
Integrating analytics with relational databases
Raasveldt, M.

Citation
Raasveldt, M. (2020, June 9). Integrating analytics with relational databases. SIKS
Dissertation Series. Retrieved from https://hdl.handle.net/1887/97593

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/97593

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/97593

Cover Page

The handle http://hdl.handle.net/1887/97593 holds various files of this Leiden University
dissertation.

Author: Raasveldt, M.
Title: Integrating analytics with relational databases
Issue Date: 2020-06-09

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/97593
https://openaccess.leidenuniv.nl/handle/1887/1�

CHAPTER 1

Introduction

1 The Rise of Data Science

Analyzing data in order to uncover conclusions, often referred to as “data science”,

is everywhere in todays world. In order to gain value from their data, nearly every

large business has a data science branch or a team of data scientists looking to extract

value from their data. But data analysis is not used only in the financial sector. It

is also widely used in journalism, to aid the decision of government policies, in all

branches of science and in many more areas.

0.0001

0.01

1

100

10000

1960 1970 1980 1990 2000 2010 2019

Year

P
ric

e
($

/M
B

)

Figure 1-1: The cost of hard disks over time.

11

2. Tools of the Trade

These developments are happening largely because of how cheap gathering, storing

and analyzing large quantities of data have become. When we look back just sixty

years, the IBM 350 disk storage unit was released. The IBM 350 could hold up to

3.75MB of data, and cost approximately 35000USD at the time. Today, we can buy a

HDD with 1TB of storage for around 50USD. To put that into perspective, in 1960

the price of a Chevrolet Impala was around 3000USD. If the price of cars had fallen

at the same rate as the price of hard disks, the newest model of Chevrolet would cost

a mere $4.25 and could drive 200, 000 times faster.

Not only has the cost of storing the data become so much cheaper, so has the cost

of reading and processing that data. CPU processing speeds have improved orders of

magnitude following Moore’s Law, and RAM sizes have blown up. The phone in your

pocket has over 10 times more high-speed RAM than the Cray-1 supercomputer had

storage, and has significantly more processing power as well.

Looking at these numbers, it is no wonder that data science has become so

ubiquitous. Analyzing large amounts of data has become very cheap and accessible

even to small companies and individuals. Expensive supercomputers are no longer

needed to store and analyze large amounts of data. Data science can be performed on

cheap commodity hardware. Analyzing 10GB of data on a laptop is common place,

and it is not unheard of to process 100GB or even 1TB of data on a desktop computer.

2 Tools of the Trade

While data science might appear like a brand new field, it is closer to a mixture

of different fields. In particular, it is a combination of mathematics, statistics and

computer science. Many of the techniques applied by data scientists are in fact

techniques from the statistics field that can now cheaply be applied to large quantities

of data because of technological advances.

Many of the tools that are used in data science have actually been designed

and created by statisticians. An example of this is the R project for statistical

computing [69]. The R language started as an open-source implementation of the

12

Chapter 1. Introduction

S language, a statistical language designed by John Chambers at Bell Labs. R was

originally implemented by the statisticians Ross Ihaka and Robert Gentleman at

Auckland for the purpose of teaching introductory statistics courses. It has grown

into a tool that is used worldwide to perform statistical analysis, data classification

and data visualization.

Another popular language for data science is Python, together with the support

of the numeric python extensions NumPy [84], SciPy [48] and Pandas [64]. While

Python itself does not have its roots in statistics, the numeric python extensions are

based primarily on the APL family of languages, which includes S (the precursor of

R), Fortran and MATLAB. These languages have all been designed primarily for use

in numeric computing and statistics.

3 Data Science & Data Management

One of the consequences of the origins of these tools is that proper data management

was never a first class citizen. Data management is largely treated as an afterthought

in these tools. Typically, the data that is used for analyses is loaded from a data

source into structures residing in memory and then kept around in memory. The tools

do not support larger than memory data sets. Any management of that data is not

handled by the tools themselves, and is left up to the user.

Data scientists typically opt to store the data in a set of flat files, as this is the

most natural way of interacting with these tools. While flat file storage is simple when

dealing with very small data sets that fit in individual files, it does not scale well. Flat

file storage requires tremendous manual effort to maintain when the data sets grow in

size. The files are also difficult to reason about because of the lack of a rigid schema,

and it is difficult to share the data between multiple users. Furthermore, adding new

data or modifying existing data is prone to corruption because of lack of transactional

guarantees and atomic write actions provided by these tools.

All of the problems of flat file storage are not new problems. In fact, database

management systems were created precisely to solve many of these problems. Modern

13

4. Our Contributions

database management systems prevent data corruption through strong transactional

guarantees and ACID properties, automatically manage data storage and make

data easier to reason about by enforcing a rigid schema. In addition, the database

management systems can perform efficient execution on larger-than-memory data,

and allow safe concurrent access to the data.

However, despite the existence of database management systems, data scientists

typically opt not to use them in conjunction with these analytical tools. This leads us

to our main research problem:

Research Problem How can we facilitate efficient and painless integration of
analytical tools and relational database management systems?

4 Our Contributions

In this thesis we work to answer the main research problem by investigating the different

methods of combining relational database management systems and analytical tools.

We consider the three separate methods of connecting analytical tools with RDBMSs:

(1) client-server connections, (2) in-database processing and (3) embedded databases.

For each of these methods, we examine the current state of the art and attempt to

improve on it in both run-time efficiency and usability.

• Client-Server Connections (Chapter 3). We examine the client-server

protocols of popular RDBMSs, and evaluate their effciency in the context of

large-scale result export that is required to perform data analysis and machine

learning on large data sets contained within these systems. Based on this

analysis, we propose a new client-server protocol that handles these situations

more efficiently and show its efficiency by implementing it in two open source

RDBMSs.

• In-Database Processing (Chapters 4 and 5). We examine current methods

of in-database processing in popular RDBMSs and improve on these methods

by implementing a new method of in-database processing aimed at accelerating

14

Chapter 1. Introduction

in-database analytics: Vectorized UDFs. We implement these in MonetDB, a

popular open-source RDBMS, and show how these UDFs can be effectively used

to perform analytical workflows entirely within the RDBMS.

• Embedded Database: MonetDBLite (Chapter 6). We adopt the popular

open-source RDBMS MonetDB to run as an embedded database inside analytical

tools. We show how an embedded database can greatly increase usability of a

database system, as well as show how the speed at which the analytical tool and

the RDBMS can exchange data is greatly improved by embedding the database.

• Embedded Database: DuckDB (Chapter 7). Learning from our imple-

mentation of MonetDBlite, we identified the requirements and challenges of an

embedded database system, and created our own RDBMS designed for being

embedded from scratch: DuckDB. DuckDB fixes many of the deficiencies of

MonetDBLite that were caused by the system being initially designed as a

stand-alone server process.

5 Structure and Covered Publications

We present the background material necessary to understand this thesis in Chapter 2.

We discuss the history of relational database management systems, and how they

relate to the field of analytics, and we discuss the various ways in which database

systems can be combined with stand-alone analytical tools.

In the subsequent chapters, we discuss the methods in which we aim to improve over

the existing work. In Chapter 3, we describe our work on improving the client-server

protocol, based on the following paper:

• Don’t Hold My Data Hostage - A Case For Client Protocol Redesign

Mark Raasveldt, Hannes Mühleisen

43rd International Conference on Very Large Data Bases (VLDB 2017)

In Chapter 4 we discuss our work on extending user-defined functions for analytical

use cases. This chapter is based on the following paper:

15

5. Structure and Covered Publications

• Vectorized UDFs in Column-Stores

Mark Raasveldt, Hannes Mühleisen

28th International Conference on Scientific and Statistical Database Management

(SSDBM 2016)

In Chapter 5 we discuss our work on embedding analytical workflows inside a

database system. This chapter is based on the following paper:

• Deep Integration of Machine Learning Into Column Stores

Mark Raasveldt, Pedro Holanda, Hannes Mühleisen and Stefan Manegold

21st International Conference on Extending Database Technology (EDBT 2018)

In Chapter 6 we discuss our work on extending the MonetDB system into an em-

bedded database system called MonetDBLite. This chapter is based on the (currently

unpublished) paper:

• MonetDBLite: An Embedded Analytical Database

Mark Raasveldt and Hannes Mühleisen

In Chapter 7 we discuss our work on creating the embedded database system

DuckDB. This chapter is based on the following paper:

• DuckDB: an Embeddable Analytical Database

Mark Raasveldt and Hannes Mühleisen

ACM International Conference on Management of Data (SIGMOD 2019)

Demonstration Track

16

