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CHAPTER 1

Introduction

... the trick to being a scientist is to be open to using a
wide variety of tools. — Leo Breiman (2001)

This is a dissertation about the processing of lexical bundles. What are
lexical bundles, and why is it worth studying them? Why specifically study
their processing, and how does one go about doing that? To answer these
questions, I will discuss the what, why, and how of lexical bundle processing.

In this introductory chapter, I will discuss what a lexical bundle is, and why
studying the way we process them provides linguists and psychologists with
important insights into language and cognition in general. I will then move on
to discuss the diverse experiments researchers have carried out to study the
processing of lexical bundles and other types of multi-word units, the results
they have found, and the conclusions they have drawn from their data.

This thesis focuses on the processing of lexical bundles, and does so by
considering them from different angles: How do we read lexical bundles? Are
there differences in processing between age groups? How do we process spoken
lexical bundles? And how do we produce them? In answering these questions, I
have employed both statistical and computational modeling, techniques which
I will briefly introduce at the end of this chapter.



2 1.1. The What

1.1 The What

Auctioneers and sportscasters are known for their ability to speak incredibly
quickly. They speak fast and fluently in situations where they have to perform
other tasks besides talking, such as keeping track of bids or balls. The way
they achieve this extraordinary feat is by using a restricted set of common
phrases and sentences over and over again (Kuiper, 1996). However, it is not
only auctioneers and sportscasters who abundantly employ ready-made chunks
of language — we all do.

Estimates differ, but in general it is assumed that about half of our spo-
ken and written language consists of stock phrases, formulaic sequences, and
common combinations of words (Biber et al., 1999; Erman and Warren, 2000).
Because of their prevalence, a lot of researchers have investigated different types
of multi-word units, each of them using different terms: Chunks, collocations,
formulae, formulaic sequences, idioms, lexical bundles, lexical patterns, multi-
word units, multi-word expressions, n-grams, prefabs, or superlemmas.

Multi-word units differ from each other on several dimensions: There are
multi-word units that are non-compositional, such that one cannot derive their
meaning from the meaning of their constituent words; there are multi-word
units that are fully compositional. There are multi-word units that are fre-
quent; there are multi-word units that are infrequent. Some multi-word units
are very salient; others are not. After having surveyed experimental evidence on
how different multi-word units are processed, Wray (2012) proposed a multi-
dimensional space along which subtypes of multi-word units are distributed.
See Figure 1.1 for a graphical representation.

As can be seen in Figure 1.1, idioms are typical instances of multi-word units
that are infrequent and non-compositional, whereas lexical bundles — phrases
like I think that or at the end of — are both frequent and compositional. More
frequent and less compositional strings have been found to be processed faster.
Some argue that this shows that we store those strings as wholes (Beckner
et al., 2009; Conklin and Schmitt, 2012; Pawley and Syder, 1983).

1.2 The Why

The idea that we store units larger than a word is uncontroversial. It takes
two to tango cannot be understood by simply combining the meanings of its
single words — you have to rely on the stored meaning of the whole. Likewise,
infrequent and fully compositional word combinations are most likely composed
and parsed on-line. However, controversy arises the further we move into the
lower right corner of Figure 1.1.

Dual-system theories of language assume that language consists of a gram-
mar and a lexicon (Pinker and Ullman, 2002). The lexicon contains all that
cannot be computed; the grammar contains rules that are used on all that is
stored to compute new forms. As such, the lexicon does not contain any redun-
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Figure 1.1: A typology of multi-word units. This thesis focuses on the units
from the lower right corner, lexical bundles. Figure taken from Wray (2012, p.
241).

dancy: If the grammar can compute something, then the end product of that
computation will not be stored in the lexicon. The prediction is, then, that
compositional multi-word units are not stored or used as wholes in processing.

Single-system theories, on the other hand, argue that there is no principled
difference between word forms and grammar in processing. They propose that
both rules and words are part of the same system, where the end products of
applying regular rules to words can be stored. Redundancy is assumed to be
prevalent (Dąbrowska, 2014; Snider and Arnon, 2012). In such a system, it is
possible that frequent and compositional multi-word units, lexical bundles, are
redundantly stored.

The fact that storage is possible does not provide an explanation of why
such units would be stored, and by what mechanisms. Researchers have argued
that we store redundant forms in our long-term memory to compensate for our
limited working memory capacities. Having to repeatedly combine single words
will take up more working memory resources than storing and later retrieving
a multi-word unit, which in turn makes language processing faster and more
efficient (Conklin and Schmitt, 2012; Pawley and Syder, 1983).

Usage based-linguistics (Bybee, 2006, 2010; Green, 2017; Goldberg, 2003;
Tomasello, 2009) has proposed the cognitive mechanism by which lexical bun-
dles come into being: chunking. Through repeated exposure frequent combina-
tions can become more fixed and merge together into a holistic unit. Chunking
is seen in all kinds of cognitive domains, from action sequences such as cycling
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or tying your shoe laces, to remembering the notes that make up a melody
(Bybee, 2010).

Many researchers are hesitant to argue that frequent multi-word units are
stored holistically (Arnon and Cohen Priva, 2013; Siyanova-Chanturia, 2015).
There is a growing body of experimental work showing that lexical bundles are
read, understood, and pronounced faster than their infrequent matched con-
trols (Arnon and Snider, 2010; Bannard and Matthews, 2008; Tremblay et al.,
2012). Even so, faster processing does not necessarily entail holistic storage.
Phrasal frequency effects could reflect experience and therefore greater profi-
ciency in combining and decomposing those specific combinations (Tremblay
et al., 2011). Individual words still play a role in processing in lexical bundles
(Arnon and Snider, 2010; Siyanova-Chanturia, 2015), and experiments have
shown that even single words can prime idioms or other non-compositional
phrases, testifying to the existence of internal structure and against the notion
of holistic blocks (Sprenger et al., 2006).

1.3 The How

When studying a specific phenomenon, it is important to employ different meth-
ods. Each method might shed a different light on that phenomenon, so that
one learns from considering where the insights converge and diverge (Rayner,
1998). Researchers have used different paradigms and experimental methods to
investigate the processing of different types of multi-word units. Most research
has focused on either reading or speaking, while listening to multi-word units
has received far less attention. In the following, I will focus on lexical bundle
processing by discussing what we know so far about reading, listening to, and
producing lexical bundles.

1.3.1 Reading

There are several ways to study the processing of lexical bundles with reading
paradigms. By using simple behavioral methods, such as lexical decision tasks
or self-paced reading, researchers have found that lexical bundles are processed
faster than matched control sequences. Furthermore, by using eye-tracking,
researchers have learned more about the time course of processing.

Durrant and Doherty (2010) used a lexical decision task to see whether the
first word of a frequent collocation, such as mental, would prime its second
word, here picture. When the prime was masked, however, they only found
a significant priming effect when the two words of the collocation were also
associates of each other, as in the collocation card game. As such they only found
convincing evidence for associative priming. Perhaps the priming paradigm was
not sensitive enough to detect any phrasal effects, or presenting only one word
at a time did not prompt any lexical bundle processing.
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Jiang and Nekrasova (2007) as well as Arnon and Snider (2010) took the
lexical decision task a bit further and conducted a phrasal-decision task, where
participants were asked to judge if phrases were grammatical strings or not.
Matched pairs of lexical bundles and control phrases were used. One word from
the lexical bundle was replaced with a word similar in length and frequency
to create a matched control phrase, such that the pairs only differed in their
phrasal frequencies. Both studies found faster reaction times for lexical bundles
than control phrases. Jiang and Nekrasova (2007) also identified phrasal fre-
quency effects in proficient non-native speakers, while Arnon and Snider (2010)
noted that the effects could be observed across the whole frequency range, with
low- and mid-frequency phrases also being processed faster than their matched
controls.

Providing grammaticality judgments is not a very natural task — it in-
volves making meta-linguistic decisions and might not be the best reflection
of what language users do in daily life. A more naturalistic task is self-paced
reading, where people read through whole sentences, or even paragraphs, piece
by piece. Tremblay et al. (2009) found that sentences containing lexical bundles
are read faster, but only if these sentences are presented chunk-by-chunk or as
a whole. Word-by-word presentation seems to disrupt phrasal frequency effects
— which might explain the absence of collocational priming effects in the study
conducted by Durrant and Doherty (2010).

Pressing a button before one can move on with reading is still not very
similar to the way we normally read. Also, it yields only one measure: The
latencies of button presses. Eye-tracking, on the other hand, generates many
different measures, which reflect how difficult processing is, and how processing
proceeds over time. For example, the harder it is to process a text, the longer a
duration will last, and the more fixations a reader will need. Moreover, looking
at differences between early and later fixations tells something about how pro-
cessing proceeds over time (Rayner, 1998). Because one can study the effects
of both single words and phrases at the same time, eye-tracking offers excit-
ing new insights into the processing of multi-word units (Siyanova-Chanturia,
2013).

The first study looking into the eye-movements of people reading multi-
word units is Underwood et al. (2004). The authors compared the number of
fixations and their durations on the final words of idioms and novel phrases.
Identical lexical items attracted fewer and shorter fixations in idioms than in
non-idiomatic phrases. This was interpreted as reflecting holistic storage and
processing of idioms. Similar results were found by Siyanova-Chanturia et al.
(2011a), who found that readers need fewer and shorter fixations for idiomatic
than non-idiomatic phrases, and that these phrases require less re-reading and
re-analysis.

Moving on to non-idiomatic multi-word units, Siyanova-Chanturia et al.
(2011b) studied the eye-movements of people reading binominal phrases such
as bride and groom. These types of phrases are similar to lexical bundles in that
they are compositional, but they are not as frequent. They lie somewhere in the
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bottom middle of Wray’s model as presented in Figure 1.1. Siyanova-Chanturia
et al. (2011b) compared these phrases with their reversed counterparts (i.e.
groom and bride), which are identical in meaning and single-word frequency,
but different in phrasal frequency. Both early measures (first pass reading time)
and late measures (total reading time and fixation count) were influenced by
phrasal frequency, where more frequent phrases were read faster, with fewer
fixations, than less frequent phrases.

Tremblay and Baayen (2010) looked at lexical bundles. They employed an
immediate recall task, where participants were first shown six four-word se-
quences, and then asked to type in as many sequences as they could remember.
During the presentation of the sequences, the authors collected EEG data.
They found that both single words and sequence-internal trigrams modulated
the behavioral results, indicating that both parts and wholes are used in pro-
cessing. Furthermore, phrasal frequencies modulated the electrophysiological
signal from very early on — roughly 100 ms after presentation onset. This sug-
gests that the whole string must be accessed and retrieved as a holistic chunk,
as there is no way that single words can be retrieved and combined in such a
short time frame.

Miwa et al. (2017) also found early effects of holistic processing — in this
case frequency effects of Japanese trimorphemic compounds. In a lexical de-
cision experiment coupled with eye-tracking, the first fixation durations were
modulated by the full compound frequency. Importantly, the frequencies of the
single morpheme also played a role in processing.

Overall, researchers have found that higher phrasal frequencies correlate
with shorter reading times, and that frequent multi-word units need fewer fix-
ations and re-analysis. Moreover, both single words and the multi-word unit
play a role in processing, casting doubt on the idea that multi-word units are
stored as unanalyzed chunks.

All of these studies focus on younger adults. However, if language experi-
ence is indeed the driving force behind the emergence of lexical, as usage-based
theories of language propose, then more language experience should lead to dif-
ferences in the representation or processing of lexical bundles between younger
and older adults. This brings us to the first research question of this thesis:
How do adults read lexical bundles, and are there differences in read-
ing behavior between younger and older adults? Chapter 2 presents an
eye-tracking study of both younger and older adults reading lexical bundles.

Previous work has emphasized the role of traditional frequency measures
in processing; but Which factors other than frequency play a role in
reading lexical bundles?. Moreover, knowing which factors play a role in
processing does not answer the questionsHow does lexical access to lexical
bundles proceed?, and What is their status in the lexicon?. Therefore,
Chapter 4 presents a computational model of lexical bundles and discusses how
this model can shed further light on how lexical bundles are read and accessed
and how this, in turn, sheds light on their very nature.
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1.3.2 Listening

While there is a lot of research on reading multi-word units, it is not yet com-
pletely clear what happens when people listen to them. In Sosa and MacFarlane
(2002)’s study, people listened to utterances containing collocations with the
word of. People were asked to press a button as soon as they heard of. The
more frequent the collocation, the slower people were, and the more misses
they made. According to the authors, this indicates that frequent collocations
are stored holistically. Because of their holistic form, people do not automati-
cally deconstruct the collocation into its constituent parts, and therefore cannot
detect single words immediately, leading to slower response latencies.

In a sentence recall task, Tremblay et al. (2011) presented participants with
spoken sentences containing lexical bundles. They found that recall rate corre-
lated positively with phrasal frequencies, such that sentences containing more
common lexical bundles were remembered correctly more often. Tremblay et al.
(2011) conclude that lexical bundles are a relevant unit in processing.

To summarize, we have evidence that people are better at recalling lexical
bundles that they have listened to, and that during listening, they do not always
seem to parse the single words contained in these lexical bundles. To add new
research to the issue of listening to lexical bundles, Chapter 3 investigates
listening to frequent lexical bundles and infrequent matched controls to answer
the research questions Is there a difference in electrophysiological brain
responses when listening to frequent lexical bundles and infrequent
matched controls?, Which factors influence the electrophysiological
brain response when listening to lexical bundles?, and What is the
time course of processing of auditorily presented lexical bundles?.

1.3.3 Speaking

When speaking, we occasionally make slips of the tongue. These slips may
involve phonemes, clusters of phonemes, syllables, morphemes, words, or even
parts of phrases. Slips are claimed to only occur within linguistic units — they
do not involve random exchanges of phonemes across a unit boundary (Kuiper
et al., 2007). Because slips are found in multi-word units, it seems likely that
these units have a separate entry in the mental lexicon.

To test if children make use of lexical bundles, as proposed by usage-based
theories (e.g. Tomasello, 2009), Bannard and Matthews (2008) used a sentence-
repetition test with 2- and 3-year-old children to see how well they could repeat
different utterances. These utterances were taken from a corpus containing
child-directed speech, and consisted of frequent phrases such as sit in your
chair, and were matched to infrequent phrases such as sit in your truck. Both
groups of children were more likely to repeat the frequent lexical bundles and
made fewer mistakes when doing so. For the 3-year-olds it was even the case
that the durations of their productions were significantly modulated by phrasal
frequency, with higher frequencies correlating with faster productions.
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Several studies have looked at how adults process lexical bundles. Tremblay
and Tucker (2011) had people read out loud four-word strings from a com-
puter screen, and they measured the onsets and durations of those utterances.
The authors found effects of unigram, bigram, trigram, and quadgram frequen-
cies. This suggests parallel processing of both the whole lexical bundle and its
constituent parts.

To advance insights into the production of lexical bundles, Arnon and Co-
hen Priva (2013) looked at both experimentally elicited speech and naturalistic
speech taken from a corpus. They also tested whether a lexical bundle has to
be a single syntactic constituent in order for it to show phrasal frequency ef-
fects. In accordance with other findings, higher phrasal frequencies correlated
with shorter durations. Notably, these effects occurred both within and across
syntactic boundaries.

In a follow-up study, Arnon and Priva (2014) observed that phrasal frequen-
cies play a role across the whole frequency range. Lower phrasal frequencies lead
to a higher prominence of the effects of single words, whereas higher phrasal fre-
quencies lead to a reduced prominence of single word frequencies. Crucially, the
effect of single word frequencies does not disappear, showing that the storage
and processing of frequent multi-word units does not necessarily involve any
holistic, unanalyzable blocks of language. The parallel effects of single-word
and multi-word unit frequencies are similar to the findings of Tremblay and
Tucker (2011).

Besides reading words to elicit multi-word unit production, researchers have
also used picture-naming paradigms. Using Spanish multi-word units, Janssen
and Barber (2012) presented participants with colored and superimposed line
drawings to elicit noun + adjective, noun + noun and determiner + noun +
adjective structures. Naming latencies decreased with increasing phrasal fre-
quencies, suggesting a role for multi-word units in production.

However, Hendrix et al. (2017) did not find any effects of phrasal frequencies
in the naming latencies of nouns in frequent prepositional phrases. They did,
however, find qualitatively different patterns for word frequencies and phrasal
frequencies in the ERP signal: Word frequencies were characterized by oscilla-
tions in the lower theta range, whereas phrasal frequencies did not elicit any
theta oscillations, but showed a prolonged negativity for multi-word units with
higher phrasal frequencies.

In short, the evidence from production studies shows that higher phrasal
frequencies lead to shorter production latencies and better recall. Importantly,
many studies have shown that both single words and multi-word units affect
production.

Building on these existing studies, the second part of Chapter 4 consists
of a production study where participants read high-frequency lexical bundles
out loud from a computer screen. By employing measures extracted from a
computational model incorporating those lexical bundles to model that data,
I aim to answer the question Are there other factors over and above
traditional frequency measures that play a role in reading out loud
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high-frequency lexical bundles?.

1.4 Quantifying processing

Experimental measures taken from either eye-tracking, EEG, or production
studies are but a pale reflection of what is really happening during processing.
Processing language is an intricate, multi-faceted process, and it is therefore
crucial to try to quantify its subprocesses. This can for example be done by
fitting a statistical model on some dependent variable. The predictors of such
a model will consist of the factors that the experimenter has under her control,
such as the frequencies of lexical bundles and their subparts, as well as the
factors that are outside her control, such as the participants’ mental state
during the experiment. Another way is by building a computational model,
which forces the researcher to explicitly specify certain aspects of processing
and lexical bundles so as to obtain predictions on how lexical bundles will
behave in processing.

1.4.1 Statistical modeling

We live in an exciting time where statistical modeling, machine learning al-
gorithms and computational power are constantly improving. Moreover, these
methods are increasingly accessible to a wider group of researchers due to
easy-to-use implementations in software such as the statistical programming
language R (R Core Team, 2017).

In this thesis, a large part of understanding the processing of lexical bundles
comes from applying advanced statistical models to experimental data. Because
previous research has shown that both parts and wholes of lexical bundles
simultaneously play a role in processing, it is important to use techniques that
can take all these factors into account, while at the same time trying to account
for all the unknown noise that affects experiments: How much coffee did a
participant drink today? Did he sleep well? Does she have experience with these
types of experiments? Does the noise from the construction workers distract
the participant? Does this lexical bundle have an unexpected effect on the
participant because she just read a newspaper article containing that very unit?
In what follows, I will briefly present the key models used in this thesis.

Generalized Additive Mixed-Effects Models

Nature is full of dynamic and nonlinear systems — language is but one of them.
We cannot assume therefore that all experimental data are linear: We need
to take into account nonlinearity. Generalized additive mixed-effects models
(GAMMs, Hastie and Tibshirani, 1990; Wood, 2006) are regression models that
can model nonlinear relations in the data. This is done by means of so-called
spline-based smoother functions, which are functions that model a nonlinear
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(or so-called ’wiggly’) curve on the relation of a predictor and the outcome
variable of interest.

In order to fit a reliable regression model, all data points need to be inde-
pendent from each other. However, this is never the case with data gathered
in psycholinguistic experiments: The data points produced by one person are
always correlated to each other because that person has some unique character-
istics that will affect in a certain way all responses he gives. Other participants
will have other unique characteristics, which in turn affect their responses in
other, unique, ways. The same is true for experimental items: Each item might
have certain characteristics that are not or cannot be explicitly included in the
statistical model, but that do introduce commonalities into the responses of all
participants to that specific item. For example, imagine a situation where there
are a lot of news items about an alpaca who was left behind in a city center1.
In that situation, the word ’alpaca’ will be much more salient to participants
than it normally would be, leading to commonalities in how these participants
will react to that specific word.

GAMMs incorporate random-effects structures that take this non-random
noise into account. The random-effects part of a model introduces parameters
specifically for these commonalities in responses from individuals to individual
items. This makes the other model parameters more accurate (Baayen et al.,
2008; Barr et al., 2013; Bates et al., 2015).

Besides offering the possibility to model nonlinear relations and allowing for
a random-effects structure, GAMMs can also include predictors that model the
time course of the whole experiment. This is essential as each participant will
have a different attentional flow throughout the experiment: Some participants
might be alert in the beginning, responding quickly, but then losing attention
along the way, thereby responding more slowly. Other participants start off
slowly, and get faster over the course of the experiment (Baayen et al., 2017a).
Entering a predictor that describes this behavior over time will also improve
the model fit and allow for better estimates of the predictors of interest.

However, regression modeling has several disadvantages. It is intolerant to
multicollinearity: When two or more predictors are highly correlated, their
model parameters can no longer be trusted (Wurm and Fisicaro, 2014). A model
parameter is the estimation of the shape, size and direction of an effect — in
other words, crucial information in understanding what is happening in the data
and for testing if hypotheses hold. Multicollinearity is especially problematic
when modeling behavioral and neural responses to lexical bundle frequencies,
as the frequency of the whole lexical bundle is very often highly correlated to
the frequencies of its constituent n-grams (e.g. single words, bigrams, trigrams).

Researchers have resorted to different techniques to deal with multicollinear-
ity. One is reducing the number of dimensions, by creating a composite variable
from the correlated predictors (for example by Principal Component Analysis

1See for example this news item for more information on alpaca Teddy (in Dutch).
https://www.rtlnieuws.nl/nederland/bert-helpt-gedumpte-haarlemse-alpaca-geen-dier-kun-
je-zo-behandelen

https://www.rtlnieuws.nl/nederland/bert-helpt-gedumpte-haarlemse-alpaca-geen-dier-kun-je-zo-behandelen
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(Baayen, 2008)). Another technique is residualization, where a variable A is
regressed on a collinear variable B. The residuals of that regression are then
entered into the model — the idea being that these residuals are what is ’left’
of variable A when one takes out the parts that correlate with B (see for ex-
ample Tremblay and Tucker, 2011, for an example of how to deal with a large
number of correlated predictors). However, these techniques also have their
disadvantages. It is not so straightforward to understand what a composite or
a residualized variable is, which makes a model with these types of predictors
hard to interpret. Moreover, residualization is not a remedy for multicollinearity
(Wurm and Fisicaro, 2014).

Other problems with mixed-effects regression analyses are 1) the need for
normally distributed data (as all experimental linguists know, no data are ever
normally distributed); 2) the question of how to specify the random-effects
structure of the model (Barr et al., 2013; Bates et al., 2015); 3) the biases of
the researcher in choosing which interactions to enter into the model, thereby
potentially overseeing important interactions; and 4) the fact that forward and
backward model fitting is notoriously susceptible to the order in which predic-
tors and interactions are added and deleted (Strobl et al., 2009).

Despite its disadvantages, regression modeling, and especially mixed-effects
modeling, has proved to be a very useful tool in modeling experimental data,
and has enhanced our understanding of the intricate processes used in lan-
guage production and comprehension. One certainly has to keep in mind its
shortcomings, but the advantage of having a model that allows for non-linearity,
combined with the power of random-effects, make GAMMs the statistical model
of choice for the data in Chapters 2 and 4.

Conditional Inference Random Forest Models

A way to avoid the problems commonly encountered in regression modeling, is
by using non-parametric methods that do not require the researcher to specify
in which order predictors need to be added or deleted, and which interactions
should be tested. We are all but humans — machines are better suited to do
these tasks for us.

A popular machine learning technique, Conditional Inference Random For-
est Models (CForests), does not suffer from the drawbacks discussed in the
previous section. As these are non-parametric models, the data need not be
normally distributed. Furthermore, these models are very robust to noise, and
a large part of the modeling process is data-driven, instead of being based on
fallible human decisions. This way, unexpected or complex higher-order inter-
actions present in the data will still be taken into account, even if the human
modeler never thought of including them.

A random forest consists of a large set of randomly built decision trees.
Consider Figure 1.4.1 for an example of a decision tree. In this decision tree, a
model is presented that classifies animals into two categories: Cats and dogs.
The model uses a continuous variable (body weight) and binary variables (does
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it attack a laser, and does it love you?) to predict which category is most likely.
If you encounter an animal that weights two kilos, and who does not attack
any lasers, then you will most likely have a dog in front of you (probably a
chihuahua). Note however, that the categories at the bottom of the figure only
show the most likely candidates — it is still possible, although less likely, that
the small creature that does not care about the laser is a tired cat.

Cat or dog? 

Body weight 

Attacks laser Loves you 

< 4 kg > 4 kg 

yes yes no no 

cat dog dog cat 

Figure 1.2: A decision tree that helps to distinguish between human’s favorite
pets, cats and dogs.

As has become clear from the example above, decision trees are models
that use a tree-like graph to visualize the internal structure of data. Each node
represents an attribute (predictor) on which a decision (split) of the data is
based. The leaves or end nodes of the tree represent the different groups that
the model identified in the data, and shows the predicted outcomes. This could
be the result of a coin flip (heads or tails), the predicted reaction latency in
a production experiment (the subgroup of responses to content words with a
length of 6 letters or more is on average 720 ms), or the predicted voltage of a
participant hearing a lexical bundle (the subgroup of lexical bundles that has
more than 12 letters and whose first bigram has a higher frequency than 1,000,
correlates with an average signal of -1.2 microVolt).

A decision tree is constructed by repeatedly splitting the data into two,
based on whichever predictor does the best job at identifying two subsets in
the data. In our pet example in Figure 1.2. the body weight has been selected
as the best predictor at dividing pets into cats and dogs. After this first split,
it turned out that for animals less than 4 kilos, the predictor ’attacks laser’
is best at dividing cats and dogs, whereas the predictor ’loves you’ plays the
largest role in splitting the data for animals that weigh more than four kilos.
This process of binary splits continues until, for example, none of the predictors



Introduction 13

reaches significance in a certain subset (Hothorn et al., 2006; Strobl et al., 2009).
The resulting tree will contain information on which predictors are important,
interactions within the data, and the number of data points that fall into each
subset.

The decision trees used for CForest modeling incorporate another feature:
variable preselection. Instead of always testing all predictors on the data and on
all of its subsets, a subset of the predictors is randomly selected for each split
within the tree. That way, even weaker predictors with small and subtle effects,
that otherwise might have gone unnoticed, have a greater chance of entering the
model. Variable preselection results in a diverse set of trees that form the forest.
By aggregating over these trees, even subtle effects and potentially informative
but unexpected interactions are likely to surface.

To make the set of trees even more diverse and therefore more stable to
noise (Strobl et al., 2009), bagging can also be applied to the data. Bagging
means that every tree in the forest is grown on a random subset of the data.
By using variable preselection and bagging, the results of the CForest modeling
in Chapter 3 are very robust, precise and contain information that other types
of modeling might have never brought to light.

Random forests, and specifically CForests, have been applied in diverse
fields such as genetics, epidemiology, medicine, and lately also in psychological
and linguistics datasets (Tagliamonte and Baayen, 2012; McWhinney et al.,
2016). As CForests are able to model all kinds of functional relations between
predictors and an outcome variable over time, they are well-suited to handling
many collinear predictors, such as frequency values of trigrams and their con-
stituent bigrams and single words.

1.4.2 Computational modeling

To further understand what a lexical bundle is, it is helpful to explicitly model
the processing of lexical bundles in a computational model. This way, one can
test if and how the model’s predictions fit experimental data, and if they do,
study how the model functions. The model of choice in this dissertation is a
Naive Discriminative Learning or NDL model (Baayen et al., 2011; Baayen and
Ramscar, 2015).

Naive Discriminative Learning (NDL)

NDL is a theory of lexical processing, which is made explicit in a computational
model. The training phase of the model can be seen as an L1 acquisition process,
whereas the stable end state of the model, where it has reached an equilibrium,
can be considered as the adult state of the linguistic system of the learner. This
end state of the model provides a mathematical characterization of the state
of the lexicon, and can be used to derive several features that describe on-line
processing. Interestingly, these features have proven to be excellent predictors
of a wide range of linguistic phenomena such as lexical decision latencies, word
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frequency effects, phrasal frequency effects, and ERP amplitudes. Moreover,
predictions following from NDL models are consistent with the performance of
young infants in an auditory comprehension task (Baayen et al., 2011; Baayen
and Ramscar, 2015).

An NDL model features a simple two-layer network where input units, such
as sounds or written letters, form the cues that are connected to a set of out-
comes. These outcomes consist of lexomes, which are pointers to a location in
semantic space. See Figure 1.4.2 for an example of a small NDL network. It
is important to note that lexomes are neither form nor meaning, but stable
mediators between variable linguistic forms and meanings (Milin et al., 2017;
Baayen et al., 2017b). Because an NDL network has no hidden layers, the way
its connections are formed over time is a relatively straightforward process.

Figure 1.3: An NDL model with five digraphs as cues, and three lexemes as
outcomes. Figure taken from Baayen and Ramscar (2015).

In an NDL network, all cues and outcomes are connected to each other.
The weights of these connections are established by training the model on a
large set of sentences. First, the form of both the cues and the outcomes have
to be defined: Often the cues are formed by single letters or combinations of
letters (Baayen et al., 2017b, 2016a), and the outcomes are pointers to the
meanings of single words. However, outcomes can also point to grammatical
features (Baayen et al., 2011), idioms (Geeraert et al., 2017), or, as in Chapter
4, lexical bundles.

In the training phase, the model goes over a large set of sentences one by
one, and at each sentence, updates its connections weights between cues and
outcomes. The Rescorla-Wagner learning rule (Rescorla et al., 1972) specifies
how these connection weights are updated. Rescorla-Wagner equations have
been quite successful at describing how animals and humans learn (Arnon and
Ramscar, 2012), which motivates their use in a model that tries to capture how
humans build up their linguistic knowledge over time.

The way the Rescorla-Wagner equations work is by comparing the predic-
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tions made on the basis of the input cues (i.e. what outcomes are expected given
these letters?) and the actual outcomes. When a prediction is correct, the asso-
ciation weight between the cue and outcome is strengthened. Conversely, when
a prediction is incorrect, that is, when a cue occurs without an outcome, their
association weight is weakened.

A cue is informative and thus discriminative if strong connection weights
lead to only a small number of outcomes. However, if a cue is more or less
evenly connected to a lot of different outcomes, then this specific cue is not a
strong predictor of any outcome. Determiners are bad predictors of the identity
of any multi-word unit, whereas the word happily is a strong discriminative cue
for the outcome happily ever after.

After the training phase, the weights of the model provide a mathematical
characterization of the state of the lexicon. More specifically, they indicate
how well outcomes can be discriminated given a certain set of input cues.
From this network predictions can be made: One can extract features that can
subsequently be put into a statistical model that aims to describe experimental
data.

Implementing lexical bundles in NDL

Not only is it relatively easy to understand the inner workings of a NDL model,
its way of learning over time is implemented using a cognitively plausible learn-
ing algorithm. This algorithm has been proven useful in describing (implicit)
learning in animals and humans (Ramscar et al., 2010, 2013; Ramscar and
Yarlett, 2007), thereby positioning this model of linguistic behavior also in
an evolutionarily and cognitively plausible context. In order to further under-
stand the processing of lexical bundles, it is therefore worthwhile to see how
well an NDL model that incorporates lexical bundles performs in explaining
experimental data.

Implementing lexical bundles in NDL would amount to implementing these
units as lexomes — in other words, items that function as unitary items in
processing. Not only will this implementation shed more light on lexical bundle
processing and the factors that play a role therein, but it will also provide a
characterization of lexical bundles, when considering their status in the model.

1.5 This dissertation

Chapter 2 comprises a study on reading lexical bundles by both younger and
older adults. Their eye movements were monitored with an eye-tracker, and
these data have been analyzed using GAMMs. Results showed no differences
in the processing of lexical bundles, but did show differences between the age
groups in how they processed single words and bigrams. These differences are
argued to originate from changes in cognitive and physical skills.



16 1.5. This dissertation

Chapter 3 is about listening to lexical bundles. While being hooked up to an
EEG machine, participants listened to a diverse set of lexical bundles. CForest
modeling of the results reveals the time course of lexical bundle processing and
the intricate roles that single word frequencies, bigram frequencies, and trigram
frequencies play.

Chapter 4 combines two behavioral experiments, where people read and
produced lexical bundles, with an NDL model containing these same lexical
bundles. Predictors taken from the NDL model are quite successful at capturing
variance in the experimental data, testifying to the usefulness of using features
other than traditional frequency measures to explain lexical bundle processing.

The last chapter, Chapter 5, discusses the converging and diverging results
coming from these different experimental techniques and statistical modeling
and aims to provide a rich and multi-faceted overview of lexical bundle pro-
cessing.


