

Integrating analytics with relational databases Raasveldt, M.

Citation

Raasveldt, M. (2020, June 9). *Integrating analytics with relational databases*. *SIKS Dissertation Series*. Retrieved from https://hdl.handle.net/1887/97593

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/97593

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/97593 holds various files of this Leiden University dissertation.

Author: Raasveldt, M.

Title: Integrating analytics with relational databases

Issue Date: 2020-06-09

Integrating Analytics with Relational Databases

Mark Raasveldt

Integrating Analytics with Relational Databases

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op dinsdag 9 juni 2020 klokke 11:15 uur

door

Mark Raasveldt geboren te Leiderdorp in 1992

Promotiecommissie

Promoter: prof. dr. Stefan Manegold (CWI & Leiden University)

Co-promoter: dr. Hannes Mühleisen (CWI)

Overige leden: prof. dr. Aske Plaat (Leiden University)

prof. dr. Thomas Bäck dr. Mitra Baratchi (Leiden University) prof. dr. Jens Dittrich (Saarland University) prof. dr. Torsten Grust (University of Tübingen)

The research reported in this thesis has been carried out at the CWI, the Dutch National Research Laboratory for Mathematics and Computer Science, within the Database Architectures group.

The research reported in this thesis has been carried out under SIKS, the Dutch Research School for Information and Knowledge Systems.

This research is financially supported by the Dutch funding agency NWO, under project number 650.002.001 (the PROMIMOOC project), in collaboration with Tata Steel Ijmuiden, BMW Group Regensburg, Leiden University and Centrum voor Wiskunde en Informatica (CWI).

Acknowledgments

When I was studying for my masters in university I always thought that I would never do a PhD. After all, you get paid less than working in industry and you need to work on theoretical research instead of solving practical problems. The reason that I opted to do a PhD anyway is because of Hannes, Stefan and the rest of the Database Architectures group. They showed me that not only can research be useful and practical, it can be amazingly fun and engaging as well. I have learned so much in my time here and am very thankful to each of the members of the DA group that have provided me with their knowledge and wisdom.

I am particularly indebted to Hannes, who took me in as a master student and has worked closely with me ever since. All of the days that we spent peer programming were extremely fun and informative. I would also like to give special thanks to my promotor Stefan. Firstly for giving me the opportunity of doing my PhD at the CWI, and secondly for being extremely kind and compassionate and creating such an accepting and amazing workplace. They say that how you experience your PhD depends entirely on your supervisor, and I had the best supervisors that I could wish for in Hannes and Stefan.

In my time at the CWI I have made many friends that have made my time there extremely pleasant. Pedro, Tim and Diego who I could always count on to have a good time and with whom I share many amazing memories. Thibault, who has taught me how to enjoy the pleasantries of life and how to write introductions. Abe, who has always impressed me with his math skills. Till, who was always ready to beat me in a game of table tennis. And finally, I would like to thank all the other people of the DA group for making my time there so special and amazing.

Finally, I would like to acknowledge my family and friends for their support. My mother and father - both also computer scientists - who have always supported me in doing whatever I wanted to do, even though I ended up following in their footsteps anyway. I would also like to thank my siblings, Maarten and Marieke. My close friends David and Dirk, and especially Ana who has always supported me.

Contents

Τ	Intr	oducti	on	11	
	1	The R	Lise of Data Science	11	
	2	Tools	of the Trade	12	
	3	3 Data Science & Data Management			
	4	Our C	Contributions	14	
	5	Struct	ure and Covered Publications	15	
2	Bac	kgrour	$\mathbf{n}\mathbf{d}$	17	
	1	Relation	onal Database Management Systems	18	
	2	2 RDBMS Design			
		2.1	Workload Types	19	
		2.2	System Types	20	
		2.3	Physical Database Storage	20	
		2.4	Database Processing Models	21	
	3	Database Connectivity			
		3.1	Client-Server Connection	23	
		3.2	In-Database Processing	24	
		3.3	Embedded Databases	25	

	4	4 MonetDB				
	5	Pytho	on	28		
3	Dat	abase	Client-Server Protocols	31		
	1	Introd	luction	31		
		1.1	Contributions	32		
		1.2	Outline	33		
	2	State	of the Art	33		
		2.1	Overview	34		
		2.2	Network Impact	37		
		2.3	Result Set Serialization	39		
	3	Protoc	col Design Space	43		
		3.1	Protocol Design Choices	44		
	4	Imple	mentation & Results	54		
		4.1	MonetDB Implementation	54		
		4.2	PostgreSQL Implementation	55		
		4.3	Evaluation	57		
	5	Summ	nary	62		
4	Vec	torized	d UDFs in Column-Stores	63		
1 Introduction			luction	63		
		1.1	Contributions	64		
		1.2	Outline	65		
	2	Types	of User-Defined Functions	65		
3 MonetDB/Python		Monet	tDB/Python	66		
		3.1	Usage	66		
		3.2	Processing Pipeline	67		
		3.3	Parallel Processing	70		
		3.4	Loopback Queries	75		
	4	Evalua	ation	75		
		4.1	Systems Measured	76		

		4.2	Modulo Benchmark	77
	5	Related	d Work	79
		5.1	Research	79
		5.2	Systems	82
	6	Applica	ability To Other Systems	83
	7	Develo	pment Workflow: devUDF	85
		7.1	The devUDF Plugin	87
		7.2	Usage	87
		7.3	Implementation	89
	8	Summa	ary	90
5	In-I	Databas	se Workflows	93
	1	Introdu	action	93
		1.1	Contributions	94
		1.2	Outline	94
	2	Related	d Work	94
		2.1	Machine Learning Integration	94
		2.2	Machine Learning Model Management	95
	3	Machin	ne Learning integration	96
		3.1	Training	97
		3.2	Classification	98
		3.3	Ensemble Learning	99
	4	Experi	mental Analysis	99
	5	Summa	ary	102
6	Mo	netDBI	Lite	103
1 Introduction		Introdu	action	103
		1.1	Contributions	104
		1.2	Outline	104
	2	Design	& Implementation	104
		2.1	Internal Design	104

		2.2	Embedding Interface	105	
		2.3	Native Language Interface	107	
		2.4	Technical Challenges	111	
	3	Evalua	ation	113	
		3.1	Setup	113	
		3.2	TPC-H Benchmark	114	
		3.3	ACS Benchmark	121	
	4	Summ	ary	123	
7	Duc	kDB:	an Embeddable Analytical Database	125	
	1	Introd	uction	125	
		1.1	Contributions	127	
	2	Design	and Implementation	128	
	3	Summ	ary	130	
8	Con	clusio	n	133	
	1	Big Picture			
	2	Future Research			
		2.1	Client-Server Connections	134	
		2.2	In-Database Processing	135	
		2.3	Embedded Databases	138	
Bi	bliog	graphy		140	
Su	Summary 15				
Sa	Samenvatting 15				
Ρι	Publications 155				