
Integrating analytics with relational databases
Raasveldt, M.

Citation
Raasveldt, M. (2020, June 9). Integrating analytics with relational databases. SIKS
Dissertation Series. Retrieved from https://hdl.handle.net/1887/97593

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/97593

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/97593

Cover Page

The handle http://hdl.handle.net/1887/97593 holds various files of this Leiden University
dissertation.

Author: Raasveldt, M.
Title: Integrating analytics with relational databases
Issue Date: 2020-06-09

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/97593
https://openaccess.leidenuniv.nl/handle/1887/1�

CHAPTER 4

Vectorized UDFs in Column-Stores

1 Introduction

In Chapter 2, we described how in-database processing can be used to mitigate the

overhead of exporting data from the database server. In this chapter, we dive further

into using in-database processing for analytics by looking at user-defined functions.

Specifically, we focus on user-defined functions in interpreted languages such as R,

Python or MATLAB, which are the most commonly used languages in data science [47].

These languages, which we call vector-based languages, provide additional chal-

lenges when used in user-defined functions. If we were to simply use them as a

one–to–one replacement for compiled languages such as C or Java the functions will

have very poor performance. While compiled languages are very efficient when op-

erating on individual elements, these interpreted languages are not. In interpreted

languages actions that are normally performed while compiling, such as type checking,

are performed at run-time. This interpreter overhead is performed before every op-

eration, even before simple operations such as addition or multiplication. For many

of these operations, this overhead dominates the actual cost of the operation. As a

63

1. Introduction

result, operations performed on individual elements are very inefficient.

0 100 200 300 400 500 600 700

N
a
ti

v
e

P
L/

P
y
th

o
n

547s

31.4s

Figure 4-1: Modulo computation in Postgres.

This issue is demonstrated in Figure 4-1, where we compute the modulo of 1 GB of

integers using both Postgres’ built-in modulo function and a Python UDF in Postgres.

We can see that the interpreter overhead results in the Python UDF taking much

longer to perform the exact same operation.

These interpreted languages rely on vectorized operations for efficiency. Rather

than operating on individual values, these operations process arrays directly. When

using these vectorized operations the interpreter overhead is only incurred once for

every array, rather than once for every value. By using vectorized operations they

can process data as efficiently as compiled languages. However, we can only use these

vectorized operations if we have access to chunks of the data at the same time. This

does not fit into the way user-defined functions are typically processed in databases.

Rather than processing one row at a time, they have to process multiple rows or even

entire tables at the same time to operate efficiently.

1.1 Contributions

In this chapter we discuss how vector-based languages can be integrated into various

database processing engines, and how various database architectures influence the

performance of user-defined functions in vector-based languages. We describe our

64

Chapter 4. Vectorized UDFs in Column-Stores

system, MonetDB/Python, that efficiently integrates vectorized user-defined functions

into the open-source database MonetDB. We describe how these user-defined functions

fit into the processing model of the database, and show how these functions can

be automatically parallelized by the query execution engine of the database server.

We compare the performance of our implementation with in-database processing

solutions of alternative open-source database systems, and demonstrate the efficiency

of vectorized user-defined functions. We show that vectorized user-defined functions

in interpreted languages can be as fast as user-defined functions written in compiled

languages, without requiring any in-depth knowledge of database kernels and without

needing to compile and link them to the database server. MonetDB/Python is open-

source. The source code is freely available online in the official MonetDB source code

repository 1.

1.2 Outline

This chapter is organized as follows. In Section 2, we review different types of user-

defined functions. In Section 3, we present MonetDB/Python. In Section 4, we show

the results of a set of benchmarks that compare the performance MonetDB/Python

functions against user-defined functions in different languages and different databases.

In Section 5, we present related work. In Section 6, we describe how our work could

be applied to other databases. We describe our efforts into improving the development

workflow of MonetDB/Python UDFs in Section 7. Finally, in Section 8, we draw our

conclusions.

2 Types of User-Defined Functions

Before we discuss the implementation of our user-defined functions, we will first briefly

discuss the different types of user-defined functions in this section.

User-Defined Scalar Functions are n-to-n operations that operate on an arbi-

trary number of input columns and output a single column. These functions can be

1https://dev.monetdb.org/hg

65

3. MonetDB/Python

used in the SELECT and WHERE clauses of a SQL query. An example of a simple

scalar user-defined function is one that imitates the functionality of the multiplication

operator: it takes as input two columns, and outputs a single column that results

from multiplying the input columns together.

User-Defined Aggregate Functions are n-to-g operations that perform some

aggregation on the input columns, possibly over a number of groups with the GROUP

BY statement. These can be used in the SELECT and HAVING clauses of a SQL

query. An example of a user-defined aggregate function is a function that emulates

the MAX function, that returns the maximum of all the values in a column.

User-Defined Table Functions are operations that do not return a single

column, but rather return an entire table with an arbitrary number of columns. These

can be used in the FROM clause of a SQL query. The possible input of table producing

functions vary depending on the database. Certain databases only support the input

of scalar values, whereas others support the input of other tables. In MonetDB, the

input of a user-defined table function can come from a subquery, and hence the input

of a user-defined table function can be any table.

3 MonetDB/Python

In this section we describe the internal pipeline of MonetDB/Python functions. We

describe how the data is converted from the internal database format to a format

usable in Python, and how these functions are parallelized.

3.1 Usage

As MonetDB/Python functions are interpreted, they do not need to be compiled or

linked against the database. They can be created from the SQL interface and can be

immediately used after being created. The syntax for creating a MonetDB/Python

function is shown in Listing 4.1.

66

Chapter 4. Vectorized UDFs in Column-Stores

1 CREATE FUNCTION fname ([paramlist | *])

2 RETURNS [TABLE(paramlist) | returntype]

3 LANGUAGE [PYTHON | PYTHON _MAP]

4 [{ functioncode } | 'external_file.py'];

Listing 4.1: MonetDB/Python Syntax.

A MonetDB/Python function can be either a user-defined scalar, aggregate or a

table function. A user-defined scalar function takes an arbitrary number of columns as

input and returns a single column, and can be used anywhere a normal SQL function

can be used. A user-defined aggregate function also outputs a single column, but

can be used to process aggregates over several groups when a GROUP BY statement is

present in the query. A user-defined table function can take an arbitrary number of

columns as input and can return an entire table. User-defined table functions can be

used anywhere a table can be used.

1 CREATE FUNCTION pysqrt(i INTEGER)

2 RETURNS REAL

3 LANGUAGE PYTHON {

4 return numpy.sqrt(i)

5 };

6

7 SELECT pysqrt(i * 2) FROM tbl;

Listing 4.2: Simple Scalar UDF.

An example of a scalar function that computes the square root of a set of integers

is given in Listing 4.2. Note that the function is only called once, and that the variable

i is an array that contains all the integers of the input column. The output of the

function is an array containing the square root of each of the input values.

3.2 Processing Pipeline

MonetDB/Python functions are executed as an operator in the processing model of

the database, as illustrated in Figure 4-2. MonetDB/Python functions run in the

same process and memory space as the database server. As such, MonetDB/Python

67

3. MonetDB/Python

Figure 4-2: Operator Chain for Listing 4.2.

functions behave identically to other operators in the operator–at–a–time processing

model. MonetDB/Python functions are called once with a set of columns as input,

and must return a set of columns as output.

The general pipeline of the MonetDB/Python functions is as follows: first, we

have to convert the input columns to a set of Python objects. Then, we execute the

stored Python function with the converted columns as input. Finally, we convert the

resulting Python objects back to a set of database columns which we then hand back

to the database.

Input Conversion. The database and the interpreted language represent data

in a different way. As such, the data has to be converted from the format used by the

database to a format that works in the interpreted language. Data conversion can be

an expensive operation, especially when a large amount of data has to be converted.

Unfortunately, we cannot avoid data conversion when writing a user-defined function

in a different language than the core database language.

Since MonetDB is a main-memory database, the database server keeps hot columns

loaded in main memory. As MonetDB/Python functions run in the same memory

space as the database server we can directly access the columns that are loaded in

memory. As a result, the only cost we have to pay to access the data is the cost for

68

Chapter 4. Vectorized UDFs in Column-Stores

converting this data from the databases’ representation to a representation usable in

Python.

Internally, columns in a column-store database are very similar to arrays. They

hold a list of elements of a single type, one element for every row in the table. As such,

the most efficient uncompressed representation for a column is a tightly packed array

where the elements are stored subsequently in memory. By using this representation,

each element of n bytes occupies exactly n bytes.

MonetDB represents the data of individual columns as tightly packed arrays. In

addition to the actual data, the columns contain metadata, such as the type of the

column and whether or not the column contains null values.

Vector-based languages work with arrays containing a single type as well. As such,

they have the exact same optimal data representation as columns in a column-store

database. It should then be no surprise that the data in both NumPy arrays and R

vectors are also internally represented as tightly packed arrays.

As both the database and the vector-based language share the same representation

for the data, we do not need to convert the data values. Instead, all we have to convert

is a small amount of metadata before we can use the databases’ columns in Python.

As we are not touching the actual data, the input conversion costs a constant amount

of time.

Code Execution. After converting the input columns to a set of Python objects,

the actual user-defined function is interpreted and executed with the set of Python

objects as input. The user can then use Python to manipulate the input objects and

return a set of output objects.

Aside from the parallel processing, which is described in Section 3.3, we do not

perform any optimization on the users’ code. That means that the interpreter overhead

depends entirely on the code created by the user. If the user calls a constant amount of

vectorized functions, the interpreter overhead is constant. As vector-based languages

are only efficient when vectorized functions are used, this is expected to be a common

scenario.

On the other hand, if the user calls functions that operate on the individual

69

3. MonetDB/Python

elements of the data, the interpreter overhead scales with the amount of function calls

and can become a serious bottleneck.

Output Conversion. The database expects a set of columns as output from the

user-defined function. As such, the same conversion method can be used to convert

vectors back to database columns, but in reverse. Instead of directly using the data

from the database, we take the data from the returned set of vectors and convert it

to a set of columns in the database. Again, we only need to convert the necessary

metadata, leading to a constant conversion time.

Total Overhead. As MonetDB/Python functions are not written in the databases’

native language, they incur overhead for converting between different object repre-

sentations. In addition, as Python is an interpreted language, the functions incur

additional interpreter overhead as well.

The conversion overhead only costs a constant amount of time for each function

call as we only convert the metadata, and this overhead is only incurred once for each

time the function is called in a SQL statement. This overhead would be significant for

transactional workloads, where the function could be called many times with only a

small amount of data as input. However, as both MonetDB and NumPy are designed

around analytical workloads, we do not expect transactional workloads. For analytical

workloads that operate on large chunks of data, this constant amount of overhead is

not significant.

The magnitude of the interpreter overhead depends entirely code written by

the user. If scalar functions are used, the interpreter overhead can dominate the

computation time. However, when the code only calls a constant amount of vectorized

functions, the interpreter overhead is constant as well. In this case, the performance

of MonetDB/Python UDFs is comparable to a UDF written in the databases’ native

language, as illustrated in Figure 4-5.

3.3 Parallel Processing

In Section 3.2 we discussed the efficient conversion of data from the format used by

the database to the format used by Python. The efficient data transfer from the

70

Chapter 4. Vectorized UDFs in Column-Stores

database to Python significantly improves the performance of functions for which the

data transfer and conversion is the main bottleneck. However, the Python function is

still executed by the regular Python interpreter. As such, the efficient data conversion

does not significantly improve the performance of functions that are bound by the

Python execution time.

Users can manually improve the performance of these functions by executing them

in parallel. However, we would prefer to not push the burden of optimization onto

the user. In addition, manual parallelization of user-defined functions can result in

conflicts with the workload management of the database, which can significantly

decrease database throughput [90]. It would be preferable to have the parallelization

handled automatically by the database server. However, there are several issues with

automatic parallelization in the database processing pipeline.

1 SELECT MEDIAN(SQRT(i * 2)) FROM tbl;

Listing 4.3: Chain of SQL operators.

In an operator–at–a–time database, the operators are only called once. How do

we move to a model where data is processed in parallel? The solution employed by

MonetDB is to split up the columns into separate chunks and call the parallelizable

operators once for every chunk. The non-parallelizable operators, such as the median,

force the chunks to be packed together into a single array and are then called with

that entire array as input. This process is shown in Figure 4-3.

While the figure displays a table with eight entries split up into four parts as an

example, small columns are normally not split into separate chunks as the additional

multithreading overhead would be larger than the time saved by parallelizing the

query. Instead, a heuristic is used to determine when columns should be split up

based on the size of the columns.

MonetDB/Python functions can be automatically parallelized in this system as well.

This alleviates the burden of parallelization from the user, and leaves the database

in full control of the parallelization. However, not all functions can be automatically

parallelized in this format. A user-defined function that computes the median, for

example, requires access to all the data in the column.

71

3. MonetDB/Python

Figure 4-3: Parallel Operator Chain of Listing 4.3.

As such, we require the user to specify whether or not their UDF can be executed

in parallel when creating the function. When the function cannot be run in parallel,

it will run as a blocking operator and get access to the entire input columns. This

behavior is identical to the median computation seen in Figure 4-3.

Parallel computation has an additional effect on the function call overhead of

MonetDB/Python functions as we are no longer only calling parallel functions once.

The functions are called once per chunk, meaning the function call overhead is incurred

once per chunk.

The amount of chunks created is at most equal to the amount of virtual cores that

the system has, meaning the function call overhead is O(p) instead of O(1), where p is

the amount of cores. However, as the input columns are only split up when they have

a sufficient size, this additional overhead will never dominate the actual computation

time.

Chaining Operators. Operating on partitions of the data is a straightforward

way of parallelizing operators. However, as these partitions are arbitrary, the operators

can only be parallelized if they are completely independent and only operate on

individual rows. As such. many operators cannot be completely parallelized in this

72

Chapter 4. Vectorized UDFs in Column-Stores

fashion.

Often, operators can only be partially computed in parallel, and require a final

step that merges the results of the parallel computation to create the final result.

An example of such an operator is the sort operator. The chunks can be sorted in

parallel, but will then have to be merged together to fully sort the column.

1 SELECT minseq(minmap(i)) FROM tbl;

Listing 4.4: Parallel MIN using chained operators.

We can parallelize these operators in our system by chaining together operators

in the SQL layer. The parallel component of the operator can be computed in a

mappable function. The output columns of the parallel components can then be

passed to a blocking function, which merges these columns together to create the final

result. An example of such a chain being used to compute the minimum value of a

column in parallel is given in Figure 4-4.

Figure 4-4: Operator Chain of Listing 4.4.

User-defined table functions can be chained together in a similar but more flexible

way. These operators can take entire tables as input and output entire tables of

73

3. MonetDB/Python

arbitrary size. Chaining these operators together allows many different operations to

be executed in parallel.

Parallel Aggregates. The parallel processing we have implemented operates on

sequential segments of the data. If a column is partitioned into two parts, the first

partition will hold the first half of all the values in the column, and the second part

will hold the second half. The reason we use this partitioning scheme is the virtual

identifiers used by MonetDB. Any other partitioning requires us to explicitly keep

track of the individual identifiers. By using sequential partitioning we do not need to

materialize the identifiers of the rows, as the statement that entry i in the column

corresponds to row oidbase + i still holds.

Parallel computation of aggregates is a special case where we can split up the data

into arbitrary partitions without needing to materialize the row identifiers. This is

because when we compute the aggregates over several groups, the only information

we need is to which group a specific entry belongs. We do not need to know to which

specific row it belongs. As such, rather than using sequential partitions we can create

one separate partition for each group. We can then compute the separate aggregates

for each group in parallel by calling the UDF once per group partition.

The problem with this scheme is that the interpreter overhead is incurred once per

group, and the amount of groups can potentially be very large. In the most extreme

case, the amount of groups is equal to the amount of tuples in the input columns. In

this case, we incur the interpreter overhead once for every tuple.

We can avoid this potentially large interpreter overhead by allowing the user to

compute more than one aggregation per function call. To do this, the function has to

know the group that each tuple belongs to in the aggregation. We can pass this to

the user-defined function as an additional input column. The user can then perform

the aggregation over each of the different groups, and return the aggregated results in

order.

These functions can be parallelized in a similar manner. We can split the data

into different sets, where each set contains all the data of a number of groups and the

corresponding group identifiers of each tuple.

74

Chapter 4. Vectorized UDFs in Column-Stores

3.4 Loopback Queries

MonetDB/Python also supports loopback queries inside UDFs. Loopback queries

allow users to query the database directly from within the UDF. The results of the

query are converted to Python objects in a similar way as the input of the UDFs is

converted. They can be can used through the conn object that is passed to every

UDF. Loopback queries are useful because they can bypass cardinality restrictions of

the relational querying model. Listing 4.5 depicts an example of a UDF that uses a

loopback query to retrieve a classifier from the database, and subsequently uses the

classifier on its input data.

1 CREATE FUNCTION c l a s s i f y (id INTEGER, value INTEGER)

2 RETURNS TABLE(id INTEGER, p r ed i c t i o n STRING)

3 LANGUAGE PYTHON

4 {

5 import p i c k l e

6 r e s = conn . execute (”SELECT ∗ FROM c l a s s i f i e r WHERE name='RFC ' ; ”)

7 c l a s s i f i e r = p i c k l e . l oads (r e s [' c l a s s i f i e r '] [0])

8 re turn { ' id ' : id , ' p r ed i c t i on ' : c l a s s i f i e r . p r ed i c t (va lue) }

9 } ;

Listing 4.5: Loopback Queries

4 Evaluation

In this section we describe a set of experiments that we have run to test how efficient

MonetDB/Python is compared to alternative in-database processing solutions.

The experiments were run on a machine with two Intel Xeon (E5-2650 v2) 2.6GHZ

CPUs, with a total of 16 physical and 32 virtual cores and 256 GB RAM. The machine

uses the Fedora 20 OS, with Python version 2.7.5 and NumPy version v1.10.4. The

measured time is the wall-clock time for the completion of the query.

For each of the benchmarks, we ran the query five times, which was sufficient for

the standard deviation to converge. The result displayed in the graph is the mean

75

4. Evaluation

of these measured values. All benchmarks performed are hot tests. We first ran the

query twice to warm up the database prior to running the measured runs.

4.1 Systems Measured

500

550

600

650

700

547

Modulo (1GB)

90
100
110
120
130
140
150

T
o
ta

l
T
im

e
 (

s)

94.6

119
127

M
o
n
e
t/

C
 (

8
T
)

M
o
n
e
t/

P
y
th

o
n
 (

8
T
)

M
o
n
e
t

N
a
ti

v
e
 (

8
T
)

M
o
n
e
t/

C
 (

1
T
)

M
o
n
e
t/

P
y
th

o
n
 (

1
T
)

M
o
n
e
t

N
a
ti

v
e
 (

1
T
)

S
Q

Li
te

 N
a
ti

v
e

P
o
st

g
re

s
C

 U
D

F

P
o
st

g
re

s
N

a
ti

v
e

S
Q

Li
te

/P
y
th

o
n

M
y
S
Q

L
C

 U
D

F

M
y
S
Q

L
N

a
ti

v
e

P
o
st

g
re

s
P
L/

P
y
th

o
n

0
5

10
15
20
25
30
35
40

0.2 0.2 0.3 1.1 1.1 1.7

29.1 30.1 31.4

Figure 4-5: Modulo computation of 1GB of integers.

MySQL is the most popular open-source relational data-base system. It is a

row-store database that is optimized for OLTP queries, rather than for analytical

queries. MySQL supports user-defined functions in the languages C /C++ [79].

Postgres is the second most popular open-source relational database system. It is

a row store database that focuses on being SQL compliant and having a large feature

set. Postgres supports user-defined functions in a wide variety of languages, including

C, Python, Java, PHP, Perl, R and Ruby [67].

SQLite is the most popular embedded database. It is a row-store database that

can run embedded in a large variety of languages, and is included in Python’s base

library as the sqlite3 package. SQLite supports user-defined functions in C [23],

however, there are wrappers that allow users to create scalar Python UDFs as well.

MonetDB is the most popular open-source column-store relational database. It

is focused on fast analytical queries. MonetDB supports user-defined functions in the

languages C and R, in addition to MonetDB/Python.

76

Chapter 4. Vectorized UDFs in Column-Stores

We want to investigate how efficient the user-defined functions of these different

databases are, and how they compare against the performance of built-in functions

of the database. In addition, we want to find out how efficient MonetDB/Python is

compared to these alternatives.

4.2 Modulo Benchmark

In this benchmark, we are mainly interested in how efficiently the data is transported

to and from the user-defined functions. As we have seen in Figure 4-1, this is a crucial

bottleneck for user-defined functions.

We will compute the modulo of a set of integers in each of the databases. The

modulo is a good fit for this benchmark for several reasons: unlike floating point oper-

ations such as the sqrt, there is no estimation involved. When estimation is involved,

the comparison is often not fair because a system can estimate to certain degrees of

precision. Naturally, more accurate estimations are more expensive. However, in a

benchmark we would only measure the amount of time elapsed, thus the more accurate

estimation would be unfairly penalized.

Similarly, when performing a modulo operation, we know that there is a specific

bound on the result. The result of x % n will never be bigger than n. This means that

there is no need to promote integral values. If we were to compute multiplication, for

example, the database could be promoting INT types to LONGINT types to reduce the

risk of integer overflows. This naturally takes more time, and could make benchmark

comparisons involving multiplication unfair.

In addition, the modulo operation is a simple scalar operation that can be easily

implemented in both C and NumPy by using the modulo operator. This means that

we will not be benchmarking different implementations of the same function, but

we will be benchmarking the efficiency of the database and data flow around the

function. As it is a simple scalar operation, it also fits naturally into tuple-at-a-time

databases. We can also trivially compute the modulo operation in parallel, allowing

us to benchmark the efficiency of our parallel execution model.

Setup. In this benchmark, we computed modulo 100 of 1GB of randomly generated

77

4. Evaluation

32-bit integers. The values of the integers are uniformly generated between the values

0 and 231. To ensure a fair comparison, every run uses the same set of values. For

each of the mentioned databases, we have implemented user-defined functions in a

subset of the supported UDF languages to compute the modulo. In addition, we

have computed the modulo using the built-in modulo function of each database. For

MonetDB, we have measured both the multi-threaded computation (with 8 threads)

and the single-threaded computation.

Results. The results of the benchmark are shown in Figure 4-5. As we can

see, MonetDB provides the fastest computation of the modulo. This is surprising,

considering the modulo function is well suited for tuple-at-a-time processing. In

addition, the table we used had no unused columns. It only had a single column

containing the set of integers, thus this is essentially a best-case scenario for the

tuple-at-a-time databases.

The reason for this performance deficit is that even when computing scalar functions,

the function call overhead for every individual row in the data set is very expensive

when working with a large amount of rows. When the data fits in memory, the

operator-at-a-time processing of MonetDB provides superior performance, even though

access to the entire column is not necessary for the actual operators.

We note that in all of the databases our user-defined functions in C are faster than

the built-in modulo operator. This is because our user-defined functions skip sanity

checks that the built-in operators perform, such as checking for potential null values

that could be in the database, and instead directly compute the modulo. This allows

our user-defined functions to be faster than the built-in operators on all database

systems.

When looking at the Python UDFs, we immediately note the additional interpreter

overhead that is incurred in the tuple-at-a-time databases. Both SQLite/Python and

PL/Python have poor performance compared to the native modulo operator in their

respective database. In these architectures, the user-defined functions are called once

per row, which incurs a severe performance penalty. We note that PL/Python is

significantly slower than SQLite/Python. This is because SQLite/Python is a very

78

Chapter 4. Vectorized UDFs in Column-Stores

thin wrapper around C UDFs that minimize overhead, while PL/Python offers more

complex functionality which cause these functions to incur significantly more overhead.

By contrast, MonetDB/Python is just as fast as the UDF written in C in MonetDB.

Because of our vectorized approach, the conversion and interpreter overhead that

MonetDB/Python UDFs incur is minimal. As such, they achieve the same performance

as UDFs written in the databases’ native language, but without requiring the user to

have in-depth knowledge of the database kernel and without needing to compile and

link the function to the database.

5 Related Work

There is a large body of related work on user-defined functions, both in the re-

search field and in implementations by database vendors. In this section, we will

present the relevant related work in both fields, and compare the related work against

MonetDB/Python.

5.1 Research

Research on user-defined functions started long before they were introduced into the

SQL standard. The work by Linnemann et al. [52] focuses on the necessity of user-

defined functions and user-defined types in databases, noting that the SQL standard

lacks many necessary functions such as the square root function. To solve this issue,

they suggest adding user-defined functions, so the user can add any required functions

themselves. They describe their own implementation of user-defined functions in the

compiled PASCAL language, noting that the compiled language is nearly as efficient

as built-in functions, with the only overhead being the conversion costs.

They note that executing UDFs in a low-level compiled language in the same

address space as the database server is potentially dangerous. Mistakes made by the

user in the UDF can corrupt the data or crash the database server. They propose two

separate solutions for this issue; the first is executing the user-defined function in a

separate address space. This prevents the user-defined function from accessing the

79

5. Related Work

memory of the database server, although this will increase transfer costs of the data.

The second solution is allowing users to create user-defined functions in an inter-

preted language, rather than a low-level compiled language, as interpreted languages

do not have direct access to the memory of the database server. This is exactly what

MonetDB/Python UDFs accomplish. By running in a scripting language, they can

safely run in the same address space as the database and avoid unnecessary transfer

overhead.

In-Database Analytics

In-database processing and analytics have seen a big surge in popularity recently,

as data analytics has become more and more crucial to many businesses. As such,

a significant body of recent work focuses on efficient in-database analytics using

user-defined functions.

The work by Chen et al. [14, 15] takes an in-depth look at user-defined functions

in tuple-at-a-time processing databases. They note that while user-defined functions

are a very useful tool for performing in-database analysis without transferring data to

an external application, existing implementations have several limitations that make

them difficult to use for data analysis. They note that existing user-defined functions

in C are either very inefficient compared to built-in functions, as in SQL Server, or

require extensive knowledge of the internal data structures and memory management

of the database to create, as in Postgres, which prevents most users from using them

effectively. MonetDB/Python UDFs do not have this issue, as they do not require the

user to have in-depth knowledge of the database internals.

They also identify issues with user-defined functions in popular databases that

restrict their usage for modeling complex algorithms. While user-defined scalar

functions and user-defined aggregate functions cannot return a set, user-defined table

functions cannot take a table as input in the database systems they used. The same

observation is made by Jaedicke et al. [45]. The result of this is that it is not possible

to chain multiple user-defined functions together to model complex operations, that

each take a relation as input and output another relation.

80

Chapter 4. Vectorized UDFs in Column-Stores

To alleviate this issue, both Chen et al. [14] and Jaedicke et al. [45] propose a new

set of user-defined functions that can take a relation as input and produce a relation as

output. This is exactly what MonetDB/Python table functions are capable of. They

can take an arbitrary number of columns as input and produce an arbitrary number

of columns as output, and can be chained together to model complex relations.

The work by Sundlöf [78] explores the difference between performing computations

in-database with user-defined functions and performing the computations in a separate

application, transferring the data to the application using an ODBC connection.

Various benchmarks were performed, including matrix multiplication, singular value

decomposition and incremental matrix factorization. They were performed in the

column-store database Sybase IQ in the language C++. The results of his experiments

showed that user-defined functions were up to thirty times as fast for computations in

which data transfer was the main bottleneck.

Sundlöf noted that one of the difficulties in performing matrix operations using

user-defined functions was that all the input columns must be specified at compile

time. As a result it was not possible to make user-defined functions for generic

matrix operations, but instead they had to either create a separate set of user-defined

functions for every possible amount of columns, or change the way matrices are stored

in the database to a triplet format (row number, column number, value).

Processing of User-Defined Functions

As user-defined functions form such a central role in in-database processing, finding

ways to process them more efficiently is an important objective. However, as the

user-defined functions are entirely implemented by the user, it is difficult to optimize

them. Nevertheless, there has been a significant effort to optimize the processing of

user-defined functions.

Parallel Execution of User-Defined Functions

Databases can hold very large data sets, and a key element in efficiently processing

these data sets is processing them in parallel, either on multiple cores or on a cluster

81

5. Related Work

of multiple machines. Since user-defined functions can be very expensive, processing

them in parallel can significantly boost the performance of in-database analytics.

However, as user-defined functions are written by the user themselves, automatically

processing them in parallel is challenging.

The work by Jaedicke et al. [44] explores how user-defined aggregate functions can

be processed in parallel. They require the user to specify two separate functions, a

local aggregation function and a global aggregation function. The local aggregation

function is executed in parallel on different partitions of the data. The results of the

local aggregation functions are then gathered and passed to the global aggregation

function, which returns the actual aggregation result.

They propose a system that allows the user to define how the data is partitioned

and spread to the local aggregation functions. More strict partitions are more expensive

to create, but allow for a wider variety of operations to be executed in parallel.

5.2 Systems

In this section, we will present an overview of systems that have implemented user-

defined functions. We will take an in-depth look at the types of user-defined functions

these systems support, and how they differ from MonetDB/Python.

Aster nCluster Database

The Aster nCluster Database is a commercial database optimized for data warehousing

and analytics over a large number of machines. It offers support for in-database

processing through SQL/MapReduce functions [30]. These functions support a wide

set of languages, including compiled languages (C++, C and Java) and scripting

languages (R, Python and Ruby).

SQL/MR functions are parallelizable. As in the work by Jaedicke et al. [44], they

allow users to define a partition over the data. They then run the SQL/MapReduce

functions in parallel over the specified set of partitions, either over a cluster of machines

or over a set of CPU cores.

82

Chapter 4. Vectorized UDFs in Column-Stores

SQL/MR functions support polymorphism. Instead of specifying the input and

output types when the function is created, the user must provide a constructor for

the user-defined function. The constructor takes as input a contract that contains

the input columns of the function. The constructor must then check if these input

columns are valid, and provide a set of output columns. During query planning, this

constructor is called to determine the input/output columns of the SQL/MR function,

and a potential error is thrown if the input/output columns do not line up correctly

in the query flow.

The primary difference between SQL/MR functions and MonetDB/Python func-

tions is the processing model around which they are designed. SQL/MR functions

operate on individual tuples in a tuple-at-a-time fashion. The user obtains the next

row by calling the advanceToNextRow function, and outputs a row using the emitRow

function.

6 Applicability To Other Systems

In the paper, we have described how we integrated user-defined functions in a vector-

based language in the operator-at-a-time processing model. In this section, we will

discuss how functions in vector-based languages could be efficiently integrated into

different processing models.

Tuple–at–a–Time. We have already determined that the straightforward imple-

mentation of vector-based language UDFs in this processing model is very inefficient.

When a vector-based language is used to compute scalar values, the interpreter over-

head dominates the actual computation cost. Instead, the UDF should receive a large

chunk of the input to operate on so the interpreter overhead is negligible compared to

the actual computation cost.

In the tuple-at-a-time processing model, accessing a chunk of the input at the same

time requires us to iterate over the tuples one by one. Then, after every value has been

computed, we copy that value to a separate location in memory. After gathering a set

of values, we can use the accumulated array of values as input values for a vectorized

83

6. Applicability To Other Systems

UDF.

0 100 200 300 400 500 600 700

V
e
ct

o
ri

ze
d

S
ca

la
r

546.8s

133.1s

Figure 4-6: PL/Python Vectorized vs Non-Vectorized Modulo Operator.

While gathering the data requires additional work, this added overhead is signifi-

cantly lower than the interpreter overhead incurred when operating on scalar values

in a vector-based language. This is especially true when a lot of different operations

are performed on the data in the UDF.

We have emulated this algorithm in Postgres by loading the data of a single column

into PL/Python using a database access function, and then calling the vector based

operator on the entire column at once. The results are shown in Figure 4-6. We

can see that this method is significantly more efficient than performing many scalar

operations even when we perform only a single operation (modulo).

However, this method is still significantly slower than MonetDB/Python because

of the added overhead for copying and moving the data. As such, it is not possible for

vector-based languages to perform as efficiently as native database functions in this

processing model.

Vectorized Processing is similar to our parallel processing model. It operates

on chunks of the data. Parallel UDFs fit directly into this processing model in a

84

Chapter 4. Vectorized UDFs in Column-Stores

similar fashion. They would operate on one chunk at a time, and incur the interpreter

overhead once per chunk. The magnitude of the interpreter overhead depends entirely

on the size of the chunks. While MonetDB/Python always operates on chunks with a

high cardinality, this is not necessarily true in databases with vectorized processing.

If the chunks sizes are too small, then the interpreter overhead will still dominate the

processing time.

Blocking UDFs in this processing model have the same issues as UDFs in the

tuple-at-a-time processing model. The UDF needs access to all the input data at once,

but the database only computes the data in chunks. As such, we need to gather the

data from each of the separate chunks before calling the blocking function. In the

operator-at-a-time processing model, this is only necessary if the blocking function is

executed after a paralellized function.

Compressed Data. Certain databases work with compressed data internally

to save storage space and memory bandwidth. Especially column-oriented database

systems can benefit greatly from compression. When the input columns to a vector-

based UDF are compressed, they have to be entirely decompressed before being passed

to the vector-based function, unless the vector-based language itself supports the

processing of compressed columns.

7 Development Workflow: devUDF

The generic workflow for developing a UDF is to write a function using a simplistic

text editor. The function can then be created inside the RDBMS through a SQL

command, and used by calling it within a SQL query. If there are bugs or problems

within the UDF, the function has to be recreated and the SQL query has to be rerun.

This process has to be repeated until the problem is fixed.

This workflow is problematic when developing complex UDFs, as advanced IDE

features and modern debugging techniques cannot be used. Using these IDE features is

not easily doable because the developer has to manually perform code transformations

to convert the Python code to a SQL command that creates the UDF. As seen in

85

7. Development Workflow: devUDF

Table 4.1 [11], IDEs are heavily preferred for development over simplistic text editors

due to their development features. Therefore, we argue that offering support for the

usage of these features in the development workflow of UDFs will make developing

UDFs more attractive, faster and easier for many developers.

Name Market Share Type
Eclipse 25.2% IDE

Visual Studio 19.5% IDE
Android Studio 9.5% IDE

Vim 7.9% Text Editor
XCode 5.2% IDE

IntelliJ 4.8% IDE
NetBeans 4.0% IDE
Xamarin 3.8% IDE
Komodo 3.4% IDE

Sublime Text 3.3% Text Editor
Visual Studio Code 3.3% Text Editor

PyCharm 2.3% IDE

Table 4.1: Most Popular Development Environments.

IDEs are also attractive because they facilitate the usage of sophisticated interactive

debugging techniques, such as stepping through the code line by line and pausing

code execution. However, these techniques cannot be used in conjunction with UDFs

because the RDBMS must be in control of the code flow while the UDF is being

executed. Instead, developers have to resort to inefficient debugging strategies (e.g.,

print debugging) to make their code work [40].

Another issue with the standard UDF workflow is that UDFs are stored within the

database server. As a result, version control systems (VCSs) such as Git [53] cannot

be easily integrated to keep track of changes to UDFs. Without a VCS, cooperative

development is challenging and the development history is not stored.

For the purpose of enhancing development efficiency for UDFs, we developed

devUDF, a plugin for the popular IDE PyCharm that facilitates developing and

debugging MonetDB/Python UDFs directly from within the IDE. Using our plugin,

advanced debugging features can be used while refining and refactoring UDFs.

86

Chapter 4. Vectorized UDFs in Column-Stores

7.1 The devUDF Plugin

The devUDF plugin is developed for the PyCharm IDE that facilitates the usage

of advanced IDE features for development of MonetDB/Python UDFs. It allows

developers to create, modify and test UDFs without leaving their IDE environment.

All features of the IDE can be used to develop UDFs, including the sophisticated

interactive debugger and VCS support.

Figure 4-7: Settings.

7.2 Usage

The devUDF plugin can be accessed through the main menu of the IDE (See Figure 4-

8). In this menu, a submenu labeled ”UDF Development” contains the three main

aspects of the plugin.

Initially, devUDF must be configured so it can connect to an existing database

Figure 4-8: PyCharm Main Menu.

87

7. Development Workflow: devUDF

(a) Import (b) Export.

Figure 4-9: Importing and Exporting UDFs from the Database.

server. This can be done through the settings window shown in Figure 4-7. The

parameters required are the usual database client connection parameters (i.e., host,

port, database, user and password).

After the devUDF plugin has been configured to connect to a running database

server, the development process begins by importing the existing UDFs within the

server into the development environment. This is done through the ”Import UDFs”

window, shown in Figure 4-9a. The developer has the option to select the functions

that he wishes to import, or he can choose to import all functions stored within the

database server.

After the UDFs are imported, the code of the UDFs is exported from the database

and imported into the IDE as a set of files in the current project. The developer can

then modify the code of the UDFs in these files, use version control to keep track of

changes to the UDFs and export the UDFs back to the database server for execution

through the ”Export UDFs” window (see Figure 4-9b).

The developer can also run any of the imported UDFs with the IDEs interactive

debugger by running the project as they would run a normal PyCharm project (using

the ”Debug” command). Since a UDF is never executed in isolation, but always within

the context of a SQL query, the user must provide a SQL query which executes the

88

Chapter 4. Vectorized UDFs in Column-Stores

to-be-debugged UDF. This SQL query must be specified in the Settings menu (see

Figure 4-7).

Running the UDF in the interactive debugger will execute the function locally

on the developers’ machine instead of remotely inside the database server. As the

UDF requires data from the database (as its input parameters), the data must be

transferred from the database server to the developers machine. For this data transfer,

the developer can configure another set of options. As the data can be large, we offer

a method of compressing the data during the transfer, leading to faster transfer times.

In addition, the developer can choose to execute the UDF using a uniform random

sample of the input data instead of the full set of input data. This will alleviate the

data transfer overhead.

Since the data contained inside the database server might be sensitive, and it must

be exported for debugging purposes, we also offer an optional encryption feature that

can be used to safely transfer the sensitive data.

7.3 Implementation

The devUDF plugin works by connecting to the database using a JDBC connection.

It then extracts the source code of the UDF together with its input parameters from

the database by querying the databases’ meta tables. An example of how MonetDB

stores the source code of a Python function is shown in Listing 4.6. In order to be

able to execute the UDF locally a set of code transformations has to be applied to this

code, as the database only contains the function body. We need to create the header

of the function using the function name and its parameters. To then run the created

function, we need to obtain the input data from the database. In the generated code,

we load the input data from a binary blob using the pickle library and pass it as

a parameter to the function. When the user wants to export the UDF back to the

database, these transformations are reversed and only the function body is committed.

When the user wants to debug the UDF locally using the interactive debugger,

the input data of the function has to be extracted from the database. To obtain the

input data, we take the user-submitted SQL query containing the call to the UDF,

89

8. Summary

and we replace the call to the UDF with a predefined extract function that transfers

the input data back to the client instead of executing the UDF inside the server. We

then run the transformed SQL query inside the database server to obtain the input

data, store it on the developers machine and run the code of the transformed UDF.

The extract function used changes depending on the data transfer options selected

by the user. If encryption is requested, the data is encrypted by the extract function

before being transferred using the password of the database user as a key. The client

then reverses the encryption to obtain the actual input data. The compression option

works in a similar fashion. If the sample option is enabled, a uniform random sample

of a size specified by the user is taken before extracting the data from the database

server.

1 +----------------+-----------------------------------+

2 | name | func |

3 +================+===================================+

4 | train_rnforest | { |

5 : : import pickle :

6 : : from sklearn.ensemble :

7 : : import RandomForestClassifier :

8 : : :

9 : : clf = RandomForestClassifier(n) :

10 : : clf.fit(data , classes) :

11 : : return {'clf': pickle.dumps(clf), :

12 : : 'estimators ':n } :

13 : : }; :

14 +----------------+-----------------------------------+

Listing 4.6: MonetDB UDF example.

8 Summary

In this chapter, we have introduced the vectorized MonetDB/Python UDFs. As

both MonetDB and the vector-based language Python share the same efficient data

representation, we can convert the data between the two separate formats in constant

90

Chapter 4. Vectorized UDFs in Column-Stores

time, as only the metadata has to be converted. In addition, as MonetDB operates on

data in an operator-at-a-time fashion, no additional overhead is incurred for executing

the UDFs in a vector-based fashion.

We have shown that MonetDB/Python UDFs are as efficient as UDFs written in

the databases’ native language, but without any of the downsides. MonetDB/Python

UDFs can be created without requiring in-depth knowledge of the database kernel,

and without having to compile and link the functions to the database server.

In addition, MonetDB/Python functions support automatic parallelization of

functions over the cores of a single node, allowing for highly efficient computation.

MonetDB/Python functions can be nested together to create relational chains, and

parallel MonetDB/Python functions can be nested to perform Map/Reduce type

jobs. All these factors make MonetDB/Python functions highly suitable for efficient

in-database analysis.

91

