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ABSTRACT: Decision support tools such as life cycle assessment
(LCA) increasingly aim to account for impacts on biodiversity.
While taxonomic measures like species richness have been
implemented, they do not fully grasp the impacts on ecosystem
functioning. Functional diversity, derived from the species’ traits, is
more representative of ecosystem processes. This study provides a
framework for developing characterization factors for functional
diversity as affected by land use. It exploits the large databases on
plant traits and species composition that have recently become
available and allow bringing biodiversity impact assessment to the
next level. Three functional diversity indices therein describe
different aspects of functional diversity, namely richness, evenness,
and divergence. Applying our framework to Germany as a proof of
concept, we show significant losses in functional plant diversity when converting natural forests to agricultural land use. Consistently
across different forests and agricultural systems, functional richness decreases steeply and functional divergence moderately upon
occupation. In contrast, functional evenness exhibits opposite trends. The resulting characterization factors are likely to be
representative of temperate regions. The framework is flexible and applicable to larger scales and other impact categories. As such, it
facilitates harmonizing biodiversity impact assessments and better represents ecosystem functioning by incorporating functional
diversity.

■ INTRODUCTION

The Intergovernmental Science-Policy Platform on Biodiver-
sity and Ecosystem Services (IPBES) highlighted the
importance of biodiversity and the severity of its loss in their
recent “global assessment of biodiversity and ecosystem
services”.1 Biodiversity is not only vital for ecosystem
functioning but also for human well-being. However, it is
declining faster than ever in human history. The largest direct
driver of the loss of terrestrial and freshwater biodiversity is
land use, especially due to agriculture.1 Despite abatement
efforts, no improvement in biodiversity decline has been
achieved yet.2 Across most of the world’s land surface,
biodiversity loss has already transgressed the proposed
planetary boundary.3 This highlights the urgency to safeguard
biodiversity and to make better-informed decisions based on
scientific evidence.
Life cycle assessment (LCA) is a tool to quantify

environmental impacts4 and can support decision-making to
protect biodiversity. It takes a systems perspective, and
compiles inputs (resources) and outputs (emissions) of a
product system throughout its life cycle. In the life cycle impact
assessment (LCIA) phase, these inputs and outputs are
translated to common impact units for impact categories or
areas of protection through characterization factors.4 For

example, impacts of land use (as an input) on ecosystem
quality (as an area of protection) can thus be quantified.
Various LCIA methods exist to characterize the impacts of

land use on ecosystem quality.5 They cover, for example, net
primary production,6 hemeroby (naturalness),7 and most often
species richness8 as indicators of ecosystem quality. While
species richness is merely a count of species, functional
diversity considers the functional traits of a species and more
strongly relates to ecosystem functioning than species
richness.9 The LCA community recognizes the value of
functional diversity and recommends it as a complementary
metric.10 However, to date, there is only a single LCIA method
that uses functional diversity: Souza et al.11 proposed
characterization factors for land use impacts on the functional
diversity of mammals, birds, and plants in the Americas. They
based their characterization factors on existing meta-analyses
and used Petchey and Gaston’s index12 to describe functional

Received: November 28, 2019
Revised: March 23, 2020
Accepted: April 28, 2020
Published: April 28, 2020

Policy Analysispubs.acs.org/est

© 2020 American Chemical Society
6486

https://dx.doi.org/10.1021/acs.est.9b07228
Environ. Sci. Technol. 2020, 54, 6486−6495

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

L
E

ID
E

N
 U

N
IV

 o
n 

Ju
ne

 1
2,

 2
02

0 
at

 1
1:

48
:1

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Laura+Scherer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sven+A.+van+Baren"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+M.+van+Bodegom"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.9b07228&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07228?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07228?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07228?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07228?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07228?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/esthag/54/11?ref=pdf
https://pubs.acs.org/toc/esthag/54/11?ref=pdf
https://pubs.acs.org/toc/esthag/54/11?ref=pdf
https://pubs.acs.org/toc/esthag/54/11?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.est.9b07228?ref=pdf
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


diversity. The index measures functional richness, a specific
component of functional diversity, by means of a functional
dendrogram. Their results show significant differences in
characterizations factors for species richness and functional
richness, including in a comparison for plants.
Ahmed et al.13 recommended considering three independent

and complementary components of functional diversity:
richness, evenness, and divergence. Mason et al.14 define
functional richness as the amount of functional niche space

filled by species. It relates to the range of resources used and
thus to productivity, environmental tolerances, and invasion
resistance. Functional evenness describes the regularity of the
abundance distribution within the filled space. It relates to
over- or underutilization of resources, and is hence an early
warning signal of changes in community composition.
Functional divergence is the degree to which the abundance
distribution within the filled space maximizes differences in the
functional characters within the community. It relates to niche

Figure 1. Conceptual framework for the derivation of characterization factors for functional diversity.
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differentiation and thus resource competition.14 Frameworks
to include all three metrics for defining biodiversity impacts
have not yet been developed.
The increasing availability of data sets on species

composition,15 species traits,16 and global trait patterns17

allow a much more detailed understanding of functional
diversity patterns than feasible a few years ago. Exploiting data-
driven approaches making use of such rich ecological
resourcesif combined with ecological conceptsprovides
new venues for more realistic impact assessments.
This study pursues two research objectives. First, it aims to

develop characterization factors for land use impacts on
functional plant diversity. Second, it provides a proof of
concept, applied to Germany, for using a data-driven approach
to develop characterization factors covering all three
recommended indices of functional diversity.

■ MATERIALS AND METHODS
Characterization factors were derived for functional plant
diversity loss caused by marginal land occupation of former
forests with agricultural land, taking into account confounding
environmental covariates (Figure 1).
Functional Plant Diversity. Functional diversity metrics

express the diversity in (functional) traits, often weighing
contributions of traits of individual species by their abundance.
Hence, functional diversity estimates depend on both the
identity of traits included as well as the number of traits.
Conceptually, plant traits fall into three functional categories:
persistence, regeneration, and dispersal.18 To cover all relevant
aspects concerning ecosystem functioning, trait selection
should ideally cover all the categories. Due to data limitations
and the demand for complete trait sets by species, the number
of traits included in an analysis is commonly constrained to a
few key representative traits.
Traits were obtained from the most comprehensive trait

database for Northwest Europe, including Germany, the LEDA
Traitbase.18,19 LEDA provides 26 traits for up to 3345 species.
Trait selection was based on the species coverage per trait, the
association among traits, and the functional category. As in
most studies, only plant traits with continuous values (e.g.,
canopy height in m) were included in the analysis, as they
better capture the interspecific variation than categorical traits
(e.g., dispersal type like meteorochor−by wind, zoochor−by
animals, etc.).20 To maximally span the trait space, only traits
with absolute pairwise Spearman correlation coefficients below
0.5 were included.21,22 In the final selection of four traits
canopy height, specific leaf area, seed number, and seed
massabsolute correlations ranged from 0.002 to 0.371
(Supporting Information (SI) Table S1). Canopy height and
specific leaf area relate to the persistence of a plant species.
Specific leaf area is especially well studied23 and hardly
correlates with other traits. As such, it adds a distinct
characteristic to the trait spectrum. Seed number and seed
mass are relevant to regeneration. They correlate only
moderately with canopy height and among each other. None
of the selected traits belongs to the functional category
dispersal. The only continuous dispersal-related trait with
sufficient species coverage is the seed release height. However,
since it strongly correlates with canopy height but covers fewer
species, it was omitted. Overall, the four selected traits are all
available for 1257 plant species.
Vegetweb, the German database of vegetation plots,

provides georeferenced data on plant abundance for plots

with complete lists of 1684 species.24,25 The full data set
contains over 125 000 plots, spanning the period from 1922 to
2017. For the scope of this study, only freely available data was
used (SI Figure S1) and the individual projects are listed in the
Supporting Information. The temporal coverage was limited to
1998−2017 to avoid the use of older data with a larger gap
between vegetation and land use monitoring. These two
restrictions reduced the data set to a subset of 5215 plots
distributed throughout Germany. Species abundance, as mean
cover percentage, was determined by summing abundances
across the multiple vegetation layers present in Vegetweb. The
mode of the plot size is 4 m2, and its median is 6 m2. Since
some aspects of functional diversity, including functional
richness and evenness, depend on the plot size,26 plots with an
area exceeding 100 m2 (8.99%) were omitted. Plots with an
unknown area (6.77%) were assumed to be smaller than 100
m2 and included. Vegetweb indicates the location of plots in
one of three forms: two coordinate reference systems and an
old German topographic map series at a scale of 1:25000 called
“Messtischblatt”. Plots with locations given in the topographic
map series were considered as too unprecise and omitted
(23.2%). Overall, 4007 plots remained for analysis.
The plant trait and abundance data were matched based on

species names after standardizing all species names with the R
package taxonstand27 version 2.2 that uses The Plant List
(http://www.theplantlist.org). The matching resulted in 860
species occurring in both databases. After removing species
and plots with zero abundance, remaining plots had trait values
known for, on average, 74.4% of the species present in a plot.
The three functional diversity metricsfunctional richness,

evenness, and divergencewere selected based on Ahmed et
al.13 and calculated following Villeǵer et al.28 These indices
apply to multiple traits and are complementary and
independent of each other. Functional richness is measured
by the convex hull volume of the filled functional space.
Functional evenness is based on the minimum spanning tree
linking all the species and species abundance. Functional
divergence is estimated by the abundance-weighted distance
from the center of gravity in the functional space.28 The
function dbFD of the R package FD29 version 1.0.12 includes,
among others, generalized algorithms for the three indices
proposed by Villeǵer et al.28 All traits were standardized to an
average of zero and unit variance (stand.x = TRUE). Villeǵer et
al.28 suggest doing so to avoid any influence of the units of
measurement and to equally weigh all traits, as the relative
importance of different traits is rarely known. In addition,
functional richness was normalized to the “global” functional
richness of all species (stand.FRic = TRUE). In doing so, all
three indices are constrained between 0 and 1. The indices are
derived from the distances between species within the
functional trait space, which is represented by the species−
trait matrix. Laliberte ́ and Legendre29 generalized the metric
set by Villeǵer et al.28 in their R package FD by allowing for
different distance measures and by using principal coordinate
analysis (PCoA) axes as traits for calculating functional
diversity. Since the species−trait matrix in this study only
contains continuous, unweighted traits and excludes species
with missing trait values, the Euclidian distance was used. The
minimum number of species per plot was set to three, which is
lower than the number of selected traits (four). The (two)
PCoA axes represented, on average, 63% of the variation in the
traits.

Environmental Science & Technology pubs.acs.org/est Policy Analysis

https://dx.doi.org/10.1021/acs.est.9b07228
Environ. Sci. Technol. 2020, 54, 6486−6495

6488

http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b07228/suppl_file/es9b07228_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b07228/suppl_file/es9b07228_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b07228/suppl_file/es9b07228_si_001.pdf
http://www.theplantlist.org
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.9b07228?ref=pdf


Land Use. The land use of vegetation plots was retrieved
from the CORINE Land Cover (CLC) data sets.30 CLC is
coordinated by the European Environment Agency, and their
maps cover Europe. The data is in vector format. Its minimum
mapping unit is 25 ha and its minimum width of linear
elements is 100 m. It provides information on 44 land use
classes, and 17 overlap with the preprocessed vegetation plots
(SI Table S2). Maps are available for the years 1990, 2000,
2006, 2012, and 2018. The year the vegetation data was
collected was used to assign the CLC map closest to that year.
Six land use classes were chosen for further analysis based on

the number of vegetation plots they cover (SI Table S2). They
include three forest types representing natural land use (broad-
leaved forest, coniferous forest, and mixed forest) and three
agricultural land use types representing anthropogenic land use
(nonirrigated arable land, pastures, and complex cultivation
patterns). The class “land principally occupied by agriculture,
with significant areas of natural vegetation” was not chosen
despite a relatively large coverage of vegetation plots because it
mixes natural and anthropogenic land use. Agriculture is of
interest because, as mentioned above, it is the major land use
type driving terrestrial and freshwater biodiversity loss.1 Forest
is also a suitable choice because the potential natural
vegetation of Germany would mostly be (broad-leaved and
mixed) forest.31

Since not all forests are natural, they were further classified
using global data from Schulze et al. at a 1 km resolution.32

They distinguish four forest classes: primary, naturally
regrown, planted, and unclassified. Planted forests were
excluded from further analysis. After the selection of land
use classes, 2197 vegetation plots remained for further analysis.
Natural Experiment. Natural experiments are observa-

tional studies designed as quasi experiments which, similar to
controlled experiments, compare treatment and control
groups.33 In this study, the treatment groups are the vegetation
plots with agricultural (anthropogenic) land uses, and the
control groups are the plots with forest (natural) land uses.
Besides land use, environmental covariates, such as climate

conditions and soil properties, can influence functional
diversity. They could confound the analysis of the effects of
land use on functional diversity, and therefore need to be
accounted for. WorldClim 2 provides global climate data at a 1
km resolution.34 Climate variables initially considered include
annual mean temperature, temperature seasonality, maximum
temperature of warmest month, minimum temperature of
coldest month, annual precipitation, precipitation of wettest
month, precipitation of driest month, and precipitation
seasonality. The European Soil Data Centre (ESDAC)
provides European soil data at a 500 m resolution.35,36 Soil
variables initially considered include organic carbon, pH, clay
content, sand content, silt content, bulk density, and available
water capacity.
Correlation coefficients served to select a subset of

environmental covariates by aiming at correlations with the
response variable (functional diversity) but not among
covariates.21 We selected a Spearman correlation threshold
of maximally 0.5 for the trait selection to avoid high
correlations among covariates and minimally 0.1 with func-
tional diversity to avoid negligible correlations with the
response variable,22 ideally for the average correlation with
the three functional diversity indices and at least with one of
them. These criteria resulted in the selection of the
environmental covariates annual precipitation, minimum

temperature, and sand content. The absolute correlation
coefficients between environmental covariates ranged from
0.117 to 0.359 (SI Table S3). Although there is no a priori
relationship between species richness and functional richness,
functional richness may decrease with lower species cover-
age.14 Therefore, the ratio of the number of species with
known trait values to the total number of species at a plot was
also considered as a covariate.
Propensity score matching enables to match sample pairs of

control and treatment groups by balancing covariates.37 As
such, it allows to design an observational study as a natural
experiment and to reduce selection bias by accounting for
confounding covariates.38,39 Propensity scores estimate the
probability of treatment given a set of covariates. Propensity
scores are estimated by logistic regression, as implemented in
the R package MatchIt40 version 3.0.2. Both control and
treatment samples were discarded if they fell outside the
common support. That happens if the propensity score for a
certain set of covariates is 0 or 1, leaving no chance for both
control and treatment to occur with this set.37 Samples from
the control (forest) and treatment (agriculture) group were
matched if their propensity scores were similar, using nearest
neighbor matching, which has a similar performance to optimal
matching41 but is less computationally intensive.42 The caliper
(the maximum allowed difference between matched samples)
and the order of matching influence the matching quality. The
most suitable caliper differs by case and faces a trade-off
between precision and number of matches. To be consistent
among the land use pairs, we followed the general
recommendation of using a caliper of 0.25 standard deviations
of the propensity score.42,43 Samples were matched without
replacement in descending order starting with the highest
propensity score, as it is most challenging to find a match for
this sample.42 Matching was done separately for all nine
combinations of control and treatment land uses.
The balance of covariates between control and treatment

groups indicates the quality of the matching.37 Several
procedures exist to assess the balance, and we used the
absolute standardized bias. The standardized bias is defined as
the difference in sample averages between treatment and
control groups as a percentage of the square root of the average
of sample variances in both groups.37 This bias, that is, the
imbalance, should reduce after matching. Generally, a bias
below 25% is desired.43

After matching sample pairs, the difference in functional
diversity between control and treatment groups was inves-
tigated. We calculated the medians and interquartile ranges of
both and tested the significance of the shift in the location of
the distributions with the Wilcoxon signed-rank test.44 While
having less statistical power, a nonparametric test does not rely
on the assumption of normality. Since the data in this study
were far from normally distributed, and we judged the sample
sizes after matching as not sufficiently large for the central limit
theorem to apply, we considered a nonparametric test as more
appropriate.

Characterization Factors. Characterization factors (CFs)
were derived based on the median functional diversities of
matched sample pairs for each of nine land use combinations.
The characterization factor for local land occupation impacts
equals the difference in ecosystem quality (ΔQ) between the
occupied land use (subscript occ) and a reference state
(subscript ref), such as here the natural land use.45 In this
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study, ecosystem quality is measured as relative functional
diversity (FD), resulting in the following equation:

= Δ = −QCF 1
FD
FD

occ

ref

We propose the CF to be expressed in the potentially
disappeared fraction of functional diversity (PDFFD), similar to
the commonly used unit of potentially disappeared fraction of
species (PDF). The three functional diversity components
result in three CFs, representing functional richness, evenness,
and divergence, for each land use combination.

■ RESULTS
Differences in Functional Plant Diversity. All nine land

use combinations follow similar trends in functional plant
diversity: a decrease in functional richness, an increase in
functional evenness, and a decrease in functional divergence
for anthropogenic relative to natural land use (Figure 2). For
broad-leaved forest, the differences with all three agricultural
land use types are in line with this general trend and
statistically significant for all three functional diversity indices
(Table 1). Coniferous forest deviates from this trend with a
slight, significant increase in divergence when compared to

nonirrigated arable land and a nonsignificant increase in
richness when compared to pastures. Mixed forests show a
slight decrease in evenness compared to two out of three
agricultural land uses, but both are not statistically significant.
The other differences follow the general trend.
The balance of covariates generally improved after

propensity score matching (SI Table S4). Not all covariates
for all land use combinations reached the desired maximum
standardized bias of 25%. Still, the bias strongly reduced, on
average, across the four covariates for all nine land use
combinations. For each land use combination, several
vegetation plots either had to be discarded or could not be
matched (SI Figure S2). The remaining sample size ranged
from 26 to 193 (SI Table S5).

Characterization Factors. Consistent with the trends
observed above, most characterization factors for functional
richness and divergence are positive and indicate a loss, and
most characterization factors for functional evenness are
negative and indicate a gain in the respective functional
diversity components upon land use occupation (Table 2).
The only gain in functional richness resulted from the
comparison of coniferous forest to pasture and was very low
and statistically insignificant. Significant losses ranged from
0.56 to 0.95 PDFFD. The significant gains in functional

Figure 2. Functional plant diversity of natural (N) and occupied (O) land use. (A) Broad-leaved forest vs nonirrigated arable land, (B) broad-
leaved forest vs pasture, (C) broad-leaved forest vs complex cultivation pattern, (D) coniferous forest vs nonirrigated arable land, (E) coniferous
forest vs pasture, (F) coniferous forest vs complex cultivation pattern, (G) mixed forest vs nonirrigated arable land, (H) mixed forest vs pasture, (I)
mixed forest vs complex cultivation pattern. See Table 1 for results from the statistical analysis of the patterns.
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evenness ranged from negative 0.045 to 0.36 PDFFD. The only
two (out of nine) losses of functional evenness resulted from a
comparison of mixed forest to nonirrigated arable land and
pasture. Both were statistically insignificant. Significant losses
of functional divergence ranged from 0.084 to 0.19 PDFFD.
The only gain in functional divergence resulted from a
comparison of coniferous forest to nonirrigated arable land and
was statistically significant. However, the gain is low.
Overall, the functional diversity of broad-leaved forests is

most affected by agricultural land use, and coniferous forests
are least affected (Table 2). Complex cultivation patterns drive
the most significant loss of functional diversity across the three
forest types. The only land use combination where the
anthropogenic land use seems not to affect functional diversity
is for the comparison of coniferous forest and pasture.

■ DISCUSSION
A Natural Experiment to Derive Characterization

Factors for LCAs. Natural or quasi experiments, as carried out
here, offer great potential for investigating cause-effect

relationships in ecological and sustainability research.38,39

They are especially valuable where controlled experiments
are impractical or unethical and where nonexperimental
observational studies are inadequate to infer causality.33

Propensity score matching has proven useful in this study to
design the natural experiment, as the balance of confounding
covariates strongly improved. The technique involves several
decisions, such as the model to estimate the propensity scores,
the matching algorithm, and the selection of covariates, which
can all influence the results.37 As such, it requires careful
choices and transparent documentation. Besides propensity
score matching, alternative matching approaches, regression
discontinuity designs, difference-in-differences models, and
instrumental variables could serve the same purpose of
designing natural experiments.38 Using a natural experiment,
this study provided a proof of concept for developing
characterization factors, and demonstrated the framework
based on data from Germany. Given data availability, the same
approach can be applied to other regions and larger scales.
TRY provides plant traits at the global level,16 and the
European Vegetation Archive (EVA)46 and sPlot15 are
European and global vegetation plot databases.
An important result of the study is the high consistency of

functional diversity impacts across different land use types.
Consistently, functional richness and divergence decreased,
while functional evenness showed an opposite trend (Figure 2,
Table 2). Moreover, functional evenness negatively correlates
with functional richness and divergence (SI Table S3). This
pattern is consistent with other studies (e.g., ref 26) and points
to a fundamental feature of functional diversity: With a
decrease in environmental quality, the abundance of species
becomes increasingly skewed and, while rare species might get
lost (decreasing functional richness), common species become
less dominant (increasing functional evenness). Hence, it
seems that, at a local scale, evenness may change in different
directions than at a large scale, where evenness is rather

Table 1. Statistics of Functional Plant Diversity after
Propensity Score Matchinga

FRic FEve FDiv

land use median IQR median IQR median IQR

FBL 0.0322 0.0928 0.3967 0.2250 0.8454 0.2261
ANI 0.0025 0.0068 0.5391 0.1846 0.7415 0.1684
p-value 1.02 × 10−07** 1.63 × 10−5** 0.00137**
FBL 0.0233 0.0646 0.4427 0.2533 0.8298 0.2745
APS 0.0040 0.0058 0.4628 0.2081 0.6947 0.1189
p-value 5.19 × 10−12** 0.0508• 8.17 × 10−5**
FBL 0.0217 0.0599 0.4044 0.1938 0.8643 0.2162
ACP 0.0012 0.0141 0.5493 0.2184 0.6983 0.1199
p-value 4.52 × 10−6** 0.000921** 0.000179**
FCO 0.0022 0.0822 0.4917 0.2025 0.6329 0.3654
ANI 0.0010 0.0048 0.5042 0.2933 0.6781 0.1896
p-value 0.00969** 0.303 0.0266*
FCO 0.0023 0.0058 0.4706 0.2444 0.6983 0.1856
APS 0.0025 0.0063 0.4942 0.2183 0.6975 0.1488
p-value 0.662 0.199 0.212
FCO 0.0063 0.0820 0.4363 0.1473 0.7551 0.1664
ACP 0.0007 0.0015 0.5740 0.0876 0.7017 0.1372
p-value 0.000217** 0.0254* 0.423
FMX 0.0081 0.0224 0.4332 0.1932 0.7694 0.1921
ANI 0.0044 0.0455 0.4314 0.2022 0.7050 0.1322
p-value 0.388 0.920 0.0588•
FMX 0.0161 0.0177 0.4620 0.2822 0.8011 0.1995
APS 0.0038 0.0062 0.4476 0.2307 0.6867 0.0988
p-value 4.76 × 10−7** 0.294 1.75 × 10−7**
FMX 0.0081 0.0162 0.4264 0.1942 0.7995 0.1631
ACP 0.0008 0.0042 0.5488 0.2006 0.6474 0.0951
p-value 7.96 × 10−6** 0.0264* 0.0103*

aFunctional diversity was measured by three indices: functional
richness (FRic), functional evenness (FEve), and functional
divergence (FDiv). The forest types include broad-leaved forest
(FBL), coniferous forest (FCO), and mixed forest (FMX). The
agricultural land use types include non-irrigated arable land (ANI),
pastures (APS), and complex cultivation patterns (ACP). The
statistics are the nonparametric median and interquartile range
(IQR). P-values refer to the Wilcoxon signed-rank test: no symbol =
nonsignificant, • = p-value ≤ 0.1, * = p-value ≤ 0.05, ** = p-value ≤
0.01. See Figure 2 for a visualization of the differences.

Table 2. Characterization Factors (CFs) for Land-Use
Driven Loss of Functional Plant Diversitya

reference land
use occupied land use CFFRic CFFEve CFFDiv

broad-leaved
forest

nonirrigated arable
land

0.922** −0.359** 0.123**

pasture 0.823** −0.045• 0.163**
complex cultivation
pattern

0.946** −0.358** 0.192**

coniferous
forest

nonirrigated arable
land

0.560** −0.025 −0.072*

pasture −0.090 −0.050 0.001
complex cultivation
pattern

0.884** −0.316* 0.071

mixed forest nonirrigated arable
land

0.458 0.004 0.084•

pasture 0.766** 0.031 0.143**
complex cultivation
pattern

0.907** −0.287* 0.178*

aCFs are expressed in potentially disappeared fraction of functional
diversity (PDFFD) and cover three functional diversity components:
functional richness (FRic), evenness (FEve), and divergence (FDiv).
Significance relates to the Wilcoxon signed-rank test (Table 1). No
symbol = nonsignificant, • = p-value ≤ 0.1, * = p-value ≤ 0.05, ** =
p-value ≤ 0.01.
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declining and negatively affects the resilience of the ecosystem
as a whole.26

The characterization factors also clearly show that functional
richness is most strongly negatively affected by land use. This
feature hasto our knowledgenot yet been described in
ecological literature. It suggests, however, that the total trait
space for alternative species strategies is much more strongly
affected than the distribution of multiple strategies within that
space. In turn, this suggests that the direct impacts of the
decline in habitat quality are dominant in the biodiversity
effects of land use. Such impacts may be generalized across
land use types by using land use intensity, which is known to
relate to biodiversity changes.47 Land use intensity has so far
been considered in LCA only in a few characterization
models.8,11

While, in general, characterization factors were highly
consistent, they can differ among land use types. The forest
type and the agricultural land use type matter. For example,
agricultural land use affects the functional diversity of originally
broad-leaved forests more than of coniferous forests. Such
insights are important to refining and improving impact
assessments of LCAs. It demonstrates that impact assessment
of land use can benefit from a higher detail of land use classes.
Choice of Functional Diversity Metrics for LCAs. This

study provides the first comprehensive quantification, based on
coupling several large biodiversity-related databases, of land
use impacts on functional diversity. Functional diversity adds
immense value to biodiversity impact assessment, as it links
more closely to ecosystem functioning than species richness,9

which makes its importance more obvious. Based on the
framework provided in this study, we hope to encourage other
studies to include functional diversity metrics.
While being more closely linked to ecosystem functioning,

functional diversity also entails a higher complexity and is
hence more difficult to compute and requires more data. First
of all, functional diversity consists of multiple components
functional richness, evenness, and divergencefor which
different metrics have been developed. Here, we followed the
recommendation by Ahmed et al.13 and used the indicator set
developed by Villeǵer et al.28 Other metrics might lead to
slightly deviating results.
Second is the selection of the traits, which in turn depends

on the choice of taxa. Here, we deliberately chose plants as the
only taxon. Plants are at the base of the food web, having
strong bottom-up effects on multiple higher trophic levels.48

Plant diversity correlates with the diversity of other taxa even
after accounting for the influence of abiotic factors,49 and
positively affects ecosystem functions.50 Inclusion of multiple
taxa, although that would allow covering a wider range of
ecosystem functioning,51 would also imply multiple independ-
ent biodiversity impact estimates, as it is not straightforward to
compare traits (or species numbers) across taxa. Therefore, we
opted for one, but representative, taxon. The selected traits
should link to the ecosystem functioning or property of
interest.9 In this study, we opted for selecting (uncorrelated)
traits that are known to relate to general ecosystem functioning
aspects. It is facilitated by our selection from different organs:
leaves (specific leaf area), stem (canopy height), and seeds
(seed number and mass). Our trait set, while derived
differently, is highly similar to trait sets that allow differ-
entiating among vegetation types.52 When deriving functional
diversity for other taxa, trait selection might be more

complicated, as the diversity in strategies and hence traits is
larger and less understood.53

Third is the choice of the number of traits. Particularly
functional richness seems to be very sensitive to the number of
traits included, while functional evenness and functional
divergence (as calculated here) are only slightly influenced.54

Four traits can already be sufficient to characterize the
functional diversity of plants if correlation among traits is
avoided and traits cover at least three different organs,55 as
done here. Still, data availability, for instance, due to the lower
availability of root traits vs leaf traits,56 may lead to suboptimal
characterizations of functional diversity. Data availability issues
may also cause traits to be more correlated and hence linked to
few ecosystem functions. It is partially resolved by using
PCoAs for calculating functional diversity, which also reduces
computation times.57 The drawback of using PCoAs is that the
transformation may not maintain actual differences in trait
expressions among species.58

Finally, both the number and the identity of the selected
traits depend on the quality of the database. The quality of the
trait database does not only refer to the number of
observations but also to the availability of geolocations,
adequate species identifications, and quality control of the
trait values. With available geolocations, trait variations within
species may potentially also be accounted for. Some traits vary
more within than among species, and location-specific trait
estimates may improve functional diversity estimates.53

Implementation of Functional Diversity Metrics in
LCAs. The derived characterization factors for the marginal
land occupation of former forests with agricultural land can
readily be integrated and applied in LCAs. We are aware that
examining three functional diversity metrics simultaneously
may decrease the equivocality of the impact assessments.
Usually, more aggregated results, such as endpoints compared
to midpoints, offer less transparency but are easier to
communicate to decision-makers.59 Aggregation is already
challenging for different taxa, and has only been done
statistically and without ecological reasoning.60 Aggregating
different functional diversity components would be equally
challenging. One possibility to determine objective weights for
aggregation in multicriteria decision analyses is the least-square
method, in which the root-mean-square deviation (RMSD) is
calculated for each criterion.61 These can be translated to
weights by dividing by the sum of RMSDs. In our case, this
would result in weights of 0.57 for functional richness, 0.28 for
functional evenness, and 0.15 for functional divergence.
However, aggregation with predetermined weights does not
do justice to the multifaceted impacts on biodiversity.
Therefore, we strongly advocate the use of all three metrics,
which can be combined with a multicriteria decision analysis or
multiattribute analysis for evaluation in LCAs.62

With the strongly increased availability of public data on a
multitude of environmental conditions and biodiversity
features,63 a data-driven approachas exemplified in this
studyis increasingly feasible for impact assessments. While
focusing on land use impacts, similar analyses may be done for
toxicity (with available information on pesticides in surface
waters), water scarcity (hydrology data sets), and others.
Likewise, we consider the derived characterization factors to be
likely representative of temperate regions with intensive land
use (as occurring in Western Europe and parts of the United
States). Our framework is, however, equally well suited for
deriving characterization factors for other regions. With the
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necessary data becoming increasingly available, this study’s
flexible framework paves the way for integrating functional
diversity into standard LCIA.
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F.; Fang, J.; Fernańdez-Meńdez, F.; Fidelis, A.; Finegan, B.; Flores, O.;
Ford, H.; Frank, D.; Freschet, G. T.; Fyllas, N. M.; Gallagher, R. V.;
Green, W. A.; Gutierrez, A. G.; Hickler, T.; Higgins, S. I.; Hodgson, J.
G.; Jalili, A.; Jansen, S.; Joly, C. A.; Kerkhoff, A. J.; Kirkup, D.;
Kitajima, K.; Kleyer, M.; Klotz, S.; Knops, J. M. H.; Kramer, K.; Kühn,
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Onoda, Y.; Ordoñez, J.; Overbeck, G.; Ozinga, W. A.; Patiño, S.;
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