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Chapter 1

Introduction

1.1 Research Context
Software development or software engineering is one of, if not the most sought after skill for anything
that is technology based, whether it’s business, industry, research or even when this skill is learned simply
as a hobby. The importance of writing fast, clean code that is easy to test, debug and works correctly is
essential for the development and maintenance of any prototype, product and system. It is so significant
that research into the development process and planning has become as important as the coding process
itself. Several product development methodologies [PR94] exist that address different issues and achieve
different goals.

Software modeling and modeling languages have the purpose of facilitating product development by
designing correct and reliable applications. By abstracting from the implementation details, program
complexity and inner workings of libraries, these approaches allow for an easier use of formal analysis
techniques and proofs to support the reliability and robustness of a product when it is designed. However
there is still a gap that exists between modeling languages and programming languages with the process of
software development often going though two separate parts with respect to modeling and implementation.
The Unifying Model Language [RJB04] is a general modeling language that provides a standard way of
visualization of an application or software model. It provides a visual representation of the layout of a
program through standard diagrams that represent the the program’s structure in terms of classes, objects,
methods and functions depending on the code’s programming paradigm. This provides a connection
between the software model and the program that implements it, however it is still treated as a separate
process in relation to the actual coding effort required.

Software Development A product or system has several quality criteria that are defined that range from
expected correct behavior to specific performance requirements. Specifically an application development
process starts from a set of requirements with the end product expected to meet those requirements. The
process itself involves several well-known methodologies that vary in terms of flexibility and structure.

Early engineering strategies focused on very structured planning based on thewaterfall model [PWB09].
This followed a very linear approach that started with applications requirements followed by architectural
design, implementation, verification and finally product maintenance. These models are very well de-
scribed, intuitive and easy to follow by all those involved in the development process. However they have
little flexibility and changes to the application after a phase is finished can be very expensive and difficult
to make.

Most recent methodologies now focus on more agile approaches [BBVB+01, Mar02] that take into
account a lot of feedback and flexibility from both a client and a developer perspective. Products are
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developed much faster in cycles knows as sprints [Sch97]. At the end of a sprint, a finalized version of
the product or prototype is tested by a set of clients that may change requirements, detect errors or bugs
and provide feedback to set up a new sprint. After several sprints, a certain level of system stability is
reached and the product is released. These methodologies focus heavily on fast coding of a feature or
improvement and quickly testing it until it has the desired functionality. The programs are in general very
difficult and complex to formally analyze especially if they involve a certain degree of parallelism.

In general, software methodologies do not include any formal verification and analysis concepts in
software development process. The research conducted in this thesis is a step towards integration of
formal methods at programming level. It centers around a scientifically mature modeling language called
Abstract Behavioural Specification (ABS) [JHS+12] which was developed in the European Project “Highly
Adaptable and Trustworthy Software using Formal Models(HATS)" [hat]. This project and the ABS
language were continued into the project “Engineering Virtualized Services(ENVISAGE) [AdBH+13] of
which this thesis research was part of. The modeling language provides a high-level integration between
formal methods and some of the most important concepts of parallel and concurrent programming:
asynchronous communication, actors and futures.

Concurrency Models Software development is very closely related to the hardware it runs on. Hard-
ware evolves at a much faster rate with processing power, memory size and, most importantly, the number
of cores per chip increasing rapidly and coming at a very affordable price. Most popular mobile devices
and laptops now come with eight cores and hyper-threading capabilities allowing, in theory at least, a
high-degree of parallelism. Added to this is the transition of computing capability from a purchasable
device to a utility to be used on demand through cloud services.

On the other hand developing parallel software is still constrained by Amdahl’s Law [HM08], as
an application can never be faster that its sequential portion. As such, a lot of care needs to be taken
with parts of an application that deal with data aggregation [SPCA14], joining multiple threads or
performing reduction operations as these must not make up the significant computation part of the
program. In high performance parallel applications, threads are the entities form the basis of concurrency.
Every programming language proposes several thread-abstractions with the purpose of making parallel
programming easier for the developer with respect to data concurrency, error handling and debugging.
Programming languages offer constructs for thread-management that, depending on the language, give
the programmer a certain level of control on the parallelism introduced and the performance and speed-up
that they can expect. In Java, the constructs are high-level wrappers that give the developer an intuitive
means of configuring the creation, management and scheduling of threads. However it is the role of
Java Virtual Machine(JVM) to handle thread allocation, context switches and reloads on the system.
It is the JVM that decides how these virtual threads are mapped on the native threads of the system.
On the other hand languages like C++ offer, through several libraries, the possibility to directly map
virtual threads to native threads offering a clear parallelism degree, but more low-level and difficult
programming constructs [But97]. In general the higher the level of abstraction for threads, the more
memory the representation occupies as a price to a more seamless programming experience.

The Actor-based model of computation [Agh85, KSA09] is particularly tailored for writing concurrent
and distributed systems. It abstracts from explicit locking and thread management, making it easier to
write correct concurrent and parallel systems. Actors represent processes that execute in parallel and
interact via asynchronous communication through entities called messages. In contrast to the object
oriented model underlying Java, the Actor model is an inherently concurrent execution model based on
asynchronous message passing. Moreover the Actor based model includes many important features such as
encapsulation, scheduling policies, location transparency and locality of references which makes the actor
model a suitable programming model for distributed, parallel and concurrent programming [LDMA09].
The actor extensions that have been implemented in terms of the multi-threaded model of execution
provided by JVM have a general approach of creating an application-level context in which all actors are
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initialized. The messages passed in between actors have a general super-type which the actors have to
cast, pattern-match or otherwise process at runtime in order to execute a particular control sequence. The
difficulty of this event-driven passing of data is observed when bugs appear in exchanged messages as
handling errors can only be performed at runtime making testing of actor models quite cumbersome.

The ABS language proposes a new actor programming model based on asynchronous method in-
vocation. Actors can only interact with each other via calls to methods exposed by their implemented
interfaces. As such, this approach lifts the detection of possible bugs to compile-time. The equivalent of
a wrong message sent to an actor is detected by ABS’s semantic analyzer as a method call with the wrong
argument types, wrong number of arguments or a method that is not exposed by the actor’s interface at all.
This "programming to interfaces" discipline brings ABS closer to mainstream programming languages
with respect to syntax. ABS is however a modeling language with very powerful formal verification tools
that have been built around it that allow resource-analysis, deadlock detection and real-time simulation.
Its concurrent model is only at a modeling level and still requires a programming language to execute in a
real computing environment.

Programming Paradigms Software development today has a very wide spectrum of applications and
thus software is written using a variety of programming paradigms andmainstream languages. Specifically,
programming languages offer different paradigms that affect both the way the code is written but also how
fast it runs. For simple applications, the most straightforward approach is writing code in a sequential
single-threaded manner. The coding approach can be typically an object-oriented programming pattern
(OOP) with mainstream languages like Java, C++ or Python. These languages are generally based on
encapsulating behavior and state into objects make up parts of the application and interact with each other
to perform the correct functionality of the application. In general this approach is very well structured and
intuitive, making it very easy to learn for developers. Another typical approach to coding is a functional
paradigm using several popular languages like Erlang, Haskell or Scheme. This approach uses function
definitions, function applications, expressions and declarations to define the flow of a program and meet
an application’s requirements based on the input given. In general the code that uses this approach is
much more compact and the runtime of functional languages is optimized for such a paradigm to ensure
a very good performance. A very popular language that offers the possibility to write code both in a
functional style and object-oriented is Scala which also makes this language difficult to classify. It plays a
very important role in the research conducted in this thesis, being used to provide both a programming
API and a backend as part of the contributions of this thesis.

1.2 Research Objectives
The overall objective of this research and this thesis is bridging the gap between modeling and program-
ming in order to provide a smooth integration between formal methods and two of the most well-known
and used languages for software development, the Java and Scala languages. The research focuses mainly
on sequential and highly parallelizable applications, but part of the research also involves some theoretical
proposals for distributed systems. It is a first step towards having a programming language with support
for formal models.

Objective 1 The first specific objective is to develop a runtime that implements the proposed concurrency
model of the Abstract Behavioural Specification (ABS) Language and its features. This objective mainly
focuses on performance and scalability of the implementation. The runtime has the purpose of optimal
thread management in the Java language and provides a full integration of actors and futures with
asynchronous programming [IS12].
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Objective 2 The second objective of this research is to bring the high-level modeling constructs,
especially those that model asynchronous programming and concurrent behavior in ABS to the level
of the Java language through an API. The base API, called JAAC is exposed Java and presents some
constructs which are quite permissive with regards to type checking of the proposed asynchronous call and
vulnerable to unwanted code being run on actors. The API is extended to Scala syntax, called ASCOOP,
where all (a)synchronous method calls are now type checked by the Scala compiler allowing only calls to
methods that are exposed by a class or interface.

Objective 3 The third specific objective is the development of a compiler from the software model to
Java and extended to Scala that provides a formally correct translation and behavior. This translation fully
supports the semantics of the core modeling language which includes modeling actors and actor groups as
software components. The compiler support includes asynchronous communication, coroutine suspension
and resume constructs. Finally the compiler translates the ABS language extensions for timed-models
and resource consumption.

1.3 Research Challenges
Each of the specific objectives has a series of challenges encountered throughout each objective’s roadmap.

For the first objective, the runtime has two big challenges in terms of correctness and performance.
The concurrency model of ABS includes asynchronous communication, concurrent object groups and
coroutine support which pose a difficult problem in production code, especially in a JVM based language.
The runtime also needs a module to support two extensions of ABS: symbolic time and resource simulation.
A lot of the implementation requires the careful usage and management of threads, as in JVM these entities
are quite expensive and significantly affect performance. The proposed runtime must be transparent to
the programmer, but under the hood it must not affect the Quality of Service (QoS) [Kan02] of a system.
This runtime is being used by both the proposed API and compiler so it must not slow the program down
in any way. Another challenge of runtime that requires a lot of research effort is implementing a model
that is used to correctly emulate the coroutine extension of ABS.

As already explained in the second objective’s description, the proposed API is difficult to type-check
in Java and can result in erroneous behaviour being programmed. Even when extended to Scala, the API
must be user-friendly and easy to learn in order to present a viable alternative to existing libraries that
support part of the concurrency model of ABS.

The third objective presents a big challenge in translating the coroutine model of ABS and it involves
the correct pre-processing of methods that contained the coroutine constructs of ABS. This requires
a formal proof of the translation scheme from the ABS coroutines model to the model for emulating
coroutines in the proposed runtime.
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1.4 Main Contributions and Thesis Outline
Main Thesis Publications and Contributions This thesis is based on the following six publications :
No. Title Proceedings / Journal / Book Year
1. Towards Type-based Optimizations in Dis-

tributed Applications using ABS and Java
8 [SNA+14].

1st Workshop of Adaptive Resource Man-
agement and Scheduling for Cloud Com-
puting

2014

2 A design Pattern for Optimizations in Data
Intensive Applications using ABS and
Java 8. [SAB+15]

Concurrency and Computation: Practice
and Experience

2015

3. A Java-Based Distributed Approach for
Generating Large-Scale Social Network
Graphs [ŞAdB16]

Resource Management for Big Data Plat-
forms

2016

4. Actors with Coroutine Support in
Java. [SBJ18a]

15th International Conference on Formal
Aspects of Component Software

2018
5. ASCOOP: Actors in Scala with

Cooperative Scheduling. [SBJ18b]
21st IEEE International Conference on
Computational Science and Engineering

2018
6. On The Nature of Cooperative Scheduling

in Active Objects. [SB]
The 35th ACM/SIGAPP Symposium On
Applied Computing

2020

Application Contributions The systems developed in this thesis have also had important contributions
in the following manuscripts:
No. Title Proceedings / Journal / Book Year
1. High Performance Computing

Applications using Parallel Data
Processing Units. [ASdB15]

6th International Conference on
Fundamentals of Software Engineering

2015

2. Multi-threaded Actors. [AdBS16] 9th Interaction and Concurrency
Experience

2016
3. A Survey of Active Object Languages.

[BSH+17]
ACM Computing Surveys 2017

Thesis European Projects

No. Name Years
1. Engineering Virtualized Services - ENVISAGE 2013-2016
2. From Inherent Concurrency to Massive Parallelism through Type-based

Optimizations - UPSCALE
2014-2017

Applications Repositories A significant part of this thesis is the programming effort that was put
into developing three applications that are at the core of the main objective. The first application is an
implementation in Java of the ABS concurrency model and behaviour with all of its core features including
asynchronous communication and cooperative scheduling. The sources for this implementation are found
at https://github.com/JaacRepo/JAAC.git and can be built into a jar library that provides a base
API in Java for these features.

The second application is a compiler that provides a source to source translation between ABS
code and Java code. This essentially turns an ABS model into an executable binary that can run di-
rectly on a computer. The sources of the compiler can be found at https://github.com/JaacRepo/
absCompiler.git.
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The third application provides an extended API in Scala called ASCOOP, to be used directly in Scala
programs to write code using a syntax very similar to ABS that emulates the ABS features directly. The
repository for this API is the same as the first one, with the jar library that can now be linked to a Scala
project and use the constructs to write the code.

Thesis Outline The research presented in this thesis is organized based on the research questions and
specific objectives presented in this chapter.

Chapter 2 The second chapter presents a preliminary overview of the the concurrency elements in
the two programming languages that the thesis is focused on: Java and Scala. It focuses on some basic
utilities for parallel programming provided by Java, and then dives into some high-level abstractions and
wrappers that facilitate concurrent programming like future and actors. It covers the limits that Java has
on emulating asynchronous communication, as the language does not provide a direct construct for this.
The chapter also discusses the existing relations between actors and futures, as well as existing support
for coroutines in the Java language.

Chapter 3 The third chapter describes the main features concerning actors, programming paradigms,
asynchronous communication and coroutines that the ABS modeling language supports. This chapter is
an overview of the core concepts and two of its extensions that are covered in this thesis.

Chapter 4 The fourth covers the Java library called JAAC1 which serves as a backend to be used for
generation of programs in Java fromABS sources, as well as allowing programmers to write Java programs
directly following the ABS concurrency model. This library provides a bridge between modeling and
programming: by reverse engineering the ABS model underlying such an application of the library
API we can apply the formal development and analysis techniques supported by the ABS language, e.g.
functional correctness [DBH15], static analysis [AAFM+14] and deadlock detection [GLL16, AdBdV18].
The Chapter is mainly based on papers 1[SNA+14] and 4[SBJ18a] .

Chapter 5 The fifth chapter presents a comparative analysis between using software modeling and
programming as two separate entities brought together either through a compiler or direct integration in
the programming language. In the second part of this chapter the previous iterations of the Java runtime
for the modeling language are presented, focusing on how each contributed to the current solution. The
basis for this chapter are the investigative research conducted in papers 2 [SAB+15] and 3 [ŞAdB16].

Chapter 6 The sixth chapter shows the use of the main features of the API through some coding
examples in Java, where the API is slightly permissive and vulnerable to programmer mistakes without
providing errors or warnings, whereas these issues are mitigated through the API’s extension in Scala
where such vulnerabilities yield errors at compile time. The chapter is based on paper 5 [SBJ18b]. The
entire implementation is based on replacing synchronous calls with asynchronous calls followed by
an await (suspension) on the created implicit future. The implementation also includes an underlying
scheduler which differentiates priorities between explicit futures created by the program and implicit
futures [FRCH+19] created by the replacement mechanism of synchronous calls.

Chapter 7 The seventh chapter covers the challenges brought by the implementation of the compiler.
The compiler is a direct translation in Scala, and presents work done on pre-processing continuations to
support emulation of co-routines. Also the chapter provides a formal proof as to how these co-routines

1https://github.com/JaacRepo/JAAC

6

https://github.com/JaacRepo/JAAC


are correctly compiled and expected behaviour is obtained. The chapter is based on paper 4 [SBJ18a]
and 6 [SB].

Chapter 8 The eighth chapter shows the use of both approaches (the API and the compiler) in several
case studies and benchmarks that this research contributed to. First the runtime system is evaluated
against ABS’s most stable and well-known backend (that uses the Erlang language and its lightweight
threads) using some typical actor benchmarks. The ASCOOP API is compared to exiting actors libraries
like Scala and Akka. Finally, the ABS compiler is used to model several real world case studies that were
part of the European Projects like a Map Reduce application, a cache and memory system simulation and
a model of a railway system.

Chapter 9 The last chapter draws the conclusions of this thesis and how far this research accomplished
its objectives. It summarizes the main challenges encountered in attempting to bridge the gap between
modeling and programming in the general software development process and the lessons learned.
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Chapter 2

Asynchronous Programming in the
Java Virtual Machine (JVM)

The Java language is one of the mainstream object oriented programming languages that supports a
programming to interfaces discipline [Lea00]. It has evolved into a platform to design and implement
applications in several domains of both research and industry [VLFGL01, PS12, NAB+11], along with
supporting its community with new language constructs and features. With applications reaching exascale
dimensions in terms of data volumes and requiring a lot of computing power, focus has increased towards
the development of numerous libraries and frameworks with an attempt to provide distribution and
concurrency at the level of Java language [SPCA14, SPCA15]. Java is an object-oriented language, that
is based on high-level concepts of interfaces and classes. These classes contain fields and methods to
encapsulate state and behavior. At runtime, dynamically generated class instances (objects) are created
and interact with each other via method calls. The general behavior of these calls is synchronous, as a
caller object will block its execution until it receives a result from the execution of the method’s block
inside the callee object. A Java program’s entry point is the main method which creates a single thread
with its own stack and context. The basic sequential execution model generates a stack of method calls
between objects that run on a single thread.

The Java Virtual Machine(JVM) allows an application to have multiple user and daemon threads
of execution running concurrently. All threads have an assigned priority in the JVM that orders the
scheduling of threads. When it is created initially, a thread receives the same priority as its parent, so in
general application-level threads have the same priority. A thread may also be marked as a daemon before
it is started, allowing the JVM to stop when only daemon threads are left running in the application. This
daemon property is also inherited from the parent thread, if not explicitly set. When a JVM is started, a
single user thread is created and its execution begins with the block in the main method defined in a class.
From that point the JVM continues to create, start, suspend and stop threads by following the control flow
of the program. The JVM is then stopped either when the System.exit( ) method is explicitly called
by the user or all user threads have completed execution, either normally or exceptionally.

Multi-threaded execution is an essential feature of the Java platform. Parallel execution takes place by
spawning a thread that runs code asynchronously on the same JVM. The basic approach of asynchronous
execution in Java is to extend the Thread class and specify the behavior by overriding its run method.
This method’s body is empty by default and will run on a separate thread. Listing 2.1 contains an example
of creating a new Thread object. Once the thread is instantiated, the user needs to explicitly call the
start method to execute the body of run in parallel.

In Java, the most straightforward way of communication between threads is via the state of shared
variables in the program memory, as there is no direct manner in which a thread can invoke an instruction
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Listing 2.1: Explicit Thread Creation
1 class MyThread extends Thread{
2
3 @Override
4 public void run( ) {
5 //thread control flow
6 }
7 }
8
9 //main block or another class
10 MyThread t = new MyThread( );
11 t.start( );

on another thread. All objects that are instantiated in a program may be accessed and modified by the
running threads which hold a reference to them and it is up to the programmer to ensure that concurrent
access is synchronized. Accesses and modifications to objects by more than one thread at a time will lead
to corrupting data and race conditions.

In Java, class fields can be defined using the static keyword making their scope global. Static fields
are loaded and instantiated only once when the class is loaded without requiring an object instance of that
class. As such they may be accessed from anywhere in the program by existing threads.

When a new thread is spawned it has a separate call stack and context of execution. The call stack is
used to save the frames generated by sequences of nested synchronous method calls between objects. The
stack size in general limits the depth of these sequences to the point where a StackOverFlowError is
generated when there is not enough space to allocate a new frame. The size of each stack depends on the
JVM and Operating System(OS) and can also be specified by the user through the program’s environment
variables and virtual machine (VM) arguments. A typical default value for 64bit Operating Systems is
1MB, and can easily reach as large as 2MB as object references now require 8 bytes of space compared
to the 4 bytes required on 32bit systems. With a 2MB stack size, a program that runs 500 threads can
allocate 1GB of main memory for the threads alone, even though just a small percentage of those threads
would require the full 2MB stack to execute its control flow. This makes the basic mechanism for a block
of code to be run asynchronously very expensive memory-wise. The problem further increases when an
application requires multiple context switches between several threads keeping the suspended threads
living in the system. As this number becomes very large, the thread explosion affects the main memory
thus the application’s performance.

The first part of this chapters covers the concurrency utilities extending the above basic multi-threaded
model to facilitate asynchronous programming and communication in Java. The second part of the
chapter presents the motivation for extending the research towards the Scala language by illustrating
its lightweight and easy-to-use syntax for concurrent programming through two abstractions: actors
and futures. The last part of this chapter covers related work on introducing coroutines in JVM based
languages and the challenges encountered when to ensure correct functionality together with actors and
futures.
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2.1 Java Concurrency Utilities
Java, by design, does not have a straightforward way of specifying asynchronous method calls in pro-
gramming code. As mentioned before a method call implicitly blocks the caller, and unless specified
through the basic thread model (see Listing 2.1), the flow of a program is sequential and on a single thread.
However, Java does provide interfaces and classes together with constructs that offer more flexible and
intuitive ways of coding asynchronous communication, spawning and managing threads. There are also
many Java packages that offer the programmer utilities for specifying synchronization points between
threads based on state or method return values. This section summarizes the main classes that facilitate
thread management and synchronization from the programmer’s perspective.

Spawning Threads Java offers two interfaces that define tasks that are to be run asynchronously and
allow the user to specify the piece of code to be run on a separate thread. These are the Runnable and
Callable interfaces that offer the run and call methods respectively, that contain the control flow to be
executed in parallel. The difference between the two interfaces is that objects that implement Callable
execute methods that return a value, while Runnable objects have methods that do not a return value.
Listing 2.2 shows how an anonymous class that extends the Runnable interface can be passed as a
parameter to a Thread constructor. This offers a much more compact way of specifying a block of code
to run asynchronously, but still requires an explicit start of the thread.

Listing 2.2: Thread Creation using Anonymous Classes
1 Thread t = new Thread(new Runnable( ) {
2 @Override
3 public void run( ) {
4 // thread control flow
5 }
6 });
7
8 t.start( );

An anonymous class allows instantiation of an object that implements an interface (in this case
Runnable) without specifying a class name and the behavior of the overridden method (in this case run)
will only apply to this object. As such, the user bypasses the need to explicitly create a separate class
that either implements Runnable or extends Thread, being especially useful when needing to create
small asynchronous tasks. The behavior of the threads is now defined as part of the arguments passed
to the new construct rather than in a separate class prior to running the task in parallel. This provides
programatically more flexibility, the possible parallel behaviors do not need to be defined separately for
small functions. Starting with Java 8, instances of Runnable and Callable can also be created using
lambda expressions [Lam]. An example of creating a Runnable using a lambda expression is given in
Listing 2.3. The code in this listing allows the user to express an instance of a class (like MyThread)
containing a single method even more compactly. This instance can then be passed as well to a Thread
constructor or other concurrency utilities to be discussed further in this section.

Listing 2.3: Declaring a Runnable using a lambda expression
1 Runnable task = ( )−>{
2 //thread control flow
3 }

Managing Threads Already since Java version 5, there has been support for concurrent programming
through its java.util.concurrent package and throughout its development the Java platform has also
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introduced new high-level concurrency Application Programming Interfaces (APIs) to facilitate user
experience when developing parallel applications. This package introduces data structures with high-level
wrappers to allow creation and management of thread pools to facilitate creating and starting threads.
Thread pools allow dynamic control of the number of threads created in the application as well as control
over the tasks that are accepted. They also expose methods to specify ordering inside thread pool queues
and how tasks are scheduled, suspended and completed. The basic interface that supports this is the
Executor interface which runs submitted tasks. This decouples task submission from the mechanics of
how the submitted task will be scheduled, assigned a thread object and run. An executor simplifies the
explicit instantiation and start of a new thread in Listing 2.2 using a single call to the execute method as
shown in Listing2.4 and since Java 8 this can be simplified further by lambda expressions.

Listing 2.4: Executor Usage
1 Executor e = //initialization of Executor and its properties
2 e.execute(new Runnable( ) {
3
4 @Override
5 public void run( ) {
6 // thread control flow
7 }
8 });
9
10 //using a lambda expression
11 e.execute( ( )−>{
12 //thread control flow
13 });

The execute method has no default implementation and needs to be overridden in order to specify
how to run the tasks submitted to it. The method allows the programmer to define certain scheduling
policies and approaches. For example, in Listing 2.5 the Executor is extended to call the run method
synchronously inside the body of execute. Therefore all tasks submitted to such an executor by one
thread will be run sequentially.

Listing 2.5: Synchronous Executor Implementation
1 class SynchronousExecutor implements Executor {
2
3 public void execute(Runnable r) {
4 r.run( );
5 }
6 }
7

Another basic approach of extending an executor is such that each task is run in parallel on a separate
Thread instance as in Listing 2.6. We will see the importance of these two approaches throughout the
rest of the thesis.

Listing 2.6: Asynchronous Executor Implementation
1 class AsynchronousExecutor implements Executor {
2
3 public void execute(Runnable r) {
4 new Thread(r).start( );
5 }
6 }
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7
Java offers several default implementations of the Executor interface that have predefined execute

methods. The Executors class provides factory methods to obtain instances of these implementations.
This class is different Executor class, as it only provides static factory and utility methods to create
predefined configurations for various types of executors, without any specific methods that control
thread creation, scheduling and execution. One such implementation is the thread pool which allows the
programmer to control the number of threads in the system as well as dynamically adjust them during
program execution. In this thesis there are three default implementations that were used throughout the
development of the solutions presented in the next chapters:

• Executors.newCachedThreadPool( )

• Executors.newFixedThreadPool(int)

• Executors.newForkJoinPool()

The first one creates a thread pool that instantiates new threads when they are required, but will
continue to reuse available idle threads that have been constructed previously. The main advantage of this
type of thread pool is that it improves the performance of programs that invoke a lot of small asynchronous
tasks. One of the case studies researched in this thesis is specifically tailored to test performance of such
a program. If a sequence of short tasks are submitted via the execute method, the first few tasks will be
assigned newly created threads, while subsequent tasks reuse the same threads once they become idle.
The idle threads also have a timeout within which they can be reused by subsequent tasks, otherwise they
are terminated and garbage collected. Thus, the thread pool will not consume any resources if it is idle
for a long time.

The second construct creates a thread pool with a fixed number of threads passed as a parameter and
reuses them for execution. The integer number passed as a parameter represents the maximum number of
threads that may be active in the application. All subsequent tasks that are submitted will be placed in a
shared unbounded queue until a thread is available. A new thread is created in the pool only if an existing
thread is terminated (either successfully or not) and tasks are available for execution in the queue. The
main advantage of this thread pool is that it will not starve the system out of resources regardless of how
many tasks the program attempts to execute in parallel.

The third construct offers a thread pool which employs a work stealing strategy. The existing threads
in the pool have a proactive behaviour attempting to execute existing tasks in the queue if they are idle.
This type of pool is especially powerful when executing tasks which in turn spawn subtasks, as the
work-stealing mechanism bypasses the process of scheduling tasks and assigning them a thread. Thus it
is also useful for processing tasks that perform small computations.

The return type of these three factory methods (and the type of the aforementioned thread pools) is
an ExecutorService which extends Executor. This is a more versatile interface that provides more
methods to execute different types of tasks such as instances of Runnable, Callable or a collection of
tasks. This is done through the overloaded submitmethod that can take either one of the three arguments
and has a similar functionality to the execute method of the parent interface. This allows for more
fine-grained control of asynchronous tasks. An example of creating a thread pool and then submitting a
task instantiated using lambda expressions is given in Listing 2.7. The task does not necessarily need to
be declared separately as in Listing 2.3, especially if its a small computation that is only required once.

Listing 2.7: Using a predefined thread pool to run a task asynchrnously
1 ExecutorService pool = Executors.newCachedThreadPool( );
2 pool.submit( ( ) −> {
3 return 10;
4 });
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The Executor Service also offers methods to manage termination of the thread pool. An unused
Executor Service should be shut down to allow reclamation of its resources. The user can safely shut it
down, which will cause it to reject new tasks This can be done using two different methods.

• The shutdown( ) method will continue to run previously submitted tasks to execute before
terminating.

• The shutdownNow( ) method prevents queued tasks from starting and attempts to stop currently
executing tasks.

Synchronizing on Return Values. Java provides a large collection of interfaces and classes that support
synchronization of tasks running in parallel including mutexes, semaphores and barriers. Our focus,
however, is on the Future interface which is a general concurrency abstraction, that encapsulates a
method’s result to be returned upon completion of a method call that is associated with that future. The
interface provides methods to check if the computation is complete, to wait for its completion, and to
retrieve the result of the computation. A simple usage of a future is like the one shown in Listing2.8.
Here a lambda expression is used to create a Callable instance since the method returns a value. The
return type of submit is a Future which is a dynamically generated unique reference to the task to
be executed asynchronously. The current thread can then synchronize and obtain the result by calling
the get( ) method. This is a very simple and intuitive synchronization mechanism, yet it has some
important implications. The current thread will be blocked until the future completes. This means that
the thread will remain live in the main memory occupying the space that was allocated for its context.

Listing 2.8: Using a future to synchronize on the result
1 ExecutorService pool = Executors.newCachedThreadPool( );
2 Future<Double> f = pool.submit( ( )−> {
3 Double x = ... //calculate x
4 return x;
5 });
6 // perform other computations in parallel before using the result
7 Double result = f.get( );
8 //subsequent code that will only execute when the thread is released

The result can only be retrieved when the computation has completed, thus releasing the calling thread,
loading its context and executing subsequent code. Cancellation of a task represented by a future may be
performed by the cancel( ) method. The get( ) can also be used to determine if the task completed
normally, was cancelled or has thrown an Exception. Once execution has finished, the computation
cannot be cancelled. A particular extension of the Future interface is the CompletableFuture. This
implementation provides methods for the developer to create, process and complete a future manually.
We want to observe three important methods:

• complete(T value) - This method set the future’s result to the value passed as a parameter,
unless the future has already completed.

• completeExceptionally(Throwable) - If not already completed, causes invocations of get( )
and related methods to throw the given exception.

• CompletableFuture.completedFuture(T value) - This static factory method creates object
instances that behave like futures that have completes with the result value.
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2.2 Scala Abstractions for Concurrent Programming
Scala is an object-oriented programming language that also has support for functional programming.
It is intended to compile to Java bytecode such that it can provide language interoperability with Java
and allow the usage and integration of libraries designed in either language. With respect to concurrent
programming in Scala, this section covers the inner workings of futures and their intended usage, as well
as two libraries that support the actor programming model.

Scala Futures In Scala, the package called scala.concurrent contains the trait Future to provide
a way to reason about performing many operations in parallel without blocking until a synchronization
point. Traits in Scala are similar to Java interfaces, except they may contain methods which have a default
implementation. Unlike Java futures, the entire computation code that is to be done asynchronously can
be declared in a Future trait like in Listing 2.9.

Listing 2.9: Declaration of a Future in Scala
1 val f: Future[Double] = future {
2 val x = ...
3 //calculate value of x
4 return x;
5 }

To bypass the explicit creation of threads and overwriting of the run( ) method, Scala futures
require an Execution Context. Similar to the Java Executor, it is responsible for thread creation,
execution and termination. The package also provides a global static thread pool which is a default
ExecutionContext implementation that is backed by a ForkJoinPool object suitable for execution of
a large number of small asynchronous tasks. To reduce performance penalties caused by a large number of
threads, the ForkJoinPool object sets a default limit to the number of threads it contains, known as level,
to the number of available processors ( value yielded by the Runtime.availableProcessors function).
This parallelism level can be overridden by setting one (or more) of the following VM attributes:

• scala.concurrent.context.minThreads

• scala.concurrent.context.numThreads

• scala.concurrent.context.maxThreads

The parallelism level will be set to numThreads as long as it remains within the interval
[minThreads; maxThreads]. An ExecutionContext can also be created from a Java Executor
using ExecutionContext.fromExecutor method. Optionally, developers are allowed to extend the
ExecutionContext trait to customize their own execution contexts.

In Scala futures make use of callbacks by default, to minimize as much as possible the blocking effect
of get() operations and therefore the number of blocked threads in the system. Scala provides a general
callback method onComplete to execute upon completion of a future. The body of the callback has to
pattern match on the state of the completed future as shown in Listing 2.10. This state is of abstract type
Try, which represents a computation whose final result may be a completed value or an exception and
therefore can be one of two case classes: Success or Failure which contain as an argument the result
or exception respectively.

Listing 2.10: Callback definition in Scala
1 f onComplete {
2 case Success(result)=>process(result);
3 case Failure(error)=> println("Computation␣yielded␣error" + error);
4 }
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Scala futures also provide more specific methods to define the control sequence to be executed once
a future completes, as well as a recovery block if the asynchronous task completed with an exception.
These two methods are onSuccess (Listing 2.11) and onFailure (Listing 2.12) and avoid the need to
pattern match on the state of the future.

Listing 2.11: Callback to execute when the future completes sucessfully
1 f onSuccess {
2 case result => {
3 process(result)
4 }
5 }

Listing 2.12: Callback to execute when the future yields an error
1 f onFailure {
2 case error => {
3 println("Computation␣yielded␣error" + error);
4 }
5 }

This is the mechanism specific to Scala through which a result can be used or an error can be handled
from a completed future. It is a much more efficient way compared to the approach where the thread
that is using the future result has to block using the get( ) method until it is available. It is important
to note that callback function is executed on a separate thread and as such needs to explicitly handle
synchronization issues if any of the data structures and operations in the function are not thread safe.

Scala Actors The scala.actors package offers an API for concurrent programming with actors. The
package provides both asynchronous and synchronous message transmission (the latter are implemented
by exchanging several asynchronous messages). Moreover, actors may communicate using futures where
requests are handled asynchronously, but return a representation (the future) that allows to await the reply.
The typical approach in Scala is that of messages to have any type and thus are only checked at run-time
whether the receiver can handle them. All actors contain a mailbox which stores messages until they are
processed.

Scala provides a trait hierarchy starting with the basic implementation of actors that can send and
receive messages, to supporting more complex capabilities such as obtaining the reference of the sender,
replying to a message or grouping actors for monitoring and correct terminations purposes. The API
also provides control structures and traits for managing actors in terms of scheduling, error handling and
remote communication.

Actor-based programs use the Actor interface to define classes like in Listing 2.13. The example
shows two actors running a ping-pong benchmark. This is a simple example where two actors (Ping
and Pong) exchange a fixed number (count) of empty requests (pings) and replies (pongs) and then the
program stops.

Listing 2.13: Creating a Scala Actor
1 class PingActor(count: int, pong: Actor) extends Actor {
2
3 }
4
5 class PongActor extends Actor {
6
7 }
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To define the message exchange between the two actors, one first needs to define the objects that
represent the messages like in Listing 2.14. These are defined as case objects to use Scala pattern matching
when defining the behavior for receiving each message.

Listing 2.14: Messages as Case Objects
1 case object PingMessage
2 case object PongMessage
3 case object StopMessage

The actual running behavior is then defined by overriding the act method and using receive to
define the control flow for each received message. This is shown in Listing 2.15 for the PingActor class.

Listing 2.15: Defining Scala Actor Behavior
1 def act( ) {
2 var pingsLeft = count − 1
3 pong ! PingMessage
4
5 while (true) {
6 receive {
7 case PongMessage =>
8
9 if (pingsLeft > 0) {
10 pong ! PingMessage
11 pingsLeft −= 1
12 } else {
13 pong ! StopMessage
14 exit( )
15 }
16 }
17 }
18 }

The Actor model in Scala [HO09] does provide a suspension mechanism, but its use is not recom-
mended because it actually blocks the whole thread and causes degradation of performance. It is possible
to register a continuation piece of code to run upon completion of a future, but that will run in a separate
thread which breaks the actor semantics and may cause race conditions inside the actor.

Akka Actor Library Akka actors [Hal12, Gup12] are similar to Scala actors and can be used in both
Java and Scala, but are more intuitive and less cumbersome to use in the latter. To define the behavior
of an actor in Akka, one needs to extend the Actor trait and override the receive method. A simple
example of defining an Akka Actor is shown in Listing 2.16. Java libraries for programming actors like
Akka [SM01] mainly provide pure asynchronous message passing which does not support the use of
application programming interfaces (API) because, a message is only typed as a Java Object, so there is
no static typing of messages, nor are they part of the actor interface.

An important challenge in both Scala and Akka actors is that messages can only be checked at runtime
(they need to be pattern matched in order for the actor to execute a particular control flow). This means
that the programmer needs to define for all the possible messages a specific type(see Listing 2.14). Then
an actor must pattern match on a given message and execute the matching block of code. This block is
often a call to an internal method defined in the actor class. These libraries however do not provide a
way to bypass this pattern flow that executes at runtime in favor of a straightforward call to the internal
method that is meant to execute asynchronously. The Akka Typed module attempts to solve this challenge
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Listing 2.16: Akka Actor
1 import akka.actor.Actor
2
3 class MyActor extends Actor {
4
5 def receive = {
6 case "Hello" => println("HelloWorld")
7 case _ => println("received␣unknown␣message")
8 }
9 }

by defining messages as case classes like in Listing 2.17. This provides a close resemblance to methods
with arguments, but still requires defining an internal block or method corresponding to the flow to be
executed asynchronously.

Listing 2.17: Akka Typed Example
1 object PingActor {
2 final case class PingMessage(replyTo: ActorRef[PongMessage])
3 final case class PongMessage( from: ActorRef[PingMesssage])
4 }

2.3 Coroutine Support
Coroutines are programming abstractions of state and control flow in a program that allow for multiple
entry points for suspending and resuming execution at certain locations. It is a very powerful concept
especially in object-oriented programming for organizing control flow of a large number of small tasks.
The current existing support for coroutines in JVM can be categorized by two main approaches: one
which operates on source code level and one which operates on the bytecode level.

Main examples of bytecode manipulation are Apache Commons Javaflow [Com] and Kilim [SM08].
Even though bytecode manipulation allows for more flexibility, it has several disadvantages regarding
maintainability and portability. Further, the application of debugging techniques becomes more involved
and source-code based static analysis tools become unusable.

A straightforward way to support coroutines at source-code level in Java (see [Sch11]) is by allocating
a thread to every “routine” that can be suspended, since a thread naturally contains already all the
information about the call stack and local variables. However that does not scale because threads are well
known to be heavyweight in Java. In Scala, macros are also a viable approach to implementing coroutines.
Macros are an experimental feature in Scala that allow a programmer to write code at the level of abstract
syntax trees and thus to instruct the compiler to generate code differently.

Scala-coroutines project [Sto] uses this feature to implement low-level coroutine support for Scala with
explicit suspension and resume points which however in general are prone to errors. Kotlin [Jan17]supports
coroutines natively but actors are not first class citizens. Kotlin actors are implemented as coroutines,
which by definition ensures a single thread of execution within the actor. However one cannot process the
messages inside actors in a coroutine manner. In other words, it is not possible to process other messages
if one message is suspended.
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2.4 Summary
Asynchronous calls can be emulated in Java using the basic thread programming pattern or constructs that
simplify this pattern. However there is not a straightforward way to issue these calls similar to synchronous
calls. A big research challenge in this thesis is to have a mechanism for issuing a call to method (using
its signature), executing it on a separate thread and capturing its result in a future. The goal is to have a
method call similar to the model of the method call issued in the researched modelling language, ABS.
Emulation of the asynchronous call is supported, but it involves declaration of a few classes and instances,
possible duplicate code if more than one call is required, or unwanted code that may result from misuse
of the generic classes. There is not standalone construct for a method call that type-checks the call to be
of the correct signature. In Java, Scala or Akka, the notion of an asynchronous method call is not present
as an integrated part of the language. Bridging this gap between the asynchronous call model and its
current complex syntax in JVM-based languages and libraries is a significant part of this thesis.
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Chapter 3

Abstract Behavioural Specification
Language

The starting point for the actor programming model assumed in this thesis is the Abstract Behav-
ioral Specification language (ABS) introduced in [JHS+12]. ABS is a modeling language that was
part of the HATS European Project [hat, WDS11] which was continued by the ENVISAGE European
Project [AdBH+13, JST12a]. An ABS model describes a dynamic system of actors which interact only by
means of asynchronous method calls. ABS combines the actor programming model with a“programming
to interfaces” paradigm that enables static type checking of message passing at compile time.

Actor-based models of computation in general assume a run-to-completion mode of execution of the
messages [SM01, BSH+17, ASdB15]. ABS extends the actor-based model with coroutines [HFW84]
by introducing explicit suspend statements. Suspending the execution of a method allows the actor to
execute another method invocation. This suspension and resumption mechanism thus gives rise to multiple
control flows in a single actor. The suspension of a method invocation in ABS can have an enabling
condition that controls when it can be resumed. Typical enabling conditions are awaiting completion of a
future or awaiting until the internal state of the actor satisfies a given boolean condition. This feature
combination results in a concurrent object-oriented model which is inherently compositional.

Actors in ABS serve as a major building block for constructing software components. Actors in
ABS can model a distributed environment as they interact via asynchronous communication. It can be
viewed as a Java-like correspondent of MPI [CW10, SOHL+98] where ABS objects are corresponding
to MPI processes. Internally with support for cooperative scheduling they allow for a fine-grained
and powerful internal synchronization between the different method invocations of an actor. ABS has
support for user-defined schedulers [BdBJ+13] to use algorithms for specific task management [SP15] or
distributed environments [VPT+15]. Therefore they are a natural and intuitive basis for component-based
software engineering and service-oriented computing and related Internet- and web-based programming
models [CJO10]. ABS has been applied to several major case studies like in the domain of cloud
computing [FMAG13, AdBH+14], simulation of railway models [HM16, KH17] and modeling software
product lines [KH16].

ABS has a syntax similar to Java with classes and interfaces for encapsulation, but includes several
extra features such as a functional programming model, the possibility to issue asynchronous method
calls with compile-time type checking and also integrates actor-based models with futures and coroutines.
Specifically any object created in ABS represents an actor with encapsulated data. Similar to Java, their
behavior and state is defined by implementing interfaces with their corresponding methods. Thus they
interact by making asynchronous calls to these methods which generate messages that are pushed into a
queue specific to each actor. An actor progresses by taking a message out of its queue and processing it
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by executing its corresponding method.

3.1 Programming to Interfaces in ABS
The ABS language is a class-based object-oriented language that features algebraic data types and side
effect-free functions. Actors implement a shared-nothing model for concurrency. Each actor can be
viewed as a separate node who sends messages to other actors with a syntax that is very close to Java
method calls. The actors are identified as objects with references like in Java that may be passed as
method arguments. Instantiating an object in ABS creates an Actor with its member fields and methods
which define its behavior and interactions with other actors. Interfaces in ABS describe the functionality
of objects. Thus, interfaces in ABS are similar to interfaces in Java. Unlike Java, objects are only typed
by interfaces and not by their class. They have a name, which defines a nominal type, and they can extend
zero or more other interfaces. The interface body consists of a list of method signature declarations.

To best illustrate the programming to interfaces features of ABS, we look at a simple example, the
Prime Sieve of Eratosthenes, written in Listing 3.1. This example was chosen as it was the very first
example researched in this thesis to identify the performance problems that an ABS model had once
it was translated into Java using the original tools developed prior to this research. It is a parallelized
implementation of the Sieve of Eratosthenes [Bok87, O’N09]. This example aims to illustrate how a
general parallelized model can be implemented in an asynchronous manner. It shows the benefit of
observing certain behaviours in the programming phase, as well as showing that the actor-based model
still performs well when compared to implementations that apply low-level optimizations. At the same
time this first case study is perfect for modeling partitions as actors as well as making it easy to simulate
an application that can work on a multi-core platform using a shared memory or a distributed platform
where communication between actors is key. The Sieve of Eratosthenes also allows us to illustrate several
optimizations that result from the actor based model, as well as how certain well known optimizations
are easy to apply in this model without significantly increasing the code size and therefore the design
phase of a distributed application.

The program first creates the interface ISieve (line 1) which contains the method sieve() for sieving
all numbers present in a partition that are divisible by the argument n by setting in the currentMap data
structure the value of a key to false, where the keys represent the candidate numbers found in each
partition. A second interface, IGen (line 5)contains the method, run_par( ), for retrieving the next
prime number in the first partition and sending an asynchronous method call to all partitions to sieve
using that number. The method implementations are in the classes Sieve and Generator respectively.
The Generator class also contains an initialization phase in which the candidate numbers are split into
partitions and stored in a processors_Map. As can be seen in lines 17 and 51 asynchronous method
calls are modeled by the statement actor!method( ). These statements return a dynamically generated
reference that can be assigned to a Future variable (Fut<Bool> f orFut<Unit> f) . The lookupUnsafe
method is a function defined in the ABS standard library for retrieving values associated to keys that are
known to exist in the map apriori.

3.2 Algebraic Data Types (ADT)
Algebraic Data Types in ABS are used to implement user-defined, immutable data types. Because values
of algebraic data types are immutable, they can be safely passed on to other objects making it easy to
reason about program correctness. Data type constructors enumerate the possible values of a data type.
Constructors can have zero or more arguments. These arguments can optionally have a name, which
needs to be a valid identifier. This implicitly defines an accessor function for that argument. This is
a function that, when passed a value expressed with the given constructor, returns the argument. The
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Listing 3.1: Prime Sieve Case Study in ABS
1 interface ISieve {
2 Bool sieve(Int n);
3 }
4
5 interface IGen{
6 Unit runPar( );
7 }
8
9 class Generator (Int limit, Int elem) implements IGen{
10
11 / ∗ initialization block for all partitions and nodes: currentMap, processorsMap ∗ /
12 Unit runPar( ){
13
14 while ((currentMap!=EmptyMap)&&(n∗n<limit)){
15 Int k=1;
16 while(k<elem){
17 Fut<Bool> f = lookupUnsafe(processorsMap, k)!sieve(n);
18 k=k+1;
19 }
20 if(lookupUnsafe(currentMap,n)==True){
21 primes = Cons(n,primes);
22 currentMap = removeKey(currentMap, n);
23 Int first = n∗n;
24 Int j= first;
25 while (j<last){
26 currentMap=put(currentMap,j, False);
27 j = j+(2∗n);
28 } }
29 n=n+2;
30 } } }
31
32 class Sieve(Int p, Int size, Int pe) implements ISieve {
33
34 / ∗ Initialization block for each partition ∗ /
35 Bool sieve(Int thePrime){
36
37 Int n = thePrime;
38 Int first = n∗n;
39 Int j;
40
41 / ∗ compute the first candidate and store it in variable j ∗ /
42 while (j<=last){
43 currentMap=put(currentMap,j, False);
44 j = j+(2∗n);
45 }
46 return True;
47 } }
48
49 { // Main block:
50 IGen g=new Generator(50000,1);
51 Fut<Unit> f = g!runPar( );
52 }
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name of an accessor function must be unique in the module it is defined in. It is an error to have multiple
accessor functions with the same name, or to have a function definition with the same name as an accessor
function.

Algebraic data types can carry type parameters. Data types with type parameters are called parametric
data types. Parametric data types are declared like normal data types but have an additional type parameter
section inside broken brackets (<>) after the data type name. The definition of the Maybe data type in
the ABS standard library shown in Listing 3.2.

Listing 3.2: Data Type Maybe in ABS
1 data Maybe<A> = Nothing | Just(A fromJust);

The example shows a parametric data type Maybe that has two constructors (Nothing without argu-
ments and Just with one argument). The Just constructor also contains a named argument fromJust
that defines an accessor function that extract the argument from and ADT. An example of declaring this
data type and using the accessor function is given in Listing 3.3.

Listing 3.3: Declaring an ADT in ABS
1 Maybe<Int> x = Just(2);
2 Int two = fromJust(x);

Parametric Data Types are useful to define container data types, such as lists, sets or maps. These
data structures have a default implementation in the ABS Standard Library defined as follows.

• Lists are implemented as recursive single linked lists.
• Sets are implemented as sorted lists with unique elements.
• Maps are implemented as lists of associative pairs.
Literal values of recursive data types can be arbitrarily long, and nested constructor expressions can

become unwieldy. ABS provides a special syntax for n-ary constructors, which are transformed into
constructor expressions via a user-supplied function. The implementation of a List in the ABS standard
library together with its constructor is shown in Listing 3.4

Listing 3.4: Constructing a recursive type in ABS
1 data List<A> = Nil | Cons(A head, List<A> tail);
2
3 def List<A> list<A>(List<A> l) = l;
4
5 List<Int> = list [1,2,4];

ABS supports pattern matching via the case expression. This expression consists of an input
expression and a series of branches, each consisting of a pattern and a right hand side expression. The case
expression evaluates its input expression and attempts to match the resulting value against the branches
until a matching pattern is found. The value of the case expression itself is the value of the expression on
the right-hand side of the first matching pattern. A simple example of pattern matching is illustrated in
Listing 3.5.

Listing 3.5: Pattern Matching in ABS
1 Maybe<Int> x = Just(2);
2 case x{
3 Nothing => 0;
4 Just(x) => x;
5 }
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3.3 Asynchronous Model
The asynchronous model of ABS is defined by combining the “objects-as-actors" model with several
language constructs. ABS features one construct for the asynchronous communication, another construct
for blocking an actor’s execution on a future and a third and very powerful construct for suspending
and scheduling methods within one single actor, a construct that introduces the notion of cooperative
scheduling. An actor processes messages from its queue in a FIFO order and calls its scheduler whenever
a running method suspends. Before discussing these constructs, we need to discuss how ABS has a
high-level hierarchy for grouping objects and restricting how they communicate with each other. This is
the notion of Concurrent Object Groups.

3.3.1 Concurrent Object Groups (COGs)
In the ABS, the core language semantics imposes that all objects created in the program are actors with an
independent behavior with a possibility to communicate with other actors and use futures to synchronize
at certain points. The language offers a feature that allows the programmer to group actors into Concurrent
Object Groups (COG) which allow objects to communicate with each other synchronously, but apart
from the actors in the same COG, all other actors are considered remote and may only invoke each other
asynchronously. The physical location of an actor in ABS is completely transparent as there are no virtual
machines or IP addresses inserted in this modeling language.

Each COG runs one process at a time, while processes on different COGs run in parallel. This means
that each COG is a unit of concurrency and is in charge of scheduling the processes running on its objects.
In the next section we will observe two constructs that control the execution and suspension of processes
within a COG. These constructs can be preceded by annotations that allow custom schedulers to be defined
in order to satisfy an application’s specific requirements. Further annotations can be associated to method
calls to specify costs and deadlines in order to create a very powerful scheduler. All these constructs are
written in a very simple and concise way in ABS, in order to allow system designers a simple view of
their application which can be even large enough to be deployed in a cloud environment [JST12b].

3.3.2 Await and Get Construct
In this section we informally describe the main features of the flow of control underlying the semantics
of the coroutine abstraction as proposed by the ABS language. We describe the main concepts of
(a)synchronous method invocation and their coroutine manner of execution through the example in
Listing 3.6 which presents a general behaviour of a pool of workers. For a detailed description of the
syntax of the ABS language we refer to [JHS+12].

The example sketches the behaviour of two kinds of actors: a WorkerPool and a Worker. A
WorkerPool actor maintains a set of Worker actors (line 2). An asynchronous invocation of the method
sendWork (line 4) suspends until the set of workers is non-empty (line 5). It then selects a worker from
the set and asynchronously calls its doWork method (line 8). The future uniquely associated with this
call is used to store the return value of this call. Note that thus asynchronous method calls in ABS by
default return futures (see [DBCJ07] for details about the type system for ABS which covers futures).
An asynchronous invocation of the method finished simply adds the Worker parameter back to the
set of workers (lines 14 and 15). Each worker actor stores a reference to its worker pool p which is
passed as a parameter upon instantiation (line 19). Before returning the result (line 26) the method
doWork asynchronously calls the method finished of its associated WorkerPool reference (line 25).
The suspension mechanism underlying the await statement in line 5 pauses the current method that is
executing and saves the current local context if the set of worker actors is empty. However, the actor
itself is free to schedule other asynchronous calls present in its queue. As such the actor can schedule any
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asynchronous update of the set of worker actors by a call of the method finished. Such an update then
will allow the resumption of the execution of the method sendWork.

Listing 3.6: Example of a Pool of Workers
1 class WorkerPool( ){
2 Set<Worker> workers; // initialization omitted for brevity
3
4 Result sendWork( ) {
5 await !(emptySet(workers));
6 Worker w = take(workers);
7 workers = remove(workers, w);
8 Fut<Result> f = w ! doWork( );
9 await f?;
10 Result result = f.get;
11 return result;
12 }
13
14 Unit finished(Worker w) {
15 workers = insertElement(workers, w);
16 }
17 }
18
19 class Worker(WorkerPool p) implementsWorker{
20 Result doWork( ){
21 Result r;
22
23 // computation
24
25 p ! finished(this);
26 return r;
27 }
28 }

The await statement also has a second form, await f? (line 9) which suspends the executing method
invocation and resumes it based on the completion status of the future f. The method can then be
rescheduled when the method invocation corresponding to f has computed the return value. In contrast
to that, futures in ABS can also part of an expression f.get (line 11 in Listing 3.6) that blocks all the
method invocations of an actor until the return value has been computed. In particular, the statement on
line 11 can never be blocking as the preceding await always ensures f is complete. Line 1 of Listing 3.7
depicts a sugared syntax in ABS of the await construct. This construct is used to suspend execution of
an asynchronous invocation and retrieve its result once the implicitly generated future holds the computed
return value. It is a shortened version of lines 4-6.

Listing 3.7: ABS Await sugared syntax
1 Result result = await w ! doWork( );
2
3 //can be expanded to
4 Fut<Result> f = w ! doWork( );
5 await f?;
6 Result result = f.get;
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3.4 Synchronous Calls
In ABS, actors which form concurrent object groups also may invoke their own methods synchronously.
For example, we may want to move the functionality of obtaining a worker in the doWork method to a
separate method getWorker such as in Listing 3.8. We can then call this method synchronously like in
line 7. It is important to observe that suspension of a synchronous method call gives rise to suspension of
an entire call stack. In our example, suspension of the await statement in line 2 gives rise to a stack which
consists of a top frame that holds the suspended synchronous call and as bottom frame the continuation of
the asynchronous method invocation of sendWork upon return of the synchronous call in line 7. These
call stacks cannot be interleaved arbitrarily, only one call stack in an actor is executing until it is either
terminated or suspended.

Listing 3.8: Synchronous Call in ABS
1 Worker getWorker( ){
2 await !(emptySet(workers));
3 Worker w = take(workers);
4 }
5
6 Result sendWork( ) {
7 Worker w = this.getWorker( );
8 workers = remove(workers, w);
9 Fut<Result> f = w ! doWork( );
10 return f.get;
11 }

3.5 Timed ABS
According to the ABS manual[absb], Timed ABS is an extension to the core ABS language that introduces
a notion of abstract time. With this extensionABS canmodel and estimate execution time of real computing
resources. In contrast to real systems, time in an ABS model only advances through explicit constructs,
it is actually symbolic time controlled by the programmer. As such the semantics of ABS introduce a
symbolic clock and provides the user with constructs to advance the clock. This symbolic clock needs a
global synchronization mechanism with respect to all the processes that exist in the system. Any ABS
program that does not use this extension will not advance time and the whole execution of the model
will be considered to occur at time zero. Logical time is expressed as a rational number and time can be
advanced by the smallest margin. The logical clock can only advance when all processes are blocked or
suspended on conditions that cannot be fulfilled. This means that for time to advance, all processes are in
one of the following states:

• The process is awaiting for a guard that is not enabled.
• The process is blocked on a future for which the corresponding call has not completed.
• The process is waiting for some resources (these are covered in Section 3.6 )
• The process is suspended on a time construct waiting for time to advance.

The function now( ) always returns the current time is shown in Listing 3.9. Unlike in Java where two
calls to System.currentTimeMillis() always return different values, two calls to now can return the
same value(line 4) if no explicit construct to advance time is in between the calls.

25



Listing 3.9: Current Time Function in ABS[absb]
1 Time t1 = now( );
2 Int i = pow(2, 50);
3 Time t2 = now( );
4 assert (t1 == t2);

Listing 3.10 shows the two statements for modeling symbolic time in ABS. The first statement on
line 1 suspends the COG until the time is able to advance at least 1 and at most 5 time units. The second
statement on line 2 blocks the COG until the clock is able to advance between 6 and 7 units. The difference
between suspension and blocking is the same as explained in section 3.3.2 where suspension allows other
enabled processes in the same COG to execute while blocking stops all processes in the same COG from
executing. Note that processes in other COGs are not influenced by duration or await duration,
except when they attempt to synchronize with that process.

Listing 3.10: Timed-ABS Statements
1 await duration(1,5)
2 duration (6,7)

The logic of the simulated clock is to advance is to advance as much as possible without breaking any
statements while unblocking as many processes as possible. This means that when a process waits or
blocks for an interval [min, max], the clock will not advance more than max, since otherwise it would
miss unblocking the process. On the other hand, the clock will advance by the highest amount allowed by
the model. This means that, for example, if only one process waits for (min, max), the clock will advance
by max. In Listing 3.11 we present a method of the case study that models the German Railway System,
a case-study that relies heavily on the time model of ABS and that is covered in Chapter 8. This listing
shows the behavior of the method insertTrain that models the entry of a new train in the network at
the moment of time t from the beginning of the simulation.

Listing 3.11: Case Study with Timed-ABS
1 Unit insertTrain(Edge e, Node n, Int t, Int v, ZugFolge resp, Train zug, ZugFolge last, Strecke str){
2 await duration(t, t);
3 resp!vorblock(last, str);
4 zug!goResp(e, n, 0, v, resp);
5 }

3.6 Deployment Components
Similar to the logical grouping of COGs, ABS has another extension for grouping of objects to resources.
These are known as deployment components. As described in the manual [absb], deployment components
are abstractions offer synchronization mechanisms based on modeling computing resources. They
represent a location for multiple COGs to reside on and a list of predefined resources that can be consumed.
The consumption of resources is closely related to the logic of Timed-ABS. Together with the predefined
resource types ABS provides function definitions for replenishing and consuming resources, as well as
synchronization mechanisms when resource requirements are less than the available resources.

3.6.1 Resource Types
Like all other class instances, an instance of a deployment component is treated the same way as any
other ABS object. Deployment components are created using the new expression. Any other COG can be
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created “on" a deployment component by using a DC annotation to the new statement. In Listing 3.12,
each deployment component is defined with some amount of resources for each resource type. This
is expressed as a mapping pair of resource type to a number, for example map[Pair(Speed, 10),
Pair(Bandwidth, 20)]. When no amount is given for some resource type, it is considered infinite and
that deployment component will never deplete that resource type. The fixed amount that is given upon
instantiation is made available to all objects residing on the deployment component for one integer unit
of ABS time. Therefore these properties are implicitly shared data between objects residing on the same
deployment component.

Listing 3.12: Defining a Deployment Component
1 DeploymentComponent dc = new DeploymentComponent("Server␣1", map[Pair(Speed, 10), Pair(Bandwidth, 20)]);
2 [DC: dc] Worker w = new CWorker( );

In ABS, a resource is a property that is countable or measurable and is influenced by program execution
and the passage of time. The resources that are currently supported by ABS are illustrated in Listing 3.13.

Listing 3.13: Defined Resources
1 data Resourcetype = Speed | Bandwidth | Memory | Cores ;

3.6.2 Resource Consumption
Consumption of resources is defined through annotations preceding the code (Listing 3.14).

Listing 3.14: Resource Usage by an Instruction
1 //A statement consuming speed
2 [Cost: 5] skip;
3
4 //A statement consuming bandwidth.
5 [DataSize: 5] o!m();

The Speed resource type models execution speed. A deployment component that is provided with
more speed resources must execute faster in logical time than a deployment component with less resources.
This applies only to statements that are defined to consume speed which are identified using the Cost
annotation (line line 2). Executing this statement on will attempt to consume 5 Speed resources from
the deployment component where the COG was instantiated on. If the deployment component has
fixed predefined Speed resources, executing the skip statement may cause suspension of the process and
advancement of ABS logical clock if there are less than 5 Speed resources available. This logic has to be
extended to the runtime for a proper execution of the model.

Bandwidth is an abstraction of transmission latency between two objects. This resource is consumed
when a statement is annotated with DataSize (line 5). In order for the statement to execute successfully
both the target object of the invocation and the object that called the method must be part of COGs that
each reside on deployment components with a minimum of 5 Bandwidth resources. If there are not
enough resources, the processes will suspend on both objects until Timed-ABS will advance the logical
clock to replenish enough Bandwidth for the statement to execute.

The Memory and Cores types abstract from the size of main memory and the number of CPU cores
available on a deployment component. In contrast to bandwidth and speed, memory and cores do not
influence the timed behavior of the simulation of an ABS model and will not require any special changes
to the runtime proposed in the next chapter.
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Chapter 4

ABS Runtime in Java

This chapter illustrates the overall architecture of the proposed runtime and thread management system.
It gives implementation details about maintaining actor semantics in the presence of coroutines. It
also covers the heuristics used for propagations and delegation of futures in the context of an actor
programming model. In the second part of this chapter the details of the runtime support for the extension
of ABS concerning time and resources is presented.

One of the major challenges addressed is the development of a Java library that scales in the number
of executing actors and (suspended) method invocations on a single JVM. To reach this goal, we represent
(suspended) method invocations in Java as a kind of Callable objects (referred to as tasks), which are
stored into actor queues [AdBS16]. This representation allows the development of a library API which
encapsulates a run-time system tailored to the efficient management of the dynamic generation, storage
and execution of such tasks (the API is covered in Chapter 6). The overall architecture of the system is
based on the following control flow: Every actor submits a main task to the thread pool which iteratively
selects an enabled task from its queue and runs it. The runtime then uses a system-wide thread pool
where millions of actors can run on a limited number of threads efficiently. A key feature provided by
our library is a new general mechanism for spawning tasks which allows an uniform modeling of both
asynchronous method calls and suspension of a method invocation. This suspension, whether it is called
synchronously or asynchronously, is modeled by spawning a new task in the actor queue which captures
its continuation, i.e., the code to be executed upon its resumption.

4.1 Evolution of the Runtime Schemes
This section investigates the evolution of the scheme used to implement cooperative scheduling in the
Java Runtime environment. It starts from a very trivial approach to using several libraries and features
that the Java SDK provides. Each solution covers four main features that have an overall performance
and scalability impact and have been improved on each iteration:

• Creation of the actor itself;
• Generation of asynchronous calls and message passing;
• Releasing control or suspension of a call when encountering an await;
• Saving the call stack of a synchronous call upon releasing control.
The development of the runtime focuses on efficient thread management for running multiple actors on

a system. It uses the Executor interface that facilitates thread programming. The objects that implement
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Figure 4.1: Basic process-oriented approach

this interface provide a queue of tasks and an efficient way of running tasks onmultiple threads. Throughout
this section we will use the terms executor and thread pool interchangeably to refer to this feature. Another
notion discussed in our solution was introduced starting with the Java 8 version, and it is the construct for
a lambda expression. This allows modeling a method call as a Runnable or Callable and it is referred to
as a task.

4.1.1 Every asynchronous call is a thread and each actor has a lock
The trivial straightforward approach for implementing cooperative scheduling in the library is for an
asynchronous call to generate a new native thread with its own stack and context. We would then model
each actor as an object with a lock for which threads compete. The disadvantage here is that this lock-per-
actor must be checked by every message handler upon start, and freed upon completion. Whenever an
await statement occurs the thread would be suspended by the JVM’s normal behavior. When the release
condition is enabled, a suspended thread would become available and in turn compete with the other
threads in order to execute on the actor. The main drawback of this approach is the large number of
threads that are created, which restricts any application from having more method calls than the number
of live threads that the memory of the system can handle. Figure 4.1 provides an illustration of this base
process-oriented approach. Here the idea is that the threads in the circle belong to one actor, thus sharing
a lock(the green thread holds the lock, while the red ones are waiting to acquire it). The four main features
that impact the system are implemented as follows:

• The actor is initialized as an object with a lock to model actor semantics that allow one method
(message) to be executed;

• Asynchronous calls are created as new threads that compete for the lock creating a performance
bottleneck that leaves many threads suspended.

• Suspension of a call suspends the thread adding to more memory overhead.
• The call stack of a synchronous call is saved in the suspended thread.

29



Figure 4.2: Actor-as-executor approach

4.1.2 Every actor is a thread pool.
To reduce the number of live threads in an application, we can model each invocation as a task using
lambda expressions and organize each actor as a thread pool. This gives the actor an implicit queue to
which tasks are submitted. We obtain a small reduction in the number of threads corresponding to the
number of tasks that have been submitted, but not started. Once they are started the threads still have to
compete for the actor’s lock in order to execute, but the number of live threads can be restricted to the
number of threads allowed by each Thread Pool, while the rest of the invocations remain in the thread
pool queue as tasks. This approach is illustrated in Figure 4.2. The implementation of the four Actor
features is as follows:

• The actor is initialized as an object with a lock and a thread pool preserving actor semantics similar
to the previous approach;

• Asynchronous calls are created as lambda expressions and assigned new threads that compete for
the lock once they start. The number of started threads is limited by the thread pool size slightly
reducing the number of suspended threads competing fo the actor lock;

• Suspension of a call suspends the thread unchanged from the previous approach;
• The call stack of a synchronous call is still saved in the suspended thread.

4.1.3 Every system has a thread pool.
In the previous two approaches we modeled the concept of an actor being restricted to one task at a time
by introducing a lock on which threads compete. However as all invocations are modeled as tasks that
don’t need a thread before they start, there is no point in starting more than one task only to have it stuck
on the actor’s lock. Therefore we introduce one thread pool per system or the system’s executor, and
instead of submitting the messages directly to the thread pool, we add an indirection by storing them into
an explicit queue first and introduce as a second phase the submission to the thread pool. We assign a
separate task for each actor to iterate through its associated queue and submit the next available message
to the system thread pool. We will refer to this task from now on as the Main Task of an actor. This
removes the requirement to store every message handler as a thread, after it starts and attempts to acquire a
lock, saving a task as data in the heap instead. However it comes at the cost of having to manage message
queues manually as we need an explicit queue for all the messages that have not yet been submitted (to
the thread pool).
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Figure 4.3: System as a thread pool

When cooperative scheduling occurs, the executing task of an actor will be suspended and therefore
still live in the system as a thread so the application’s live threads will be equal to the number of await
statements in the program. The system’s executor can dynamically adjust the number of available threads
to run subsequent available tasks, but the application will then still be limited by the maximum number of
suspended threads that can exist in the main memory. Furthermore, we still require a lock to ensure that,
upon release, the resuming thread will compete with the Main Task associated to the actor from which it
originated. This limitation is imposed to preserve actor semantics. This design is presented in Figure 4.3
and it is important to observe the migration of messages into memory and that the red threads are only
tasks that have been suspended by an await. We observe the following changes in the four features:

• The actor is initialized as an object with a lock for threads that will be suspended by await, an
explicit queue and an implementation of the Main Task, removing the thread pool-per-object;

• Asynchronous calls are created as new tasks that will be run by the Main Task one by one,
removing the need for suspending thread to preserve actor semantics.

• Upon suspension of a call the Main Task restarts to iterate the actor’s queue. The current call is
parked as a thread that will compete with the Main Task once it is resumed;

• The call stack of a synchronous call is still saved in the suspended thread.

4.1.4 Fully asynchronous environment.
In the absence of synchronous calls, to eliminate the problem of having live threads when cooperative
scheduling occurs, we can also use lambda expressions to turn the continuation of an await statement
(which is determined by its lexical scope) into an internal method call and pass its current state as
parameters to this method. Essentially what we do is allocate memory for the continuation on the heap,
instead of holding a stack and context for it. We will benchmark this trade-off between the memory
footprint of a native thread and the customized encoding of a thread state in memory. As there are no
more suspended threads in the system to compete with the actor’s Main Task, we can eliminate the lock
per actor. The four features that affect the system are now as follows:
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Figure 4.4: Full data-oriented approach

• The actor is initialized as an object with an explicit queue and an implementation of the Main
Task, but without a lock;

• Asynchronous calls are created as new tasks that will be run by the Main Task.
• Suspension of a call first saves the continuation as a lambda expression guarded by the release

condition, and the Main Task continues to iterate through the queue. No new threads are created
any more, the suspended task is saved inside the queue of the actor;

• The process of saving the call stack of a synchronous call has to be done explicitly and is detailed
in the next paragraph.

Synchronous calls context. In the presence of synchronous calls, the problem that remains is how to
save this call stack without degrading performance? To do this we can try to alter the bytecode to resume
execution at runtime from a particular point, but we want our approach to be independent of the runtime
and be extensible to other programming languages. Therefore we try to approach the problem differently;
if we can turn a continuation, that does not originate from a stack of calls, into a task, is it possible to
extend this to synchronous calls as well? We know that this issue arises when methods that contain an
await statement are called synchronously like the example in Listing 3.8. When the await statement is
encountered, the continuation consists of both the lexical scope of the release statement that is followed
by the complete synchronous call chain that has been generated(i.e. C(M1) in Figure 4.4). At compile
time, when translating source-to-source from ABS to Java, we can identify all of these occurrences from
the ABS code. We can mark them and transform them into asynchronous calls followed by an await
statement on the future generated from the call. Now we can use the same approach for translating these
continuations into tasks using lambda expressions and thus eliminating any suspended threads in the
system. The final model of our solution is presented in Figure 4.4.

More explicitly in terms of ABS code, a fully asynchronous environment means to change a syn-
chronous call x = this.m( ); into an asynchronous call plus an await like f = this!m( ); x =
await f?;. There are two problems here. First, we still need to make sure that m( ) must be the exact
next method that will run. Second, when m( ) finishes, the actor scheduler must immediately schedule
the method that is waiting for its result. Both can be implemented by changing the non-deterministic
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behavior of the Main Task. There are certain constrains that we have to impose to preserve the chain of
synchronous calls. For these we introduce priorities and strictness to the spawned tasks, which are part of
the implementation details that are discussed in the next section.

4.2 Implementation Details
To summarize, a naive approach to implementing actors in ABS is to generate a thread for every asyn-
chronous method call and introduce a lock for each actor to ensure that at most one thread per actor is
executing [Sch11]. In such an approach suspending execution of a method would be as easy as parking
the thread and resuming it later on. This however does not scale because an application will require a large
number of JVM threads which are very expensive in terms of memory. Therefore instead of generating a
thread for every asynchronous method call, in our approach such calls are stored as Callable objects
which we call tasks. The overall architecture for the execution, suspension and resumption of such tasks
consists of the following main basic ideas:

• A system-wide thread-pool that assigns at most one thread to each actor.
• A task queue for each actor.
• Each actor thread runs a main task which iteratively selects from its queue an enabled task and

runs it.
• Newly generated tasks are stored in the corresponding actor’s queue.
In the following we first describe in more the general mechanism of spawning and completion of

tasks and then details of task scheduling and execution.

4.2.1 Task Generation and Completion
This section introduces two abstractions defined as classes called Task and Future which are used as
part of the mechanism for spawning tasks. We describe in more detail some of the implementation issues
of these non-blocking futures and the new delegation mechanism through Listing 4.2.

Non-Blocking Futures Every asynchronous call creates a new task as an instance of the class
Task(Listing 4.1) and stores it into the task queue of the actor callee. Task instances model tasks
and spawned sub-tasks representing messages and continuations. The actual computation is captured in
the task field which is a Callable returning a Future. The enabling condition is only used for sub-tasks;
the type Guard represents the possible guards presented in the ABS semantics: either a boolean expression
over the actor state, a future or a symbolic time duration. In all these cases the field resultFuture will
contain a newly created instance of Future(Listing 4.2) which uniquely identifies this task and which is
returned to the caller. This is special future type defined in the library that cannot block a thread when
trying to retrieve its result. Upon termination of a task, the return value will be wrapped in an Future
instance with a set completed flag and an assigned value. In our approach based on the notion of a
Task, futures no longer provide a blocking get operation that suspends a thread in the system. Instead
we provide the notion of a suspension mechanism at the level of a Task which does not block the Main
Task of an actor. Thus it allows for cooperative scheduling of other tasks by the Main Task of the actor.
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Listing 4.1: Simplified implementation of Task class in Java.
1 public class Task<V> implements Serializable, Runnable {
2 protected Guard enablingCondition = null;
3 protected final Future<V> resultFuture;
4 protected Callable<Future<V>> task;
5
6 //implementation and functionality
7
8 public void run( ) {
9 try {
10 task.call( ).backLink(resultFuture);
11 // upon completion, the result is not necessarily ready
12 } catch (Throwable e) {
13 e.printStackTrace( );
14 throw new RuntimeException(e);
15 }
16 }
17 }

Delegation. As discussed in Section 4.1.4, a method may delegate the completion of its future to
another task (its continuation). Since every task has an associated future, this gives rise to a doubly-
linked list of futures. Whenever the Main Task runs a Task from its queue it will issue a statement
task.call( ).backLink(resultFuture) (see Listing 4.1). Thus, the currently running Task, once it returns,
sets the dependant of its associated future to the provided back-link (line 15). If the task successfully
completed its future without delegation it can complete its dependant as well (line17). On the other hand,
in case of a delegation delegation, its associated futures future will become itself a dependant to the
delegated future.

Once a complete method is called, it will recursively propagate completion through the whole
delegation chain (line 26). After that it will notify its own awaiting actors accordingly (line 28). Thus the
above scheme only involves backward propagation of completed futures and avoids searching through the
delegation chain when checking a particular future.

It is important to note that for every Task at least one level of such delegation happens. That is
because the creation of a Task instance and its execution happen at different points in time. When the Task
instance is instantiated, so is its resultFuture field, which is returned immediately issuer of the call or
creator of a sub-task. The actor may await the completion of this future. Once the future at the end of the
delegation chain actually has the computation result, the completion and notification procedure will run
as explained above. As a final note, the isDone method and getOrNull methods are used internally and
it is ensured that the value of the future is read only when the future is ready. This scheme fully integrates
futures with the mechanism of spawning new tasks and supports the delegation of the computation of
return values.

4.2.2 Task Scheduling and Execution
The LocalActor class implements the functionality of scheduling and executing tasks in an actor in a
scalable manner that ensures fairness between the actors when competing for the system threads. The
internal part of this class, which is hidden from the user of the API, is presented in Listing 4.3. Inside the
class there is a taskQueue which holds all tasks of an actor. Tasks are defined as instances of class Task
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Listing 4.2: Details of the Future class in Java
1 public class Future<V> {
2
3 private V value = null;
4 private Future<V> dependant = null;
5 private AtomicBoolean completed = new AtomicBoolean(false);
6 private Set<Actor> awaitingActors = ConcurrentHashMap.newKeySet( );
7
8 void awaiting(Actor actor) {
9 awaitingActors.add(actor);
10 if (completed.get( ))
11 notifyDependant(actor);
12 }
13
14 void backLink(Future<V> target) {
15 dependant = linkedFuture;
16 if (completed.get( ))
17 dependant.complete(getOrNull( ));
18 }
19
20 void complete(V value) {
21 if (this.completed.get( ))
22 return;
23 this.value = value;
24 this.completed.set(true);
25 if (dependant != null) {
26 dependant.complete(value);
27 }
28 notifyDependants( );
29 }
30
31 boolean isDone( ) {
32 return this.completed.get( );
33 }
34
35 V getOrNull( ) {
36 return this.value;
37 }
38 }
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(for example on line 37). To allow for concurrent access and an efficient scheduling of these tasks we use
a hashmap (ConcurrentSkipListMap on line 5) that orders tasks into buckets (queues of tasks defined
by assigned priorities).

The implementation defines an inner class Main Task which is responsible for selecting an enabled
task from the queue (via the takeOrDie method) and running it. Execution of an actor is represented
by an instance of Main Task. Being a Runnable, the main task of an actor can be submitted to the
system-wide thread pool to a global ExecutorService that efficiently manages allocation of available
system threads to active instances of Main Task. As a naive approach to iterating over the messages
in the queue, one could put a while loop in the run method of the Main Task. However other actors
may get no chance to run any task. In our implementation, the Main Task submits itself again to the
executor service after having processed one task (instead of looping over all enabled tasks in one go).
Thus it allows all actors to get a fair chance of executing their Main Task. This fairness policy may also
be fine-tuned to allow the Main Task to execute a fixed chunk of tasks at a time before releasing the
thread in order to reduce context switches. and thus actors are put to compete for available threads in a
scalable way.

The Main Task avoids busy-waiting in cases that all tasks in the queue are disabled. If takeOrDie
returns false, it means there are no enabled messages and the Main Task of this actor simply terminates.
Note that the queue may happen to contain only disabled sub-tasks awaiting on boolean conditions;
in that case, they can be enabled only via receiving a message from another actor. The Main Task is
reactivated upon generation of any new task in the queue (line 41). Actor’s Main Task will thus be
reincarnated only upon receiving a new message. To make sure there is no more than one instance
of the Main Task running for an actor, we use the mainTaskIsRunning flag. As the task queue is
accessed concurrently by the Main Task performing the queue traversal and other actors sending method
invocations, it is important to avoid race conditions. A race condition may happen if after Main Task
finds no enabled messages in the queue and just before it resets the mainTaskIsRunning flag, a new
message is sent to the actor; if this happens, the current Main Task will terminate and the new message
also creates no new Main Task. We avoid this situation by the synchronized blocks in takeOrDie
and notRunningThenStart. Since this is a very rare case, the synchronization here does not affect
performance.

In case Main Task terminates because all tasks in the queue are disabled and one task that was
awaiting completion of a future becomes enabled, the corresponding future is made responsible for
reactivating the Main Task. As mentioned in the previous subsection, every future has a list of awaiting
actors. Upon completion, each future will send a special empty message to the awaiting actors. To
avoid performance penalties, the actor scheduler skips such empty messages and will continue to the
next message immediately. Nevertheless, this empty message will reactivate the Main Task if it was
terminated. This represents a big advantage of this approach is that there is no need for any centralized
registry of awaiting actors and also eliminates any busy waiting by actor schedulers.

Actor Life-Cycle. Actors can be created using the new keyword just like normal objects. This implies
that the actor life-cycle is like a plain Java object and it will be garbage collected when there are no more
references to it. In other words, there is no need for any context or a central registry to keep track of actors
or to stop actors explicitly. Additionally, if there are messages in an actor’s queue, they will be executed
even if no external reference to the actor exists. Conversely, when an actor has no messages, it puts no
execution load on the system (as discussed in the implementation notes above).

COG support To support the organization of actors into concurrent groups as described in section 3.3.1,
the library provides a means for actors to share the mainTaskIsRunning flag though the moveToCOG
method (line 1 in Listing 4.4). This means that only one actor will have itsMain Task running from the
group sharing this flag preserving the COG notion. Certain applications also benifit from actors sharing
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Listing 4.3: Details of the Local Actor class in Java
1 abstract class LocalActor implements Actor {
2
3 private Task<?> runningTask;
4 private final AtomicBoolean mainTaskIsRunning = new AtomicBoolean(false);
5 private ConcurrentSkipListMap<...> taskQueue = new ConcurrentSkipListMap<>( );
6
7 class MainTask implements Runnable{
8
9 public void run( ) {
10 if (!takeOrDie( )) return;
11 runningTask.run( );
12 ActorSystem.submit(this);
13 }
14 }
15
16 private boolean takeOrDie( ) {
17 synchronized (mainTaskIsRunning) {
18 / ∗
19 iterate through queue and take one ready task
20 if it exists set it the next runningTask and then
21 ∗ /
22 return true;
23
24 // if the queue if empty or no task is able to run
25 mainTaskIsRunning.set(false);
26 return false;
27 }
28 }
29
30 private boolean notRunningThenStart( ) {
31 synchronized (mainTaskIsRunning) {
32 return mainTaskIsRunning.compareAndSet(false, true);
33 }
34 }
35
36 public final <V> Future<V> send(Callable<Future<V>> message) {
37 Task<V> m = new Task<>(message);
38
39 // add m to the task queue with low priority and no strictness
40 if (notRunningThenStart( )) {
41 ActorSystem.submit(new MainTask( ));
42 }
43 return m.resultFuture;
44 }
45 }
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their task queues so the library also offers support for this (line 4) although this instruction can be optional
when grouping actors together. The move moveToCOG method is part of the default constructor of an
actor and as such will either create a new COG for the actor if the destination parameter is null or place
the newly create actor into the destination’s COG (their main tasks will share the lock for starting). The
library also offers a helper method sameCOG such that at any point in the program the user can check if
two actors are part of the same group.

Listing 4.4: Methods for COG support in the Local Actor Class
1 public void moveToCOG(LocalActor dest) {
2 if(dest!=null) {
3 this.mainTaskIsRunning = dest.mainTaskIsRunning;
4 this.messageQueue = dest.messageQueue;
5 }
6 }
7
8 public boolean sameCog(LocalActor dest) {
9 if(dest!=null ) {
10 return this.mainTaskIsRunning == dest.mainTaskIsRunning;
11 }
12 return false;
13 }

Using JVM Garbage Collection The Main Task of an actor dies if there are no enabled tasks or
sub-tasks in the queue. We explained that Boolean guards may be re-enabled only if another message
is received by the actor, therefore, the Main Task is reactivated only upon receiving a new message.
However, as mentioned in this section, the enabling condition of a sub-task may also depend on the
availability of futures. Therefore, in order to avoid actors constantly polling futures, we need a (push)
mechanism to allow completed futures to notify the actors awaiting on them. A naive approach would be
to keep a global table with the list of actors awaiting every future. Alternatively, we chose to distribute
this table into every future to keep track of the actors awaiting its completion.

Whenever an actor creates a sub-task guarded by a future, the actor will automatically be added to
the list of awaitingActors of that future. This is done via the awaiting method. Further, to notify
actors of the completion of this future, the completed future sends a special wake-up message to every
actor in its awaiting list. As described previously, this will reactivate the Main Task in case it has died.
The Main Task of the actor then continues to process its task queue and possibly will select the newly
enabled sub-task from the queue. The only extra references we need for the actors (i.e., in addition to what
is used in the program) are the ones required for the notification mechanism for futures. Once the future
is completed and notifications are sent, these extra references are deleted. Therefore we can leave the
entire garbage collection process to the Java Runtime Environment as no other bookkeeping mechanisms
are required. This way we do not need to keep a registry of the actors like the context in Scala and
Akka. In this setup we completely encapsulate the generation and completion of futures and they are
an integral part of the asynchronous method invocation and return, and as such are not exposed to the
user of the API. Furthermore, the Future class is implemented completely lock-free and therefore the
chaining of futures performs very efficiently.
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4.2.3 Symbolic Time
In section 3.5 we presented how ABS models abstract time, how messages can be ordered based on how
much time has passed since execution of a model has started. This extension is optional in the runtime
and as such programs have the possibility to run with or without symbolic time. The extension introduces
a new type of guard called DurationGuard that represents a new enabling condition for a task that needs
to be evaluated before the task can run. Its class definition is presented in Listing 4.5. The class contains
the min and max values for a duration statement as defined by the Timed-ABS model. Furthermore it
contains a variable whenCalled to determine the logical point of time when the duration statement was
called. The logic of the runtime can then use that point to compute the number of time units that need to
pass before the guard is satisfied (line 13). The static method now( ) is explained in the next paragraph
in Listing 4.6.

Listing 4.5: Duration Guard Class
1 public class DurationGuard extends Guard {
2
3 int whenCalled, min, max;
4
5 public DurationGuard(int min, int max) {
6 this.whenCalled = TimedActorSystem.now( );
7 this.min = min;
8 this.max = max;
9 }
10
11 @Override
12 protected boolean evaluate( ) {
13 return (whenCalled+min)<=TimedActorSystem.now( );
14 }
15 }

In the runtime we extended the ActorSystem class, which only provided the management of the
system-wide thread-pool. The blueprint of the class is presented in Listing 4.6. Part of this class contains
support for the resource model and deployment components and is explained in Section 4.2.4. As per
the semantics of the timed ABS model, processes that are explicitly suspended by Duration Guards may
only execute when all other processes are blocked or suspended on either a future, a boolean state or
awaiting resources. To ensure this, we require that the system knows the number of actors running at all
time provided by the runningActors atomic variable (atomicity is needed as parallel processes that run
to completion may update this variable at the same time). The system also provides a clock that measures
a central logical time to which all processes have access through the symbolicTime atomic variable.

The system keeps an ordered mapping (awaitingDurations) of all suspended processes due to
time such that it can optimally advance the logical clock until enough time has passed to release the
“lowest-time" awaiting process. This is the functionality of the done method which is called at the end of
every Main Task life cycle (see Section 4.2.2). The system first identifies the condition for advancing
time (line 15: all processes are suspended). The system then selects the process or processes (actors) that
require the shortest period of time to pass in order to be released, logical time advances by that amount
and the actors are notified of their release through an emptyTask (lines 21 to 28).

4.2.4 Resource Modeling
The resource modeling feature works very similar to the COG support in the library runtime. Just like
symbolic time this support is optional and is offered by the TimedActorSystem class in Listing 4.6. The
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Listing 4.6: Timed Actor System Class
1 public class TimedActorSystem extends ActorSystem {
2 private static AtomicInteger symbolicTime = new AtomicInteger(0);
3 private static AtomicInteger runningActors = new AtomicInteger(0);
4 private static ConcurrentSkipListMap<Integer, List<Actor>> awaitingDurations
5 = new ConcurrentSkipListMap<>( );
6
7 private static ConcurrentLinkedQueue<ClassDeploymentComponent> deploymentComponents
8 = new ConcurrentLinkedQueue<>( );
9
10 static public int now( ) {
11 return symbolicTime.get( );
12 }
13
14 static public void done( ) {
15 if (runningActors.decrementAndGet( ) == 0) {
16
17 for (ClassDeploymentComponent dc : deploymentComponents) {
18 dc.replenish( );
19 }
20
21 SortedSet<Integer> keys = awaitingDurations.keySet( );
22 int advance = keys.first( );
23 List<Actor> toRealease = awaitingDurations.remove(advance);
24 keys.remove(advance);
25 advanceTime(advance);
26
27 for (Actor a : toRealease) {
28 a.send(ABSTask.emptyTask);
29 }
30 }
31 }
32
33 static void advanceTime(int x){
34 symbolicTime.addAndGet(x);
35 }
36 }
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ABS standard library directly offers backend independent support for acquiring and awaiting on resources
offered by deployment components together with support for a deployment component to self-replenish it
resources. These methods work exactly like the semantics summarized in Section 3.6. The only part that
is specific to each backend is determining the moment when all resources need to be replenished and this is
done each moment symbolic time advances (line 18). All the modeled deployment components are stored
in a hashmap for this purpose (line 8). When using the program with resource modeling support a default
deployment component with infinite resources is created at the program’s entry point. From that point all
newly created actors are assigned a deployment component in their constructor. This can either be the
same deployment component as the actor that created it, or a new one according to Listing 3.12. The
constructor will then call the method in Listing 4.7 to correctly set each actor’s deployment component
when it is created.

Listing 4.7: Setting a reference for Resource Location in the Local Actor Class
1 public void setDC(Actor dc) {
2 this.dc = dc;
3 }
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Chapter 5

From ABS to Java

This chapter extensively covers the possibilities of offering all of the ABS features in a software devel-
opment context. These include the concurrency model, both object-oriented principles and functional
programming, cooperative scheduling, symbolic time simulation and resource modeling. These possibili-
ties are discussed through two main approaches for translating ABS into program code (the Java language).
These approaches are by either constructing a compiler from ABS code to Java code or by providing a
library and API to use and develop programs directly in Java using ABS features. The second part of
the chapters covers how the solution for the Java backend has evolved to support the different features of
ABS discussed in Chapter 3, as well as promote ABS paradigm as a full-fledged programming concept to
be adopted by industry.

5.1 Compiler vs Library approach
The discussion is divided into two general perspectives for software engineering. The first perspective
focuses more on the practical side of the software engineering cycle, or how the user’s experience changes
by using either the compiler or library. The second section will present the theoretical and formal analysis
perspective of the user that is developing an application. We discuss these two approaches in terms of
three dimensions:

Programming In programming practice, as a developer, one wants to limit the learning path of new
programming technologies, languages and patterns. At the same time, as the features of ABS are
introduced into the programming code, a certain amount of work is required to understand how to
correctly use these features and maximize their performance benefits. If ABS is used together with a
compiler, all of the features will be readily available and straightforward to use. On one hand, a user with
a more formal background and already familiarized with a ABS will benefit a lot from this approach.
On the other hand, a user with industrial experience and a background in programming languages, will
require some time to understand the syntax and semantics of programming in ABS.

Working with ABS features directly using a library directly will be easier to learn by a developer with
experience in programming languages while also being able to maximize the performance of the program
using these features. On the opposite side of the spectrum, an experienced user of ABS or other formal
languages will require time to learn how to use the library and design patterns to program directly using
the library and emulate the features of ABS. This latter approach brings ABS closer to programming
patterns and approaches that are already available and used in software engineering and such makes ABS
more likely to be adopted by industry as a full-fledged programming language.
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One of the main challenges of promoting ABS as a general language for software development is
its efficiency when the code is running on a real machine, using the system threads, main memory and
I/O interfaces. For example the core part of the ABS language offers limited support for working with
complex and efficient data structures for various purposes like storing or searching for data. In the ABS
standard library there is little support for Hashmaps (which are implemented as associative lists) and
Arrays. In general it is the language backend the creates a correspondence between the existing data
structures of the language and the ABS library data types, or the data types are simply translated as
functional data types with possible performance penalties (e.g. search complexity in a Hashmap is O(n) ).
To have a standardized way of translating ABS, in the last approach that uses a compiler, we simply do not
create any correspondence between existing types implemented in the ABS Standard library and translate
everything exactly according to the grammar and operational semantics of ABS. All the definitions that
exist in ABS standard library, such as resource modeling, timed-ABS, predefined data structures, data
types and functions are translated exactly like all the other source code by the user. To allow the coder of
ABS to use Java or Scala language specific packages, an extension of the type-checker is required to allow
foreign language imports. The type-checker of ABS needs to be extended such that when the imported
interfaces are used in the code they will be parsed correctly.

Using the approach of providing a library with the core ABS mechanisms like cooperative scheduling
and asynchronous communication, the developer has a lot more flexibility when coding. All the language
specific libraries and packages available in Java and Scala can be used directly with the library containing
ABS features. The API is simply another program library that can be integrated into any code or any
application that uses an actor programming model similar to Scala or Akka actor libraries. There is
no need to extend or modify any type-checking or parsing as the ABS features are not any language
extensions. It comprises of normal Java Interfaces or Scala traits with method signatures. One of the
more difficult aspects of using ABS cooperative scheduling or asynchronous messages through the
library will be learning certain patterns of code similar to using other libraries like sockets or files (e.g.
a certain programming sequence is required to open a socket). For example an asynchronous call in
ABS will require the library user to first create a message using lambda expression or an instance of
Runnable/Callable. Then this instance needs to be sent to a different actor as a method argument. To ease
the use of this pattern some syntactic sugaring constructs are provided in the Scala library such that an
synchronous method call is done in a similar pattern to a synchronous one.

Another important feature that ABS already has incorporated in the language are deltas and product
lines. This feature allows compile-time modification of the code depending on parameters passed to
the compiler. The current version of the parser and type-checker is backend independent with respect
to precessing deltas and product lines. As such, using the ABS compiler to Java does not require any
modifications or extensions. The API on the other hand does not have support for this feature directly,
but Java has a corresponding reflection feature which can be used in a similar way.

In terms of debugging code, using ABS together with a compiler, requires a separate debugger for the
ABS language. The new debugger needs to be integrated with the code generator such that the code that
is debugged in JVM has corresponding lines in ABS regardless of whether there are foreign imports in
the language or not. When directly programming with ABS features when coding with the library API,
the entire debugging process is left to the JVM debugger without any correlations.

Analysis For the ABS language several tools have been developed to apply formal development and
analysis techniques, e.g. functional correctness [DBH15] and deadlock analysis [GLL16]. Writing
software using the ABS language directly and testing it using such tools can result in much more reliable
and robust software. This is a significant advantage that the compiler presents, as a user with a formal
background can use all the existing state-of-the-art tools developed for ABS. These tools include resource
analysis, deadlock detection and correctness proofs and then still generate executable code to run the
application in a real environment.
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To allow the usage of these tools on an application written directly using the library, the code needs
to have a mapping to ABS. This will require some research into model extraction techniques to obtain the
ABS model from the written code. For example the latest version of the API to be used directly in Scala
allows a one-to-one mapping of asynchronous calls from ABS to Scala. This mapping is provided in the
library with some helper definitions to allow the same behavior as in ABS with exactly the same syntax.
This allows compile-time checking of the code to ensure asynchronous calls are invoked on methods
that are exposed by the interfaces or classes. However, several more features in ABS have syntax and
semantics that differ from the library implementation. Thus, this requires effort to modify either the
existing tools of analyzing ABS code or to extract the ABS corresponding code from either Java or Scala
code. In this case, using the ABS code together with the compiler is so far the better option when it comes
to using the formal verification tools.

The timed-ABS extension can be used to simulate behavior of actors that require a certain chronological
ordering of execution. The compiler has support for translating this feature into symbolic time and using
the spawn mechanism to schedule and suspend tasks according to a logical clock. The library runtime
offers the implementation of symbolic time together with constructs for spawning tasks with duration
guards as explained in Section 4.2.3. As such this feature is available for usage in both programming
approaches depending on the developer’s background (formal or software).

Another program analysis feature available in both approaches is the resource modeling explained
in 4.2.4. Programming with this feature using ABS and a compiler is straightforward as the compiler
links the ABS standard library to any program and correctly compiles any ABS sources that require
this support. To program directly using the library, the user has to have a compiled version of the same
standard library linked in the program to use the methods of acquiring and replenishing resources. As
such, this feature is easier to use by a programmer more familiar with ABS, but nonetheless it is available
for both approaches.

Run-time verification Evaluation and benchmarks are an integral part of software development and
we want to compare how easy it is to test and benchmark an application either written in ABS together
with a compiler or an application written directly using the library. When running an application written
in ABS, the code first needs to be compiled into Java code , which is usually very large and difficult to
read (although it is not required) due to the some of the restrictions that will be described in Chapter 7.
The next step is to then compile and run the code in the JVM, which runs normally as the ABS program
entry point will correspond in Java to the main method. A big disadvantage to running an application
directly from ABS code is that for any run-time errors that occur, the JVM will point the generated Java
code. The user then has to find the point in the ABS code where this error occurs or use the separate
ABS debugger. Whenever the user makes changes to the code to solve any runtime errors or change
functionality this two-step process needs to be repeated to re-run the code. Running code written in Scala
or Java eliminates the step of compiling from ABS and also offers a much easier interpretation of runtime
exceptions and stack traces as the fault points have direct correspondence in the code.

Another important aspect of testing an application is using its results. The core ABS language offers in
its standard library support for console I/O so many applications can be evaluated by printing results to the
standard output. However, ABS does not support other means of retrieving results like files, inter-process
communication or the possibility to internally time the execution of a program. To use the results from
running an ABS application or profiling it, one needs to use bash programs to redirect console results
or time the application after running the generated Java program. Using the library directly offers more
means of aggregating and analyzing results directly in the program rather then only after running it.
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5.2 The "Bloody Battle of Backends"
This section covers how the solution for providing ABS together with a compiler has evolved through
several Java backends providing complete or partial support to ABS features. As the ABS language covers a
lot of modeling purposes, programming paradigms, concurrency and distributed features as well as support
for programming both real applications and simulation platforms, each backend had a separate focus of
translating ABS. Initially ABS was composed of the core language features and through each iteration
of the research projects new language extensions and features were added (again we refer to [JHS+12]
for the core semantics and to [absa] for the current manual with all the language features). With each
extension and research project there came requirements for which a different language became suitable
Currently ABS has 4 language backends available : Maude [WAM+12], Erlang [AVWW93, GJSS14],
Haskell [BdB16, ABdBMM16] and JVM. Throughout this section we will focus on the iterations that
the backend and runtime of ABS for the JVM has gone through.

5.2.1 Original Java Backend
The Original Java Backend [Sch11] had the main purpose of supporting the full core ABS features.
This included the functional features of ABS, asynchronous programming, cooperative scheduling and
COGs. The goal was to provide a correct translation and behavior of each ABS feature. This presented
some challenges in the translation process which are highlighted below. As the translated code is very
complex, the Listings in this section will only show the most important parts of the generated code.

Algebraic Data Types(ADT) and Functional Features Translating ADT and using pattern matching
on them posed a significant challenge in Java. This was due to the fact that this data type that was defined
either as simple data type or as a data constructor with arguments. These latter constructs could have an
undefined length, as arguments could be ADT themselves. We look at translation of the Maybe data type
in the ABS standard library shown in Listing 5.1.

Listing 5.1: Data Type Maybe in ABS
1 data Maybe<A> = Nothing Just(A fromJust);

The original Java backend translates all ADT declarations as abstract classes (Listing 5.2) with
methods to identify or cast each possible type defined (in this case Nothing or Just). Each simple data
type (i.e. Nothing) is a subclass of the abstract class as the definition in Listing 5.3. If the declared type
is a data constructor that has arguments, then it is translated as a subclass with corresponding fields and a
Java constructor with the arguments as parameters (line 5 in Listing 5.4).

Listing 5.2: Maybe Class in Java
1 abstract class Maybe<A > {
2 final boolean isNothing( ) { return this instanceof Maybe_Nothing; }
3 final Maybe_Nothing<A> toNothing( ) { return (Maybe_Nothing) this; }
4 final boolean isJust( ) { return this instanceof Maybe_Just; }
5 final Maybe_Just<A> toJust( ) { return (Maybe_Just) this; }
6 }

To translate the pattern matching feature of ABS into Java, each data type must have an implementation
that first verifies that two ADTs (translated as objects) are of the same instance. Data types must then
also provide an implementation that tests the equality between two instances of that data type. This is
quite straightforward for simple data types, where the two methods (eq in Listing 5.3 ) essentially test the
instanceof equality. However for data constructors this implementation needs to test the full depth o
the data constructor which may require a large recursive call stack to the eq method, seriously affecting
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performance and possibly even limiting the size of an ADT definition, though it is still a formally correct
translation [NdB14].

Listing 5.3: Nothing Class in Java
1 public final class Maybe_Nothing<A> extends Maybe<A> {
2
3 public Maybe_Nothing( ) {
4 }
5 public abs.backend.java.lib.types.ABSBool eq(...) {
6 ...
7 }
8 }

Listing 5.4: Just Class in Java
1 package ABS.StdLib;
2 public final class Maybe_Just<A> extends Maybe<A> {
3
4 public final A arg0;
5 public Maybe_Just(final A arg0) {
6 this.arg0 = arg0;
7 }
8 public abs.backend.java.lib.types.ABSBool eq(...) {
9 ...
10 }
11 }

Objects Representation and Interaction The semantics of ABS objects defined them as actors running
messages from their queue one at a time. These actors can be grouped in COGs and thus are they
have to share the same thread of execution. To translate this functionality, all actors the original Java
backend extend a superclass class for all ABS objects as in Listing5.5. This class provides the basic
initialization any object instance and assigns it a COG. This superclass will be present in this form
or an extended form through all iterations of the Java backend, however in the original Java backend
such object abstractions exist for every notion of ABS including predefined data types (Int, Boolean,
Rational), method calls(synchronous or asynchronous), ADTs (as shown in the previous paragraphs),
object references (classes and interfaces) and most importantly active processes that are running like the
execution of a method call within an actor. This object hierarchy is very stable and ensures correct code
generation from an ABS model, but has significant performance penalties as it does not use existing Java
libraries and constructs such as basic one-to-one mapping to method calls or primitives.

Cooperative Scheduling The solution for correctly translating suspension and resumption of messages
was as detailed in the previous chapter and based on a basic thread-based approach. Every message
that is generated via a synchronous or asynchronous call is a particular type of object in the backend.
In the original solution these objects are an extension of the Thread class and the main idea behind the
concurrency model was to assign a lock for each COG and have threads competing for execution. When
messages are suspended or COGs are blocked, the generated code will use the readily available JVM
runtime to manage suspended threads, saved call stacks and context switches, ensuring a correct execution
of the ABS model.

46



Listing 5.5: ABSObject Class in Java
1 public abstract class ABSObject implements ABSRef {
2
3 protected COG __cog;
4 protected final long __id;
5
6 protected ABSObject(COG cog) {
7 this.__cog = cog;
8 this.__id = getFreshID( );
9 this.__cog.register(this);
10 }
11 }

Resource Management, Time Models and Actor Location The ABS features for modeling time,
resources and actor location are not part of the core ABS language and were only introduced later when
the language and first backends became more stable. In the original Java backend which targeted the core
concurrency model there was no support added for these features. As users of ABS focused more on the
performance of the generated programs, research in the Java backend first went towards improving thread
management and scalability. Thus the original Java backend did not support resource and time, but it was
integrated as part of the another backend to support actor location and scalability, which is described in
Section 5.2.3.

5.2.2 ABS-API using Java 8
The second iteration of the Java Backend was focused on reducing code size and improving its readability
bringing it closer to the ABS code. It was also focused on improving performance in a highly parallelizable
application, but restricted to one machine. The research conducted in this thesis contributed to this solution
named as the ABS-API library. The ABS-API library [SNA+14, SAB+15] was introduced as a solution
to translate ABS code into production code initially for parallel applications. Starting with Java 8, there
were new features that allow wrapping of method calls into lightweight lambda expressions such that
they can be put into a scheduling queue of an Executor Service. Running objects were now mapped to a
single thread, significantly reducing the number of idle Threads at runtime.

ADT, Functional Features, Resource Management and TimeModels One of the biggest drawbacks
in terms of performance for the original Java backend was the fact that ADT had to be translated as
objects and pattern matching on them would require indefinite recursive calls to completely match the data
type. The ABS-API completely forgoes support for data constructor ADT and only translates simple data
type as enumerators in Java. Thus pattern matching for these ADT only requires switch statements and
greatly improves performance of ABS models that do not require the use of complex ADT when running
in a real-life environment. As with the original Java backend, the ABS-API was focused only on the
core features of ABS and did not implement support for the simulation of resources and time. However
it did introduce a solution to differentiate between local and remote actors and how object references
and futures were exchanged between actors. This solution along with the mechanism for propagation of
futures are presented in the next section.

Objects Representation and Interaction The ABS-API was developed to mitigate the performance
issues of translating ABS code into Java code. The added features in Java 8 allow for a more efficient
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and easy to use implementation of the actor model in ABS. This API provided an intuitive mapping
between ABS objects and Java threads and a more straightforward correspondence between ABS and
Java. First, methods in an interface were declared as Defender Methods using the default keyword. This
allowed actors to have a default behavior and optionally override this behavior to suit a specific function.
For instance, in Java 8 java.util.Comparator provides a default method reversed( ) that creates a
reversed-order comparator of the original one. Such a default method implementation eliminated the
need for any implementing class to provide such behavior by inheritance. Second, the introduction of
Java Functional Interfaces and lambda expressions was a fundamental change in Java 8. All interfaces
that contain only one abstract method were now functional interfaces that at runtime could be turned
into lambda expressions. This meant that the same lambda expression can be statically cast to a different
matching functional interface based on the context. This was a fundamental new feature in Java 8
that facilitated application of a functional programming paradigm in an object-oriented language. This
API made use of these new features available in Java 8 because many of the interfaces found in the
Java libraries were marked as functional interfaces, most important of which to this research were
java.lang.Runnable and java.util.concurrent.Callable. This meant that a lambda expression
could replace an instance of Runnable or Callable at runtime. Therefore a lambda expression equivalent
of a Runnable or a Callable could be treated as a queued message of an actor and executed. Finally, Java
Dynamic Invocation and execution with method handles enabled JVM to support efficient and flexible
execution of method invocations in the absence of static type information. This feature has been validated
performance-wise over anonymous inner classes and the Java Reflection API. Thus, lambda expressions
were compiled and translated into method handle invocations rather reflective code or anonymous inner
classes. A sketch of the overall ABS-API class diagram is shown in Figure 5.1

A Java API for the implementation of ABS objects and their interactions had the following three
features. First, one actor should be able to asynchronously send an arbitrary message in terms of a method
invocation to a receiver actor. Second, sending a message can optionally generate the equivalent of
an ABS future that the sending actor can use to refer to the return value. Finally, an object during the
processing of a message should have a context reference to the sender of a message in order to reply to
the message via another message. All these characteristics co-existed without requiring any modification
of the intended interface, for an object to act like an actor. The ABS-API library had a fundamental
interface namely the Actor Interface. This interface provided a set of default methods, namely the run
and send methods, which the implementing classes have access to. A default implementation for a single
machine was called LocalContextActor. This contained a queue that supported concurrent access as
ABS semantics imposed that an actor can receive messages in its queue from multiple other actors that
have a reference to it. The default run method took a message from the queue and executed the message
accordingly. The default (overloaded) send method stored the sent message in the corresponding queue.
In ABS, futures are used to control synchronization. In the ABS-API messages that were expected to
return a result were modeled as instances of Callable and a future was created by the send method which
is returned to the caller, while those messages that needed to run in parallel without a future reference to
the outcome were modeled as instances of Runnable.

For running on a single machine, an actor had a unique identifier and was deployed in a local context
(similar to Akka actors), where it could send messages via lambda expressions to other actors registered
in the same context. Its configuration is illustrated in Figure 5.2. Each actor was modeled to have its
own queue of messages and run them on a single process. Abstracting from the syntax of the actual
parameters, in ABS an asynchronous invocation of a method m of an actor a is described by a statement
Fut f=a!m( ), where f is a future used to store the return value (assuming that m contains a return
statement). In this iteration of the backend this invocation will be stored in a queue of the called actor a.
The LocalContextActor encapsulated the entire behaviour of the actor that comprised of the continuous
running cycle, the task message queue, the single thread restriction and the cooperative scheduling of its
suspended tasks.
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Figure 5.1: ABS-API Class Diagram
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Figure 5.2: Actor Model

The general class that replaced message representation from the original Java backend and avoided
using a thread for each message is presented in Figure 5.3. The class simply creates a lambda expression
that takes the form of a Java Runnable or Callable and subsequently a wrapper future which may be used
for synchronization purposes. This class did not extend from Thread and was just a Java object without
any extra memory allocated.

Figure 5.3: Message encapsulation

Cooperative Scheduling Again, abstracting from the syntax of the actual parameters, ABS features
synchronous method calls for self calls and objects within the same COG. These statements are described
in the standard manner of the form x = a.m( ) or x = this.m( ). In case of a call to a different actor
a the semantics of such a synchronous call can be translated by Future f = a!m( ); x = f.get, for
some future f (of the appropriate type). In case the actor calls its own defined method m the translation
depends on whether cooperative scheduling may be encountered. Futures can be passed around as
references and provide a get operation described by f.get which results in the value returned and blocks
the current actor if the corresponding method invocation has not yet computed the return value.

The ABS-API also had the purpose to formalize actor-based programming which implies asynchronous
message passing together with the ever-growing object-oriented software engineering approach. Using
asynchronous message passing and a corresponding actor programming methodology which abstracts
invocation from execution (e.g. thread-based deployment), it fully supported and emphasized the pro-
gramming to interfaces discipline. For a single machine, a thread, called a Sweeper was introduced. This
thread was available across all actors, that continuously checked all actors that had messages ready for
execution. It then submitted the message at each queue head to an executor service to minimize thread
explosion in case of a large number of actors. Actor execution was demand-driven as shown in Figure 5.4,
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with a single thread that is spawned into the state ready once the first message was received in the actors
queue, moves to state execute and runs all messages in the queue and goes into state stop once the queue
becomes empty, restarting once another message is inserted in the queue. This makes actors completely
independent from each other unless they explicitly call the synchronization mechanisms get and await.
This approach represented the basis for the demand-driven Main Task present in the JAAC runtime.

Figure 5.4: Actor State Diagram
Furthermore this minimized the number of threads to just those that required saving the call stack of

suspended methods within an actor caused by the await statement. The solution to achieve this was to
add a central context for all actors in the system and followed this execution sequence:

• Each asynchronous call/invocation is a message delivered in the corresponding object’s queue.
• All objects in the same Concurrent Object Group (COG) compete for one Thread.
• A Sweeper Thread decides which task should be created and be available for execution from the

available queues.
• A thread pool executes available tasks based on a work stealing mechanism.
• On every await statement, we try to optimally suspend the message thread until the continuation of

the call is released.
A key feature of the Sweeper thread was that it allowed efficient scheduling of tasks within an actor.

It prevented redundant thread creation by having suspended tasks of an actor given priority once they
were released to compete for the actor’s lock. This Sweeper Thread however became a bottleneck when
the number of actors was very large while also making actors dependent on each other. This happened
especially in applications that had a large number of small computations in actors as the Sweeper thread
completed a very big cycle at the end of each task. This was also true for programs where tasks were
very large, which meant that the Sweeper thread would occupy CPU while waiting for actors to become
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Figure 5.5: Thread Creation and Scheduling

active again. The existence of the Sweeper thread was to support actors’ cooperative scheduling property,
without creating a lot of threads in the system, but still had some drawbacks.

The Sweeper thread was thus removed from the model of the API and replaced with a new mechanism
to support cooperative scheduling. First of all when a get statement is called on a future, the actor moves to
the state block until the future is resolved. If an await statement is encountered, the actor invokes another
exposed method await which receives a boolean condition or a future to suspend on and a continuation
in the form of a lambda expression. The actor will then store a mapping of the continuation and the
condition or future in a separate map as either futureContinuations or conditionContinuations specific
to each actor and moves to state ready. The main executor introduced in the library is now responsible
when, a thread completes, to run the afterExecute method which verifies if it has to send a notification to
the actor from which it came to avoid a busy-waiting thread that may do this work. The method has to
search each actor’s continuation maps to identify the continuations that may have been resolved by this
method (either an existing boolean condition or the actual future that has been resolved).

Figure 5.5 shows how active objects in this implementation are demand-driven and only create a
physical thread once they have a method to execute inside their queue and the ExecutorService has
a thread available in its pool. Finally, when all messages are blocked or the active object’s queue is
empty the thread is ended and released back to the pool of the ExecutorService. The impact of this
approach is evaluated on an ABS benchmark comparing the performance of the Java 8 backend with
the ProActive backend for ABS discussed in Section 5.2.3. The only drawback of this implementation
approach is that if a method call contains a recursive stack of synchronous calls, this stack needs to be
saved when encountering an await statement, which cannot be realized with lambda expressions. To
solve this problem, such a call stack can be modeled by continuation functions and then saved as lambda
expressions. These lambda expressions are ordered such that, once released, the continuations can execute
and maintain the correct logic of the program.

Actor Location An extension the ABS-API library that supported an actor programming model in a
distributed setting, with enhanced cooperative scheduling, distributed future control and garbage collection
was proposed as part of the research in this thesis. The library had a new and simple format for classifying
actors based on their intended behavior. It introduced a class hierarchy of actors running on a local
host and actors whose functionality is reachable from a remote host. This hierarchy handled garbage
collection and controlled the peer-to-peer communications between remote hosts, as well as offering a
clear separation between an application running on a single machine or in a distributed environment.

The library was extended to ABS-API-Remote and had added support for identifying actors by a
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URI object which is defined by an IP and port allowing both local and remote communication. Actors
were aware of their location, as well as other actors identified by the same IP, allowing for optimizations
depending on whether two actors work on shared or distributed memory. This optimization was referred
as Location Aware Actors or Distributed Actors. The member queue however was restricted to one
data structure per IP name in the application. Each actor that had the same IP in its identification key had a
reference to this queue. The default run method behaved very similar as in the previous solution, the only
difference being that it polls a message from the shared queue, before checking its type and executing the
message. The default send method is the direct translation the actor!method( ) statement from ABS
and stores the method call represented by the lambda expression given as an argument in the corresponding
shared queue and returns a Future to control synchronization.

Actors were classified based strictly on the machine on which they reside and thus based on whether
they are allocated in memory on the machine. The API had to maintain data specific to the machine. Firstly,
it contained a customized ThreadPoolExecutor to which the actors residing on the machine submitted
their tasks. This ThreadPoolExecutor was available to all actors on one machine and implemented the
afterExecutemethod (state). Secondly, the class also contained a map of all the actors that were initialized
on one machine such that remote messages can be routed to the correct actor. Finally, the class contained
a table of the socket streams with all other machines in the system that grew and shrunk dynamically, as
more machines were added to the system. An important observation is to notice that socket streams were
initialized only when a remote actor belonging to a node that was previously unknown was instantiated in
the system and a listener thread was assigned to the stream processing either incoming messages to the
machine and as such, only if the setting was distributed. The machines communicated through serialized
messages and objects. The main features of the ABS-API-Remote library were:

• An actor is identified by a URI object and is aware of its location with regards to the other actors in
the system

• Sending a message is done by either placing the lambda expression in the shared queue if the actor
is local or sending the message to a different VM if the actor is remote.

• An object during the processing of a method should have a context reference (defined by the URI)
to the sender of a message in order to reply to the request.

All these characteristics must co-exist without requiring any modification of the intended interface, for an
object to act like an actor.

The ABS-API-Remote was focused for programming with distributed actors. A more detailed
illustration in Figure 5.6 explains how an actor is referenced on both a local and remote machine. In this
setting we have an actor a1 with a unique global identifier which is a Java URI that is "IP2:a1", where
IP2 is the IP address of Node 2 on which the actor was instantiated and a1 is a unique identifier of the
actor. Node 1 has a reference to this actor and its interface which contains method m( ) is also available.
An important objective of our solution is to avoid actors entering a busy-waiting loop in order to check
the resolution of futures. To achieve this, we insert a remoteUncompletedFutures data structure which
retains all the futures that were generated by calls to remote actors. The machine then sends a serialized
lambda expression of the asynchronous method call to the socket. Each machine is aware of the senders of
incoming messages, therefore when an actor completes a remote call, the serialized result of the actor can
be sent back as a reply. This behavior is part of the afterExecute method of the machine’s main executor
and is illustrated by the state afterExecute in the state diagram of the actor Figure 5.4. To allow remote
actors to identify which reply belongs to which future in the queue we introduce a naming scheme in the
form of "IP:f" where IP is the address of the actor that will complete the future and f the unique global
identifier (futureID) of the future.

The general mechanism is best described in terms of an example scenario with two asynchronous
calls to the same actor:
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Figure 5.6: Future Flow

1. Node 1 sends the following sequence of messages to actor a1 on Node 2.
• A futureID "IP2:f1" identifying the future that will be generated by the following asynchronous

method call.
• A pair < IP2 ∶ a1, m() > representing the first asynchronous method call to actor a1.
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• A futureID "IP2:f2" identifying the future that will be generated by the next asynchronous
method call.

• A pair < IP2 ∶ a1, m() > representing the second asynchronous method call to actor a1.
2. The two uncompleted futures f1 and f2 and their identifiers are stored as mapping as remoteUncom-

pletedFutures.
3. Actor a1 receives from the socket stream the two identifiers and two messages msg1 and msg2 in

the same order and inserts them in the message queue.
4. Actor a1 schedules msg1 and msg2 in a FIFO order on Node 2 main executor unless rescheduled

by an await statement.
5. When either message has finished executing, the afterExecute method of the main executor

sends back the corresponding futureID within a either pair < IP2 ∶ f1, result > or < IP2 ∶
f2, result >back to the socket stream where the message came from.

6. The socket stream forwards the result to Node 1.
7. Future f1 or f2 is completed with the received result depending on the futureID.

5.2.3 ProActive Backend for ABS
The ProActive Backend for ABS [RH14, HR16] was developed based on the original Java Backend to
generate ProActive code from an ABS source with the main purpose of running ABS programs in a real
distributed setting. Its development and research was made in parallel with the ABS-API, and as such
did not integrate any of the optimizations described in the previous section. Instead it provided a full
integration of the ProActive Language for distributed systems [] into the original Java backend.

ADT, Functional Features, ResourceManagement and TimeModels This implementation used the
full support of the original Java backend for ADTs and thus the representation of these types took the form
of classes and subclasses for each ADT. Each class needs the methods described in Listings 5.3 and 5.4 to
compare or verify equality for both simple ADTs or ADTs with data constructors. Furthermore instances
of these ADTs are normal Java objects and pattern matching on them requires a complete recursive stack
of eq methods. The ProActive backend was mainly focused on a correct translation and behaviour of
ADTs in Java. As the ProActive backend for ABS used mainly the features of the old Java backend and
was only tailored towards real distributed systems it did not add any support for symbolic time or resource
simulation. Its support was strictly based on the core ABS features and added the ProActive extension for
objects to be able to interact according to ABS semantics regardless of physical location.

Objects Representation, Interaction and Location With a target towards distributed deployment,
the ProActive backend had an important challenge to overcome when representing ABS objects. The
semantics of ABS make all objects accessible by any other object as long as one holds a reference to it
(whether it is passed as a method argument or through the return type of a method). A trivial translation
would have been a one-to-one correspondence between ProActive objects and instances of ABS classes,
but this would have created the same overhead as in the original Java backend with a thread associated
to each object. Instead this backend proposed a mapping from ABS COGs to ProActive objects and
thus to Java threads. This was very intuitive as an ABS COG is restricted to running a maximum of one
object from its group. As such COGs were translated to active objects that held the entry point for all the
ABS objects in their group. ABS objects were in turn translated as passive objects as a new step towards
optimizing performance of ABS models translated to Java. Inside an active object representing an ABS
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Figure 5.7: ABS new in ProActive

Figure 5.8: ABS asynchronous method call in ProActive

COG there was a mapping between object identifiers and object references such that all objects pertaining
to the same group could access each other. At the same time objects in different COGs would require
inter-COG communication which was translated as communication between two active objects vis Java
Remote Method Invocation (RMI) [PM01]. This configuration of objects is illustrated in Fig. 5.7.

An asynchronous call was translated as an equivalent remote call to the ProActive object representing
the COG which contained the target object. This target object would be identified through a unique ID and
execute the method through Java’s reflection feature as in Listing 5.8. Another challenge when configuring
an ABS backend for distributed support is how references to objects are passed to remote target objects
as method arguments. All method parameters are copied which is safe for immutable types like ADTs or
primitives. For object references, the copying procedure requires the object’s unique identifier and its
reference to its hosting COG. This is sufficient due to ABS actor semantics which require all interactions
between objects on different COGs to be asynchronous.

Cooperative Scheduling Cooperative scheduling in this backend was done by tuning the scheduling
of requests in ProActive objects. A simplified version of this tuning is part of the JAAC runtime and
API and described in Section 6.1.2. In ProActive, however the requests are still each assigned a thread
and each COG has its own thread pool to deal with the issues of saving call stacks. Another important
aspect that derived from this solution is the presence of a single queue of requests for each ProActive
object (which resembled an ABS COG). This concept was adopted in the runtime of JAAC where newly
instantiated objects can reference the queue of the object where the new call was issued (this will be
covered in depth in Section 7.1.1).
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Chapter 6

ABS Runtime as a Library API

The core of the JAAC library is written in Java and can thus be used in both Scala and Java. The API
directly provided in the Java library may at some places look too permissive, in the sense that the user can
misuse the API, for example, to run arbitrary Callables on an actor. We include here the expected usage
of each part of the API. The first part of this chapter aims at explaining the power of JAAC in allowing
integrated usage of actors, futures and coroutines. In the second part the usage of the API in Scala, an
extension called ASCOOP, is explained through the use of several small examples that follow the newly
introduced constructs. These constructs enforce at compile time the intended usage as we will describe in
Section 6.2.

This chapter covers the library API in Java and Scala that allows to extend the programming to
interfaces paradigm to actors in a seamless manner. It means sending a message to an actor is allowed
only if the actor defines a corresponding method publicly; in other words, sending a message can be
seen an asynchronous call to the corresponding method. This gives programmers much more rigor in
programming with actors, compared to the typical approach of actors such as in Akka, where messages
are allowed to have any type and the interface of an actor (in terms of what messages it can receive) is
not well defined. The extension ASCOOP not only enables static type checking of messages sent and
received by actors at compile time, but also allows defining hierarchies of actor classes.

The API also provides a design pattern for cooperative scheduling at the programming level of tasks
and sub-tasks within an actor. In this chapter, we use the term task to denote the execution of the body of
the method invoked by the corresponding message. A task, once started, does not necessarily produce its
final result upon completion. It can spawn sub-tasks (also referred to as a continuation) that will run in the
same actor interleaved with other tasks and sub-tasks. The result that should be produced by the original
task may thus depend on the completion of these sub-tasks. A sub-task can be given an enabling condition
(also referred to as guard) such that it will be scheduled only when the condition is satisfied. An enabling
condition can be based on the actor reaching a particular state, or a future being available as explained
next or a logical time condition if the programmer uses the timed-model explained in Section 4.2.3.

The API provides a tight integration of futures with actors. This means that, first of all, sending a
message or spawning a sub-task creates a future variable that will be completed when the corresponding
task or sub-task has finished. Then, one can spawn a sub-task guarded by this future that will naturally
model the continuation in terms of what should happen after the future is ready. The continuation is
guaranteed to run on the actor’s single thread of execution and thus preserving the actor semantics. This
is different from using futures and actors together in for example Akka or Scala where it is left to the
programmer to make sure that futures do not break actor semantics (see related work). The integration of
actors and futures gives us a powerful means for the expression and analysis of fine-grained run-time
dependencies between tasks through cooperative scheduling within an actor.
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6.1 JAAC API through an Example Program
Throughout this section we will show the use of the API through the implementation of the WorkerPool
actor introduced in Chapter 3. To declare a new actor, one must extend from the LocalActor class1.
This way, actor instantiation is like the instantiation of normal objects and is simply specified by the new
keyword in Java. This class defines its state in terms of fields and can also have constructors and methods
like normal classes in Java. An example actor is shown in Listing 6.1. It describes an implementation
using the JAAC library of the corresponding actor class WorkerPool in Listing 3.6.

Listing 6.1: Definition of an actor
1 class WorkerPool extends LocalActor {
2 Set<Worker> workers;
3
4 public WorkerPool( ) { / ∗ initialize the pool ∗ / }
5 public Future<Result> sendWork( ) { / ∗ method body ∗ / }
6 public Future<Void> finished(Worker w) { / ∗ method body ∗ / }
7 }

Methods that can be called asynchronously must return a value of type Future. This is different
from ABS. When a method in ABS would return a type T, a corresponding method defined in JAAC
should return type Future<T>. This Future wraps the return value, for example, doWork( ) method
is expected to return a value of type Future<Result>. When no result is expected, Future<Void> is
used. This allows for chaining calls in JAAC, e.g., a method can call another method and return the future
obtained from that call. On the other hand, when the method wants to just return a value, the value needs
to be lifted into a future containing that value. For this purpose, one can use the two variants of the static
done( ) method provided by the Future class in Listing 6.2. These methods create a new instance of a
completed future: one with a result put into it, and one for futures of type Void.

Listing 6.2: Future class with its helper methods
1 public class Future<V> {
2 public static <T> Future<T> done(T value) { ... }
3 public static Future<Void> done( ) { ... }
4 }

Message parameters are defined as method parameters and even though we cannot enforce using
immutable data structures, the actor is not supposed to mutate the arguments passed to it. The methods
inherited from LocalActor (see Listing 6.3) are explained in the sequel.

6.1.1 Library Methods.
The API provides several methods that can be used both by the compiler from ABS to Java or as a
standalone Java library. We highlight the methods that support the simulation of ABS features in the Java
language in Listing 6.3.

Spawn. The first method used to offer the emulation support of coroutines and the internal spawning
mechanism of tasks is called spawn and its usage is highlighted is Listing 6.4. Its intended usage is
only on a reference to this as actor semantics impose that all communication between actors is done
through asynchronous calls. To implement the suspension point in the sendWork method of the actor
class WorkerPool in Listing 3.6, the spawn method is used to generate a new task (in the form of a
Callable) on line 3 of Listing 6.4.

1LocalActor is used for non-distributed applications which run on a single JVM.
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Listing 6.3: API exposed by an actor
1 abstract class LocalActor {
2
3 // method used for sending asynchronous calls
4 <V> Future<V> send(Callable<Future<V>> task) {...}
5
6 // helper methods enabling coroutine implementation
7 <V> Future<V> spawn(Guard guard, Callable<Future<V>> task) {...}
8 <T, V> Future<T> getSpawn(Future<V> f, CallableGet<T, V> task) {...}
9 <T, V> Future<T> getSpawn(Future<V> f, CallableGet<T, V> task,
10 int priority, boolean strictness){...}
11 }

The guard parameter represents the associated enabling condition that can be either the completion of
a future or a condition based on the actor’s internal state. Here the abstract class Guard allows for multiple
types of enabling conditions to be evaluated. The aforementioned enabling conditions are subclasses of
Guard known as FutureGuard and PureExpressionGuard. The static overloaded method convert
creates instances of these subclasses depending on the parameter passed. The enabling condition has
to guard the continuation (the block of code that starts on line 4) and needs to be checked every time
the actor attempts to schedule the task. Therefore we transform this enabling condition into a guard
from a lambda expression that verifies if the set of available workers is non-empty (line 2). As a note,
guards always refer to the local environment of an object (either future references or local variables and
fields) and thus should not be passed to different target objects (hence the usage of spawn only on this).
The other two methods (whose usage is already shown on lines 5 and 8) represent particular cases of
this method. These two methods along with their usage and parameters will be explained in the next
paragraphs.

Listing 6.4: Spawn Method Intended Usage
1 public Future<Result> sendWork( ) {
2 Guard nonEmpty = Guard.convert(( ) −> ! workers.isEmpty( ));
3 return spawn(nonEmpty, ( ) −> {
4 Worker w = workers.pop( );
5 Future<Result> f = w.send( ( ) −> w.doWork( ));
6 return getSpawn(
7 f, (r)−>{
8 return Future.done(r);}, HIGH, STRICT);
9 }
10 );
11 }

Send. Asynchronous method invocations are modeled by invocations of the send method provided
by LocalActor. According to its signature in Listing 6.3, the send method takes a Callable. It is a
particular case of spawning a task without a guard. Unlike spawn, its intended use can be both a self call
or a different target object (as it does not have a guard). Without a guard the newly spawned task will be
ready for execution on the target object. It is also important to note that actor semantics of ABS impose
that the spawned task be a method exposed by the target object’s interface. As of now the library does not
enforce this semantics, but we recommend as a general programming practice to avoid sending a task
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represented by an arbitrary block of code to the target object.
In Java 8 lambda expressions have been introduced to allow a block of code to be passed as an

argument and be treated as data (implicitly converted into a Callable or Runnable). Using a lambda
expression as shown in Listing 6.5 we model an asynchronous invocation of the sendWork method of the
newly created WorkerPool. The send method returns a future that will eventually contain the result of
running the Callable parameter. The task parameter itself will be stored in the internal task queue of
the actor (see Section 4.2.2).

Listing 6.5: Sending an Asynchronous Call
1 WorkerPool pool = new WorkerPool( );
2 Future<Result> fut = pool.send(( ) −> pool.sendWork( ));

getSpawn. This method is used in Listing 6.6 to model an ABS await syntactic sugar illustrated in
Listing 3.7. It is a particular case of spawning a task that is used only together with a future guard. This
guard’s result is passed as a parameter to the spawned task making it available to use once the future is
complete (the task is ready to be scheduled). This method generates an instance of type CallableGet
with a future instance of Future<Result> as the associated enabling condition.

The type CallableGet represents a Callable instance that in the method application in line 2
(Listing 6.6) implicitly binds its parameter result to the (completed) value stored in the future fut. This
provides a cleaner, more intuitive way of retrieving and using a future’s result as part of the block of code
to be run by the actor when the future completes.

Listing 6.6: getSpawn Method Intended Usage
1 Future<Result> fut = w.send( ( ) −> w.doWork( ));
2 getSpawn(fut, (result) −> {...});

6.1.2 Call Stack and Priorities.
In ABS an asynchronous method invocation may in general generate a stack of synchronous calls. In
the JAAC API we can model such a call stack by generating for each call a corresponding task as a
CallableGet instance that represents the code to be resumed after the return of the call and that is
parameterized by an enabling condition on a future uniquely associated with the call (see Listing 6.7 for a
simple example of a synchronous call). To ensure that these tasks are executed in the right order, that is,
tasks belonging to different call stacks are not interleaved, we assign them a HIGH priority. But if one of
these instances should suspend, it will get the LOW priority, i.e., the same as normal tasks. By default
tasks that are created by spawn or send are set with a LOW priority. Moreover, the default priority, when
getSpawn is used without priority arguments is also LOW.

The default scheduling policy of an actor is to schedule one of the enabled tasks with highest priority.
If all such tasks are disabled the scheduler moves to the next priority. As a result, when a synchronous
call returns, the task representing its return will have priority over all other tasks (note that the enabling
conditions of these tasks ensure the LIFO execution of the tasks representing a call stack).

The additional strictness parameter allows the following refinement of the scheduling policy: an
enabled task of a lower priority can only be scheduled if all higher priority tasks are disabled and non
strict. As an example of the use of this additional parameter, the modeling of the f.get is illustrated on
line 8 of Listing 6.4. Note that this combination of HIGH priority and STRICT does not allow scheduling
of any other tasks (of the given actor).
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Listing 6.7: Usage of getSpawn to emulate a synchronous call of an Actor
1 public Future<Worker> getWorker( ) {
2 Guard nonEmpty = Guard.convert(( ) −> ! workers.isEmpty( ));
3 return spawn(
4 nonEmpty, ( ) −> {
5 Worker w = workers.pop( );
6 return Future.done(w);
7 }
8 );
9 }
10
11 Future<Result> sendWork( ) {
12 Future<Worker> fw = this.getWorker( );
13 return getSpawn(
14 fw, (w)−>{
15 Future<Result> f = w ! doWork( );
16 return f;
17 },
18 HIGH, NON_STRICT
19 );
20 }

6.2 ASCOOP Scala API
In this section we present the extension o the JAAC library to ASCOOP. The runtime core of ASCOOP is
written in Java employing efficiently the available executor services for thread pooling and using very
little synchronization locks, thus giving us a very high performance. Using Scala features for writing
domain-specific languages, ASCOOP improves the general programmability of actor-based systems in
Scala, enabling one to write simpler programs without compromising performance. The extension of the
API involves the following three main aspects.

6.2.1 Actors Typed with Interfaces
One of the main concepts of object-oriented programming is that classes encapsulate their internal
implementation and present a public interface to the outside (whether or not they actually implement an
explicit interface declaration). This allows for a clear separation of concerns, enables static typing, and
additionally caters for inheritance and type hierarchies.

The concept of actors can be viewed as bringing together abstract data types (as represented by classes)
and the concurrency control (as represented by threads). It is therefore very natural that actors can define
their public interface in exactly the same way as classes do (cf. [JHS+12]). In this section, we show
how actors define their interface and how they communicate. For simplicity in this section, we assume
the fire-and-forget approach to message passing; in other words, we assume for now that actor messages
do not produce any return values. In the next section, we will elaborate further how to make messages
return results and how those results can be received by the sender of a message.

Defining an Interface We use the term interface to refer to the concept and the term trait as it is used
in Scala. In the context of Scala, we may use these terms interchangeably. To define an explicit interface
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Listing 6.9: Actor Definition
1 class PingActor(pongActor: PongActor) extends PingInterface {
2
3 private var pingsLeft = 0
4
5 override def start(iterations: Int) = messageHandler { / ∗ code ∗ / }
6 override def stopped = messageHandler { / ∗ code ∗ / }
7 override def pong = messageHandler { / ∗ code ∗ / }
8 private def ping: Future[Void] = messageHandler { / ∗ code ∗ / }
9 }

for an actor, one can extend the TypedActor trait to define the messages an actor can receive. These
messages are defined as normal methods with the restriction that they must have a return type Future. In
general the Future is parameterized with a type that would denote the result type of the message, but for
now we assume only Void, which means these messages produce no return value. In itself, since these
methods return a type Future, it makes it clear on the caller side that calling them could result in an
asynchronous invocation (more on this in the next sections).

Listing 6.8: Ping-Pong Interfaces Definition
1 trait PingInterface extends TypedActor {
2
3 def start(iterations: Int): Future[Void]
4 def stopped: Future[Void]
5 def pong: Future[Void]
6 }
7
8 trait PongInterface extends TypedActor {
9
10 def stop(sender: PingInterface): Future[Void]
11 def ping(sender: PingInterface): Future[Void]
12 }

In the ping-pong example depicted in Listing 6.8, the start message will start a round of ping and
pong messages being sent back and forth for the given number of iterations. After that, it will send a stop
message and expects a stopped message back. As can be seen in the method signatures, the Ping actor is
expected to know its counterpart, while the Pong actor receives a reference to its counterpart on every
message. This demonstrates how in general actor references are typed by proper types and can be sent as
parameters to messages.

Defining an Actor with Message Handlers Once a trait is defined for an actor like in the previous
section, one can create a concrete actor by writing a class that extends that trait (see Listing 6.9). Note
that when programming in Scala, one is not forced to write a trait always, but can immediately start
defining an actor by creating a class that extends the TypedActor trait.

As with defining normal classes in Scala, users can define fields and methods inside actors. Mutable
fields (those defined as var) will constitute the actor state. All public methods of an actor must be defined
using the messageHandler helper: this turns every call to this method into an asynchronous message
passed to the actor. Obviously an actor may define any other internal methods, but in order to preserve the
actor semantics, all methods not defined as message handlers must be only accessible to the actor itself.
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Listing 6.10: Method Definition Using Message Handler
1 override def pong: Future[Void] = messageHandler {
2 if (pingsLeft > 0) { this.ping }
3 Future.done
4 }
5
6 private def ping: Future[Void] = messageHandler {
7 pongActor.ping(this)
8 pingsLeft −= 1
9 Future.done
10 }

Unfortunately, without explicit support from Scala, we cannot enforce this (in the same way other existing
actor libraries cannot do that). The internal methods of an actor may be called synchronously, or may
also be defined as message handlers, which means invoking them will schedule them as an asynchronous
task that will be later executed.

As an important observation, using our library API, whether invoking a method corresponds to
an asynchronous task or a normal synchronous call (as a stack-based method invocation in Scala) is
determined at the definition of the method, namely, by using (or not) the messageHandler helper. On the
caller side, nevertheless, the fact that invocations of message handler methods return a Future type makes
it clear to the caller that the computation linked to the method is not necessarily executed synchronously
and the result may be available later in the future. This is not contradicting the fact that futures may be
passed around (as first-class citizens) and anyone may spawn sub-tasks to be executed using their result
(see next section).

Programming a Message Handler As mentioned before, the main characteristic of a message handler
is that it should return a Future type. For now, let us assume that messages return no result, so they
should return Future[Void]. To create an instance of this type, one should use the static done method
in the Future class. Listing 6.10 illustrates how a method is defined such that its invocation will be
asynchronous.

Sending a message, as explained above, is by calling the corresponding method, e.g., in the listing
above, the actor sends a message ping to itself by invoking this.ping method. Messages can have
parameters, e.g., the ping message takes an actor reference of type PingActor, so we can send this
message to pongActor instance, for example, like pongActor.ping(this). The message handler ping
additionally changes the actor local state by decrementing the state variable pingsLeft. This significantly
simplifies programming from a user perspective (compared to the Java API), as it removes the need to
use lambda expressions or making sure parameters are immutable.

Await on Boolean Condition. An actor can spawn internal sub-tasks that await on a Boolean enabling
condition, called a guard. This is achieved by using the on (guard) execute {sub−task} syntax. These
sub-tasks are scheduled only if the associated guard is satisfied. In Listing 6.11, right after starting the
ping-pong, the actor adds a sub-task that will run only when the required number of ping-pong messages
have been exchanged. Similar to normal methods, sub-tasks should also end with done, in other words,
they must also result in a future. As with the case of sending asynchronous tasks, specifying a boolean
condition is much more intuitive in the Scala API compared to the Java one.
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Listing 6.11: Awaiting on a Boolean Condition
1 override def start(iterations: Int): Future[Void] = messageHandler {
2 val t1 = System.currentTimeMillis
3 this.ping
4 on (pingsLeft == 0) execute {
5 val t2 = System.currentTimeMillis
6 pongActor.stop
7 Future.done
8 }
9 Future.done
10 }

Listing 6.12: Sieve: Returning Values using Futures
1 class SimpleSieve(prime: Int) extends TypedActor {
2
3 var next: Option[Sieve] = None
4
5 def divide(toDivide: Int): Future[Option[Int]] = messageHandler {
6 if (toDivide % prime == 0) {
7 Future.done(None)
8 } else {
9 next match {
10 case None =>
11 next = Some(new Sieve(toDivide))
12 Future.done(Some(toDivide))
13 case Some(nextPrime) =>
14 nextPrime.divide(toDivide)
15 }
16 }
17 }
18 }

6.2.2 Actors with Integrated Futures
In this section, we explain how message handlers are used to return the result of their computation
encapsulated inside a future variable, and how the sender of a message can await the result to be available
and spawn a sub-task to use the future result. This section uses the Eratosthenes Sieve as an example. In
this example, we define actors that represent prime numbers and can check divisibility of an input by
their prime number. The divide method, given a number, returns the same number as an Option if it is a
prime, otherwise, returns None. Furthermore, when the next prime is found a new actor is created for
that number.

Completed Futures and Delegated Futures

In the previous section, the static done method was used to create an instance of an Future[Void]. The
overloaded done method can be used to wrap a value inside a future such that it can be returned. We
illustrate this in Listing 6.12.
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Listing 6.13: Sieve Main Method
1 object SieveMain extends TypedActor {
2
3 def main(args: Array[String]): Unit = {
4 val two = new Sieve(2)
5 val futures = for (i <− 3 to 1000) yield {two.divide(i)}
6 sequence(futures) onSuccess {
7 results: List[Option[Int]] =>
8 val primes = 2 +: results.flatten
9 ActorSystem.shutdown( )
10 Future.done
11 }
12 }
13 }

At lines 7 and 12, we know that the number is not (resp. is) a prime so the result is immediately
known and returned. But not always the result of a message handler is ready at the end of its execution.
For example, when the input number is not divisible by this prime, but there is a next prime that should
be tried, the actor sends a message to the next prime actor that will eventually produce the desired result.
Similarly, spawning a sub-task (using the on-execute construct introduced in 6.2.1 or onSuccess hook
introduced below) returns also a future. Message handlers can choose to return the future created as a
result of sending a message or spawning a sub-task. This can be seen as delegating the completion of a
future associated with a task to a spawned sub-task or a message sent (see line 14). Below, we explain the
details of how the library can efficiently implement this new mechanism for delegating futures.

Sub-tasks Awaiting Futures Once we have a reference to a future, the main question is how do we get
access to the value inside it. Our approach is to allow actors to spawn sub-tasks with an enabling condition
(known as a guard) based on the availability of a given future. The syntax to do this, as demonstrated in
the listing 6.13, is using the onSuccess method on the future variable. The example code above shows
how to start the sieve program and how to ensure that the computation is completed by awaiting the
completion of all futures.

Given a future fut of type T, the generic syntax for writing a sub-task is:
fut onSuccess {v: T => sub−task}. Here the value inside the completed future will be accessible using
the v variable in the sub-task. Additionally, the library provides the sequence function that can be applied
on a list of futures to make one future that will hold the list of all results.

Our syntax looks similar to onSuccess method in Akka, but the crucial difference is that in Akka
the call-back will run in a separate thread and thus the programmer must make sure that the code in the
call-back may not close over the actor state. In our case, the sub-task will be scheduled in the same actor
and is therefore completely safe. In other words, semantically it is similar to the combination of the ask
and pipe patterns in Akka but with the advantage that one can write the sub-task inline, thus keeping
the program logic simpler. Finally, compared to the Await method in Akka, no thread is blocked for the
sub-tasks allowing any arbitrary number of such sub-tasks to exist.

Additionally, ASCOOP provides another way of spawning a sub-task by using the syntax
fut blockingOnSuccess {v: T => sub−task}. This variant differs from onSuccess by that the actor will
not execute any other tasks or sub-tasks before this sub-task is enabled and executed. Semantically it is
like a blocking get on the future with the difference that it blocks the actor bot does not block the current
thread and therefore has no performance penalties if one needs to use it.
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Chapter 7

ABS to Scala Compiler

Together with the runtime presented in Chapter 4, a source-to-source translation from ABS to Scala is
provided to support both the object-oriented and functional programming paradigms of ABS. The most
important features of the compiler are the correct translation of the core ABS semantics together with the
coroutines feature of ABS, the compilation of the Timed-ABS model extension and the translation of the
ABS extension that models deployment components and consumption of resources.

7.1 Translating Core ABS and its Extensions to the Proposed Run-
time

To provide a compiler for ABS for all the core features discussed in Chapter 3 a lot of the work that
already existed for state-of-the-art backends for Maude and Erlang in [absc] was reused. For parsing and
type-checking the Core ABS language we used the grammar and type system already in place to obtain
the Abstract Syntax Tree(AST) of the program. The syntactical and semantic analysis steps are the same
for every backend, the proposed compiler reuses these steps. The code generation step is backend specific
and generates Scala code that uses the proposed Java Runtime. This involves using a visitor pattern to
traverse the AST and generate code for each tree node. Most of the nodes do not present a difficult task,
as interfaces, classes, method signatures or bodies, control statements and expressions all have one-to-one
correspondents in Java or Scala. The exception to all these are the algebraic data types and the control
statement case (discussed in Section 3.2) which provide the functional part of ABS. For this paradigm of
ABS the translation must be done to the Scala language discussed in depth section 7.2. However, the rest
of the code-generation for the core ABS is one of the main challenges as it has to take into account all of
the particularities of ABS discussed in Chapter 3, which are:

• Instantiating objects as actors: all of the objects created using the new command behave like actors
and need to be separated in their own COGs unless indicated by the local option which specifies
sharing a COG with the parent object.

• Asynchronous communication: method invocations created using the “!” operator must be created
as lambda expressions and passed to the called object/actor.

• Continuations: when release points are met, actors need to know from which point and in what
state to resume execution of either the actor itself or a suspended message.

• Cooperative Scheduling: execution flow must be controlled to follow the semantics in Section 3.3
when encountering a get or await construct.
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7.1.1 Objects as Actors in COGs
ABS objects are not just regular JVM objects, and require some changes when they are instantiated. First,
all interface declarations need to extend the Actor interface and all class declarations need to extend the
Local Actor default implementation such that newly instantiated objects can behave like actors. Extending
this base interface and class allows for the calling of the default constructor that initializes each object with
a message queue and a MainTask to iterate through it. It also makes available for each object the methods
send, spawn and getSpawn to be used for asynchronous communication and cooperative scheduling). A
simple layout of an interface and class declaration in ABS is given in Listing 7.1. According to ABS
semantics, all declarations need to be comparable, whether they are defined as ADTs or objects, mainly
due to the definitions and assumptions made in the ABS Standard Library. With respect to objects, there is
no particular rule to comparing objects, so this is left to the default ordering that Scala makes for objects.
For this to happen, all parent interfaces need to extend the Scala trait Ordered as shown in Listing 7.2.

Listing 7.1: An Interface and Class in ABS
1 interface Ping {
2 ...
3 }
4
5 class PingImpl(...) implements Ping {
6 ...
7 }

Second, we need to differentiate between the new and new local constructs. The presence of the
local option puts the newly created ABS object into the same COG as the object that created it, while the
absence of this option will place it a new COG. What this means for the generated code is that the actors
have to create new or share the messageQueue or mainTaskIsRunning variables discussed in Chapter 4
such they can emulate placement on a new COG or the same one. To add this support, the generated code
for each class adds a parameter destCOG as shown in Listing 7.2. This reference may point to the actor that
called new local such that the the messageQueue or mainTaskIsRunning will be shared, otherwise if
the reference is null, the variables will be created by the parent constructor. Depending on the location of
the new object, its constructor will call moveToCOG(callerofNewLocal) or moveToCOG(null) (line 10)
. The call to this method is very important as it needs to be done immediately after calling the super( )
constructor of the LocalActor class. The generation of a statement like new local Ping(...); will look as
new Pingthis,...);)

Listing 7.2: COG and DC Assignment
1 trait Ping extends Actor with Ordered[Actor] {
2 ...
3 }
4
5 class PingImpl(var destCOG : LocalActor,var destDC : Actor,...)
6 extends LocalActor with Ping {
7
8 //constructor
9 {
10 moveToCOG(destCOG);
11 setDc(destDC);
12 }
13 }
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Deployment Components Very closely related to COG assignment is the option to generate code
with resource model support. This generation is optional and can be activated as an argument in the
command line. To achieve this, the compiler automatically generates a second parameter for every
ABS class definition (destDC). Again this parameter determines on which resource the newly cre-
ated object will be placed through calling setDC(targetDC) (line 11). An ABS new construct with
resource model support can optionally have an annotation such as in Listing 3.12. This construct
looks like [DC: dc] Worker w = new CWorker( ) In this case the compiler will generate the a state-
ment with the correct deployment component location for the newly created object through a statement
new CWorker(null, dc, ...).

7.1.2 Asynchronous Communication
A very important focus of the code generation is translating the “!” operator. In ABS its syntax is
AsyncCall ∶∶= PureExp ! SimpleIdentif ier(PureExp, P ureExp) and the semantics is to create a
new task in the COG that contains the target object identified by PureExp. This means that the caller
task proceeds independently and in parallel with the callee task, without waiting for the result. The result
of evaluating an asynchronous method call expression (Listing 7.3) is a future of type (Fut<T>), where
T is the return type of the callee method m.

Listing 7.3: Asynchronous method call in ABS
1 Fut<Int> f = o!m(e);

This type of invocation needs to be wrapped as a lambda expression and sent as a message. The
problem here is that lambda expressions only take read-only parameters inside the functions, so all any
variables passed as function arguments need to be redeclared before creating the lambda expression. In
Java this restriction is defined in terms of the final predicate.

Listing 7.4: Asynchronous method call code generations
1 final Integer e1 = e;
2 msg: Callable[ABSFuture[Integer]] = ( )=>o.m(e1);
3 f:ABSFuture[Integer] = o.send(msg);

To have the correct code generation of Fut<Int> f = o!m(e), where e is a variable of type Int, into
the code in Listing 7.4 we need to take the following steps:

1. Redeclare all variables that need to be passed to the lambda expression.
2. Create the lambda expression as either a Runnable or Callable.
3. Call the send method of the actor to which the asynchronous message is being sent and pass the

lambda expression as the argument.

Duplicate Variable Names and Renaming When pre-processing continuations the starting point can
be within any scope depth of the method, thus becoming the outer scope of the method wrapping the
continuation. The problem that arises here is that the variables declared in this inner scope in the
initial code are considered “dead” once the scope ends, therefore their names may be reused. The same
variables however are now in the most outer scope of the method that represents the continuation, resulting
in duplicate names and variable re-declaration once the names are reused. Also when sweeping the
parameters, it is possible that a parameter that is passed to a continuation signature may be re-declared
with the same name inside the continuation (i.e. in the case of preprocessing a while block. With all these
considerations we need a pattern to rename variables to avoid these name collisions.
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7.2 Translation of ABS to Scala
This section covers the biggest challenges that were encountered translating the ABS Standard Library
when developing the compiler with the Scala backend support. The standard library is actually a good
benchmark for the functional paradigm of ABS as many of the predefined data types are ADTs and
many of the defined functions use case expressions and pattern matching. Another topic covered in this
section the efficient translation of built-in data types that are dependent on the backend in which they are
translated. The challenge for the Scala backend is to find as many corresponding types in Scala that have
they same semantic behavior that is specified in the ABS manual. The same goes for built-in functions
where ABS imposes backend specific semantics for which it is also better to identify an existing scala
function (either in the standard library or otherwise), rather than defining a specific one for the backend.

7.2.1 Sweeping Parameters
In Scala the parameters passed to a method are immutable (val) and because a continuation may change
swept parameters we create new local variables to save each parameter. To identify a temporary state
from which a message needs to resume, we have to SWEEPall of the variables that live in that scope.
There are two parts to the sweeping process:

1. During pre-processing, we have to sweep all the variables for their types that live in that scope in
order to create the correct method signature.

2. During code generation, we have to sweep for all variables as the pairs of type:value that live in the
scope such that we can make the correct method call to be execute when the message is released.

The sweeping process is presented in Figure 7.1. We consider that when SWEEP is inside a method
definition, we assume it returns tuples of type: value, but when it is inside a method call we assume that
it only returns value.

SW EEP (T m(p){S}) ∶∶= p ∪ SW EEP (S)
SW EEP (S1;S2) ∶∶= SW EEP (S1)

SW EEP (S1;S2) ∶∶= SW EEP (S2)

SW EEP (case e1 {P1 => {S1}}) ∶∶= PSP (P1), await or get statement in S1
SW EEP (T v1[= exp]) ∶∶= (type ∶ T , value ∶ v1)

SW EEP (_) ∶∶= {∅}
PSP (Literal) ∶∶= {∅}

PSP (QU ) ∶∶= {∅}
PSP (V ar) ∶∶= (type ∶ _inferred, value ∶ var)

PSP (QU (p)) ∶∶= {PSP (a)|a ∈ p}
PSP (_) ∶∶= {∅}

Figure 7.1: Parameter Sweeping for a continuation triggered when encountering a given await
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7.2.2 Compiling Algebraic Data Types and Pattern Matching
These particular features of ABS are the main reason behind using Scala as the backend for ABS rather
than Java. Scala provides in the core language constructs the means for translation support to the functional
programming paradigm described in Section 3.2. For the translation of an ADT declaration, the example
of the Maybe data type is very useful data Maybe<A> = Nothing | Just(A fromJust);. This examples
covers both types of ADT declarations: simple data types and data constructor types. This declaration
also incorporates a generic parameter that needs to be correctly translated. The snippet for the compiled
Scala code is given in Listing 7.5. The defined type itself (Maybe) must be an abstract class such that it
cannot be instantiated and only serve as a reference type.

Listing 7.5: Translation of the Maybe ADT
1 abstract class Maybe[A<%Ordered[_ >: A]] extends Ordered[Maybe[A]] {
2 var rank : Int;
3 }

Like ABS objects, ADTs also have to be comparable using a simple rule that orders the defined types
based on the order in which they appear in the declaration. An important observation to make here is that
ADTs do not have a superclass and unlike objects ABS does not force different ADTs to be comparable.
However, a rank (line 2) field needs to be defined to allow comparison between the types defined for
an ADTs based on their declaration order. A big advantage of using Scala is that the compiler forces
the instantiation of this field in all subclasses and as such can yield an error if anything went wrong
in the code generation of the declared ADT types. Coming back to this example the types are in the
following relation: Notℎing < Just(...). If two ADTs are of the same simple type, they are obviously
equal, while two ADTs that are of the same constructor type are compared recursively based on their
constructor arguments in a depth-first manner. With these aspects in mind, Listing 7.6 gives an overview
of the translation of the two types that the Maybe ADT has.

The two types are declared as sub case classes of the Maybe class such that they can be referenced
correctly. The benefit of using case classes is that they provide a default equals method and as such the
pattern matching feature of ABS can have a correspondent to the match construct in Scala. On lines 2
and 15 the rank variable is initialized with respect to the order of the declarations in the ABS code. In the
case of the data constructor type Just the compare method has to compare the arguments for a proper
ordering of two Just types (line 20).

7.2.3 Translating the Built-in Types of ABS
In the ABS standard library there are several data types and functions that only have a particular semantics
attached to them, without any definition or specification. The general purpose of the Scala backend is to
provide an efficient execution platform for ABS, and as such these built-in types must not be redefined in
Scala with the expected semantics, but rather already have an existing correspondent type. These are the
built-in data types and they are defined in Table 7.1 taken from the ABS Manual. This table is updated
with the corresponding type in Scala for a straightforward and efficient translation.

Rational Numbers There are two exceptions to these Scala corresponding types. The first one is for
futures which have a much more extensive behavior and semantics in ABS and for this purpose the
corresponding type is the Future class that is part of the ABS runtime in Java. The second problematic
type is the Rational type which does not have any pre-defined class in Scala and requires definition
of the type in the ABS runtime. A layout of this class is presented in Listing 7.7. The first challenge
with this class is that although a rational number may be small, it may be represented by a numerator and
denominator that exceed the size Int type in Scala. Added to this is that any mathematical operation
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Listing 7.6: Translation of the Nothing and Just Types
1 case class Nothing[A<%Ordered[_ >: A]]( ) extends Maybe[A] {
2 final var rank : Int = 0;
3
4 def compare( that : Maybe[A]): Int= {
5 if(this.rank == that.rank) {
6 return 0;
7 }
8 else {
9 return this.rank−that.rank;
10 }
11 }
12 }
13
14 case class Just[A<%Ordered[_ >: A]](var fromJust : A) extends Maybe[A] {
15 final var rank : Int = 1;
16
17 def compare( that : Maybe[A]): Int= {
18 if(this.rank == that.rank) {
19 var jthat:Just[A] = that.asInstanceOf[Just[A]]
20 return fromJust.compare(jthat.fromJust)
21 }
22 else {
23 return this.rank−that.rank;
24 }
25 }
26 }
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Table 7.1: ABS Built-in data types
Name Description Example Corresponding Type in

Scala
Unit The empty (void) type Unit Unit
Bool Boolean values True, False Boolean
Int Integers of arbitrary size 0, -15 Int
Rat Rational numbers 1/5, 22/58775 -

String Strings "Hello World" String
Fut <A> Futures the return type of an asyn-

chronous call
Future< A >

Float Floating point numbers 3.14, -100.5 Float

may also cause the resulting representation to overflow before it is simplified. For these reasons, both the
numerator and denominator are defined as BigInt (lines 5 and 6) to preserve correctness of the compiled
model. However this adds a significant performance penalty to programs using a large number of rationals,
and it is strongly recommended whenever possible to use the newly introduced ABS built-in type Float
which has a corresponding primitive in Scala with the same name. This is especially important for models
where high performance is required.

Listing 7.7: The Rational Class in the ABS Runtime
1 class Rational(n: BigInt, d: BigInt) extends Ordered[Rational] {
2 require( d != 0 )
3
4 private val g = Rational.gcd(n.abs, d.abs)
5 val numer: BigInt = n/g ∗ d.signum
6 val denom: BigInt = d.abs/g
7
8 def this(n: Int) = this(n, 1)
9 def this(rational: Rational)= this(rational.numer,rational.denom);
10
11 override def toString = ""+ numer + (if (denom == 1) "" else ("/"+denom))
12
13 // default methods (for all math operations)
14 def +(that: Rational): Rational =
15 new Rational( number ∗ that.denom + that.number ∗ denom,
16 denom ∗ that.denom )
17 def +(that: Int): Rational =
18 new Rational( numer + (that ∗ denom), denom )
19
20 ...
21 }

Another challenge specific to the Rational type is that, because it does not have a pre-defined type in
Scala, it cannot be used together with other numerical types like the semantics of ABS require. As such
the Java ABS runtime has to define this behaviour for mathematical operations (line 18) and comparison
operations as shown in Listing 7.8. In these examples the methods are defined for operations between
rationals and integers and the same behaviour is defined for operations between rationals and floats.

Finally there will be certain instances where an integer will have to be "promoted" to a rational
such as on an assignment statement Rational x = 0;. The Rational object in Listing 7.9 defines in Scala
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Listing 7.8: The Comparison Methods in the Rational Class
1 def equals(that: Rational) = {
2 (this.numer==0 && that.numer==0)||
3 (this.numer == that.numer && this.denom == that.denom)
4 }
5
6 def equals(that: Int) = {
7 (this.numer == that && this.denom == 1) || (this.numer == 0 && that == 0)
8 }
9
10 override def equals(obj: scala.Any): Boolean = {
11 if(obj.isInstanceOf[Int]){
12 return equals(obj.asInstanceOf[Int])
13 }
14 if(obj.isInstanceOf[Rational]){
15 return equals(obj.asInstanceOf[Rational])
16 }
17 return super.equals(obj)
18 }
19
20 override def compare(that: Rational) = {
21 val c = this.numer ∗ that.denom − that.numer ∗ this.denom
22 if(c.isValidInt)
23 c.toInt
24 else if(c<0)
25 Int.MinValue
26 else
27 Int.MaxValue
28 }
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this implicit conversion (line 2), together with a constructor that creates a rational from an integer
parameter(line 6). Finally in order to reduce a rational number to its simplest form and also to avoid
storing too many BigInt numbers the Rational object provides a function for calculating the greatest
common divisor (gcd on line 3) to be applied straight after constructing the number. Another performance
issue that appears when using Rational numbers is that they are immutable, but they are not Scala
primitives so a large number of these objects are created when a lot of computation is performed with
them. As they are no pools of constants defined like String and Integer pools it is best to avoid using this
built-in type in favor of Float to model high-performance applications.

Listing 7.9: The Rational Object in the ABS Runtime in Java
1 object Rational {
2 implicit def intToRational(x: Int) = new Rational(x)
3 private def gcd(a: BigInt, b: BigInt) : BigInt = if (b == 0) a else gcd(b, a % b)
4
5 def apply(numer: Int, denom: Int) = new Rational(numer, denom)
6 def apply(numer: Int) = new Rational(numer)
7 }

7.3 Compiler Correctness
Implementing cooperative scheduling in ABS that scales in the number of active objects and messages
provides a major challenge (as described in Chapter 4). Furthermore, it also complicates considerably
reasoning about the correctness of ABS programs. This is evidenced by that no sound and complete
proof system for ABS has been introduced yet. The proof system in [DO14] for example is shown to be
complete only for the sublanguage that does not support cooperative scheduling. ABS itself has a formal
semantics, but the languages to which it is compiled, Java and Scala, do not have a full language formal
semantics. Therefore it is difficult to provide a formal correctness proof for the whole compiler and all the
challenges described in this chapter. As such, the focus is on investigating correctness of certain aspects
of the compiler, mainly the translation of the expressive power of cooperative scheduling in ABS. This
section shows that the powerful abstraction of cooperative scheduling in ABS can be modeled by a run to
completion model of active objects.

The essence of this compilation process is the spawning mechanism the translation is generalized to
a run to completion model described by a language GAC (Guarded ACtor) which provides a guarded-
command language ([Dij78]) for the description of the method bodies. The formal translation of ABS
into GAC is given by an intermediate language ABS-SPAWN which uses an explicit spawn operation to
model the execution of await statements. In the GAC language the operation of spawning local processes
can be modeled directly by asynchronous self-calls. Any source code written in ABS consists of a set
of classes, and each class consists of a set of method definitions. In this section we abstract from the
nominal type system of ABS and its functional layer, and focus on the control flow of ABS programs.
Figure 7.2 presents the formal syntax of ABS statements which are used to describe the method bodies.

The expression e denotes a local side-effect free expression (that is, its evaluation only depends on
the local state of the actor and does not affect this local state). For the purpose of providing a smooth and
clear proof, we can abstract from its syntax (which in general involves the functional layer of ABS). For
notational convenience we assume that every method call (asynchronous or synchronous self call) returns
a value. We assume these values typed according to the type system of ABS. A slight modification of
Listing 3.8 is shown is Listing 7.10 where it is imposed in the formal syntax that returned expressions are
side-effect free. As such, the return instructions is separated into the instructions on lines 10 and !11.

Further we restrict a guard g of an await statement by either a local side-effect free Boolean condition
b or a single a future variable. It is not difficult to see that this restriction does not restrict the expressive
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S ∶∶= � empty statement
∣ x = e basic assignment
∣ y = x!m(ē) asynchronous method call
∣ y = m(ē) synchronous method call
∣ x = new C(ē) object creation
∣ await g await statement
∣ x = y.get get statement
∣ if b {S} else {S} conditional statement
∣ S;S sequential composition
∣ return e return statement

Figure 7.2: Syntax for ABS statements.
Listing 7.10: Synchronous Call in ABS

1 Worker getWorker( ){
2 await !(emptySet(workers));
3 Worker w = take(workers);
4 }
5
6 Result sendWork( ) {
7 Worker w = this.getWorker( );
8 workers = remove(workers, w);
9 Fut<Result> f = w ! doWork( );
10 Result r = f.get;
11 return r;
12 }

power since any await statement on a guard which consists of a Boolean condition and a set {x1,… , xn}of futures can be implemented by a sequential composition:
1 await x1?; ...; await xn?; await b;
because a future is single-write shared data (note that the await on the Boolean condition should indeed
be executed last).

For technical convenience, we also abstract from the so-called Concurrent Object Groups (COG) as
provided by the ABS language. However, it is not difficult to generalize the main result to the language
including COG’s. More importantly, it should be noted that the syntax does not include the usual while
statement. A detailed discussion of the challenges of translating await statements occurring in the body
of a while statement will be presented in section 7.3.2. Note however that the while statement can be
modeled by tail recursion, using synchronous self calls.

To allow for this tail-recursion we assume for the ABS language to feature synchronous self calls of
the form m(ē).

7.3.1 ABS Operational Semantics
This section presents a different approach to the semantics of the ABS language using variable renaming
of local variables instead of local environments. This allows for a simple definition of a process as the
statement to be executed, which in turn allows for a transparent way of modeling cooperative scheduling.

We assume given an ABS program P where object configurations are of the form (�, S,Q):
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• � assigns values to the instance variables (fields) of the class (we treat the keyword this as a
distinguished instance variable identifying the object) and all the fresh variables generated for the
local variables of the different method invocations. For any side-effect free expression e (including
Boolean conditions b) we denote by �(e) the value of e in �.

• S represents the current statement of the active process that is run by the actor denoted by �(this).
• Q is a (multi-)set of statements which represent suspended processes.
We define a global configuration G as a pair (F ,O) where F is a partial function which assigns to

each future identity f in its domain a value F (f ) and O is a set of configurations (as defined above). By
F (f ) =⟂ we denote that the future f has not been completed yet. For handling the completion of futures
by return statements, we introduce an implicit formal parameter dest which holds the value returned by
the method invocation. In the rules below we assume some mechanism for generating fresh variables.
Generating fresh variables is needed to distinguish between the dest variable of each method and also to
avoid name clashes when renaming local variables. To make the use of the dest variable explicit, we
replace every return statement in a method body with the auxiliary statement return e to dest.

The following rule describes the operation semantics of an assignment.

Assignment Rule

(F , {(�, x = e;S,Q)} ∪ O)→ (F , {(�[x = �(e)], S,Q)} ∪ O)

Here and in the sequel we denote by �[x = v] the update of � which assigns the value v to the variable x.

Asynchronous Invocation Rule The following rule describes the semantics of an asynchronous method
call.

(F , {(�, y = x!m(ē);S,Q), (�′, S′, Q′)} ∪ O)
→

(F [f =⟂], {(�[y = f ], S,Q), (�′′, S′, Q′′)} ∪ O)

where:
• f is a new future which does not exist in the domain of F (and thus F [f =⟂] denotes the function
which results from extending the domain of F by assigning ⟂ to f )

• �(x) = �′(this).
• S′ is the current statement of the active process run by the target object x (the callee in x!m(ē))
• Q′′ extends Q′ with the body of method m where all the formal parameters (including the distin-

guished variable dest) are replaced by fresh (that is, not in use in (�′, S′, Q′)) variables.
• �′′ results from assigning the values of the actual parameters �(ē) to the corresponding fresh local

variables. Additionally �′′(dest′) = f where dest′ is the fresh local variable corresponding to the
destiny variable dest.

Synchronous Self Call Rule
(F , {(�, x = m(ē);S,Q)} ∪ O)→

(F [f =⟂], {(�′, S′; x = f.get;S,Q)} ∪ O)

where:
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• f is a new future which does not exist in the domain of F (and thus F [f =⟂] denotes the function
which results from extending the domain of F by assigning ⟂ to f ).

• f is the future that will hold the result of the asynchronous method invocation m.
• S′ is obtained by renaming the local variables in the body of method m (as above, including the
variable dest) by fresh variables and �′ assigns to these fresh variables the values of the actual
parameters �(ē). Additionally �′(dest′) = f where dest′ is the fresh local variable corresponding
to the destiny variable dest. This translation of the body replaces the return statement with an
auxiliary statement return e to dest. Freshness is defined as a variable not in use by any statement
in S′ and Q′ .

Note that we thus use simple inlining which works because we introduce fresh variables for the formal
parameters of methods. We use a future in order to get a uniform semantics for returning a value for
both synchronous calls and asynchronous calls. The get operation will always be enabled (because of the
assumption that any method body will end with a return statement), but it is used here instead of an await
because we want the process to proceed, as otherwise we would have a release point which breaks the
call stack.

In the case of a method which is declared void then the syntax would be return null to dest. By
means of this convention, every suspended statement is uniquely identified by its destiny variable,so that
we can model Q as a set..

Object Instantiation Rule

(F , {(�, x = new C(ē);S,Q)} ∪ O)→

(F , {(�[x = o], S,Q), (�′, S′, ∅)} ∪ O)

where:
• o is a fresh object identity (not appearing as value of a variable in the initial configuration).
• S′ is the constructor method body.
• �′(tℎis) = o and �′ assigns to the formal parameters of the constructor method the values �(ē).

Note that each object configuration assigns a new object identity to the instance variable tℎis. This
explains the usage of union in object configurations.

Conditional Statement Rule The conditional statement has the following two rules.
(F , {(�, if b then S1 else S2;S,Q)} ∪ O)→

(F , {(�, S1;S,Q)} ∪ O)

where �(b) = true.
(F , {(�, if b then S1 else S2;S,Q)} ∪ O)→

(F , {(�, S2;S,Q)} ∪ O)

where �(b) = false.
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Return Rule

(F , {�, return e to dest′, Q)} ∪ O)→ (F [f = �(e)], {(�, �,Q)} ∪ O)

where f = �(dest′)

Get Rule
(F , {(�, x = y.get;S,Q)} ∪ O)→ (F , {(�[x = F (�(y))], S,Q)} ∪ O)

where F (�(y)) ≠⟂.

Await Rule
(F , {(�, await g;S,Q)} ∪ O)→ (F , {(�, �, {await g;S} ∪Q)} ∪ O)

where � represents the empty statement, denoting that the current executing statement has ended. This
rule "blindly" suspends the current statement without evaluating the guard. The evaluation of the guards
will be performed in the context of the scheduling rule below.

Scheduling Rule The following rules schedule enabled await statements of a Boolean and a future
variables respectively. For suspended statements that start with an await we have the following two rules.

(F , {(�, �, {await b;S} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

where �(b) = true
(F , {(�, �, {await y;S} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

where y is a future variable such that F (�(y)) ≠⟂.
For any other suspended statement that is in Q, e.g., that resulted from an asynchronous call, we have

the following rule:
(F , {(�, �, {S} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

7.3.2 ABS-SPAWN
In this section we introduce the ABS-SPAWN language which is obtained from the ABS language
discussed above by replacing the await statement with a statement spawn(g, S), the so-called spawn
statement, for spawning a new local process that executes the statement S. In ABS-SPAWN method
invocations are thus executed in a run-to-completion mode.

For the operational semantics of the ABS-SPAWN languagewe introduce the run-time syntax construct
(g → S) that represents a suspended statement (S) that is guarded by an enabling condition (g). We
thus make a distinction between the statement that spawns a process and resulting generated suspended
process. The guard in (g → S) is the enabling condition for scheduling the corresponding statement S for
execution. For its semantics we used the same notions for a global configuration and object configuration,
as introduced for the semantics of the ABS language, The semantics of the ABS-SPAWN language results
from the semantics of ABS by replacing the Await Rule with the rule Spawning Subtasks and changing
the Scheduling Rule, as described above.

Spawning Subtasks Spawning a sub-task simply consists of adding a corresponding statement with an
enabling condition to the set Q of suspended processes:

(F , {(�, spawn(g, S);S′, Q)} ∪ O)→ (F , {(�, S′, {(g → S)} ∪Q)} ∪ O)
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Scheduling Rule The following rules describe the scheduling of an enabled suspended task. The first
two rules are for statement suspended by await.

(F , {(�, �, {(b→ S)} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

where �(b) = true.
(F , {(�, �, {(y→ S)} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

where y is a future variable and F (�(y)) ≠⟂.
The last rule is for statements that are suspended as a result of an asynchronous invocation and is the

same as in the ABS operational semantics:
(F , {(�, �, {S} ∪Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

Translating ABS into ABS-SPAWN We next introduce a formal translation from ABS programs into
ABS-SPAWN programs. This translation is applied to every class in the ABS program. For each class,
every method body is viewed as a sequential composition of the first instruction followed by its (sequential)
continuation and translated accordingly.

T (�) ∶= �
T (x = e; S) ∶= x = e; T (S)

T (await g; S) ∶= spawn(g, T (S) )
T (if b {S1} else {S2};S) ∶= if b {T (S1; S)} else {T (S2; S)}

T (y = x!m(ē); S) ∶= y = x!m(ē); T (S)
T (y = m(ē); S) ∶= y = m(ē); T (S)

T (x = new C(ē);S) ∶= x = new C(ē); T (S)
T (x = y.get; S) ∶= x = y.get; T (S)
T (return e; S) ∶= return e; T (S)

Figure 7.3: Translation of ABS into ABS-SPAWN
The scheme is applied using a bottom-up approach starting at the level of statements using Figure 7.3.

The scheme is then lifted to the level of method bodies. Finally a translation of a class simply consists of
the translation of its method definitions.

In Figure 7.3 the empty statement is denoted by � (we assume here the syntactical equivalence
S; � ≡ S). The translation of an await construct with guard g followed by a (sequential) continuation
S results simply in a spawn statement with two parameters: the guard g and the task representing the
translation applied to the continuation (T (S)). A conditional statement is translated by “absorbing” the
sequential continuation that follows into the two branches of the statement. This general pattern also
would apply to, for example, the translation of the ABS case statement (or pattern matching statement)
where the continuation has to capture for each possible pattern (Pi) both the block to be executed on that
pattern branch (Si) as well as the rest of the control flow that follows the statement (S). The translation
thus captures the whole syntactic continuation that follows an await statement as the new task to be
spawned. Therefore the translation of the method containing the await statement will terminate directly
after having spawned the corresponding subtask, thus emulating an implicit suspension point.
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The While Statement. We describe next the problem of translating a repetitive loop or the while
statement. Intuitively, to capture the syntactic continuation that follows an await statement occurring in
the body of the while statement, the translation could simply “unfold" the loop. However this would
result in a recursive translation. Instead, we can model while statements by means of a tail recursive
method. Note that such a method should capture in its formal parameters the execution context (that is,
all the local variables used in the loop body).

Listing 7.11: While Loop in ABS
1 { List<Fut<Int>> futuresList = Nil;
2
3 //ABS code that fills the futuresList with
4 //futures resulting from asynchronous calls
5
6 this.sum=0;
7 while( !emptyList( futuresList ) ){
8 Fut<Int> f = head( futuresList );
9 await f?;
10 Int x = f.get;
11 this.sum = this.sum + x;
12 futuresList = tail( futuresList );
13 }
14 if( this.sum > 0 ){
15 //do work
16 }
17 }

To describe this in more detail, we look at an example in Listing 7.11 that computes the sum of
numbers generated by asynchronous calls whose results are captured in a list of futures. In ABS, lists are
part of the functional layer and all functions applied on them (head, tail, emptyList) are side-effect
free. We note that in this particular program the variables x, f are local variables declared inside the
repetitive loop, futuresList is a local variable defined in the method’s body prior to the loop scope
and sum is a class member variable.

This repetitive loop can naturally be “unfolded" by defining a new method m with a formal parameter
of type List< Fut<Int», as we observe it is the only local variable declared prior to the loop. This is
shown in Listing 7.12. We can see that this way of “unfolding"" the loop works because the state of
execution (in this case, the continuously processed list) is passed to the next call as formal parameters.
Listing 7.13 then shows the translation of tail-recursive method modeling the while statement. Note that
the syntactic continuation of the await statement is captured in this translation by the recursive call.

Listing 7.13: Translation Tail Recursion
1 Unit m(List<Fut<Int>> futuresList){
2 if(!emptyList(futuresList)){
3 Fut<Int> f = head(futuresList);
4 spawn( f?, {
5 Int x = f.get;
6 this.sum = this.sum + x;
7 futuresList = tail(futuresList);
8 m(futuresList)
9 } );
10 }
11 }
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Listing 7.12: Re-written While Loop in ABS using tail recursion
1 //new method
2 Unit m(List<Fut<Int>> futuresList){
3 if(!emptyList(futuresList)){
4 Fut<Int> f = head(futuresList);
5 await f?;
6 Int x = f.get;
7 this.sum = this.sum + x;
8 futuresList = tail(futuresList);
9 m(futuresList);
10 }
11 }
12
13 { //original method scope
14 this.sum=0;
15 m(futuresList);
16 if(this.sum > 0){
17 //do work
18 }
19 }

To conclude the presentation of ABS-SPAWN, we apply the translation scheme to the WorkerPool
class written in ABS in Listing 3.6. The resulting code in ABS-SPAWN is illustrated in Listing 7.14.

Listing 7.14: The Worker Pool Class in ABS-SPAWN
1 class WorkerPool(){
2 Set<Worker> workers;
3
4 Result sendWork() {
5 spawn ( !( emptySet(workers) ) , {
6 Worker w = take(workers);
7 workers = remove(workers, w);
8 Fut<Result> f = w ! doWork();
9 spawn (f?, {
10 Result result = f.get;
11 return result;
12 } ) ;
13 } );
14 }
15
16 Unit finished(Worker w) {
17 workers = insertElement(workers, w);
18 }
19 }

Correctness of the ABS Translation In order to show the correctness of the above translation of
ABS programs into ABS-SPAWN programs, we use G to denote a global ABS configuration as well as
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ABS-SPAWN configurations. We introduce the notation:
G →abs G′

to differentiate between transitions in pure ABS and transitions in ABS-SPAWN which are denoted as:
G → G′

Let T (G), for any global ABS configuration G, denote the result of applying the translation to all the
executing ABS statements in G and translating any suspended await statement await g;S in G by
g → T (S). We now can state the following theorem which states the correctness of the translation of
await statements in ABS, the proof of which proceeds by a straightforward case analysis of the first
instruction of an executing statement.
Theorem 1. For any configuration G of an ABS program we have:

G →abs G′ iff T (G)→ T (G′)

Proof. The proof proceeds by a case analysis of the transition rules. We treat the following main cases.
We only need consider those statements that are affected by the translation, because for statements like
the assignment and empty statement, the semantics of ABS coincides with that of ABS-SPAWN. We
only consider the main case of translating the await statement, because the translation of the conditional
statement is correct because of standard programming equivalences.

Figure 7.4: Execution of an Await Statement
Σ[(�, await g; S,Q)] Σ[(�, �, {await g; S} ⊎ Q)]

T (Σ)[(�, spawn( g; T (S)), T (Q))] T (Σ)[(�, {g → T (S)} ⊎ T (Q))]

T
ABS

ABS-SPAWN

T

The proof is divided into two parts. The first part is presented by the diagram in Figure 7.4 and treats
the translation of the await statement that appears as an instruction in a context Σ, that is, Σ[(�, S,Q)]
describes a global configuration (F ,O), with (�, S,Q) ∈ O. The upper transition corresponds to
the application of the Await Rule, the result of which, namely that the process await g; S is added
to the suspended processes Q (of the executing active object), is denoted by the corresponding global
configurationΣ[(�, �, {await g; S}⊎Q)]. The lower transition results from the definition of the translation
scheme to global configurations, and a corresponding application of the Spawning Tasks rule in ABS-
SPAWN.

Figure 7.5: Scheduling a Suspended Statement
Σ[(�, �, {await g; S} ⊎ Q)] Σ[(�, S,Q)]

T (Σ)[(�, �, {g → T (S)} ⊎ T (Q))] T (Σ)[(�, T (S), T (Q))]

T
ABS

ABS-SPAWN

T
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Conversely, the second part is presented by the diagram in Figure 7.5 and shows the correctness of
translating the await statement as part of a suspended process which conforms to the semantics of the
Scheduling Rules in ABS and ABS-SPAWN, respectively.

7.4 The GAC Language
It is worthwhile to note that by the above translation scheme we can actually embed ABS in a language
without any await statements (that allow for cooperative scheduling) by encoding spawn(g, S) itself as
an asynchronous self call of the form this!m(), where m() is an unique method name with defining body
g → S.

In Figure 7.6 we introduce so-called guarded command statements (following [Dij78]) as statements
for describing the method bodies in ABS.

S ∶∶= � empty statement
∣ x = e basic assignment
∣ y = x!m(ē) asynchronous method call
∣ y = m(ē) synchronous method call
∣ x = new C(ē) object creation
∣ x = y.get get statement
∣ (∗)□n

i=1 gi → {Si} guarded command
∣ case e ̄{e ⇒ S} case statement
∣ S;S sequential composition
∣ return e return statement
Figure 7.6: ABS guarded command statements.

The semantics of the statement □n
i=1 gi → Si consists of a non-deterministic selection of one of the

statements Si for which the associated guard gi is enabled. It blocks the execution of the active object if
none of the guards are enabled. A guard itself in the GAC language consists of a Boolean condition and a
set of futures. Such a guard is enabled if the Boolean condition holds and all its futures are completed
(that is, for all of them the return value has been produced). Its iterated version (indicated by the asterisk)
consists of repeatedly executing the marked guarded choice as long as one of its guards is enabled. It
terminates as soon as none of the guards is enabled. Formally, the semantics of the guarded command
statements is described by the following rules (the semantics of the other statements are described as in
the ABS semantics).

Guarded Choice Rule

(F , {(�,□n
i=1 gi → {Si};S,Q)} ∪ O)→ (F , {(�, Sj ;S,Q)} ∪ O)

provided gj is enabled in � and F .
For its iterated version we have the following two transitions.

Iterated guarded Choice Rule

(F , {(�, ∗ □n
i=1 gi → {Si};S,Q)} ∪ O)→

(F , {(�, Sj ; ∗ □n
i=1 gi → {Si};S,Q)} ∪ O)
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provided gj is enabled in �.
(F , {(�, ∗ □n

i=1 gi → {Si};S,Q)} ∪ O)→ (F , {(�, S,Q)} ∪ O)

provided none of the gj is enabled in � and F .
Further, we have the following scheduling rules.

Scheduling Rules

(F , {(�, �, {□n
i=1 gi → {Si};S} ∪Q)} ∪ O)→ (F , {(�, Sj ;S,Q)} ∪ O)

provided gj is enabled in � and F .
(F , {(�, �, {∗ □n

i=1 gi → {Si};S} ∪Q)} ∪ O)→

(F , {(�, Sj ; ∗ □n
i=1 gi → {Si};S,Q)} ∪ O)

provided gj is enabled in � and F .
The resulting GAC language thus follows a strict run to completion mode of execution of the methods

by active objects, like the Rebeca language )[Sir07]). Differently from the Rebeca language, it features
guarded command statements which allow to associate an enabling condition with a suspended process.
Note that such a suspension mechanism avoids modeling a suspended process g → S by a recursive
method definition

m(){if g {S} else {this!m()}}

which involves busy waiting (and which assumes testing a future as a Boolean condition).
As an overall conclusion we illustrate in Figure 7.15 the translation of the WorkerPool into GAC.

Note the need to wrap the statements of the guarded commands into separate methods. Thus these methods
can be called asynchronously and stored as suspended messages into the queue of the WorkerPool until
their guards are enabled. As such, execution of other enabled statements can continue without blocking
the actor.
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Listing 7.15: The Worker Pool Class in GAC
1 class WorkerPool(){
2 Set<Worker> workers;
3
4 Result sendWork() {
5 ! emptySet(workers) → this ! m1( workers );
6 }
7
8 Result m1(Set<Worker> workers){
9 Worker w = take(workers);
10 workers = remove(workers, w);
11 Fut<Result> f = w ! doWork();
12 f → this ! m2( f );
13 }
14
15 Result m2(Fut<Result> f){
16 Result result = f.get;
17 return result;
18 }
19
20 Unit finished(Worker w) {
21 workers = insertElement(workers, w);
22 }
23 }
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Chapter 8

Case Studies and Benchmarks

This chapter covers all the use cases of the integration of formal methods into software development using
ABS, Java 8 and Scala. The first part covers several typical benchmarks for actor-based programming that
validate the usage of ABS together with the Scala Backend compared to the existing state-of-the art Erlang
backend that is the community’s most stable and supports all of ABS’s features. At the same time these
benchmarks validate the Java Runtime System and ASCOOP as a standalone library compared to other
state of the art Actor libraries like Scala and Akka. In the second part, a case study that uses Map Reduce
is presented to underline the effectiveness of the runtime system on a single machine. It is compared to
the ProActive backend which has stable distributed support, yet uses the thread-abstraction model. This
case study makes of a comparative analysis of both backends, with advantages and disadvantages of each
one. The third part of this chapter shows a very useful example of having support for ABS together with
resource modeling support for simulating a cache coherence memory model. Again this case study is
compared to the Erlang backend in terms of how well the program runs with high memory and CPU loads.
The last part of this chapter presents a case study in which ABS together with symbolic time support
in order to visualize the progression of a railway model. This case study highlights the importance of
discrete time simulation extension of ABS.

8.1 Cooperative Scheduling Benchmarks
This section shows the comparison of having coroutine support available in Java through either thread-
abstraction or spawning tasks. The comparison is first made through an example that relies heavily on
coroutines, such that we can measure the overhead that programming with coroutines has on a program.
The second example is selected from the Savina benchmark for programming with actors [IS14]. All the
benchmarks are ran a core i5 machine which supports hyper-threading and 8GB of RAM on a single JVM.
In the library repository1 we provide implementations of several examples in the benchmark suite directly
using the library, while in the compiler repository 2 we have several ABS models of these benchmarks.

8.1.1 Coroutine “Heavy" Benchmark
First the library is evaluated in terms of the impact that programming with coroutines has on performance.
The first benchmark involves a large number of suspension and release points in an actor’s life cycle
in order to compare the spawning approach to the thread-abstraction approach when translating from

1https://github.com/JaacRepo/JAAC
2https://github.com/JaacRepo/absCompiler
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ABS to Java. In Java using threads and context switches heavily limits the application to the number of
native threads that can be created. To measure the improvement provided by our Java library features we
use a simple example that creates a recursive stack of synchronous calls. A sketch of the ABS model is
presented in Listing 8.1.

Listing 8.1: Benchmark Example
1 interface Ainterface {
2 Int recursive_m(Int i, Int id);
3 }
4
5 class A( ) implements Ainterface{
6
7 Int result=0;
8
9 Int recursive_m(Int i, Int id){
10 if (i>0){
11 this.recursive_m(i − 1,id);
12 }else{
13 Fut<Int> f = this ! compute( );
14 await f ?;
15 }
16 return 1;
17 }
18
19 Int compute( ){
20 return result + 1; //no significant computation
21 }
22 }
23
24 { // Main block:
25 Int i = 0;
26 Ainterface master = new A ( );
27 List<Fut<Int>> futures = Nil;
28
29 while( i < 500){
30 Fut<Int> f = master ! recursive_m (5, i);
31 futures = Cons( f, futures );
32 i = i + 1 ;
33 }
34 while ( futures != Nil ){
35 Fut<Int> f1 = head(futures);
36 futures = tail(futures);
37 Int r = f1.get;
38 }
39 }

The model creates an Actor of type “A" and sends a large number of messages to it to execute a
method recursive_m(5,id). This method creates a call chain of size 5 before sending an asynchronous
message to itself to execute method compute( ) and awaits on its result. Although simple, this example
allows us to benchmark the pure overhead that arises from having a runtime system with coroutine support,
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Figure 8.1: Performance figures for Coroutine Overhead

both in a thread-based approach and through spawning of tasks. The results are shown in Figure 8.1.
The performance figures presented are for one actor that is running 500-2500 method invocations. It is
important to observe that each invocation generates 2 tasks in the actor’s queue, so as the number of calls
increases, the number of tasks doubles. The figures show that the trade-off for storing continuations and
context as tasks into heap memory instead of saving them in native threads removes limitations on the
application and significantly reduces overhead.

8.1.2 NQueens Benchmark
From the Savina test suite, we selected the NQueens problem as it is a typical problem with both memory
operations and CPU-intensive tasks. Listings 8.2 and 8.3 describe in ABS the problem of arrangingN
queens on aN ×N chessboard. It provides a master-slave model that illustrates very well the advantage
of using actors together with coroutines.

The benchmark divides the task of finding all the valid solutions to the N queens problem into
subtasks sent to a fixed number of workers. The board is defined as a list of integers where the index of
each element represents the line (equivalent to the depth of the board) and the number represents the
column. Each subtask sent to a worker (line 21 in Listing8.2) requires finding all possible valid solutions
of placing the next queen on a board filled up to the current depth. Once an intermediary solution is
found the worker sends an asynchronous call to the master (line 12in Listing8.3) to create a new subtask
for the new board and the incremented depth. The master aggregates the results using a coroutine model
(line 24) to await all the solutions starting at depth 0.

We ran the benchmark with a board size varying from 7 to 14 with a fixed number of 4 workers. The
results compare the implementations of the NQueens problem and are shown in Figure 8.2. The first two
implementations are direct translations in Java from ABS source code with the two co-routine approaches
(thread-abstraction and JAAC(spawning)). It is important to observe that as the board size increases,
the number of solutions grows from 40 to 14200. The results show that using thread abstraction (where
each method invocation generates a corresponding thread) the time taken grows exponentially and cannot
complete once the board size reaches 11 while the approach that uses tasks remains unaffected.

The next result (the blue plot) shows the improvement brought by using Java data structures. These
results are at a comparable level with the Savina implementation using Akka actors(orange plot). ABS
has limited support for data structures (offering only lists, sets and associative lists that can be used as
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Listing 8.2: NQueens Master Class Snippet
1 class Master (Int numWorkers, Int threshold, Int boardSize, ...) implements IMaster {
2
3 List<IWorker> workers = Nil;
4
5 //... constructor and initializations
6 {
7 Int i = 0;
8 while (i <= numWorkers) {
9 IWorker w = new Worker(this,threshold,size);
10 workers = Cons(w,workers);
11 i = i+1;
12 }
13
14
15 this!sendWork(Nil, 0, ...); // triggers computation
16 }
17
18 //method for receiving solutions
19 Unit sendWork(List<Int> board, Int depth, ...){
20 Fut<Unit> f = nth(workers,messageCounter)!
21 nqueensKernelPar(board,depth,priorities);
22 messageCounter = (messageCounter + 1) % numWorkers;
23 if(depth==0){
24 await f? ;
25 //handling program completion
26 }
27 }
28 }
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Listing 8.3: NQueens Worker Class Snippet
1 class Worker(IMaster master, Int threshold, Int size) implements IWorker {
2
3 Unit nqueensKernelPar(List<Int> board, Int depth, ...) {
4 Int i = 0;
5 if (size != depth) {
6 if (depth >= threshold) {
7 //handle the rest of the solution sequentially and send it to the master
8 } else {
9 while (i < size) {
10 List<Int> newboard = appendright(board,i);
11 if (boardValid(0, newboard,depth+1)) {
12 master!sendWork(newboard,depth+1, ...);
13 }
14 i = i+1;
15 }
16 }
17 }
18 else { //send a solution to the master
19 }
20 }
21 }

maps) and by changing the board from an ABS list to a Java Array we obtain a significant improvement.
This enforces the need of a foreign language interface for ABS to be used a full-fledged programming
language.

8.2 Benchmarking the ASCOOP Library
In this section, we evaluate the ASCOOP library in terms of the overhead of creating actors, asynchronous
message passing between them, and suspended sub-tasks in actors. To this end, we use some of the
examples in the Savina benchmark for programming with actors [IS14], each focusing on one aspect. We
compare the execution time of our ASCOOP implementation with those available in the Savina Suite for
standard Scala actors and Akka actors. All benchmarks are run on a core i5 machine with 2 CPU that
support hyperthreading and 8GB memory.

We use the Ping Pong benchmark for exchanging a large number of messages between two actors.
This tests how well each of the libraries handles message passing to the correct actor and how quickly an
actor receives a message and processes it. Then we use the Fibonacci benchmark to see how well the
library behaves with an exponentially growing number of actors. Finally, we take two typical benchmarks
for CPU and memory operations: the Sieve of Eratosthenes and the NQueens problem.

For each of the benchmarks we offer two implementations using ASCOOP Actors. The first one is a
typical actor implementation similar to the other libraries with a fire-and-forget approach. This approach,
additionally, requires some sort of termination protocol and a prior known condition of termination to
ensure correct completion of the application. In the second approach we use the cooperative scheduling
feature of ASCOOP actors. This reduces the need for extra message passing to explicitly return the result
of a computation; instead, the sender awaits the availability of a future and gets the result from there.
Similarly, the termination of the program can be determined by completion of the future corresponding
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Figure 8.3: Performance figures Ping Pong Benchmark

to the task that starts the whole benchmark, but this can be tweaked to a different task or actor state
depending on the benchmark.

8.2.1 Message Passing Overhead
The first benchmark we look at is the Ping Pong benchmark where two actors exchange a fixed number of
empty messages. These messages do not perform any computations so this benchmark strictly tests only
the overhead of communication between actors. The results are presented in Figure 8.3.

Listing 8.4: Pong Actor code in ASCOOP
1 class PongActor extends TypedActor {
2
3 var pongCount = 0
4
5 def ping(sender: PingActor): Future[Void] = messageHandler {
6 sender.pong
7 pongCount += 1
8 done
9 }
10
11 def stop: Future[Void] = messageHandler {
12 println("Pong:␣pongs␣=␣" + pongCount)
13 done
14 }
15 }
From the results we see that up to 109 messages the overhead of both ASCOOP implementations is
comparable to that of Akka and significantly better than Scala Actors. What we want to stress is that
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even for a simple program like this, the size of the code is reduced from 150 to 110 lines of code (loc).
For example we compare the implementation of the Pong Actor with Akka and ASCOOP Actors in
Listings 8.4 and 8.5. We can observe that explicit message types and pattern matching (on line 7 of
Listing 8.5) are not longer required, as they are replaced by method definitions for each type of message.
This also gives the code more readability and modularity as an actor no longer has just a single method
for processing all messages. Also in Akka each type of message needs to be defined separately in
PingPongConfig and this is a requirement that is specific to each benchmark.

Listing 8.5: Pong Actor code in Akka
1 class PongActor extends AkkaActor[Message] {
2
3 private var pongCount: Int = 0
4
5 override def process(msg: PingPongConfig.Message) {
6 msg match {
7 case message: PingPongConfig.SendPingMessage =>
8 val sender = message.sender.asInstanceOf[ActorRef]
9 sender ! new PingPongConfig.SendPongMessage(self)
10 pongCount = pongCount + 1
11 case _: PingPongConfig.StopMessage =>
12 exit( )
13 case message =>
14 val ex = new IllegalArgumentException("Unsupported␣message:␣" + message)
15 ex.printStackTrace(System.err)
16 } } }

The implementation with cooperative scheduling also uses the code sequence presented previously
in Listing 6.11 to ensure correct termination of the program. In Listings 8.6 and 8.7 we compare the
termination of the benchmark in ASCOOP and Akka. This is part of the Ping Actor implementation.

Listing 8.6: Ping Actor code in ASCOOP
1 class PingActor(pongActor: PongActor) extends PingInterface {
2
3 var pingsLeft = 0
4 var t1 = 0L
5
6 override def start(iterations: Int) = messageHandler {
7 t1 = System.currentTimeMillis
8 pongActor.ping(this)
9 pingsLeft = iterations − 1
10
11 on (pingsLeft == 0) execute {
12 val t2 = System.currentTimeMillis
13 pongActor.stop
14 println(s"Finished␣in" +{t2−t1}+ "␣milliseconds")
15 ActorSystem.shutdown( )
16 done
17 }
18 done
19 } }
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Listing 8.7: Ping Actor code in Akka
1 private class PingActor(count: Int, pong: ActorRef) extends AkkaActor[Message] {
2
3 private var pingsLeft: Int = count
4
5 override def process(msg: PingPongConfig.Message) {
6 msg match {
7 //...other case branches for prcessing messages
8 case _: PingPongConfig.SendPongMessage =>
9 if (pingsLeft > 0) {
10 self ! PingMessage.ONLY
11 } else {
12 pong ! StopMessage.ONLY
13 exit( )
14 }
15 }
16 }

The termination that uses ASCOOP Actors delegates the verification of the number of pings left to
issue to the underlying scheduler (see Section 4.2.2) instead of verifying this state upon every execution of
a ping as Akka Actors implementation shows(line 9 in Listing 8.7). As such the termination in ASCOOP
is based on a particular actor state that the user can specify(line 11 of Listing 8.6) and needs not to be
checked upon every ping.

8.2.2 Actors Overhead
The second benchmark calculates the nth number of the Fibonacci sequence. The sequence is defined with
two starting numbers with the value of 1 and each number that follows is the sum of the two preceding
ones. The implementation in the Savina benchmark calculates number n by creating two actors to calculate
numbers n − 1 and n − 2 and then adding them together. These two actors in turn will each create two
more actors (for calculating the sums of n − 2 and n − 3 and n − 3 and n − 4 respectively) and so on.
This sequence is repeated until n = 1 or n = 2 which both have value 1. This benchmark is very suitable
for testing the performance of a program with a large number of actors as it will create 2n actors. We
observe the results in Figure 8.4, which show the overhead for up to 233 actors.

The implementation with cooperative scheduling for this benchmark is shown in Listing 8.8. The
completion of the Fibonacci number (starting on line 10) is scheduled to run only when the two previous
numbers have been computed by futures ff1 and ff2. This example best illustrates how much code can be
reduced using cooperative scheduling as a normal fire-and-forget implementation would have required
two separate response messages before computing the number.

8.2.3 CPU and Memory benchmarks
The next two benchmarks are typical benchmarks for programming with actors that perform a lot of CPU
and memory operations. The Sieve of Eratosthenes [O’N09] calculates prime numbers from the first n
candidates [Tip13, Bok87, pri]. The implementation first creates two actors:one that generates candidates
starting from 3 and skipping even numbers. The candidates are passed to a second actor that determines
if they are prime based on the prime numbers it has already identified by checking if they are divisors of
the current candidate. If a number has no divisors it is stored in an array inside the actor. To increase
parallelism, each actor stores a fixed number of primes, which once exceeded will create a new actor

93



 0

 20

 40

 60

 80

 100

 120

 140

 160

 25  26  27  28  29  30  31  32  33  34

Ti
m

e
 (

se
co

n
d
s)

Fibbonachi Number Sequnece (n) -> requires 2n Actors

Scala Actors
Akka Actors
JAAC Actors

JAAC Actors with Cooperative Scheduling
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Listing 8.8: Fibonacci Actor code in ASCOOP with Cooperative Scheduling
1 class FibActorAwaiting extends TypedActor{
2 def request(n: Int): Future[Int] = messageHandler {
3 if (n <= 2) {
4 Future.done(1)
5 }
6 else {
7 val ff1 = (new FibActorAwaiting).request(n − 1)
8 val ff2 = (new FibActorAwaiting).request(n − 2)
9 List(ff1, ff2) onSuccessAll {
10 ns =>
11 Future.done(ns.head + ns.tail.head)
12 }
13 }
14 }
15 }
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Figure 8.5: Performance figures Eratosthenes Sieve Benchmark

with the same behaviour. Once all candidates up to n have been processed, the total number of primes is
aggregated from each array. Am important observation is that this is an actor-based implementation and
comparison of the case study and it is not meant to be the fastest implementation of the sieve, as there
exist many algorithms of segmenting the data to obtain better parallelism and scaling [yS05].

The results of this benchmark are shown in Figure 8.5, with each actor storing a fixed number of
2000 primes before an new actor is created. In this benchmark the number of messages and actors is
significantly lower and we can see that there is no particular implementation that is constantly better in
terms of performance. However when it comes to writing the actual application, once again we observe
that the size of the code compared to the Savina benchmarks in Scala and Akka has been reduced from 160
loc to 110 loc.

The NQueens benchmark is reused because the master-slave model relies heavily on the cooperative
scheduling properties. The benchmark divides the task of finding all the valid solutions to theN queens
problem to a fixed number of workers that at each step have to find an intermediary solution of placing a
queen K on the board before relaying the message back to the master which then assigns the next job of
placing queen K + 1 to another worker. As the search space becomes smaller, a threshold is imposed
where the worker has to sequentially find the complete solution up toN queens before sending a message
back to the master.

We ran the benchmark with a board size varying from 11 to 15 with a fixed number of 4 workers. The
results are shown in Figure 8.6. It is important to observe that as the board size increases, the number of
solutions grows from 2680 - 2,279,184.

These results also have very small differences in performance and it is very important to know that
the ASCOOP model for this benchmark is 150 lines of code in total, while the benchmark written directly
using the Scala or Akka libraries is around 400 lines of code. Furthermore the ASCOOP implementation
with cooperative scheduling does not require that the number of solutions to be found is known a priori,
as the master actor can simply wait on the future that generated all of the searches (line 9 of Listing 8.9)
and generate a sub-task to terminate the application once it completes (line 10).
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Listing 8.9: NQueens Master Methods for Initialization and Completion
1 def sendWork(list: Array[Int], depth: Int, priorities: Int):
2 Future[Iterable[Array[Int]]] = messageHandler {
3 val worker = new Worker(threshold, size)
4 worker.nqueensKernelPar(list, depth, priorities)
5 }
6
7 def init : Future[Void] = messageHandler {
8 val inArray: Array[Int] = new Array[Int](0)
9 val f = this.sendWork(inArray, 0, priorities)
10 f onSuccess(result => {
11 println(s"Found␣{result.size}␣solutions")
12 }
13 }

8.3 Map Reduce
The solution provided in this thesis is tailored towards the efficient integration of actors, futures and
coroutines on a single-machine. As we have seen in Chapter 5, there are significant challenges to
maintaining this efficiency in a distributed setting. This section covers a comparative analysis between
the research and solution proposed in this thesis and the research conducted in [Roc16] where ABS is
extended with distributed support.

Through the use of a representative HPC application: pattern matching of a DNA sequence pro-
grammed in the MapReduce model [DG08] we compare the performance of the two models deployed on
an increasing number of nodes. The case study is computation-intensive and yet does no have a lot of
active object communication. On one hand, ProActive relies on physical threads for active objects and
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data copying occurs in each communication, thus ProActive is better suited for computation-intensive
scenarios than for communication-intensive ones. On the other hand, the JAAC backend is perfectly
suited when the number of nodes does not exceed the machine’s cores as the premise of the LocalActor
implementation is to communicate with other actors at no additional cost. We compared performance of
the code generated with the ProActive backend for ABS run in distributed mode, the code generated with
the Java 8 backend of ABS run on a single machine, and native code written manually in ProActive for
the same algorithm.

The application creates Map instances (workers) each in their own COG. The search pattern is of 250
bytes inside a database of 5 MB. Each worker queries and processes the maximum matching sequence
of a chunk while a reducer aggregates and prints out the global maximum matching sequence. When
deploying with ProActive for the best mapping to cores, each machine is instantiated with two workers (as
it has two dual-core CPUs). One of the biggest drawbacks of ABS was its standard library data structures,
so in both generated programs, we manually replaced the translation of functional ABS types (integers,
booleans, lists, maps) with standard Java types to avoid search spaces of very high complexities (i.e a
search in an ABS functional hash map is O(n)).

The hardware setup for this case study was with machines that have 2 dual core CPUs at 2.6GHz, and
8 GB of RAM1.

Fig. 8.3 shows the execution times of both ABS backends for the application ranging from 2 to 50
workers, and 1 to 25 physical machines with ProActive. The execution times of the ProActive backend are
sharply decreasing for the first few added machines and then decrease at a slower rate. The first instance
added in the JAAC backend also improves significantly the performance of the program and the JAAC
backend performs better with one or two workers. Thanks to the efficient thread management of the Java

1We use a cluster of Grid5000 platform [BCC+06]: http://grid5000.fr
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8 backend, the performance stays stable until 30 workers. With a high number of instances, the degree of
parallelism becomes harmful. In contrast, increasing the degree of parallelism for the ProActive backend
results in a linear speedup, because it balances the load between machines and benefits from distribution.

8.4 Cache coherency
This section covers a case study where ABS is used to simulate the memory model of a multi-core
architecture. It is a model of the entire multi-core system that includes computing cores, a scheduler,
the bus and the different memory levels that include cache levels and the main memory. The simulation
models how data is loaded and written into main memory and how it passes through the caches when
different operations are executed. For the research conducted in this thesis the operations abstract from the
actual data by working only with address requests like loading an address for reading or writing purposes.
Operations are grouped together in sets to represent tasks that are to be executed on a core. It is important
to understand that the entire system is a model that is independent from the actual system it runs on. All
the operations corresponding to loading addresses, looking them up in the cache levels, evicting addresses
to create space in a cache or flushing addresses to main memory for maintaining persistent data are all
programmed in the ABS source code. As such at the end of executing the model, the user can observe the
state of the system such as the data stored in the cache or the number of hits and misses when an address
is required.

This case study illustrates a powerful usage of the resource modeling extension of ABS. Each core is
modeled as an ABS object that can executed its assigned tasks in parallel to other cores. The simulated
core scheduler assigns tasks to the available cores in the system in a round-robin manner. Using the
resource provisioning model, core objects can each be assigned a Deployment Component with a finite
amount of resources (Listing 8.10), thus ensuring a load-balancing factor between the cores. On lines 6- 10
the model determines whether a new Deployment Component (referenced by dc) is instantiated with an
infinite (0) or finite amount of resources. Then upon setup of the system’s cores (lines 14 or 18), these are
assigned the newly created component with finite resources if this was the configured setup.

Listing 8.10: Assigning finite resources to a new core object
1 class Config(Maybe<Rat> resources) implements IConfig {
2
3 Unit runConfig(Int nCores_, ...){
4 / ∗ other configuration setups ∗ /
5 while (nCores > 0) {
6 Rat rc = case resources {
7 Nothing => 0;
8 Just(x) => x;
9 };
10 DeploymentComponent dc = new DeploymentComponent(name, map[Pair(Speed,rc)]);
11 / ∗ ... ∗ /
12 case resources {
13 Nothing => {
14 ICore c = new Core(name,s,l1);
15 //core setup Deployment Component with infinite resources
16 }
17 _ => {
18 [DC: dc] ICore c = new Core(name,s,l1);
19 //core setup on a Deployment Component with finite resources
20 } } } } }
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Even more powerful is the fact the by giving the Deployment Components different speeds (as in
line 10 of the previous listing) or the tasks different costs by using annotations ( line 4 Listing 8.11),
the model can simulate cores that execute faster or tasks than take longer to run (thus the reason for
abstracting from actual data as far as execution speed is concerned). A simple algorithm of assigning
equal resources to all Deployment Components on which Core objects are instantiated and giving all
tasks the same Cost will simulate complete parallelism in the system: a core will execute a second task
only after all cores have executed the first task. Together with a round-robin scheduler, the model also
simulates perfect load-balancing between all the cores.

Listing 8.11: Assigning taks execution a particular cost
1 class Core( ... ) implements ICore {
2
3 Unit run( ) {
4 [Cost:1] skip;
5 case currentTask {
6 //execution of current task assigned to the core
7 }
8 }
9 }

The Scala backend was compared with the Erlang backend for ABS in this case study. This backend
is the most stable and well-maintained backend of ABS and it offers full support for all of ABS features
including error handling and custom-defined schedulers, however it does use the thread-abstraction
approach for asynchronous communication and cooperative scheduling. In Listing 8.8 the performance
times for simulating a system with 2 cores and three levels of cache are presented. In this first simulation
(the red and green plots) there is no usage of resource models assigned to ABS Core objects and as such
these can work at non-deterministic speeds resulting in an uneven number of tasks executed between the
cores. In the second simulation (the orange and blue plots) the ABS model uses Deployment Components
as explained in Listing 8.10 to obtain a load balance of the tasks executed on the two core objects. There
are two important observations to withdraw from these results:

1. The tasks spawning approach allows the ABS model to run much faster as the number of tasks
simulated in the system grows

2. The simulation of the load balancing and resources creates a small overhead in order to provide a
much more realistic version of the memory system.

8.5 German Railway Example
The final case study involves testing and validating support for the time model of ABS in the runtime
library. The case study simulates physical behaviour of trains and events occur happen on the railway
track and its components such as signals, stations and switches. For a detailed formal description of the
model we refer to [HM16, KH16, KH17]. The main focus of using this example in the research is its
usage of the time model of ABS. Throughout the source model several events occur after a fixed amount
of time units passes and in turn trains have to react to those events in correctly establish capacity and
safety properties.

The railway is modeled as an oriented graph where nodes represent fixed points of information flow
(PIF) and are connected by edges that represent the tracks between them. In short PIFs are structural
elements where trains can receive or send information such as a signal or a track clearance detection
device or a gradient change in the track. Both tracks and nodes are represented as ABS objects as in
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Figure 8.8: Results for the simulation of the memory system

Listing 8.12. A NodeImpl object contains a list of connecting Edges that make up the graph and represent
the tracks on the railway. The EdgeImpl class represents tracks with a particular length l and the two
nodes it connects(frNode and toNode). Multiple lines between the same two nodes may be represented
by edges.

Listing 8.12: Graph and Edge Classes
1 class NodeImpl(Int x, Int y, String name) implements Node {
2
3 List<Edge> edges = Nil;
4
5 }
6 class EdgeImpl(..., Node frNode, Node toNode, Int l, String name) implements Edge {
7
8 }

Trains are also ABS objects are represented by the their front and back position relative to the most
recent node they passed. A train has a series of attributes to describe its behavior such as speed, acceler-
ations state and length as well as fixed attributes such as maximum acceleration and brake retardation.
An outline of the class is presented in Listing 8.13. Trains are modeled to drive on simulation events.
At every PIF where the train is active, it computes its next event and the time until this event must be
processed. This is where the time-model of ABS is used by calling the advance method whenever an
event is computed to simulate the amount of time that passes.

Listing 8.13: Train Class
1 class TrainImpl(App app, String name, Int length) implements Train {
2 //attributes that define a train’s state and behaviour
3
4 Unit advance(Rat r){
5 await duration(round(r), round(r));
6 }
7 }
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Figure 8.9: The railway model through the visualization tool

The model was run with the ABS Scala backend with time support and a very important result that was
obtained is that the output of the model is deterministic and the simulation always yields that same result
given the same input. The output can then be processed using a visualization tool developed in [KS19].
Figure 8.9 presents a snapshot of the model where the user can observe and monitor the behaviour of
trains by advancing time in the simulation model.
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Chapter 9

Conclusions and Future Work

Throughout the research conducted in my thesis I proposed and validated solutions to unify two the
domain of formal modeling and verification with the domain of software development and engineering.
I discovered that in general researchers and professors with a more theoretical background are willing
to adopt a mainstream programming language like Java or Scala into their research with more graduate
students having acquired experience in programming during their studies. On the other hand industry
is much more reserved to integrate formal methods and newly proposed language models, despite their
strong academic backing, mainly due to the agile approach that focuses on getting products out quickly and
making improvements on a continuous basis. As such my research slowly turned towards making formal
languages, specifically ABS and its features, more approachable to software development and making it
easier to learn and use by programmers. The research also focused on integrating ABS’s features into
the software development cycle. These included features for concurrent and functional programming, as
well as features for modeling real-time systems with deadlines and resource provisioning for distributed
systems.

This thesis formally describes a translation scheme together with a Java library for efficiently simulating
the behaviour of ABS. The coroutine abstraction is a powerful programming technique in a software
development context with a very strong research effort both in model proposals and implemented libraries.
Having a scalable JVM library with support for coroutine emulation gives a basis for industrial adoption
of the ABS language for component-based software engineering. It makes ABS a powerful extension
of Java with support for formal verification, resource analysis and deadlock detection. The proposed
library was stress-tested with a benchmarks tailored towards cooperative scheduling that show significant
improvements of saving continuations including the call stack as data in memory instead of using a
process-oriented approach by means native Java threads. With a better approach to the problem of using
coroutines in programming comes the need to also compare it with state of the art solutions and therefore
the library was tested against benchmarks for CPU-intensive applications to show that this feature does
not have a negative impact on performance compared to existing actor libraries like the Akka Actor
library.

There are however certain things that theoretical models cannot account for in software development.
The Java language is a mainstream language with countless libraries and technologies developed around
it that ABS is by no means intending to replace. This was the basis for extending the Java library to
ASCOOP as a standalone library that directly offered ABS’s functional and concurrent features in Scala.
This extended library seamlessly integrates actors with futures and support for cooperative scheduling.
The programming to interfaces paradigm enables common advantages of object-oriented programming
including static type checking of message passing between actors as well as type hierarchies of actors.
Tested with the Savina benchmarks the library is proves to be scalable in the number of actors, number of
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messages communicated, and number of suspended sub-tasks. Comparisons with Akka and Scala actors
show comparable performance while the simpler programming paradigm and statically typed messages
lead to more ease of programming and less chance of runtime errors. The obtained reduction in the code
is in part due to cooperative scheduling but also due to ASCOOP not requiring a context setup for actors
and explicit build-up of messages and subsequent pattern matching on them.

The research towards unifying software development and formal models will continue in these two
main directions covering several new aspects. At the translation level of ABS, the plan is to extend the
ABS type-checker to verify the Foreign Language Interface constructs directly in ABS. ABS also requires
the development of a debugger to enable profiling and visualization of concurrent programs. In both
research directions there is still a need to further develop the research presented in Chapter 5 with respect
to implementation of distributed actors. To allow systems of distributed actors, ASCOOP is extending the
way completion of futures is propagated into a distributed push-based approach. Additionally, ASCOOP
needs a mechanism to allow programmers to specify blocking tasks such that they can be scheduled on a
separate executor; otherwise there is a risk that all available threads get blocked and normal CPU-intensive
tasks get delayed. ASCOOP will also provide a more functional style of programming with futures as
well as more integral error handling mechanisms.
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Summary

The development process of any software has become extremely important not just in the IT industry, but
in almost every business or domain of research. The effort in making this process quick, efficient, reliable
and automated has constantly evolved into a flow that delivers software incrementally based on both the
developer’s best skills and the end user’s feedback.

Software modeling and modeling languages have the purpose of facilitating product development
by designing correct and reliable applications. The concurrency model of the Abstract Behavioural
Specification (ABS) Language with features for asynchronous programming and cooperative scheduling
is an important example of how modeling contributes to the reliability and robustness of a product. By
abstracting from the implementation details, program complexity and inner workings of libraries, software
modeling, and specifically ABS, allow for an easier use of formal analysis techniques and proofs to support
product design. However there is still a gap that exists between modeling languages and programming
languages with the process of software development often going on two separate paths with respect to
modeling and implementation. This potentially introduces errors and doubles the development effort.

The overall objective of this research and thesis is bridging the gap betweenmodeling and programming
in order to provide a smooth integration between formal methods and two of the most well-known and
used languages for software development, the Java and Scala languages. The research focuses mainly on
sequential and highly parallelizable applications, but part of the research also involves some theoretical
proposals for distributed systems. It is a first step towards having a programming language with support
for formal models. The contributions of this thesis are divided in three parts aimed at achieving this
overall objective.

The first part is about developing a runtime that implements the proposed concurrency model of
ABS its features with the main focuses being on performance and scalability of the implementation.
The runtime has the purpose of optimal thread management in the Java language and provides a full
integration of actors and futures with asynchronous programming.

The second part of this research brings the high-level modeling constructs, especially those that model
asynchronous programming and concurrent behavior in ABS to the level of the Java language through an
API. The base API, called JAAC is exposed Java and presents some constructs which are quite permissive
with regards to type checking of the proposed asynchronous call and vulnerable to unwanted code being
run on actors. The API is extended to Scala syntax, called ASCOOP, where all (a)synchronous method
calls are now type checked by the Scala compiler allowing only calls to methods that are exposed by a
class or interface.

The third part focuses on the development of a compiler from the software model to Java and extended
to Scala that provides a formally correct translation and behavior. This translation fully supports the
semantics of the core modeling language which includes modeling actors and actor groups as software
components. The compiler support includes asynchronous communication, coroutine suspension and
resume constructs. Finally the compiler translates the ABS language extensions for timed-models and
resource consumption.
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Samenvatting

Het ontwikkelproces van welke software dan ook is heden ten dage uitermate belangrijker dan voorheen,
niet alleen in de IT sector maar tevens in het bedrijfsleven en vrijwel alle onderzoeksrichtingen. Met
oog op het verbeteren van dit ontwikkelproces wat betreft schakelsnelheid, efficientie, betrouwbaarheid,
en automatiseerbaarheid, is er in de afgelopen decennia een werkwijze ontstaan, waarin software staps-
gewijs opgeleverd wordt, gebaseerd op de competenties van de ontwikkelaar en terugkoppeling van de
eindgebruikers.

Softwaremodelering en modeleringstalen hebben als doel het ontwikkelprocess te vergemakkeli-
jken door middel van ontwerpbeschrijvingen van correcte en betrouwbare softwaretoepassingen. Een
invloedrijk voorbeeld van softwaremodelering, wat betreft het verbeteren van de betrouwbaarheid en weer-
barstigheid van softwareproducten, is het ‘concurrency’ model van de Abstract Behavioral Specification
(ABS) taal. Deze modeleringstaal heeft als kenmerken de ondersteuning voor asynchrone programma’s
en coĂ¶peratieve uitvoering van programma’s. Door van implementatiedetails, programmacomplexiteit
en inhoud van programmabilbiotheken te abstraheren, zijn formele analyse technieken en bijbehorende
bewijstechnieken aanzienlijk eenvoudiger toe te passen op software modellen dan op software an sich,
en dit geldt specifiek ook voor ABS. Echter blijft er hierdoor afstand tussen de gebruikte software mod-
ellen en de daadwerkelijke software: het ontwikkelproces bewandelt twee losse paden, de een en ander
overeenkomstig aan softwaremodelering in een modeleringstaal en implementatie in een programmeertaal.
Dit leidt tot foutgevoeligheid en dubbel werk.

Het uiteindelijke doel van het onderzoek zoals beschreven in dit proefschrift is het overbruggen van
de afstand tussen softwaremodellen en software zoals uitgedrukt in programmeertalen. Dit biedt een
soepele integratie van formele methoden en twee van de meest bekende en gebruikte programmeertalen
voor softwareontwikkeling: Java en Scala. Het onderzoek richt zich voornamelijk op sequentiele en
parallelizeerbare applicaties, maar een apart onderdeel richt zich ook op een theoretische beschouwing
van gedistribueerde applicaties. Dit onderzoek is een eerste stap naar een programmeertaal met grondige
ondersteunig voor formele methoden. Het gepresenteerde werk is verdeeld in drie delen, die elk een
onderdeel vormen van het gemeenschappelijke doel.

Het eerste deel beschrijft de ontwikkeling van een programmaomgeving, dat het voorgestelde gestren-
gelde gelijktijdigheidsmodel van ABS implementeert, doelgericht op de efficiĂ«ntie en schaalbaarheid
ervan. Deze omgeving benut optimaal het beheer van de zogenaamde parallellopende leidraden (‘threads’
in het Engels) in de Java programmeertaal en integreert zowel acteursobjecten als toekomstobjecten met
het asynchrone programmeren.

Het tweede deel van dit onderzoek stelt de constructen van hoger niveau, in het bijzonder de constructen
die asynchroniciteit en parallellisme modelleren in ABS, beschikbaar binnen de programmeeromgeving
van de Java programmeertaal door middel van een applicatieprogrammeringsinterface (API). De basis
van deze API, genaamd JAAC, is gegeven als een Java programmaonderdeel en stelt daarmee constructen
bloot aan vrij gebruik, veelal niet beperkt door types te checken van asynchrone aanroepen, en is daardoor
vatbaar voor de mogelijkheid ongewenste programmatuur uit te voeren binnen acteursobjecten. Deze API
is vervolgens uitgebreid, genaamdASCOOP, als Scala programmaonderdeel, zodanig dat alle (a)synchrone
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methode-aanroepen nu wel bij het type checken door de Scala compilator gecontroleerd worden, met als
resultaat dat alleen de toegestane programmatuur kan worden uitgevoerd binnen acteursobjecten.

Het derde deel richt zich op de ontwikkeling van een compilator van softwaremodellen met als doeltaal
Java, en als uitgebreide doeltaal Scala, dat een formeel correcte vertaling van programmagedrag vertoont.
Deze vertaalslag ondersteunt volledig de semantiek van de kern van de modelleringstaal, inclusief
acteursobjecten en groepen van acteursobjecten als softwarecomponenten. De ondersteuning van de
compilator includeert de constructies voor asynchrone communicatie, het suspenderen van co-routines, en
de continuering daarvan. Ten slotte vertaalt de compilator taal extensies van ABS voor tijdsafhankelijke
modellen en modellen met consumptiemetingen van (geheugen)bronnen.
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