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CHAPTER 4

Reading and speaking




68 4.1. Introduction

Keeping it apart: on using a discrimina-
tive approach to study the nature and
processing of multi-word units

Saskia E. Lensink, Arie Verhagen, Niels O. Schiller, R. Harald Baayen

abstract

A growing number of studies finds frequency effects for common combinations
of words, leading many to assume that these multi-word units have some kind
of cognitive reality. However, it is not clear how lexical access to these multi-
word units takes place. We conducted two experiments, where the tracked the
eye movements and recorded the voices of participants reading silently and
out loud through a list of frequent multi-word units, and modeled the data
using both traditional measures of lexical access and measures taken from a
computational model of lexical access that incorporates multi-word units, the
Naive Discriminative Learner (NDL). Results show that the NDL measures
provide additional insights, showing that lexical access to multi-word units
proceeds from top-down to bottom-up processes, with larger co-activations of
similar items speeding up production. Moreover, the eye-tracking data shows
that readers are faster in reading multi-word units when they spend more time
at initial stage of reading, i.e. the first pass.

Keywords: word naming, eye-tracking, multi-word units, phrasal frequency
effects, naive discriminative learning, Rescorla-Wagner equations

4.1 Introduction

A large part of language is formulaic in nature. Common combinations of words
are claimed to make up at least twenty percent of total usage in spoken and
written language (Erman and Warren, 2000)). A growing number of experimen-
tal studies has reported frequency effects for combinations of two or more words
(Arnon and Snider, 2010} |Shaoul and Westburyl, 2011} and references therein).
Several studies have looked at frequent multi-word units in both production
and comprehension, using experimental paradigms such as self-paced read-
ing, phrasal decision tasks, and word reading tasks. Moreover, different tech-
niques have been used, including EEG and eye-tracking (Siyanova-Chanturia),
2013). Most work has focused on multi-word unit processing in adult native
speakers, but several studies also consider processing in children (Bannard and
Matthews, [2008]) and L2 speakers (Conklin and Schmitt} |2012; Han, [2015} |Jiang
and Nekrasoval 2007} [Siyanova-Chanturia et al.| 2011Db)).

Although there are some differences between the findings of these studies,
an overall finding that emerges consistently is an effect of the frequencies of
multi-word units, even when the frequencies of the individual words have been
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controlled for. The phrasal frequency effect has been interpreted as evidence for
"holistic" multi-word units in the mental lexicon, or as evidence for experience
in using the rules of grammar supporting these multi-word units (Arnon and
Priva,, [2014; |Siyanova-Chanturial, 2015; 'Tremblay et al.l [2011]).

Considering this previous research, there is abundant evidence that multi-
word units play a role in processing. The question of how, given some input,
a lexical unit is accessed is central to all models addressing language compre-
hension and production. However, we know very little nor do we understand
how lexical access to multi-word units proceeds. This study aims to fill this
gap by investigating the lexical access of multi-word units by means of combin-
ing a computational modeling study with newly collected experimental data.
The computational model of choice is a Naive Discriminative Learning network
(NDL; Baayen et al.| 2011)); the data are collected in an eye-tracking study and
a reading aloud study.

4.1.1 Including multi-word units in models of lexical ac-
cess

Previous research has shown that frequency effects for multi-word units could be
predicted by a model that did not have any representations for multi-word units
itself (Baayen et al.,|2013]). The phrasal frequency effect was merely an emergent
property of a network that implemented error-driven learning, crucially without
specifying any phrasal units.

The reason for not implementing these units was that there are several
drawbacks to the idea of storing multi-word units in the mental lexicon. One
such drawback is that there are hundreds of millions of word n-grams that
would need to be stored (Baayen et al.| [2013), even under the assumption that
n is unlikely to be much larger than five or six (Shaoul et al.| [2013] 2014al).
Populating the mental lexicon with such vast numbers of representations raises
issues not only of storage, but also of increased retrieval costs.

So why still consider including full multi-word units in models of lexical
access given these drawbacks? We may be underestimating the memory capac-
ity of our brain. We have a vast inventory of detailed experiences of the world
stored in our memory (see e.g. Brady et all [2008). Storage of our experience
with language is likewise huge. Not only do we store information about the
meanings of words, but also about the different phrasal contexts in which these
words can be used and the different meanings connected to these contexts,
pragmatics, as well as different syntactic constructions and their meanings, to
name just a few. Baayen et al.| (2011) and Milin et al.| (2009) have shown that
inflectional, derivational and even prepositional paradigms play a role in lan-
guage processing, suggesting we store all this information. Furthermore, recent
research on Estonian, a Finno-Ugric language related to Finnish, documents
form frequency effects for case-inflected nouns (Loo et al.l 2017, [2018)), in this
language the functional equivalent of prepositional phrases in English.
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Given the vast knowledge we have of the world, and of language, the re-
flection of this knowledge in language processing — in the form of a phrasal
frequency effect — should perhaps not be surprising. Moreover, when we con-
sider the stimuli chosen in many of the experiments studying phrasal frequency
effects, it transpires that many of the multi-word units used encode relevant
and meaningful experiences. These units concern very specific time markers,
such as ’on the day’, discourse markers such as ’I think that’, and affordance
relations, such as ’on the table’. These experiences are easily conceptualized as
being united and therefore as single units of experience.

Although conceptually and referentially transparent (unlike idioms), these
multi-word units have properties that are distinct from the sum of their parts,
which must be represented somewhere and are expected to play a role in pro-
cessing. It seems likely that single words, idioms, and certain multi-word units
are essentially the same type of entity psychologically. This is reminiscent of
one of the central tenets of constructionist approaches, where there is no prin-
cipled difference between morphemes, words, and constructions (Bybeel 2010;
Croft}, [2001; |Goldberg), | 2003). Therefore, there are good reasons to treat at least
some multi-word units in the same way as single words (Baayen et al., |2011])
or idioms (Geeraert et al., |2017)).

To summarize, there are both empirical and theoretical reasons to take
multi-word units into account in our models of lexical access. Experimental
evidence has shown that they influence processing, and that it is plausible that
we store a lot of forms, given our huge storage capacity. Furthermore, several
frequent combinations of words encode experiences separate from the sum of
their parts, which could results in the creation of unitary multi-word time
markers, discourse markers, and affordance relations.

4.1.2 Computational modeling of multi-word units

To explain previous findings of phrasal frequency effects, it is not enough to
only consider the frequency with which language users are exposed to multi-unit
words (Baayen, 2010]). We also need to know to what extent the smaller parts of
a multi-word unit form informative cues to access the full multi-word unit and
how language users are able to keep different multi-word units apart. We take
a discriminative learning approach, using a computational model that incorpo-
rates principles of learning theory (Baayen and Ramscar, 2015; [Baayen et al.
2011; [Ramscar and Yarlett} 2007; Ramscar et al.l 2010) using the Rescorla-
Wagner equations (Rescorla et al., [1972).

The model of choice, Naive Discriminative Learning (NDL; Baayen et al.,
2011)), has several advantages: first, we understand the inner workings of the
model quite well as it consists of only two layers; second, NDL models provide
us with measures that show how lexical access could proceed (?); third, it is
a cognitively plausible model as it incorporates principles of learning theory,
which we believe are essential in understanding how language works (see e.g.
Baayen and Ramscar] [2015; |Arnon and Ramscar, 2012)); fourth, the model
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scales up to large lexicons (Arnold et al., [2017)); fifth, software to implement
this model in R or Python is freely available (R: nd12; |[Shaoul et al.| 2014b),
python: available at |github.com/quantling/pyndl); sixth, and relevant for
this study, NDL allows for a straightforward implementation of multi-word
units.

For this study, we did not make use of other models of lexical access, as
there are no viable alternatives that allow us to understand lexical access to
multi-word units. TRACE (McClelland and Elman, [1986) does not scale up
to large lexicons, and it is not clear how to implement multi-word units in
the model. The same limitations apply to the Shortlist-B model (Norris and
McQueen, [2008)).

In what follows, we will discuss how NDL models function in general, and
how we have implemented multi-word units in an NDL model. We will then
present new experimental data on reading and producing common Dutch multi-
word units, and will test to what extent the NDL measures add anything over
and above the more traditional frequency measures in modeling this data. We
conclude with a discussion of what our findings tell us about how lexical access
to multi-word units proceeds.

4.2 NDL model

Learning is not just the result of keeping track of how often a certain cue
predicts an outcome. It is also dependent on how informative a cue is in light
of other cues that predict the same outcome, and in light of other outcomes
that are predicted by that cue. These aspects of learning can be captured by
the learning equations developed by |Rescorla et al.| (1972), which are closely
related to the learning rule of |Widrow and Hofl] (1960) and the perceptron
(Rosenblatt, [1958]). These equations do not only predict animal behavior, but
are also able to predict aspects of implicit learning (Ramscar et al.l 2010, 2013}
Ramscar and Yarlett, [2007).

Recently, [Baayen et al.| (2011) implemented the Rescorla-Wagner equations
in a computational model for language learning: naive discriminative learning
(NDL). NDL networks have been shown to predict a wide range of linguistic
phenomena such as lexical decision latencies, word frequency effects, phrasal
frequency effects, and ERP amplitudes. Its predictions are moreover consis-
tent with the performance of young infants in an auditory comprehension task
(Baayen et al.,[2011; Baayen and Ramscar, |2015|). For technical details we refer
the reader to Baayen et al|(2011).

4.2.1 How the model works

We will briefly describe how the NDL network works conceptually. An NDL
network consists of only two layers: a layer of input units (henceforth cues) and
a layer of output units (henceforth outcomes). By implementing this network
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we obtain a mathematical characterization of how well outcomes can be dis-
criminated given some set of input cues. Since the weights to outcome i are
estimated independently from the weights to outcome j, the model is “naive”
in the sense that it does not exploit information about how outcomes co-occur.

Cues can be formed by low-level features, often letter bigraphs or trigraphs,
or single words, like we did in this study. Outcomes are formed by pointers
to a location in a high-dimensional semantic vector space (see Landauer and
Dumais|, (1997 [Lund and Burgess, [1996; [Shaoul and Westbury|, 2010} [Mikolov
et al.l 2013] for detailed discussion of such models). This location can reflect
a single word, a grammatical feature, an idiom (Geeraert et al., [2017), or a
multi-word unit. To clarify that the outcomes in an NDL model are not units of
form, nor monadic “meanings”, but pointers to semantic vectors, these pointers
are called lexomes (Milin et al.l 2017; Baayen et al., [2017b). They are best
understood as stable mediators between variable linguistic forms - the cues -
and variable experiences of the world.

In an NDL model, every cue is connected to all outcomes and every outcome
is connected to all cues. The weights of these connections are estimated from
a corpus. As a first step, learning events have to be derived from the corpus.
A learning event is defined by a set of cues and one or more outcomes that
are jointly evaluated by the Rescorla-Wagner learning rule. Learning events
can comprise single words (see, e.g., [Arnold et al., |2017; [Linke et al. |2017)), or
multiple words (cf. Baayen et al., [2011} 2017b; Geeraert et al., 2017)).

The model learns by going over sentences of a corpus one by one, updat-
ing the weights from cues to outcomes, based on the information present in
that specific learning event. At each step, the predictions of the network given
the cues in the learning event are compared with the outcomes in the learning
event. When a cue and an outcome are both present, their association weight
is strengthened. Conversely, when a cue occurs without an outcome, their as-
sociation weight is weakened.

A cue is informative and thus discriminative if strong connection weights
lead to only a small number of outcomes. However, if a cue is more or less
evenly connected to a lot of different outcomes, then this specific cue cannot
be a strong predictor of any of the outcomes. Articles are bad predictors of
the identity of any multi-word unit, for example, whereas the word happily is
a strong discriminative cue for the outcome happily ever after.

For the modeling of lexical access to multi-word units, we specified learning
events and the cues and outcomes therein. As learning events, we used the
19,091,130 utterances in a Dutch subtitle corpus, which comprises 109,807,716
word tokens. Since our working hypothesis is that multi-word units are cognitive
units, the outcomes of the network will represent such units. We selected a set
of 296 trigrams - combinations of three words - that frequently occur in the
Dutch language and that have a transparent meaning. A transparent trigram
does not have a figurative or idiomatic meaning; the meaning of the whole
trigram can be deduced from the sum of the meaning of its parts. On the table
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is an example of such a transparent trigramﬂ

The question now arises what outcomes for multi-word units might repre-
sent. Given that in naive discriminative learning the outcomes represent point-
ers to semantic vectors, we propose to interpret the outcomes for multi-word
units in the same way. Interestingly, in semantic vector spaces, operations can
be defined such that the semantic vector for one word, e.g., sister, is a math-
ematical function of the semantic vectors of related words, e.g., female plus
sibling (see, e.g., Mitchell and Lapatal |2008; Mikolov et al., 2013} |Lazaridou
et all |2013)). Therefore, the lexome for a word trigram such as the president
of could likewise be a pointer to a location in the semantic space that is some
compositional function of its constituents. Unlike the case of female sibling,
where a separate word co-exists (sister), Dutch and English multi-word units
have no such single-word counterpart. However, note that there are language
where such meanings as the president of are encoded as a single word.

Furthermore, multi-word units could highlight different perspectives on or
affordances of objects or actions. For instance, the trigram the president of
may highlight that presidents are officers having responsibilities for and power
over countries or organizations, whereas president in an utterance such as Mr.
President functions as a title and formal mode of address.

As input units, we defined the cues as all the unique individual words in
the utterance. This model set-up stays close to approaches in which higher-level
units are predicted primarily from the units one level lower in a hierarchy of
units for ever smaller features.

So our NDL model used in this study takes single words as its input cues,
and multi-word unit lexomes as its outcomes. We made use of the nd12 package
for R (Shaoul et al., 2014b|), which runs on linux only. A platform-independent
implementation in python is available at |github.com/quantling/pyndl. The
learning rate (the product of the o and § parameters in the Rescora-Wagner
equations) was set at 0.001, and the \ parameter (representing the maximum
evidence) was set at 1.0. See Figure for a graphical representation.

4.2.2 NDL measures of lexical access

From the model we can calculate several different measures that reflect the
availability of trigrams, bottom-up activation of trigrams, and the uncertainty
about the identity of trigrams. These measures have been found to be strong
predictors of lexical processing.

The first measure is the L1-norm of an outcome, henceforth the outcome’s
prior. It is calculated by summing over all the absolute values of the afferent
weights that lead to a specific trigram.The L1l-norm is a distance measure. It
can be understood as the distance covered when a point can be reached only
by traveling along one of the axes at a time. Thus, in the two-dimensional

LStill, despite their transparent meaning, we do suspect that frequent multi-word units
do encode additional meanings in that they often function as time or discourse markers, and
affordance relations.
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Figure 4.1: Part of the Rescorla-Wagner network used in this study, where the
cues are formed by single words and the outcomes by the word trigrams used in
the two experimental studies. Each cue is connected to all outcomes, and vice
versa all outcomes are connected to each and every single cue. Red lines indicate
strong support for a certain multi-word unit, blue lines a weaker support and
the grey lines very weak support.The Dutch de dag dat, op de dag and de oorlog
in mean "the day that", "on the day" and "into the war", respectively.
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plane, the distance traveled to reach the point (3, -4) is 3 units along the
horizontal axis plus 4 units along the vertical axis, a total of 7 units. (The L2-
norm of a vector is the more familiar Euclidian distance, the distance covered
when traveling straight from the origin to the point (3, -4), thus, the Euclidian
distance is 5.) Assuming that the groups of neurons underlying cues have a
background firing rate - seen in several kinds of neurons - the prior reflects how
active an outcome is when there is no visual input. In other words, this L1-norm
provides a measure of network entrenchment that is independent from the input
and functions as a proxy for resting-state activity. For detailed discussion of this
measure, as well as empirical evidence for its predictivity for lexical processing,
see Milin et al.| (2017).

The prior is strongly correlated with frequency of occurrence in the corpus
on which the network is trained. Indeed, the correlation between NDL priors
and trigram frequencies for our data is as high as 0.96. We systematically
explored which of the two measures performed the best, and kept only the
predictor that explains most of the variance in the data. In some of our models,
the frequency predictors performed slightly better, in other models the NDL
priors. We expect that higher frequencies and priors will lead to shorter fixation
durations or a lower number of fixations in our eye-tracking data, and shorter
production durations in our production data.

The second measure taken from the NDL networks, the activation of an
outcome unit, is the sum of the weights on the connections from the cues that
are present in the input to that outcome. This measure gauges the bottom-up
support for an outcome. Activations are predictive of a wide range of linguistic
phenomena, such as lexical decision latencies, word frequency effects, phrasal
frequency effects, and ERP amplitudes (Baayen et al.,2011; Baayen and Ram-
scar, [2015; Hendrix et al., 2017; Baayen et al., 2016a). Higher activations indi-
cate easier processing. Therefore, we expect that in our data higher activations
will correlate with either shorter fixation durations or a lower number of fixa-
tions, and shorter production durations.

The third measure, the activation diversity, gives an indication of the un-
certainty regarding the identity of a trigram. It assesses the extent to which
activation is dispersed over many different outcomes with the L1-norm of the ef-
ferent weights of the cues in the input to all outcomes. The larger the activation
diversity is, the larger the number of other outcomes that are also supported by
the cues in the input. One can think of this measure as quantifying the extent
to which the cues perturb the distribution of the outcomes’ priors. In an ideal
situation, the cues in the input would support only the targeted outcome, leav-
ing all other outcomes completely unaffected. In such a case, the perturbation
of the priors of the outcomes would be minimal. However, in reality, learning
is seldom this crisp and clear-cut, and the states of outcomes other than the
targeted ones are almost always affected as well, sometimes substantially. The
more the distribution is perturbed, the greater the uncertainty about which
outcome is the targeted outcome. Conceptually, the activation diversity resem-
bles measures of neighborhood density.
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Slower latencies are expected when the diversity values are high, as higher
values indicate that many other irrelevant outcomes are also highly activated.
Indeed, [Milin et al.| (2017) found slower response latencies for increasing values
of activation diversity in lexical decision experiments. Likewise, |Arnold et al.
(2017) found that higher activation diversity values correlated with longer la-
tencies in auditory lexical decision. We expect that in our eye-tracking data,
high diversity values will correlate with longer fixation durations or more fixa-
tions, and in our production data, that high diversity values will correlate with
longer production durations.

One technical note is in order with respect to how we estimated activation
diversities. Because NDL implements naive discrimination learning, it is not
necessary (even if it were possible) to include huge numbers of word trigrams
in the simulation. Because the weights on the connections from the cues (25,163
letter triplets) to a given outcome are estimated independently for each out-
come, it suffices to include in the simulation only the 296 word trigrams used in
the experiments below. For each learning event in which none of the 296 word
trigrams were present, a dummy trigram was included as outcome. This en-
sures that weights on connections from cues to the target trigrams are properly
decreased across all learning events. Activation diversity for a given set of input
cues is calculated over the vector of activations over all trigrams, including the
dummy, that these cues give rise to.

4.3 Generalized additive mixed models

How exactly the three NDL measures work together to predict an experimental
response variable is not specified by NDL theory. In general, higher activations
and priors should reflect reduced processing costs, whereas a higher activation
diversity should predict increased processing costs. But whether they interact,
and if so, how, is not straightforwardly predictable. As a consequence, models
using discrimination measures are intrinsically exploratory in nature, and we
will depend on generalized additive mixed-effects modeling to screen the data
for possible nonlinear effects and interactions.

The generalized additive model (GAM) (Hastie and Tibshirani, (1990} [Lin
and Zhang; [1999; [Wood, 2006, 2011; [Wood et al., 2015) extends the linear
model with tools for modeling nonlinear functional relations between a response
variable and one or more predictors. GAMs are especially useful for data where
the precise nature of these functional relations is not known. GAMs provide
spline-based smoothing functions that take one or more predictors as input and
construct wiggly curves or wiggly (hyper)surfaces. Spline smooths are set up
such that a proper balance is found between staying faithful to the data and
model parsimony. This is accomplished by penalizing smooths for wiggliness.

The effective degrees of freedom (edf) of a smooth, which are used to evalu-
ate the significance of a smooth, reflect the degree of penalization. Penalization
may result in all wiggliness being removed from the smooth, resulting in a term
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with one effective degree of freedom, in which case the effect of the predictor is
linear. Thus, if a predictor has a linear effect, the smooth will simplify to a stan-
dard line with a slope parameter. Nonlinear terms in the model are interpreted
by plotting the partial effect of the smooth together with confidence intervals.
As it is impossible to interpret a non-linear effect from just the model summary,
it is essential to always consider the plots of the partial effects. Therefore, plots
are used to clarify the size, shape and direction of effects.

The generalized additive mixed model (GAMM) incorporates random-effect
factors. When using GAMMSs, the modeler has the possibility to replace the
combination of random slopes and random intercepts in the linear mixed model,
used to model by-participant (or by-item) random variation in regression lines,
by wiggly curves. The summary of a GAMM reports both the parametric part
of the model (intercept and the betas of the linear terms) and the smooths
(wiggly curves and wiggly (hyper)surfaces, as well as random effects). For a
brief introduction to GAMMSs, see (Baayen et all [2017a). GAMMs have been
used in previous (psycho)linguistic studies, and have been applied to, for exam-
ple, dialectological data (Wieling et al., 2014) and experimental data (Winter
and Wieling, [2016; Baayen et al. 2016b; |Van Rij et al., [2016). We used the
mgcv package (Wood, |2006)) for fitting GAMMSs to our experimental response
variables. For some of the models reported below, the residuals showed thick
tails. Here, we dropped the assumption that the errors are normally distributed
and instead modeled the scaled residuals as following a t-distribution.

In our analyses, we checked all numeric predictors for non-linearity. Pre-
dictors with strictly linear effects can be identified in the model summaries
as smooths with only 1 effective degree of freedom (edf). By-subject factor
smooths for trial (the rank of a trial in the experiment) were used to model the
ebb and flow of attention in the course of the experiment (see Baayen et al.|
2017a, for detailed discussion). Smoothing splines were also essential for clar-
ifying the nature of the effects of the NDL predictors. For wiggly curves, we
made use of thin plate regression splines, and for wiggly surfaces, we made use
of tensor product smooths.

The statistical models reported below are based on exploratory data anal-
ysis. From highly correlated predictors, only the one predictor that explained
most of the variance was included. Two-way interactions were explored system-
atically.

4.4 Eye-tracking experiment

Eye-tracking has thus far not been used to study lexical bundles — semanti-
cally transparent and compositional multi-word unitsE| Previous eye movement
research on multi-word expressions has focused on idioms (Siyanova-Chanturia
et al.l [2011a; Underwood et al.| [2004) and binominal expressions, such as bride

2With the exception of our study on differences in reading lexical bundles between younger
and older adults, see Chapter 2.
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and groom (Siyanova-Chanturia et al., 2011b). A processing advantage of id-
ioms over literal language was found in the number of fixations participants
made, where idioms were fixated on less, and in the total reading time, which
was shorter for idiomatic phrases than for matched novel phrases. [Siyanova-
Chanturia et al.| (2011b]) presented participants with binominal phrases in their
prototypical form, e.g. bride and groom, and in their reversed form, groom and
bride. All phrases were matched on single word frequency, and only differed in
phrasal frequency. They found that phrasal frequency significantly affected the
number of fixations made, the total reading time, and the first pass reading
time, a measure that sums all fixation durations before the first regression is
made.

For this study, we focus on the first fixation durations, which reflect the
first stage of reading, the first pass reading times, which reflect early processing
during reading, and the number of fixations, which reflect the overall difficulty
of processing during the whole reading process.

4.4.1 Materials

We randomly selected a set of three-hundred trigrams from the top one percent
most frequent trigrams in the Netherlands Dutch part of the OpenSoNaR cor-
pus of contemporary Dutch (Oostdijk et al.l |2013). We specifically selected a
subset from the most frequent combinations of three words so as to make sure
that the stimuli selected were very likely to be stored under any usage-based
account (Goldberg, [2003; [Bybee, [2010).

The trigrams selected were all semantically transparent combinations of
words, so that the meaning of the whole is not idiomatic or opaque, but com-
posed of the meanings of the separate words. These types of multi-word units
are often referred to as lexical bundles in the literature (Wray, 2012} Tremblay
et al.,2011). Moreover, we did not limit the set of stimuli by choosing only con-
stituents, or combinations of words that can stand alone as utterances. |[Arnon
and Cohen Prival (2013)); Tremblay and Baayen| (2010)); Tremblay et al.| (2011)
have all shown that phrasal frequency effects appear regardless of whether or
not a multi-word unit is a constituent. Nevertheless, we included a predictor
in our models specifying if a multi-word unit is a constituent or not, to further
test if constituency plays a role in multi-word unit processing.

4.4.2 Design

The experiment started with a practice block of five trials, where each trial was
followed by a comprehension question. The rest of the experiment consisted of
three blocks, containing 100 trials each. These blocks were separated by short
breaks. At random intervals, experimental items were followed by a string of
words that was either a grammatical continuation or an incorrect continuation
of the trigrams. Participants had to click with a mouse on a ’correct’ or 'incor-
rect’ label on the screen and received direct feedback on their choice. One third
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of the experimental items was followed by these comprehension questions.

4.4.3 Participants

We recruited thirty-two students from Leiden University (20 female, average
age 21.8 years). All participants were native speakers of Dutch and had normal
or corrected-to-normal vision. Due to technical issues data from two partici-
pants had to be discarded. Participants gave informed written consent prior to
participating and they received a monetary reward for their participation.

4.4.4 Procedure

Participants were seated in a sound-proof room. They received verbal instruc-
tions about the task, which was reading the trigrams presented on the screen
silently, and to answer a set of comprehension questions that were presented
at random intervals. The eye movements of their dominant eye were recorded
with an Eyelink 1000 eye-tracker (SR Research Ltd). We used a 500 Hz sam-
pling rate and performed eye calibration at the beginning of the experiment,
using a 9-point calibration procedure. To minimize head movements, we asked
participants to put their head on a head rest. After calibration was achieved,
participants received final written instructions on the screen before the exper-
iment started.

At the start of each trial, a fixation point was presented for 500 ms at the
left-hand side of the screen, to ensure that they would read from left to right.
Trigrams were presented in a black, monospaced font (Consolas, size 22) against
a white background for 1,200 ms. One third of the trigrams was followed by a
comprehension question, that stayed on the screen until the participant clicked
on a box with ’correct’ or ’'incorrect’ with a mouse. Trials were separated by
an inter-stimulus interval of 1,000 ms.

4.4.5 Analyses

In order to understand how readers process trigrams, we looked at several eye-
tracking measures that reflect different processes over time. To gauge what
is happening at the very first moment readers encounter a trigram, we mod-
eled the first fixation durations. Previous research has shown that whole-form
frequencies of complex compounds can already influence this early measure
(Kuperman et al. 2009; [Miwa et al., [2017; [Pollatsek et al., |2000). In order to
approach normality, we raised the first fixations duration to the power 0.2. The
results of the modeling are discussed in Section [£.4.6]

The first fixations durations are not fully representative for early processes
in reading of units that consist of several words (Carrol and Conklin) 2015).
Therefore, to get a more complete picture of early processing of written tri-
grams, we also considered the first pass reading times (see Section . First
pass reading times represent the duration from the start of the first fixation
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until the first regression is made. This measure gives an indication of the pro-
cesses employed during the initial reading of the trigrams. In order to approach
normality, we took the square root values of the first pass reading times.

We also looked at the number of fixations participants made. This measure
is thought to reflect processing difficulty. The harder a text is, the more fixations
a reader makes (Rayner, 1998). Additionally, it is a measure that provides a
summary of the full reading process, giving an indication of what happened
during the whole course of reading. To model the fixation counts, we used a
generalized linear model with a Poisson link.

4.4.6 First Fixation Durations

The model of the first fixation durations contains significant main effects for the
length of the trigram, interactions of the horizontal position of the first fixation
(firstFixX) with the age of the participant and the NDL prior (logPrior), and
the log frequencies of the third word of the trigrams. There are furthermore
random intercepts for items (trigrams), factor smooths of trial number per
participant, and by-participant random slopes of the trigram length, fixation
position, the frequencies of the single words, and the NDL prior. Only the
latter did not reach significance, but was kept in the model as the NDL prior
is included in an interaction term. Table [£.I] reports the results.

A. parametric coefficients Estimate Std. Error  t-value p-value
(Intercept) 3.0788 0.0596 51.6781 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(length) 1.0001 1.0002 79.0230 < 0.0001
te(firstFixX,age) 14.0521 16.0490  6.2623 < 0.0001
te(firstFixX,LogPrior) 3.9835 4.6942  5.6477 0.0009
s(logFreqC) 3.8941 4.5074  4.9069 0.0003
s(trigram) 94.4559 289.0000  0.4866 < 0.0001
s(trial,ptc) 72.3468 268.0000 15.5696 < 0.0001
s(length,ptc) 21.0110 29.0000  6.9429 < 0.0001
s(firstFixX,ptc) 24.5172 28.0000 20.7602 < 0.0001
s(logFreqA,ptc) 2.8022 30.0000  0.1047 < 0.0001
s(logFreqB,ptc) 12.7689 30.0000  1.5642 0.0035
s(logFreqC,ptc) 13.8035 29.0000  1.4906 0.0027
s(LogPriorptc) 0.0004 29.0000  0.0000 0.8092

Table 4.1: Table of the results of the model of first fixation durations.

Figure displays the fixed effects of the model. The upper left panel
shows how longer trigrams elicit shorter first fixation durations. When a reader
encounters a long trigram, it is unlikely that she will be able to process the
whole trigram already at the first fixation, and so she will re-fixate as quickly
as possible. If the trigram is short, however, then the reader will be able to
see most if not all of the trigram from her foveal and parafoveal view (Rayner),
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1998), and as a consequence, will not re-fixate quickly.

The top right panel displays the interaction of the first fixation location and
the age of the participant. When the first fixation lands near the beginning
of the trigram, this fixation tends to be very short, especially so for older
participants. However, a similar eye-tracking study with a younger group of
participants in their twenties and an older group of participants in their sixties,
did not find any age-related effects, despite the much larger differences in age
(Lensink et al., [submitted). It is not clear if the absence or presence of an age
effect is due to false negatives or false positives. It could be the case that due
to a larger experience with reading, the older participants in this study were
quicker to realize that they need to re-fixate when their first fixation lands near
the beginning of the trigram.

If the first fixation landed further into the trigram, however, then the first
fixation lasted longer, as there is more information that can be extracted from
the signal from that position. For older participants, this effect was even larger.
Again, it might be the case that the larger reading experience of older readers
makes them better at estimating what the optimal fixation duration is at a
certain location, so as to extract as much information as possible.

The bottom left panel shows the interaction of the fixation location with
the NDL prior. In this interaction, the further the first fixation landed into the
trigram, the shorter this fixation will last. For fixations near the beginning of
the trigram, a higher NDL prior will speed up processing, leading to shorter
fixations. If the fixations landed near the end of the trigram, the effect flips,
and larger NDL prior values correspond to longer fixation durations.

Lastly, the panel on the bottom right shows how the effect of the frequency
of the third word has a quadratic shape: First fixation durations tend to get
longer only for trigrams where the third word has a log frequency near zero.

It is interesting to see that already at the very first fixation, participants
employ top-down information of the full trigram (the NDL prior) and the fre-
quency of the third word. We expected the NDL prior to have a facilitative
effect on reading measures, such that higher prior values would correspond to
shorter fixation durations. However, when the first fixation lands far enough
into the trigram, we see that higher priors correspond to longer fixations. In
Section [1:4.9) we will get back to this unexpected finding.

4.4.7 First Pass Reading Times

First pass reading times are the total durations of all reading that happens be-
fore readers make a regression. They reflect early processing and are especially
useful when considering multiple words at once (Carrol and Conklin, [2015).
The model for the first pass reading times (Table contains a significant
effect of age, where older readers spend more time on their first passes. The
position of the first fixation (firstFixX), trial number, the frequency of the
second word, and the NDL trigram activation (LogActTrig) form the significant
main effects of the model. Strikingly, the length of the trigram did not reach
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Figure 4.2: Partial effects of the model of the First Fixation Durations. The
panel on the top left shows the effect of the lenght of the trigram, the panel
on the top right shows the interaction of participant age and the horizontal
location of the first fixation. The bottom left panel shows the interaction of the
first fixation location and the NDL prior. The panel on the bottom right shows
the effect of the third word frequency.
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significance and model comparisons showed that it did not have to be included
as a main effect in the model. However, there is a significant random slope of
length per participant, showing that participants did differ among themselves in
how their first pass reading times were influenced by the length of the trigram.

The random effects part of the model contains random intercepts for sub-
jects (ptc) and items (trigram), factor smooths of trial number per participants,
and random slopes for the fixation location, the length of the trigrams in char-
acters, the frequencies of the single words, and the NDL trigram activations.
Only the latter did not reach significance, showing that there are no significant
individual differences between participants in how their first pass reading times
are affected by the trigram activations.

A. parametric coefficients Estimate Std. Error  t-value p-value
(Intercept) 8.5570 4.5979  1.8611 0.0628
age 0.5861 0.2106  2.7838 0.0054
B. smooth terms edf Ref.df F-value p-value
s(firstFixX) 5.3022 6.4162 64.8170 < 0.0001
s(trial) 1.0003 1.0005  9.7653 0.0018
s(logFreqB) 1.0001 1.0001 10.7538 0.0010
s(LogActTrig) 3.8976 4.4551  2.7768 0.0142
s(ptc) 9.1028 28.0000  0.6302 < 0.0001
s(trigram) 112.1411 279.0000 0.6793 < 0.0001
s(length,ptc) 13.9800 30.0000  1.4194 0.0043
s(firstFixX,ptc) 19.8131 29.0000  3.3395 < 0.0001
s(trial,ptc) 75.6200 268.0000 66.1222 0.0279
s(logFreqA,ptc) 13.0652 30.0000  1.0319 < 0.0001
s(logFreqB,ptc) 13.1648 29.0000  1.1846 0.0045
s(logFreqC,ptc) 8.7518 30.0000  0.5420 0.0600
s(LogActTrig,ptc) 3.2482 29.0000  0.1287 0.2382

Table 4.2: Table of results of the model of first pass reading times.

The partial effects are plotted in Figure The first pass reading times
tend to get longer over the course of the experiment, which could indicate
fatigue (Baayen et al.| [2017a)). There is a negative direction to the effect of
the location of the first fixation on the first pass reading times: When the
first fixation landed near the beginning of the trigram, readers spent more
time at their first pass than when the first fixation landed near the end of the
trigram. This makes sense, as the first pass includes all fixations before the first
regression is made — if the first fixation landed near the end of the trigram,
then a reader cannot make many forward fixations, so a regression is likely to
take place already at the second or third fixation, reducing the time of the first
pass.

Higher frequencies of the second word of the trigram correspond to shorter
first pass reading times, showing the expected facilitation and shorter reading
times for high frequency items (Raynerl [1998)). Higher bottom-up activations,
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however, correspond to longer first pass reading times. Note that it is mostly
the lower values of the NDL activations that have a clear effect on the reading
times. As we expected to see facilitative effects of the NDL activations, this is
unexpected, and we will further discuss this in Section
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Figure 4.3: Partial effects of the model of the First Pass Reading Times. The
top two panels show the effects of the trial number — reflecting the temporal
position in the experiment — and the position of the first fixation. The bottom
two panels show the effects of the second word frequencies and the trigram
activations.

4.4.8 Number of fixations

The number of fixations that participants made on each trigram can tell us
something about the overall course of processing. Ease of processing is reflected
in a lower number of fixations made (Rayner, |1998).

Table [1.3] shows the results of the model. There are significant main effects
for the locations of the first and second fixations, the durations of the first
stage of processing — the first pass reading times —, and the frequency of
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the first word of the trigram. The effect of the length of the trigram is near
significant. There are furthermore significant random intercepts for subjects
(pte) and items (trigram), and non-significant random slopes per participant of
the length of the trigram, the locations of the first and second fixation, the first
pass reading times, and the frequencies of the first words of the trigrams. Note
that none of the NDL measures reached significance, and only the frequency of
the first word of the trigram influences the number of fixations made.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 1.3214 0.0311 42.5068 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(length) 1.0001 1.0001 3.7318 0.0534
s(firstFixX) 1.1504 1.2823 72.0942 < 0.0001
s(secondFixX) 2.0572 2.6427 53.8001 < 0.0001
s(firstPassRT) 4.5627 5.6345  362.4722 < 0.0001
s(logFreqA) 1.0000 1.0000 6.3252 0.0119
s(pte) 23.4770 29.0000  127.8936 < 0.0001
s(trigram) 214.2674 264.0000 1217.8949 < 0.0001
s(length,ptc) 0.0000 29.0000 0.0000 0.9997
s(firstFixX,ptc) 0.0001 29.0000 0.0001 0.6687
s(secondFixX,ptc) 1.2191 29.0000 1.3156 0.4117
s(firstPassRT,ptc) 0.0000 29.0000 0.0000 0.8698
s(logFreqA ,ptc) 0.0010 29.0000 0.0009 0.4946

Table 4.3: Table of the results of the model of the number of fixations.

In Figure [£4] the main effects are plotted. The near significant effect of
the length of the trigram shows an upward trend, where longer trigrams elicit
more fixations. The effects of the horizontal locations of the first and second
fixations are each other’s opposite: The further the first fixation landed into
the trigram, the less fixations overall participants made; the further the second
fixation landed into the trigram, the more fixations participants made. This
seems to suggest that reading a trigram is optimal when the first fixation lands
relatively far into the trigram, and when the second fixation lands relatively
near the beginning of the trigram — in other words, when readers make a
regression.

How the first stage of processing proceeds, has a large influence on the
overall reading process, as shown by the large effect that the duration of the
first pass reading time has on the number of fixations made. The longer the
first pass lasted, the less fixations readers will need overall. The more time a
reader spends at the first stages of processing, the less fixations in total she
will need, which is an indication of ease of processing. In other words, it pays
off to take more time at the initial stages of processing a written trigram.

The frequency of the first word of the trigram, lastly, has a facilitative
effect, such that more frequent first words correlate to less fixations overall.
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It is striking that only the first word frequency plays a role in how many
fixations readers make, especially since the large majority of the first words of
our stimuli are function words. We will come back to this at our discussion of
the eye-tracking data in the next section.
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Figure 4.4: Partial effects of the model of the number of fixations. The top
panels show the effects of the length of the trigram, and the horizontal locations
of the first and second fixation. The bottom panels show the effects of the
duration of the first pass reading times, and the frequency of the first word of
the trigram.

4.4.9 Discussion eye-tracking data

The eye-tracking data show that the NDL measures provide additional insights
over and above more traditional measures of lexical processing, especially for
the early stages of reading. The NDL priors and NDL activations explain more
of the variance in the data than trigram frequencies, and provide moreover a
more nuanced picture of how reading trigrams proceeds. The reader starts with
top-down information and continues to process the text using more bottom-up
information, where the time spent at the initial stages of reading are predictive
of how easy the overall reading process will be.

Already at the durations of the very first fixation, the NDL priors play a
role in processing. Recall from Section [.2] that the priors reflect how active
a trigram is when there is no visual input. This could be conceptualized as a
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type of resting-state activation (Milin et all [2017). We expected to see that
higher prior values would lead to easier processing and thus to shorter fixation
durations. The priors are employed as soon as the first piece of information is
perceived by the reader. They have a facilitative effect, i.e. higher priors lead
to shorter fixation durations, when the first fixation lands near the beginning
of the trigram. However, when the first fixation lands more towards the end of
the trigram, then higher priors lead to longer first fixation durations.

This unexpected effect shows that high prior values do no necessarily lead
to shorter first fixation durations. This shortening only happens when this first
fixation lands near the beginning of the trigram. From this location, the reader
is likely to be able to see the full trigram from his foveal and parafoveal view,
especially since the parafoveal view of readers of languages that are written from
left-to-right is asymmetrical and larger on the right-hand side (Rayner} [1998).
This provides the reader with enough visual information to gain facilitative
effects from higher prior values. However, when the first fixation lands more
toward the end of the trigram, then the reader is not likely to see the full
trigram at once, missing useful visual input especially from the beginning of the
trigram. From this suboptimal viewing position, perceiving parts of trigrams
that moreover have low prior values, will prompt the reader to re-fixate as
quickly as possible, as he will not be able to gain much information during that
fixation. However, if the prior values are high, then the reader will attempt to
process the visual information, and spend a bit more time at the first fixation.

The first pass reading times reflect a further stage in processing, that sums
up what happens at the initial stages of processing, before readers make a
regression to reread, re-evaluate, or reconsider text that they have read before.
Instead of measures reflecting resting-state activations, which could be seen as
top-down influences, now the NDL activations start to play a role. These NDL
activations reflect bottom-up processes, in this case the bottom-up support
from the visual signal to the trigram outcomes. So at the first fixation, readers
begin using top-down expectations, and along the way start to use bottom-up
input.

We predicted that the NDL activations have a facilitative effect on process-
ing. For the first pass reading times, however, we see that higher activations
correspond to longer first pass durations. It seems to be the case that readers
prefer to spend more time at the early stages of processing when the visual
input provides them with stronger support for a know trigram, in order to try
to perceive and process as much information as possible, as early as possible.
This explanation fits with the large influence that the durations of the first
pass reading time have on the total number of fixations made, which reflects
the overall reading process — longer first pass reading times lead to less fixa-
tions overall. Previous research has moreover found similar reading strategies
for lexical bundles (Lensink et al., jsubmitted)). To conclude, there is a clear
trade-off of the amount of time spent at the first stages of reading, and the
total cost of reading and processing the whole trigram, where a longer first
stage corresponds to easier processing overall.



88 4.5. Production experiment

A final remark is in place about the role that the frequencies of the single
words play. Even though it is clear that readers use the full trigram from the
first fixation onwards, they also make use of the single word frequencies. At
the first fixation, there is an effect of the frequency of the third word, at the
first pass reading times, there is an effect of the frequency of the second word,
and at the total number of fixations, there is an effect of the frequency of the
first words. It could be that at the first fixation, participants focus more on
the end of the trigram as a way to check if their top-down expectations match
reality, and that over the course of processing, they focus more on the middle
and beginning of the trigram.

4.5 Production experiment

Moving further into the processes that underlie reading out loud, we now con-
sider the processes giving rise to differences in naming latencies of trigrams and
their production durations. Phrasal frequency effects have been well-established
for production data (Arnon and Cohen Prival [2013; |Arnon and Prival, 2014;
Tremblay and Tucker], [2011]). Previous work has largely only looked at English.
We extend previous research by replicating these types of experiments with
another language, Dutch. We use a word-reading paradigm, where participants
are instructed to read Dutch multi-word units out loud from a computer screen.
Our prediction is that phrasal frequency will also have a significant effect on
production durations of Dutch multi-word units. We moreover explore if, over
and above the frequencies, the NDL priors, activations and activation diversi-
ties play a role.

4.5.1 Materials

We used the same set of stimuli as used in the eye-tracking experiment (see
Section. We created two new experimental lists, taking care again to ensure
that items with phonological or semantic overlap did not precede or follow each
other in two consecutive trials.

4.5.2 Design

Two different experimental lists were created, consisting of three blocks of one
hundred items, where no trigrams following each other within two trials had
any phonological or semantic overlap. The two lists were assigned randomly to
the participants. See the online appendix for a full list of the stimuli and the
two experimental lists. The three experimental blocks, each consisting of 100
trials, were preceded by a practice block of five trials. All blocks were separated
by a short break.
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4.5.3 Participants

Thirty students from Leiden University were recruited to participate in the
study (21 female, average age 22.0 years). All were native speakers of Dutch.
Participants gave their written consent before the start of the experiment and
received a monetary reward for their participation.

4.5.4 Procedure

Before the start of the experiment, participants were given written information
about the experiment and they gave their written consent. Participants were
asked to read out loud the words on the screen as fast and as accurately as
possible. First a fixation cross was presented in the middle of the screen (font:
Arial, size: 18) for 500 ms, followed by a 100 ms blank screen. Then a trigram
was presented (font: Arial, size: 18) for 1,200 ms. All letters were printed in
black against a white screen. Each trial was separated by an inter-stimulus
interval of 1,000 ms. A microphone recorded the speech of each participant.

4.5.5 Analyses

In order to gain more insight in the processes active during the production of
trigrams, we considered the onset latencies that mark the beginning of the ut-
terances, and the total durations of those utterances. Both dependent measures
were log-transformed to approach normality.

4.5.6 Production onset latencies

When reading a trigram out loud, it makes a difference if this trigram is a
constituent or not, as shown by the significant effect that constituency has on
the onset latencies (see Table . A participant that has to read out loud
a trigram that is a constituent is a bit slower in starting to speak than a
participant that has to read out loud a trigram that is not a constituent.

Next to an effect of constituency, the model contains a near significant effect
of trial number and a near-significant interaction of the NDL activations and
the NDL activation diversities. There are moreover significant main effects of
the length of the trigram and the single word frequencies. The model includes
random intercepts for items (trigrams), factor smooths of trial per participant,
and random slopes for the NDL activations, the NDL activation diversities,
and the single word frequencies, which all reached significance.

Figure [£.5] shows how speakers got a bit faster over the course of the exper-
iment, how longer trigrams take longer to read out loud, what the interaction
between the NDL activations and the NDL activation diversities looks like, and
how higher frequencies of the single words speed up the onset latencies.

The plot in the upper right corner, displaying the interaction of the two NDL
measures, shows that larger NDL activations tend to speed up naming. The
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A. parametric coefficients  Estimate Std. Error t-value p-value
(Intercept) -1.9596 0.0584  -33.5792 < 0.0001
constituentY -0.0631 0.0195 -3.2410 0.0012
B. smooth terms edf Ref.df F-value p-value
s(length) 3.1420 3.2463 9.3388 < 0.0001
s(trial) 2.7254 2.9455 2.3240 0.0621
te(LogActTrig,logActDiv) 5.6942 5.8812 2.0514 0.0681
s(logFreqA) 2.1530 2.2256 16.2560 < 0.0001
s(logFreqB) 1.0002 1.0002 7.6802 0.0056
s(logFreqC) 3.4033 3.5162 5.8700 0.0004
s(trigram) 212.9775 258.0000 5.6714 < 0.0001
s(length,Ptc) 15.1292 29.0000 1.3553 0.0001
s(trial,Ptc) 177.0317 269.0000 4426.6984 < 0.0001
s(LogActTrig,ptc) 9.0629 29.0000 0.4712 0.0497
s(logActDiv,ptc) 6.0253 29.0000 0.2730 < 0.0001
s(logFreqA ,ptc) 14.6149 29.0000 1.2567 0.0013
s(logFreqB,ptc) 20.4309 29.0000 4.0641 < 0.0001
s(logFreqC,ptc) 13.9648 29.0000 1.5245 0.0003

Table 4.4: Table of results of the model of the production onset latencies.

better the bottom-up support is, the better participants can prepare themselves
for articulation, and the faster they will start speaking. This facilitative effect
of NDL activations is strongest for trigrams with high activation diversities.

The NDL activation diversity is a measure that conceptually resembles mea-
sures of neighborhood density. The larger the diversity, the larger the number
of other outcomes that are also supported by the cues in the input. This leads
to more difficulty in processing, which in turn could lead to delayed onsets and
larger durations. However, this inhibitive effect of activation diversities is only
seen for trigrams with very low activation values. For trigrams with moderate
or higher activation values, higher diversity values lead to faster naming. So
when the visual input supports a lot of different possible trigrams, and when
this is accompanied by an moderate to large bottom-up support for the in-
tended trigram too, then the participant will start speaking faster. We will get
back to this result in Section [£.5.8

4.5.7 Production durations

Whether or not a trigram is a constituent has no influence on the production
durations of a trigram. There are significant main effects of the length of the
trigram, trial number, the frequencies of the first and second word, and the
trigram frequencies in our model. NDL measures did not reach significance
as main effects in the model, but do play a role in the random effects struc-
ture. This means that individual participants differ significantly in how their
production durations are influenced by NDL activations and NDL activation
diversities, but that there was no overall effect of these measures. See Table [L.5]
for an overview.
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Figure 4.5: Partial effects of the model of the Onset Latencies of the production
data. The first two top panels show the effects of trial number and length of
the trigram. The panel at the top right shows the interaction of the NDL
trigram activation (logActTrig) and the NDL trigram diversity (logActDiv).
The bottom three panels show the effects of the single word frequencies.
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The model furthermore includes random intercepts for items (trigrams),
factor smooths of trial number per participant, and random slopes per partic-
ipant of the length of the trigram, the NDL activations, the NDL activation
diversities, the single word frequencies, and the frequencies of the full trigram.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 6.7543 0.0256 264.2721 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(length) 1.0003 1.0003 518.5208 < 0.0001
s(trial) 1.0000 1.0000 4.2511 0.0393
s(logFreqA) 2.6453 2.6638 2.9704 0.0318
s(logFregB) 1.0001 1.0001 5.6982 0.0170
s(logFreqABC) 1.0001 1.0001 12.9681 0.0003
s(trigram) 251.7944 262.0000 32.5657 < 0.0001
s(length,ptc) 23.6631 29.0000 7.6113 < 0.0001
s(trial,ptc) 186.9775 269.0000 20506.0712 < 0.0001
s(LogActTrig,ptc) 11.1132 30.0000 0.7370 0.0190
s(logActDiv,ptc) 5.7714 30.0000 0.2491 < 0.0001
s(logFreqA ptc) 11.3527 29.0000 0.9122 0.0141
s(logFreqB,ptc) 22.4854 29.0000 9.9231 < 0.0001
s(logFreqC,ptc) 19.7342 30.0000 5.7716 < 0.0001
s(logFreqABC,ptc) 8.5092 29.0000 0.8089 0.0681

Table 4.5: Table of results of the model of the production durations.

Figure [£.6] shows that production durations get slightly shorter over the
course of the experiment, that longer trigrams take longer to pronounce, and
the effects of the frequencies of the first two words and the trigram itself. The
frequency of the first word has a quadratic shape, with high frequency first
words slowing down production durations, which is unexpected. However, the
effect is quite small, and might not be robust. The effect of the frequency of
the second word goes in the expected direction, with higher frequency second
words leading to shorter overall production durations. Lastly, the frequency of
the trigram also has a facilitative effect on production durations: The higher
the frequency of the trigram, the less time participants need to produce the
whole trigram.

4.5.8 Discussion production data

This section seeks to study the processes involved in lexical access of trigrams
when people are speaking, and to see to what extent NDL measures could add
any new insights over and above traditional measures of lexical processing such
as the frequency of an item or its length in characters. The NDL measures play
a role in how fast people start to speak, but we did not find any main effects
of NDL measures in the production durations.
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Figure 4.6: Partial effects of the model of the production durations. The top
two panels show the effects of trial number and the length of the trigram. The
bottom panels show the effects of the first word frequencies, the second word
frequencies, and the trigram frequencies.
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Arnon and Cohen Prival (2013)) found robust trigram frequency effects in
their study, irregardless of the constituency of those trigrams. To see if the
same applies to Dutch trigrams, we also considered the constituency of the
trigram. We found that onset latencies are delayed for constituents, but did
not find any effect of constituency on the production durations. Participants
are quicker in starting to speak when reading out loud non-constituents. It could
be the case that constituents evoke more semantic and pragmatic associations,
slowing down the speaker. It could also be the case that constituents prompt
the speaker more to use a certain intonation contour, whereas non-constituents
can be pronounced with a more monotone intonation. The latter might require
less planning and speakers will therefore be quicker to start speaking.

When considering the model of the onset latencies, it appears that all sin-
gle word frequencies influence how fast people start to speak. This suggest that
before speaking, all single words have been recognized and are employed in
preparing the utterance. There are however no effects of the full trigram fre-
quencies or the NDL prior on onset latencies, which is unexpected given that
we found trigram effects already at the first fixation, and previous work has
shown early influences of whole-form compound frequencies (Kuperman et al.,
2009; Miwa et al.l |2017; |Pollatsek et al.l |2000]).

However, there are trigram effects at play, but these effects are different
from traditional frequency measures. There is a small interaction of the NDL
activations and the NDL activation diversities, which index the total bottom-
up support for the target trigram, and the number of other outcomes that are
also supported by the visual input, respectively. The interaction between the
NDL activations and NDL activation diversities shows an inhibitive effect of
activation diversities for trigrams with very low activation values. So when the
visual input only weakly supports the target trigram, and when there is a large
uncertainty about the identity of the trigram, participants are slowed down.
However, when the visual input provides moderate to strong support for the
target trigram, then larger activation diversities lead to faster onset latencies.
This could indicate that a larger activation of similar candidates aids in pro-
cessing, by means of spreading activation from the non-target trigrams to the
target trigram, promoting the articulatory processes needed for its production.

Tremblay and Tucker| (2011) conducted a production study where partic-
ipants had to produce frequent four-word sequences. The authors found that
the onset latencies in their data were mostly influenced by log probability of
occurrence, which they interpreted as indicating a competition of the target
multi-word unit with its family members. As the NDL activation diversities are
conceptually similar to measures of neighborhood densities, this fits well with
our finding that the NDL activation diversities influence the onset latencies in
our data. However, [Tremblay and Tucker| (2011) found that trigrams were the
most important predictor for the onset latencies, whereas single words formed
the most important predictors for the production durations. We did find tri-
gram frequency effects in the production durations, and only a small interaction
effect of trigram activation and diversities measures. That said, [Tremblay and
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Tucker]| (2011) also took into account the effects of bigram (AB and BC) and
skipgram (AC) frequencies, which we did not. This could explain the difference
between the results. For future studies, it will be interesting to also look at the
effects of bigrams and skipgrams using a discriminative approach.

4.6 General discussion

We started off by proposing that multi-word units are a feasible theoretical
construct. If we however do assume that multi-word units are units of process-
ing, we can ask the questions why these units exist, what they are, and how
these units can be discriminated from each other in lexical access.

As to the usefulness of multi-word units as a theoretical construct for gaug-
ing lexical processing, we pointed out that lexical storage is extremely rich.
Moreover, most multi-word units used in experiments are actually semantic
units of their own that encode more than just the sum of their parts. They en-
code time markers such ’on the day’, discourse markers such as T think that’,
and affordance relations such as ’on the table’. As for the question pertaining
to the lexical access of multi-word units, we took a discriminative learning per-
spective to explore to what extent these multi-word units can be discriminated
from orthographic input. The computational implementation of this learning
perspective, NDL, incorporated multi-word unit lexomes as outcomes. Allow-
ing for multi-word unit lexomes assumes that there is no principled difference
between these units and single words, which were posited as outcome units in
previous NDL models (Baayen et all [2011). We predicted that if multi-word
units are indeed units, then measures predicting a phrasal frequency effect
should also arise in a discrimination model for lexical access to these units. In-
deed, we found that the priors taken from the network are very similar and show
a high correlation (r = 0.96) to trigram frequency values taken from a corpus.
Furthermore, the NDL network offers us measures that quantify the amount of
activation a trigram receives from the orthographic input (activations) and the
uncertainty about the identity of a trigram (activation diversities). We have
shown that in silent reading and reading out loud of multi-word units, these
measures add additional insights over and above frequency values. These results
testify to the plausibility and usefulness of a discriminative approach.

Moreover, by including NDL and frequency measures pertaining both to
single words and trigrams, and the location of the fixations as predictors in
our model, we also tackled the methodological issue of how to use eye-tracking
to study units that are simultaneously compositional strings and whole units,
each of which has their own set of factors influencing reading behavior (Carrol
and Conklin, 2015)).

The question remains why we only found clear effects of the NDL measures
in the eye-tracking data, a small interaction effect in the onset latencies of
the production data, and no main effects of NDL measures in the production
durations. Recall that we aimed to study how lexical access of multi-word units
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proceeds. NDL networks provide us with new measures of lexical access, i.e.
priors, activations, and activation diversities. Lexical access occurs during the
first stage of reading, but will become less active and important over time —
explaining why NDL measures of lexical access do not play a role in the model
of the total number of fixations made. The same applies to the production data,
where at the time of the onset of articulation, speakers are still influenced by
measures of lexical access, whereas further down the production process, lexical
access has already taken place and its measures do not play any significant roles
anymore for most speakers in the total production durations.

4.6.1 Lexical access of multi-word units

Our data show that lexical access to multi-word units proceeds from top-down
processes as indexed by the NDL priors, to bottom-up processes where the
support for a certain multi-word unit from the visual input goes hand in hand
with processes of lexical neighborhoods as indexed by the activation diversities.
When reading a trigram, readers are at first influenced by the top-down NDL
priors, and then by the NDL activations. It pays off to spend more time at the
first pass, by taking the time to let bottom-up visual input inform processing
— as indexed by the positive slope of the effect of the NDL activations on the
first pass reading times.

When wanting to read out loud a written trigram, speakers will go through
at least the first stages of reading before starting to speak. When they are
ready to start articulating, it is the frequencies of the single words that speed
them up, and trigram measures in the form of bottom-up support and the
activation measures. Enhanced bottom-up support speeds up processing, and
granted that this bottom-up support is high enough, the co-activation of similar
items also aids in processing. The fact that higher trigram frequencies lead to
overall shorter production durations, shows that more frequent forms tend to
get reduced more in production (Bybeel [2010).

One thing to note is that frequency values outperformed the NDL priors
in our production data, whereas these measures produced very similar models
and are highly correlated (r = 0.96). The reason for this better performance of
the frequency values is that NDL priors only capture the form-driven discrim-
ination, whereas frequencies capture more than that. The frequency measures
capture two aspects of lexical processing, one relating to the "prior availabil-
ity" — which is also captured by the NDL priors — and the other relating to
higher-order lexical knowledge such as how often things happen in the world,
and how these things cluster in the world. This additional layer seems to be
more important during production than during reading, where the NDL priors
outperformed the phrasal frequency predictors.

For future studies, it will also be worthwhile to see the extent to which
trigrams with no clear functional pattern — in contrast to the time markers,
discourse markers, and affordance relations mentioned above — can also be
implemented as multi-unit words, or single lexomes, in an NDL network. In
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this study, we used constituency as a proxy for semantic unity and found that
constituency only affected the onset latencies of the production data. Previ-
ous research has moreover also indicated that phrasal frequency effects arise
irregardless of the constituency of a multi-word unit (Arnon and Cohen Priva),
2013)). For future studies, it will be insightful to clearly define what would con-
stitute a ’semantic unit’ and contrast semantic with non-semantic units. If the
function of the trigrams drives their coherent, single form, then it is expected
that trigrams that lack such a coherent function are not processed as chunks. It
is also worthwhile to use more sophisticated features than single words as cues,
such as the frequency band summary features used by |Arnold et al.| (2017).
In modeling reading, we could implement cues that consist of sub-graphemic
orthographic features, which are known to play a role in reading (Dehaene)
2009; Linke et al.l [2017]).

Overall, this study has shown that incorporating multi-word units as
single-unit outcomes in an NDL model works well in predicting empirical
data. Moreover, it leads to more insights into the nature and processing of
multi-word units. Both single words and the full trigram, their frequencies,
priors, bottom-up activations and the activation diversities play a role in
lexical access of trigrams. The fact that the NDL approach is successful,
hints at the possibility that single words, idioms, and multi-word units are
essentially the same type of entity cognitively. NDL theory proposes that
linguistic categories, such as morphemes, words, and phrases, are all emergent
from a system that simply discriminates between linguistic encodings of
relevant pieces of experiences (Ramscar, [2013; Baayen et al., 2017b; Ramscar
and Port| 2015 Baayen et al., [2016a)). Sometimes these experiences are
encoded as a morpheme, sometimes as a single word, an idiom, a multi-word
unit or even as a whole phrase - and all are units that we need to keep apart.
Discrimination measures can enrich our understanding of the processing of all
parts of language.
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