
Integrating analytics with relational databases
Raasveldt, M.

Citation
Raasveldt, M. (2020, June 9). Integrating analytics with relational databases. SIKS
Dissertation Series. Retrieved from https://hdl.handle.net/1887/97593

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/97593

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/97593

Cover Page

The handle http://hdl.handle.net/1887/97593 holds various files of this Leiden University
dissertation.

Author: Raasveldt, M.
Title: Integrating analytics with relational databases
Issue Date: 2020-06-09

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/97593
https://openaccess.leidenuniv.nl/handle/1887/1�

CHAPTER 6

MonetDBLite

1 Introduction

In Chapter 2, we described an alternative method of combining database management

systems and external programs: embedding the database inside the client program.

This method has the advantage that the database server no longer needs to be managed,

and the database can be installed from within the standard package manager of the

tool. In addition, because the database and the analytical tool run inside the same

process, data can be transferred between them for a much lower cost.

SQLite [4] is the most popular embedded database. It has bindings for all major

languages, and it can be embedded without any licensing issues because its source code

is in the public domain. However, it is first and foremost designed for transactional

workloads on small datasets. While it can be used in conjunction with popular

analytical tools, it does not perform well when used for analytical purposes.

In this chapter, we describe MonetDBLite, an Open-Source embedded database

based on the popular columnar database MonetDB [41]. MonetDBLite is an in-process

analytical database that can be run directly from within popular analytical tools

103

2. Design & Implementation

without any external dependencies. It can be installed through the default package

managers of popular analytical tools, and has bindings for C/C++, R, Python and

Java. Because of its in-process nature, data can be transferred between the database

and these analytical tools at zero cost. The source code for MonetDBLite is freely

available1 and is in active use by thousands of analysts around the world.

1.1 Contributions

We describe the internal design of MonetDBLite, and how it interfaces with standard

analytical tools. We discuss the technical challenges we have faced in converting a

popular Open-Source database into an in-process embeddable database. We benchmark

MonetDBLite against other alternative database systems when used in conjunction

with analytical tools, and show that it outperforms alternatives significantly. This

benchmark is completely reproducible with publicly available source code.

1.2 Outline

This chapter is organized as follows. In Section 2, we describe the design and imple-

mentation of the MonetDBLite system. We compare the performance of MonetDBLite

against other database systems and statistical libraries in Section 3. Finally, we draw

our conclusions in Section 4.

2 Design & Implementation

In this section we will discuss the general design and implementation of MonetDBLite,

and the design choices we have made while implementing it.

2.1 Internal Design

MonetDBLite is based on the popular Open-Source columnar database MonetDB, and

as such it shares most of its internal design. The core design of MonetDB is described

1https://github.com/hannesmuehleisen/MonetDBLite

104

https://github.com/hannesmuehleisen/MonetDBLite

Chapter 6. MonetDBLite

in Idreos et al. [41]. However, since this publication a number of core features have

been added to MonetDB. In this section, we give a brief summary of the internal

design of MonetDB and describe the features that have been added to MonetDB since.

2.2 Embedding Interface

MonetDBLite is a database that is embedded into analytical tools directly, rather

than running as a standard client-server database. As MonetDBLite runs within

a process, clients have to create and initialize the database themselves rather than

connecting to an existing database server through a socket connection. For this

purpose, MonetDBLite needs a set of language bindings so the database can be

initialized and queries can be issued to the database.

MonetDBLite has language bindings for the C/C++, R, Python and Java pro-

gramming languages. However, all of these are wrappers for the C/C++ language

bindings. The main challenge in creating these wrappers is converting the data to

and from the native types of each of these languages. The optimization challenges of

this type conversion are discussed in Section 2.3. In this section, we will discuss only

the C/C++ API.

The database can be initialized using the monetdb startup function. This function

takes as optional parameter either a reference to a directory in which it can persistently

store any data. If no directory is provided, MonetDBLite will be launched in an

in-memory only mode, in which case no persistent data is saved to disk.

If the database is launched in persistent mode, a new database will be created

in the specified directory if none exists yet. Otherwise, the existing database will be

loaded and potentially upgraded if it was created by an older version of MonetDBLite.

If the database is launched in-memory, a new temporary database will be created

that will be kept entirely in-memory. Any data added to the database will be kept

in-memory as well. After an in-memory database is shut down, all stored data will be

discarded. The regular MonetDB does not have this feature.

After a database has been started, connections to the database can be created using

the monetdb connect function. In the regular MonetDB server, these connections

105

2. Design & Implementation

represent socket connections to a client process. In MonetDBLite, however, these

connections are dummy clients that only hold a query context and can be used to

query the database. Multiple connections can be created for a single database instance.

These connections can be used for inter-query parallelism by issuing multiple queries

to the database in parallel and they provide transaction isolation between them.

Using these connections, the embedded process can issue standard SQL queries

to the database using the monetdb query function. This function takes as input a

client context and a query to be issued, and returns the results of the query to the

client in a columnar format in a monetdb result object. The monetdb result object

is semi-opague, exposing only a limited amount of header information, as shown in

Listing 6.1

1 struct monetdb_result {

2 size_t nrows;

3 size_t ncols;

4 char type;

5 size_t id;

6 };

Listing 6.1: MonetDBLite Result Object

The individual columns of the result can be fetched using the monetdb result fetch

function, which takes as input a pointer to the monetdb result object and a column

number. There are two versions of this function: a low level version, and a high level

version. In the low level version, the underlying structures used by the database are

directly returned without any conversions being performed. This function requires

internal knowledge of the database internals, and is intended for use primarily for

the language-specific wrappers for extra performance. In the high level version, the

database structures are converted into a set of simple structures that can be used

without knowledge of the internals of MonetDB(Lite). The returned structures depend

on the type of the column. An example for the int type is given in Listing 6.2.

106

Chapter 6. MonetDBLite

1 struct monetdb_column {

2 monetdb_type type;

3 int* data;

4 size_t count;

5 int null_value;

6 double scale;

7 int (* is_null)(int value);

8 };

Listing 6.2: MonetDBLite Integer Column

In addition to issuing SQL queries, the embedded process can efficiently bulk

append large amounts of data to the database using the monetdb append function.

This function takes the schema and the name of a table to append to, and a reference

to the data to append to the columns of the table. This function allows for efficient

bulk insertions, as there is significant overhead involved in parsing individual INSERT

INTO statements, which becomes a bottleneck when the user wants to insert a large

amount of data.

2.3 Native Language Interface

For any of the languages other than C/C++, data has to be converted between the

database’s native format to the target language’s native format. When a SQL query

is issued, the result has to be mapped back into the target environment. Likewise, if

the user wants to move data from the target environment to the database, it has to

be converted.

Database connectors in the target environment face a similar but more difficult

problem, as they also have to deal with communicating with the remote database server.

We could adapt these database connectors to work with MonetDBLite. However,

in an analytical context this approach is problematic. As these are row-focused

interfaces [70], the results of queries must be fetched one-by-one. This leads to a large

amount of overhead when fetching a large result set, especially in interpreted scripting

languages such as R or Python. Columnar bulk access to result sets is therefore

107

2. Design & Implementation

needed, where all values belonging to one column can be fetched into a set of arrays,

one per column, in one or few calls to the database interface.

However, not all arrays are created equal. While it is possible to subclass the

native array representation in most programming environments, efficiency concerns

and expectations by third-party software might make a fully native data representation

necessary. For example, in R, most third-party packages will contain some portion of

compiled code written in C/C++, which relies on arrays being stored in the native

bit representation if they are to compute anything meaningful with them. Similarly,

in the NumPy environment, third-party packages can get a pointer to the native C

representation of any array. Hence for the objects that we return from the database

to be able to be used by these packages, we must create objects that exactly match

the native array format of the target environment.

Zero-Copy. Every target environment has a particular array representation in

memory. However, due to hardware support contiguous C-style arrays are ubiquitous

for numerical values. For example, both R and NumPy use this representation to

store arrays of numerical data. This allows for a unique optimization opportunity:

Instead of converting the data into a freshly allocated memory area, we can choose

to share a pointer to the existing data with the target system. The memory layout

needs to be compatible between data management and target environment, e.g. both

using contiguous C-style arrays containing four-byte signed integers. If this pointer

sharing is possible, the only cost comes from initializing metadata structures in the

target environment (e.g. SEXP header in R). However, this cost does not depend on

the size of the data set.

Great care needs to be taken to prevent modification of the data being shared. The

target environment may run any program imaginable, including code from contributed

packages, that may try to modify the shared memory areas. The shared pointer might

be part of persistent data of the database, hence modifying the data directly could

lead to corruption of the data stored in the database. Because of this, no direct

modification of this data is allowed.

What is desirable here are copy-on-write semantics for the shared data. If code

108

Chapter 6. MonetDBLite

from the target environment attempts to write into the shared data area, the data

should be copied within the target environment and only the copy modified. To

ensure these semantics are enforced, the Unix mprotect kernel function can be used to

disallow writes to the data by the target code. When the target environment attempts

to modify data we have shared with it, we create copy and modify the copy instead.

This allows for efficient read-only access without the risk of data corruption.

Figure 6-1: Header forgery for zero-copy data transfer.

Header Forgery. A challenge of providing a zero-copy interface to the data stored

in the database is that certain libraries expect metadata to be stored as a header

physically in front of the data. This is accomplished in the library by performing

a single memory allocation that allocates the size of the header plus the size of the

data. This is problematic in our scenario. As the source data comes directly from

an external database system it does not have space allocated in front of it for these

headers.

This problem could be solved by making the database always allocate extra bytes

in front of any data that could be passed to the analytical tool. As we have full control

of the database system, this is feasible. However, it would require a significant amount

of code modification and would result in wasted space in scenarios where the data is

not passed to the analytical tool.

Instead, we solve this problem using header forgery. This process is shown in

Figure 6-1. To provide a zero-copy interface of a region of n memory pages, we allocate

109

2. Design & Implementation

a region of size n + 1 memory pages using the mmap [28] function. We then place

the header information at the end of the first page. We then use the mmap function

together with the MAP FIXED flag to directly link the remaining n memory pages to

the original data. This linking happens in the memory page table, and does not create

a copy of these pages. This method predates, but could be considered an application

of the memory rewiring technique presented in [74].

Figure 6-2: Lazy data conversion.

Lazy Conversion. While the zero-copy approach is ideal, as it does not require

us to touch the to–be–converted data, it cannot be used in all cases. When the

internal representation of the database is not bit-compatible with that of the target

environment, data conversion has to be performed. As all data has to be converted, the

conversion will take a linear amount of time w.r.t. the size of the result set. However,

it is not known whether the target environment will ever actually do anything with

the converted data. It is not uncommon for a user to perform a query such as SELECT

* FROM table and only access a small amount of columns from the result.

This issue can be resolved by performing lazy conversion of the result set. Instead

of eagerly converting the entire result set, we create a set of “dummy” arrays that start

out with a correctly initialized header. However, the data is filled with uninitialized

110

Chapter 6. MonetDBLite

memory. This is shown in Figure 6-2. We then use the mprotect [29] function to

protect the uninitialized memory from being read or written to directly using the

PROT NONE flag. When the user attempts to access the protected memory area, the

system throws a segmentation fault, which we then catch using a signal handler. Using

a pointer to the original data that is stored alongside the header, we then perform a

conversion of the actual data and unset the mprotect flag, allowing the user to use

the now-converted data transparently.

2.4 Technical Challenges

In this section, we will discuss the additional technical challenges that we encountered

while converting a standard relational database management system to an in-process

embedded database system.

Internal Global State. MonetDB was originally designed to run as a single

stand-alone process. One of the consequences of this design is that internal global

state (global variables) is used often in the source code. The database uses global

state to keep track of e.g. the data stored inside the database, the write-ahead logger

and numerous database settings.

This global state leads to a limitation: it is not possible to run MonetDBLite

twice in the same process. As the global state holds all the information necessary for

the database to function, including paths to database files, and this information is

continuously accessed while the database is running, only one database server can

be running in the same process. To make it possible to run several database servers

within the same process would require a very comprehensive code rewrite, as the

global database state would have to be passed around to almost every function.

Garbage Collection. Another issue caused by this global state is garbage

collection. As the database server no longer runs as a stand-alone program, the global

variables can no longer be reset by restarting the server. In addition, all the allocated

memory has to be freed in the process. Allocated regions can no longer be neglected

with the knowledge that they will be freed when the process is terminated. Instead, to

properly support an “in-process shutdown” of the database server, everything has to

111

2. Design & Implementation

be cleaned up manually and all global variables have to be reset to their initial state.

External Global State. Another consequence of the database server being

designed to run as a stand-alone process is that it modifies a lot of external global

state, such as signal handlers, locale settings and input/output streams. For each of

these, it was necessary to modify the database source code to not modify the global

state. Otherwise loading the database package would result in it overriding signal

handlers, leading to e.g. breaking the scripting languages’ input console.

Calls to the exit function were especially problematic. In the stand-alone version

of MonetDB the database server shuts down when a fatal error was detected (such as

running with insufficient permissions or attempting to open a corrupt database). This

happens mostly during start-up. This is expected behavior in a stand-alone database

server, but becomes problematic when running embedded inside a different program.

Attempting to access a corrupt database using the embedded database would result

in the entire program crashing, rather than a simple error being thrown. Even worse,

since the database would simply exit in these scenarios, no alternative path exists to

only report the error. To avoid a large code rewrite, we used longjmp whenever the

exit function was called, which would jump out of the exit and move to a piece of

code where the error could be reported.

Error Handling. Another aspect of the database design that we needed to

rethink was error handling. In the regular database server, errors are reported by

writing them to the output stream so they can be handled by the client program.

However, in the embedded version the errors must be reported as a return value from

the SQL query function. We had to rewrite large portions of the error reporting code

to accommodate this.

Dependencies. To make MonetDBLite as simple to install as possible, one of

our design goals was to remove all external dependencies. Regular MonetDB has a

large number of required dependencies, among which are pcre, openssl, libxml and

pkg-config along with a large number of optional dependencies. For MonetDBLite,

we stripped all of these dependencies by removing large chunks of optional code and

rewriting code that relied on any of the required dependencies. For example, we made

112

Chapter 6. MonetDBLite

our own implementation of the LIKE operator (that previously used regular expressions

from the PCRE library). As a result of our efforts, MonetDBLite has no external

dependencies and can be installed without having to install any other libraries.

3 Evaluation

In this section, we perform an evaluation of the performance of MonetDBLite and

compare it against both (1) other relational database management systems, and (2)

several popular RDBMS alternatives used in statistical tools.

3.1 Setup

All experiments in this section were run on a desktop-class computer with an Intel

i7-2600K CPU clocked at 3.40GHz and 16 GB of main memory running Fedora 26

Linux with Kernel version 4.14. We used GCC version 7.3.1 to compile systems.

Reported timings are the median of ten hot runs. The initial cold run is always

ignored. A timeout of 5 minutes is used for the queries.

Systems. The following systems were used to compare against in our benchmarks.

All systems were configured to only use one of the eight available hardware threads

for fairness (as not all systems support intraquery parallelism). Furthermore, unless

indicated otherwise, we have attempted to configure the systems to take full advantage

of available memory. The complete configuration settings and scripts to reproduce

the results reported below can be found in the benchmark repository2.

• SQLite [4] (Version 3.20.1) is an embedded SQL database designed for transac-

tional workloads.

• MonetDB [41] (Version 11.29.3) is an analytical column-store database.

• PostgreSQL [77] (Version 9.6.1) is a row-store database designed for transac-

tional workloads.

2https://github.com/Mytherin/MonetDBLiteBenchmarks

113

https://github.com/Mytherin/MonetDBLiteBenchmarks

3. Evaluation

• MariaDB [89] (Version 10.2.14) is a row-store database designed for transac-

tional workloads. It is based on the popular MySQL database.

Libraries. In addition to the above-mentioned database management systems,

we test the following analytical libraries that emulate database functionality. We only

use these libraries in the query execution benchmarks.

• data.table [22] (Version 1.11.0) is an R library for performing common database

operations.

• dplyr [88] (Version 0.7.4) is an R library for performing common database

operations.

• Pandas [56] (Version 0.22.0) is a Python library for performing common database

operations.

• Julia [7] (Version 0.6.2) is a JIT compiled analytical language that has support

for performing standard database operators through the DataFrames.jl library.

Datasets. We perform benchmarks using the following data sets.

• TPC-H Benchmark. [82]. This synthetic dataset is designed to be similar

to real-world data warehouse fact tables. In our benchmarks, we use the scale

factors 1 and 10. The scale factor indicates approximately the size of the dataset

in GB.

• American Community Survey (ACS) [10]. This dataset contains millions

of census survey responses. It consists of 274 columns.

3.2 TPC-H Benchmark

As we focus on the integration of analytical tools with an analytical database, there

are three different scenarios that we want to optimize for and that we will benchmark.

114

Chapter 6. MonetDBLite

1. Data Ingestion. The rate at which data can be imported into the database

from the analytical tool. We call this the data ingestion or data import rate. This

scenario occurs when users want to take data that is the result of computations

in the analytical tool and store it persistently in the database.

2. Data Export. The rate at which data can be imported into the analytical tool

from the database. This data export rate is important when the user wants to

perform analytics on data that is stored persistently within the RDBMS.

3. Query Execution. The performance of the database engine when performing

analytical queries. This scenario occurs when the user wants to perform opera-

tions and aggregations on large amounts of data using the databases’ storage

engine. Note that for query execution, it is also possible to simply move the

data from the database into the analytical tool and do the processing there

using the previously mentioned libraries. For that reason, we also compare the

performance of the RDBMS with the afore-mentioned libraries.

Data Ingestion

For the data ingestion benchmark, we only consider the lineitem table. This is the

biggest table in TPC-H. It has 16 columns, primarily of types DECIMAL, DATE and

VARCHAR. There are no NULL values.

For this experiment, we read the entire lineitem table into R and then use the

dbWriteTable function of the R DBI [87] API to write the table into the database.

After this function has been completed, the table will be persistently present within

the database storage engine and all the data will have been loaded into the database.

We only consider the database systems for this experiment.

The results of this experiment can be seen in Figure 6-3. We can see that

MonetDBLite has the fastest data ingestion. However, we note that SQLite is not very

far behind MonetDBLite. For both systems, the primarily bottleneck is writing the

data to disk. MonetDBLite gains performance by storing the data in a more compact

columnar format, rather than the B-tree structure that SQLite uses to store data

115

3. Evaluation

234.3

111.8

8.57

88.8

11.4
0

100

200

300

MonetDBLite SQLite PostgreSQLMonetDB MariaDB

W
al

l c
lo

ck
 ti

m
e

(s
)

Figure 6-3: Writing the lineitem table from R to the database.

internally.

All the other systems perform extremely poorly on this benchmark. This is because

the data is written to the database over a socket connection, which requires a large

amount of network communication. However, the main problem is that these database

systems do not have specialized protocol code for copying large amounts of data from

the client to the server console. Instead, the data is inserted into the database using a

series of INSERT INTO statements, which introduces a large amount of overhead leading

to orders of magnitude worse performance than the embedded database systems.

Data Export

For the data export benchmark, we again only consider the lineitem table of the

TPC-H benchmark. For this experiment, we read the entire lineitem table from

the database into R using the dbReadTable function of the R DBI. This effectively

performs a SELECT * FROM lineitem query on the database and stores the result of

this query inside an R data frame.

The results of this experiment can be seen in Figure 6-4. We can see that

116

Chapter 6. MonetDBLite

17.2

163.3

2.18

58.9

21.5

0

50

100

150

200

MonetDBLiteMariaDB SQLite PostgreSQLMonetDB

W
al

l c
lo

ck
 ti

m
e

(s
)

Figure 6-4: Loading the lineitem into R from the database.

MonetDBLite has by far the fastest data export rate. Because it runs within the

analytical process itself, and because it makes use of zero-copy data transfer of numeric

columns, the data can be transferred between the database system and R for almost

no cost. By contrast, the databases that are connected through a socket connection

take a significantly longer time to transfer the result set to the client.

Despite running in-process as well, SQLite also takes a very long time to transfer

data from the database to the analytical tool. This is because the conversion of data

from a row-major to column-major format takes a significant amount of time.

Query Execution

For the query execution benchmark, we run the first ten queries of the TPC-H

benchmark inside each of the systems. For each of the libraries, we have created an

equivalent script for each of the queries using each of the libraries.

Library Implementations. Note that, since the libraries naively execute user

code without performing any high-level strategic optimizations, there is a lot of room

for modifying their performance as the equivalent functionality could be implemented

117

3. Evaluation

TPC-H SF 1
System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
MonetDBLite 0.74 0.03 0.29 0.06 0.07 0.18 0.08 0.08 0.09 0.20
MonetDB 0.87 0.02 0.09 0.08 0.10 0.05 0.08 0.11 0.16 0.07
SQLite 8.41 0.04 1.83 0.44 1.00 1.17 6.52 T 19.05 1.35
PostgreSQL 8.93 0.25 0.71 2.08 0.46 1.06 0.62 0.60 2.31 1.40
MariaDB 19.65 1.96 4.87 0.97 4.16 2.02 2.13 6.71 18.12 15.67
data.table 0.45 0.12 0.28 0.20 0.46 0.13 0.27 0.24 0.88 0.20
dplyr 0.70 0.13 0.34 0.25 0.60 0.17 0.31 0.41 1.17 0.28
Pandas 0.85 0.19 0.49 0.41 0.93 0.12 0.44 0.56 1.82 0.34
Julia 0.99 0.10 0.73 0.25 0.53 0.07 0.30 0.67 1.05 0.57

TPC-H SF 10
System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
MonetDBLite 16.55 0.14 1.92 0.50 0.64 0.44 0.68 0.75 0.95 0.99
MonetDB 9.63 0.07 1.15 0.87 1.16 0.38 1.00 1.12 1.66 0.68
SQLite 97.61 0.37 23.17 4.44 12.65 11.69 T T T 14.72
PostgreSQL 88.77 2.71 63.87 22.87 4.92 11.41 7.68 6.73 74.42 63.54
MariaDB 169.58 20.76 124.59 13.34 78.88 33.42 88.72 139.68 218.65 234.95
data.table E E E E E E E E E E
dplyr 31.48 1.20 5.13 3.79 8.13 1.83 4.35 4.47 16.29 3.77
Pandas E E E E E E E E E E
Julia 24.61 5.00 7.32 2.78 9.51 0.66 7.32 13.42 18.90 6.14

Table 6.1: Performance Results for TPCH SF1 and SF10

in many naive and inefficient ways. In the worst case, we could perform cross products

and filters instead of performing standard joins. Likewise, we could choose poor join

orders or not perform filter or projection push down, and force materialization of

many unused tuples.

To attempt to maximize the performance of these libraries, we manually perform

the high-level optimizations performed by a RDBMS such as projection pushdown,

filter pushdown, constant folding and join order optimization. We have created these

implementations by using the query plans that are executed by VectorWise [9], a

state–of–the–art analytical database system that is the front runner on the official

TPC-H benchmark for single node machines. All the scripts that we have created for

each of the libraries can be found in our software repository. We have also reached

out to the developers of each library and received feedback on optimization.

However, having the user apply all these optimizations is not realistic. This scenario

118

Chapter 6. MonetDBLite

assumes the user has perfect knowledge on how to order joins and assumes the user

does not do any inefficient steps such as including unused columns. The benchmark

results provided for these libraries should therefore be seen as a best-case performance

scenario. The benchmark results for these libraries would be significantly worse if

we did not manually perform many of the automatic optimizations performed by a

database system.

TPC-H SF1

The total time required to complete all the measured TPC-H queries for the different

systems is shown in Table 6.1. We can see that both MonetDB and MonetDBLite show

the best performance on the benchmark. They also show very similar performance.

This is because the TPC-H benchmark revolves around computing aggregates, and

does not involve transferring a large amount of data over the socket connection. As

such, the bottleneck is almost entirely the computation performed in the database

server. As MonetDB and MonetDBLite use the same internal query execution engine,

they have identical performance.

After MonetDB, we can see the various libraries we have tested performing similarly

with only a factor two difference between the best and the worst performing library.

The fastest library, data.table, is heavily optimized for performing efficient relational

operations. However, even with the optimizations we have performed on the user code

it still cannot reach the performance of an actual analytical database system. This is

because the procedural nature of these libraries heavily limits the actual optimizations

that can be performed compared to the optimizations that a database can perform on

queries issued in the declarative language of SQL. For example, they do not perform

late materialization.

The traditional database systems perform significantly worse than the libraries,

however. As the TPC-H benchmark is designed to operate on large chunks of a subset

of the columns of a table, the row-store layout and tuple–at–a–time processing methods

of the traditional database systems perform extremely poorly on this benchmark. We

can see that the traditional database systems perform many orders of magnitude worse

119

3. Evaluation

309.6

35.5

79
56.2

0

100

200

300

400

MonetDBLite SQLite PostgreSQL MariaDB

W
al

l c
lo

ck
 ti

m
e

(s
)

Figure 6-5: Loading the ACS data into the database.

than the analytical database systems and the libraries we have used.

Individual Query Performance. The performance of each of the systems on

individual queries can be seen in the table as well. The libraries perform extremely

well on TPC-H Query 1 and Query 6. On Query 1, data.table even manages to beat

our analytical database system. The libraries perform well on these queries because

the queries only involve performing filters and aggregations on a single table without

any joins.

The libraries perform worse on queries involving multiple joins. The join operations

in these libraries do not take advantage of meta-data and indices to speed up the

joins between the different tables. As such, they perform significantly worse than the

analytical database even when using an optimal join order.

The traditional database systems perform poorly on queries that involve a lot of

tuples behind pushed through the pipeline to the final aggregations. Because of their

tuple–at–a–time volcano processing model they invoke a lot of overhead for each tuple

that passes through the pipeline. This results in poor performance when many tuples

have to be processed at a time.

120

Chapter 6. MonetDBLite

TPC-H SF10

The results for the TPC-H SF10 benchmark are shown in Table 6.1. We note that at

this scale factor, the entire dataset still fits in memory. However, each of the scripting

libraries run into either out–of–memory errors or heavily penalized performance from

swapping on these queries. This is because these libraries require not only the entire

dataset to fit in memory, but also require any intermediates created while processing

to fit in memory. When the intermediates exceed the available memory of the machine

the program crashes with an out–of–memory exception. The database solutions do

not suffer from this problem, as they offload unused data to disk using either the

buffer pool or by letting the operating system handle it using memory mapped files.

While the traditional database systems do not run into crashes due to running

out–of–memory, their performance does degrade by more than an order of magnitude.

Because of the row-store layout of these systems, they have to scan and use the entire

dataset rather than only the hot columns. As a result, they run into performance

penalties as the entire dataset plus the constructed indices do not fit in memory

anymore and have to be swapped to disk. The column-store databases do not suffer

from this problem because only the actually used columns have to be touched to

answer the queries, and these are small enough to be kept in memory.

3.3 ACS Benchmark

For the American Community Survey benchmark, we run the ACS survey analysis

script as provided by Anthony Damico [20]. The script in this benchmark wrangles

data of the American Community Census, a large scale census performed in the United

States that gathers data about roughly 1% of the US population every year.

The script consists of two phases. In the first phase, the required data is gathered

and downloaded from the official data repositories. In the second phase, the downloaded

data is then processed and stored persistently in a database server. The persistently

stored data can then be analyzed and various aggregations and statistics can be

gathered from the data using the survey package [54].

121

3. Evaluation

73.6

45.4

62
55

0

25

50

75

MonetDBLite SQLite PostgreSQL MariaDB

W
al

l c
lo

ck
 ti

m
e

(s
)

Figure 6-6: Performing the ACS statistical analysis.

The survey package allows you to hook your own database driver into the script,

and will perform a significant amount of processing inside the database. For operations

were SQL is insufficient, the data is transferred from the database to R and the data

is then processed inside R using various statistical libraries.

The official documentation of the ACS script describes a large amount of statistics

that can be gathered from the data. For this benchmark, we benchmark both the

required loading time into the database (but exclude the time spent on downloading

the data) and a number of statistical operations that are described in the official

documentation. We limit ourselves to a subset of the data: we only look at the data

from five states of the year 2016. This is ≈ 2.5 GB in data.

Data Loading

The benchmark results for loading the data in the database are shown in Figure 6-5.

MonetDBLite performs the best on this benchmark, but not by as large a factor as

seen in the TPC-H benchmark. This is because the survey package performs a lot of

preprocessing in R that happen regardless of which database is used. As a result, the

122

Chapter 6. MonetDBLite

performance difference between the different databases is not as overwhelming but

still very visible.

Statistics

The benchmark results for running the various statistical functions using the different

database connectors are shown in Figure 6-6. We can see that the difference between

performance of the different database engines is not very large. This is because most of

the actual processing happens inside R rather than inside the database. The observed

difference in performance is mainly because of the difference in the cost of exporting

data from the database. However, since the amount of exported data is not very large

compared to the amount of processing that occurs in this scenario there is less than a

factor two difference between the systems.

4 Summary

In this chapter, we have presented the embedded analytical database system MonetD-

BLite. MonetDBLite performs orders of magnitude better than traditional relational

database systems when executing analytical workloads, and provides an order of

magnitude faster interface between the database and the analytical tool.

In addition to being significantly faster, MonetDBLite is also easier to setup and use

because it does not require an external server and does not have any dependencies. It

can be installed through standard package and library managers of popular analytical

tools. All of these factors combined make MonetDBLite highly suitable as a persistent

data store for analytical tasks.

123

