose methods to specify ordering inside thread pool queues
and how tasks are scheduled, suspended and completed. The basic interface that supports this is the
Executor interface which runs submitted tasks. This decouples task submission from the mechanics of
how the submitted task will be scheduled, assigned a thread object and run. An executor simplifies the
explicit instantiation and start of a new thread in Listing 2.2 using a single call to the execute method as
shown in Listing2.4 and since Java 8 this can be simplified further by lambda expressions.

Listing 2.4: Executor Usage
1 Executor e = //initialization of Executor and its properties
2 e.execute(new Runnable() {
3
4 @Override
5 public void run() {
6 // thread control flow
7 }
8 });
9
10 //using a lambda expression
11 e.execute(()−>{
12 //thread control flow
13 });

The execute method has no default implementation and needs to be overridden in order to specify
how to run the tasks submitted to it. The method allows the programmer to define certain scheduling
policies and approaches. For example, in Listing 2.5 the Executor is extended to call the run method
synchronously inside the body of execute. Therefore all tasks submitted to such an executor by one
thread will be run sequentially.

Listing 2.5: Synchronous Executor Implementation
1 class SynchronousExecutor implements Executor {
2
3 public void execute(Runnable r) {
4 r.run();
5 }
6 }
7

Another basic approach of extending an executor is such that each task is run in parallel on a separate
Thread instance as in Listing 2.6. We will see the importance of these two approaches throughout the
rest of the thesis.

Listing 2.6: Asynchronous Executor Implementation
1 class AsynchronousExecutor implements Executor {
2
3 public void execute(Runnable r) {
4 new Thread(r).start();
5 }
6 }

11

7
Java offers several default implementations of the Executor interface that have predefined execute

methods. The Executors class provides factory methods to obtain instances of these implementations.
This class is different Executor class, as it only provides static factory and utility methods to create
predefined configurations for various types of executors, without any specific methods that control
thread creation, scheduling and execution. One such implementation is the thread pool which allows the
programmer to control the number of threads in the system as well as dynamically adjust them during
program execution. In this thesis there are three default implementations that were used throughout the
development of the solutions presented in the next chapters:

• Executors.newCachedThreadPool()

• Executors.newFixedThreadPool(int)

• Executors.newForkJoinPool()

The first one creates a thread pool that instantiates new threads when they are required, but will
continue to reuse available idle threads that have been constructed previously. The main advantage of this
type of thread pool is that it improves the performance of programs that invoke a lot of small asynchronous
tasks. One of the case studies researched in this thesis is specifically tailored to test performance of such
a program. If a sequence of short tasks are submitted via the execute method, the first few tasks will be
assigned newly created threads, while subsequent tasks reuse the same threads once they become idle.
The idle threads also have a timeout within which they can be reused by subsequent tasks, otherwise they
are terminated and garbage collected. Thus, the thread pool will not consume any resources if it is idle
for a long time.

The second construct creates a thread pool with a fixed number of threads passed as a parameter and
reuses them for execution. The integer number passed as a parameter represents the maximum number of
threads that may be active in the application. All subsequent tasks that are submitted will be placed in a
shared unbounded queue until a thread is available. A new thread is created in the pool only if an existing
thread is terminated (either successfully or not) and tasks are available for execution in the queue. The
main advantage of this thread pool is that it will not starve the system out of resources regardless of how
many tasks the program attempts to execute in parallel.

The third construct offers a thread pool which employs a work stealing strategy. The existing threads
in the pool have a proactive behaviour attempting to execute existing tasks in the queue if they are idle.
This type of pool is especially powerful when executing tasks which in turn spawn subtasks, as the
work-stealing mechanism bypasses the process of scheduling tasks and assigning them a thread. Thus it
is also useful for processing tasks that perform small computations.

The return type of these three factory methods (and the type of the aforementioned thread pools) is
an ExecutorService which extends Executor. This is a more versatile interface that provides more
methods to execute different types of tasks such as instances of Runnable, Callable or a collection of
tasks. This is done through the overloaded submitmethod that can take either one of the three arguments
and has a similar functionality to the execute method of the parent interface. This allows for more
fine-grained control of asynchronous tasks. An example of creating a thread pool and then submitting a
task instantiated using lambda expressions is given in Listing 2.7. The task does not necessarily need to
be declared separately as in Listing 2.3, especially if its a small computation that is only required once.

Listing 2.7: Using a predefined thread pool to run a task asynchrnously
1 ExecutorService pool = Executors.newCachedThreadPool();
2 pool.submit(() −> {
3 return 10;
4 });

12

The Executor Service also offers methods to manage termination of the thread pool. An unused
Executor Service should be shut down to allow reclamation of its resources. The user can safely shut it
down, which will cause it to reject new tasks This can be done using two different methods.

• The shutdown() method will continue to run previously submitted tasks to execute before
terminating.

• The shutdownNow() method prevents queued tasks from starting and attempts to stop currently
executing tasks.

Synchronizing on Return Values. Java provides a large collection of interfaces and classes that support
synchronization of tasks running in parallel including mutexes, semaphores and barriers. Our focus,
however, is on the Future interface which is a general concurrency abstraction, that encapsulates a
method’s result to be returned upon completion of a method call that is associated with that future. The
interface provides methods to check if the computation is complete, to wait for its completion, and to
retrieve the result of the computation. A simple usage of a future is like the one shown in Listing2.8.
Here a lambda expression is used to create a Callable instance since the method returns a value. The
return type of submit is a Future which is a dynamically generated unique reference to the task to
be executed asynchronously. The current thread can then synchronize and obtain the result by calling
the get() method. This is a very simple and intuitive synchronization mechanism, yet it has some
important implications. The current thread will be blocked until the future completes. This means that
the thread will remain live in the main memory occupying the space that was allocated for its context.

Listing 2.8: Using a future to synchronize on the result
1 ExecutorService pool = Executors.newCachedThreadPool();
2 Future<Double> f = pool.submit(()−> {
3 Double x = ... //calculate x
4 return x;
5 });
6 // perform other computations in parallel before using the result
7 Double result = f.get();
8 //subsequent code that will only execute when the thread is released

The result can only be retrieved when the computation has completed, thus releasing the calling thread,
loading its context and executing subsequent code. Cancellation of a task represented by a future may be
performed by the cancel() method. The get() can also be used to determine if the task completed
normally, was cancelled or has thrown an Exception. Once execution has finished, the computation
cannot be cancelled. A particular extension of the Future interface is the CompletableFuture. This
implementation provides methods for the developer to create, process and complete a future manually.
We want to observe three important methods:

• complete(T value) - This method set the future’s result to the value passed as a parameter,
unless the future has already completed.

• completeExceptionally(Throwable) - If not already completed, causes invocations of get()
and related methods to throw the given exception.

• CompletableFuture.completedFuture(T value) - This static factory method creates object
instances that behave like futures that have completes with the result value.

13

2.2 Scala Abstractions for Concurrent Programming
Scala is an object-oriented programming language that also has support for functional programming.
It is intended to compile to Java bytecode such that it can provide language interoperability with Java
and allow the usage and integration of libraries designed in either language. With respect to concurrent
programming in Scala, this section covers the inner workings of futures and their intended usage, as well
as two libraries that support the actor programming model.

Scala Futures In Scala, the package called scala.concurrent contains the trait Future to provide
a way to reason about performing many operations in parallel without blocking until a synchronization
point. Traits in Scala are similar to Java interfaces, except they may contain methods which have a default
implementation. Unlike Java futures, the entire computation code that is to be done asynchronously can
be declared in a Future trait like in Listing 2.9.

Listing 2.9: Declaration of a Future in Scala
1 val f: Future[Double] = future {
2 val x = ...
3 //calculate value of x
4 return x;
5 }

To bypass the explicit creation of threads and overwriting of the run() method, Scala futures
require an Execution Context. Similar to the Java Executor, it is responsible for thread creation,
execution and termination. The package also provides a global static thread pool which is a default
ExecutionContext implementation that is backed by a ForkJoinPool object suitable for execution of
a large number of small asynchronous tasks. To reduce performance penalties caused by a large number of
threads, the ForkJoinPool object sets a default limit to the number of threads it contains, known as level,
to the number of available processors (value yielded by the Runtime.availableProcessors function).
This parallelism level can be overridden by setting one (or more) of the following VM attributes:

• scala.concurrent.context.minThreads

• scala.concurrent.context.numThreads

• scala.concurrent.context.maxThreads

The parallelism level will be set to numThreads as long as it remains within the interval
[minThreads; maxThreads]. An ExecutionContext can also be created from a Java Executor
using ExecutionContext.fromExecutor method. Optionally, developers are allowed to extend the
ExecutionContext trait to customize their own execution contexts.

In Scala futures make use of callbacks by default, to minimize as much as possible the blocking effect
of get() operations and therefore the number of blocked threads in the system. Scala provides a general
callback method onComplete to execute upon completion of a future. The body of the callback has to
pattern match on the state of the completed future as shown in Listing 2.10. This state is of abstract type
Try, which represents a computation whose final result may be a completed value or an exception and
therefore can be one of two case classes: Success or Failure which contain as an argument the result
or exception respectively.

Listing 2.10: Callback definition in Scala
1 f onComplete {
2 case Success(result)=>process(result);
3 case Failure(error)=> println("Computation␣yielded␣error" + error);
4 }

14

Scala futures also provide more specific methods to define the control sequence to be executed once
a future completes, as well as a recovery block if the asynchronous task completed with an exception.
These two methods are onSuccess (Listing 2.11) and onFailure (Listing 2.12) and avoid the need to
pattern match on the state of the future.

Listing 2.11: Callback to execute when the future completes sucessfully
1 f onSuccess {
2 case result => {
3 process(result)
4 }
5 }

Listing 2.12: Callback to execute when the future yields an error
1 f onFailure {
2 case error => {
3 println("Computation␣yielded␣error" + error);
4 }
5 }

This is the mechanism specific to Scala through which a result can be used or an error can be handled
from a completed future. It is a much more efficient way compared to the approach where the thread
that is using the future result has to block using the get() method until it is available. It is important
to note that callback function is executed on a separate thread and as such needs to explicitly handle
synchronization issues if any of the data structures and operations in the function are not thread safe.

Scala Actors The scala.actors package offers an API for concurrent programming with actors. The
package provides both asynchronous and synchronous message transmission (the latter are implemented
by exchanging several asynchronous messages). Moreover, actors may communicate using futures where
requests are handled asynchronously, but return a representation (the future) that allows to await the reply.
The typical approach in Scala is that of messages to have any type and thus are only checked at run-time
whether the receiver can handle them. All actors contain a mailbox which stores messages until they are
processed.

Scala provides a trait hierarchy starting with the basic implementation of actors that can send and
receive messages, to supporting more complex capabilities such as obtaining the reference of the sender,
replying to a message or grouping actors for monitoring and correct terminations purposes. The API
also provides control structures and traits for managing actors in terms of scheduling, error handling and
remote communication.

Actor-based programs use the Actor interface to define classes like in Listing 2.13. The example
shows two actors running a ping-pong benchmark. This is a simple example where two actors (Ping
and Pong) exchange a fixed number (count) of empty requests (pings) and replies (pongs) and then the
program stops.

Listing 2.13: Creating a Scala Actor
1 class PingActor(count: int, pong: Actor) extends Actor {
2
3 }
4
5 class PongActor extends Actor {
6
7 }

15

To define the message exchange between the two actors, one first needs to define the objects that
represent the messages like in Listing 2.14. These are defined as case objects to use Scala pattern matching
when defining the behavior for receiving each message.

Listing 2.14: Messages as Case Objects
1 case object PingMessage
2 case object PongMessage
3 case object StopMessage

The actual running behavior is then defined by overriding the act method and using receive to
define the control flow for each received message. This is shown in Listing 2.15 for the PingActor class.

Listing 2.15: Defining Scala Actor Behavior
1 def act() {
2 var pingsLeft = count − 1
3 pong ! PingMessage
4
5 while (true) {
6 receive {
7 case PongMessage =>
8
9 if (pingsLeft > 0) {
10 pong ! PingMessage
11 pingsLeft −= 1
12 } else {
13 pong ! StopMessage
14 exit()
15 }
16 }
17 }
18 }

The Actor model in Scala [HO09] does provide a suspension mechanism, but its use is not recom-
mended because it actually blocks the whole thread and causes degradation of performance. It is possible
to register a continuation piece of code to run upon completion of a future, but that will run in a separate
thread which breaks the actor semantics and may cause race conditions inside the actor.

Akka Actor Library Akka actors [Hal12, Gup12] are similar to Scala actors and can be used in both
Java and Scala, but are more intuitive and less cumbersome to use in the latter. To define the behavior
of an actor in Akka, one needs to extend the Actor trait and override the receive method. A simple
example of defining an Akka Actor is shown in Listing 2.16. Java libraries for programming actors like
Akka [SM01] mainly provide pure asynchronous message passing which does not support the use of
application programming interfaces (API) because, a message is only typed as a Java Object, so there is
no static typing of messages, nor are they part of the actor interface.

An important challenge in both Scala and Akka actors is that messages can only be checked at runtime
(they need to be pattern matched in order for the actor to execute a particular control flow). This means
that the programmer needs to define for all the possible messages a specific type(see Listing 2.14). Then
an actor must pattern match on a given message and execute the matching block of code. This block is
often a call to an internal method defined in the actor class. These libraries however do not provide a
way to bypass this pattern flow that executes at runtime in favor of a straightforward call to the internal
method that is meant to execute asynchronously. The Akka Typed module attempts to solve this challenge

16

Listing 2.16: Akka Actor
1 import akka.actor.Actor
2
3 class MyActor extends Actor {
4
5 def receive = {
6 case "Hello" => println("HelloWorld")
7 case _ => println("received␣unknown␣message")
8 }
9 }

by defining messages as case classes like in Listing 2.17. This provides a close resemblance to methods
with arguments, but still requires defining an internal block or method corresponding to the flow to be
executed asynchronously.

Listing 2.17: Akka Typed Example
1 object PingActor {
2 final case class PingMessage(replyTo: ActorRef[PongMessage])
3 final case class PongMessage(from: ActorRef[PingMesssage])
4 }

2.3 Coroutine Support
Coroutines are programming abstractions of state and control flow in a program that allow for multiple
entry points for suspending and resuming execution at certain locations. It is a very powerful concept
especially in object-oriented programming for organizing control flow of a large number of small tasks.
The current existing support for coroutines in JVM can be categorized by two main approaches: one
which operates on source code level and one which operates on the bytecode level.

Main examples of bytecode manipulation are Apache Commons Javaflow [Com] and Kilim [SM08].
Even though bytecode manipulation allows for more flexibility, it has several disadvantages regarding
maintainability and portability. Further, the application of debugging techniques becomes more involved
and source-code based static analysis tools become unusable.

A straightforward way to support coroutines at source-code level in Java (see [Sch11]) is by allocating
a thread to every “routine” that can be suspended, since a thread naturally contains already all the
information about the call stack and local variables. However that does not scale because threads are well
known to be heavyweight in Java. In Scala, macros are also a viable approach to implementing coroutines.
Macros are an experimental feature in Scala that allow a programmer to write code at the level of abstract
syntax trees and thus to instruct the compiler to generate code differently.

Scala-coroutines project [Sto] uses this feature to implement low-level coroutine support for Scala with
explicit suspension and resume points which however in general are prone to errors. Kotlin [Jan17]supports
coroutines natively but actors are not first class citizens. Kotlin actors are implemented as coroutines,
which by definition ensures a single thread of execution within the actor. However one cannot process the
messages inside actors in a coroutine manner. In other words, it is not possible to process other messages
if one message is suspended.

17

2.4 Summary
Asynchronous calls can be emulated in Java using the basic thread programming pattern or constructs that
simplify this pattern. However there is not a straightforward way to issue these calls similar to synchronous
calls. A big research challenge in this thesis is to have a mechanism for issuing a call to method (using
its signature), executing it on a separate thread and capturing its result in a future. The goal is to have a
method call similar to the model of the method call issued in the researched modelling language, ABS.
Emulation of the asynchronous call is supported, but it involves declaration of a few classes and instances,
possible duplicate code if more than one call is required, or unwanted code that may result from misuse
of the generic classes. There is not standalone construct for a method call that type-checks the call to be
of the correct signature. In Java, Scala or Akka, the notion of an asynchronous method call is not present
as an integrated part of the language. Bridging this gap between the asynchronous call model and its
current complex syntax in JVM-based languages and libraries is a significant part of this thesis.

18

