
Integrating analytics with relational databases
Raasveldt, M.

Citation
Raasveldt, M. (2020, June 9). Integrating analytics with relational databases. SIKS
Dissertation Series. Retrieved from https://hdl.handle.net/1887/97593

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/97593

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/97593

Cover Page

The handle http://hdl.handle.net/1887/97593 holds various files of this Leiden University
dissertation.

Author: Raasveldt, M.
Title: Integrating analytics with relational databases
Issue Date: 2020-06-09

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/97593
https://openaccess.leidenuniv.nl/handle/1887/1�

CHAPTER 5

In-Database Workflows

1 Introduction

In Chapter 4, we described the inner workings of the MonetDB/Python UDFs. By

utilizing these UDFs, existing complex analytical pipelines can be moved inside the

database. This allows us to gain all the advantages of storing data inside a relational

database, while still having flexible and easy-to-use analytical tools available.

An additional benefit of training and using machine learning models directly in the

database is that it is possible to persist both models and metadata (e.g. classification

scores on test sets) in the database. Standard relational queries can then be used to

apply the trained models to data. This allows for example to compare and combine

output from multiple models, each specialized for certain classification tasks. Also, it

is possible to classify the same data using multiple models and use the result of the

model that reports the highest confidence.

In this chapter, we showcase how we can use MonetDB/Python UDFs to efficiently

integrate a complex analysis pipeline inside MonetDB. We show how we can train

models directly inside the database, and how to store the models and subsequently use

93

2. Related Work

them to classify data without having to export the data from the database system.

1.1 Contributions

In this chapter, we show how traditional classification models can be integrated into

a column-store relational database management system. We describe how models

can be stored inside the database system and how these models can then be used to

efficiently and flexibly classify data. We experimentally show the performance benefit

of directly running the models inside the database system versus loading the data

from structured text, binary files or using database client protocols.

1.2 Outline

This chapter is organized as follows: Section 2 discusses related work. Section 3

presents our integration approach, followed by a concrete use-case and performance

results in Section 4. Finally, we draw our conclusions in Section 5.

2 Related Work

There is a variety of related work on combining relational database systems with

machine learning pipelines. In this section we will present the most recent related work

regarding the integration of machine learning through UDFs and model management

systems and compare them with our solution.

2.1 Machine Learning Integration

Integrating existing Database Management Systems and machine learning algorithms

has been a long standing problem due to the complexity of implementing the machine

learning code inside a DBMS.

Early work [73, 3] on this focuses on rewriting analytical algorithms into portable

SQL code. This allows the pipelines to be executed within any database system without

requiring database-specific modifications. However, rewriting complex analytical

94

Chapter 5. In-Database Workflows

pipelines in SQL requires a lot of manual effort and might not be possible for certain

algorithms because SQL is not a Turing complete language.

In Ordonez et al. [63], machine learning algorithms are translated to either C,

C++ or C# code (depending on the DBMS language support) and inserted into

UDFs. As a consequence they achieve high performance when analyzing large data sets

compared to external data analysis tools, as data movement is mitigated. However,

these algorithm must be coded in one of the previously listed languages. This often

results in the need for rewriting code, because most prominent machine learning

libraries are usually available in scripting languages (e.g., Python and R). In our

solution we allow the developer to use popular scripting languages together with their

entire ecosystem of data analytics packages as UDFs in MonetDB.

Other work [26, 17, 37] focuses on more templated approaches for machine learning

integration to reduce the necessity of code rewriting. However, the main disadvantage

of these methods is that they only work for a limited subset of algorithms, which

limits their applicability to general machine learning tasks.

2.2 Machine Learning Model Management

When training and using a variety of models the problem of managing these models

arises. This problem is exasperated because most Machine Learning Systems do not

provide support for storing and querying their models. Due to these issues, data

scientists quickly lose track of their models.

In Vartak et al. [85], a system called ModelDB is introduced that can be used for

storing, tracking and managing machine learning models in their native environment.

This allows data scientists to use SQL to query their models based on their metadata

(e.g., hyperparameters, parameters) and quality metrics (e.g., accuracy). It also has the

option to store the used train/test data sets for each model. However, since ModelDB

only stores the models in their native environment, it does not provide a solution for

coupling machine learning applications with traditional relational databases.

95

3. Machine Learning integration

3 Machine Learning integration

Machine learning pipelines consist of three stages [21].

1. Preprocessing. In this stage, the raw data is loaded and cleaned. The data is

normalized, and any inconsistencies from incorrect or missing measurements are

corrected for or removed.

2. Training and Verification. In this stage, the cleaned data is used to train

the model. Typically the training set is divided into parts, and techniques like

cross validation are used to prevent overfitting the model.

3. Classification. In the final stage, the trained model is used to classify new

data. In this stage, the model can still be refined further based on new data or

new properties of the data.

The preprocessing stage can often be performed entirely within traditional database

management systems. Loading data and simple cleaning operations such as missing

value removal can be done using standard SQL queries. However, when more advanced

preprocessing such as interpolation is required, user-defined functions can be used to

simplify this step.

The real challenge of integrating these pipelines into databases, however, is imple-

menting the machine-learning models. The models rely on complex math operations

and iterative refinement, which are not supported by standards-complaint SQL.

There are many libraries and packages in vectorized scripting languages that

implement common machine learning and classification models, such as TensorFlow [2]

and Sci-Kit Learn [65]. Using vectorized user-defined functions, we can plug these

libraries into the database. However, the typical processing pipelines must be adjusted

so they can fit into a SQL workflow. In this section, we will describe how these

analytical pipelines can be integrated into traditional database management systems

through the use of user-defined functions.

96

Chapter 5. In-Database Workflows

3.1 Training

To train a classification model, we take a set of annotated data as input and use the

annotations to find patterns in the data. After learning these patterns, the trained

model can accurately classify un-annotated data.

The training pipeline therefore takes as input a set of columns representing the

data, and a single column representing the classes of the data. This will be the input

to our user-defined function. The output of this stage of the pipeline is the trained

model, which will be the output of our UDF. The actual creation and training of the

model will happen inside the function.

Model Storage. Models exist as in-memory objects within the scripting language.

However, they can be serialized to a binary format for persistent storage on disk. In

Python, this is done using the pickle library. In order to store the objects in the

database we need to serialize the objects to this binary format, after which we can

place them in a BLOB field.

1 CREATE FUNCTION t r a i n (data INTEGER, c l a s s e s INTEGER,

2 n e s t imato r s INTEGER)

3 RETURNS TABLE(c l a s s i f i e r BLOB, e s t imato r s INTEGER)

4 LANGUAGE PYTHON

5 {

6 import p i c k l e

7 from sk l ea rn . ensemble

8 import RandomForestClass i f i e r

9

10 c l f = RandomForestClass i f i e r (n e s t imato r s)

11

12 c l f . f i t (data , c l a s s e s)

13

14 re turn { ' c l a s s i f i e r ' : p i c k l e . dumps(c l f) ,

15 ' e s t imato r s ' : n e s t imato r s }

16 } ;

Listing 5.1: Training The Model

97

3. Machine Learning integration

An example of a user-defined function that trains a Random Forest Classifier using

Sci-Kit Learn is given in Listing 5.1. This is a vectorized user-defined function, and

as such both data and classes are vectors of integers within the function instead of

individual elements. This function can be called from within SQL with the model

data, classes and the amount of estimators (i.e., model parameters) as input, and

will produce a table containing the trained classifier and its meta-data as output.

This table can either be stored in the database, or used directly as input to another

function that uses the trained classifier (if no persistent storage is necessary). Note

that it is trivial to alter this UDF to train a different model from the Sci-Kit Learn

library, as all that is required is importing a different model and using that.

3.2 Classification

After the model has been trained, it is ready to accept unlabeled data and can be used

to classify that data. The classification stage therefore takes as input a set of columns

representing the unannotated data, and the trained classifier that will be used to

classify the data. The output is the set of predicted labels produced by the classifier.

Inside the user-defined function, the classifier will again have to be deserialized into an

in-memory object, after which it can be used to classify the input data and produce a

set of labels.

1 CREATE FUNCTION pred i c t (data INTEGER, c l a s s i f i e r BLOB)

2 RETURNS INTEGER

3 LANGUAGE PYTHON

4 {

5 import p i c k l e

6 c l a s s i f i e r = p i c k l e . l oads (c l a s s i f i e r)

7 re turn c l a s s i f i e r . p r ed i c t (data)

8 } ;

Listing 5.2: Classification

An example of a user-defined function that classifies a set of data is given in

Listing 5.2. This function can be called from within SQL with the unlabeled data and

98

Chapter 5. In-Database Workflows

the classifier as input, and will produce a list of predicted classes.

The predict function can be used both to test a trained model and to classify a set

of new data using such a model. The model can be tested by predicting a set of data

for which the labels are known, and comparing the predicted labels against the new

labels. The model can be used to

3.3 Ensemble Learning

In addition to only storing the trained models, we can store additional metadata

about the models in the database. This metadata can include information such as

parameters used to instantiate the model, or information about the effectiveness of

the model obtained through testing it against certain datasets. We can then choose

a model to classify new data based on this metadata, or we could classify the data

using multiple models that are stored and use the results from the classifier with the

highest confidence.

4 Experimental Analysis

In this section, we demonstrate how a real classification pipeline can be integrated into

a column-store database, and show how the in-database processing pipeline performs

when compared against the same pipeline implemented in a standard scripting language

where the input data is loaded from a file or transferred over a database socket

connection.

The pipeline we use in our experiments is used to attempt to classify who people

from North Carolina will vote for in the Presidential Elections based on data from the

2012 Presidential Election. For this purpose, we use two separate datasets:

• The North Carolina Voters Dataset contains the information about the

individual voters. This is a dataset of 7.5M rows, where each row contains infor-

mation about the voter. There are 96 columns in total, describing characteristics

such as place of residence, gender, age and ethnicity. Note that we do not know

99

4. Experimental Analysis

who each person actually voted for, as this information is not publicly available.

• The Precint Votes Dataset contains the aggregated voting statistics for each

precinct, (i.e., how many people in each precinct voted Democrat, and how many

voted Republican). This dataset has 2751 rows, one for each precinct in North

Carolina.

By combining these two datasets we can attempt to classify individual voters. We

know the voting records of a specific precinct, and we know in which precinct each

person voted, so we can make an educated guess who each person voted for based on

this information.

Preprocessing. As we do not have the true class labels for each voter, we have

to generate them from the information we have about the precincts. This requires

us to join the voter data with the precinct data, giving us the voting records of the

precinct that each voter voted in. We then generate a “true” class label for each voter

using a weighted random function based on the precinct voting records. For example,

if voters in a specific precinct voted for Democrats 60% of the time, each voter in that

precinct has a 60% chance of being classified as Democrat and 40% chance of being

classified as Republican.

Training. After we have generated the true class labels, we have to train the

model using the data and the labels. However, we don’t simply want to use all the

data for training. Instead, we want to divide the data into a training set and a test set

to prevent overfitting. We then feed the data in the training set to the model using

the function shown in Listing 5.1 and store the resulting model in the database.

Testing. After the model is trained, we want to test how it performs by classifying

the data in the test set and looking at the results. We can classify the voters in the

test set by running the function shown in Listing 5.2. After having obtained the

predicted class labels, we can test the accuracy of our model by comparing against the

known true class labels of the data. However, since we only have the generated class

labels of the individual voters, comparing the predicted labels against those would not

give us a lot of information about our classification accuracy. Instead, we aggregate

100

Chapter 5. In-Database Workflows

Figure 5-1: Voter Classification Benchmark

the total amount of predicted votes for each party by precinct. Then we compare the

aggregated predictions against the known amount of votes in each precinct.

Performance Analysis. To determine how well our in-database processing

solution performs compared to ad-hoc analysis pipelines we have implemented the

pipeline described above both (1) using MonetDB/Python UDFs and (2) inside Python,

using various different methods of initially loading the data. For loading the data in

Python, we have experimented with loading from binary files (NumPy [84] files and

HDF5 [80] using PyTables), CSV files using an optimized parser, transferring the data

to Python through a database socket connection (with PostgreSQL [77], MySQL [89]

and SQLite [4] as database servers). For the scenarios where the data is stored inside a

relational database, we use SQL to perform the preprocessing steps involving joins and

aggregations. Whereas for the pure Python solutions, we use the Pandas library [56]

to perform these steps.

The experiments were run on a Fedora (Release 26) machine with 2.6GHz 8-core

Intel Xeon processor (Turbo Boost up to 3.2GHz), 20MB shared L3 cache and 256

GB of RAM. All the tests are hot runs. The datasets and source code used for the

experiments are publically available1.

1https://github.com/pholanda/VoterClassification

101

https://github.com/pholanda/VoterClassification

5. Summary

Results. The results of the benchmark are displayed in Figure 5-1. The numbers

display the total time required to run the entire classification pipeline, whereas the

bottom gray bars indicate the time spent loading the initial data into Python and

performing the initial preprocessing steps and aggregations.

We can see that the in-database processing solution using MonetDB/Python is

significantly faster than the alternative database solutions. The time spent on initial

wrangling of the data is an order of magnitude lower than transferring it over a socket

connection using the other database solutions. We also note that loading the data from

CSV files is comparable in speed to transferring the data over a socket connection.

Loading the data from binary files is much faster than loading from structured text

or transferring the data over a socket connection. However, this introduces additional

challenges in managing the data. Especially in the case of NumPy binary files, where

each of the 96 columns is stored as a separate file on disk. We do still see that the

in-database processing solution spends less time on initial wrangling of the data and

runs the entire pipeline significantly faster.

5 Summary

In this work, we have shown how complex analysis pipelines can be efficiently inte-

grated into column-store databases. Using these pipelines, it is possible to perform

preprocessing, training, testing and prediction using complex machine learning models

directly on data stored within a relational database. We have demonstrated the

efficiency gained from using these in-database processing methods, and shown the

additional benefits that come with storing data in a relational database system.

102

