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CHAPTER 1

Introduction

... the trick to being a scientist is to be open to using a
wide variety of tools. — Leo Breiman (2001)

This is a dissertation about the processing of lexical bundles. What are
lexical bundles, and why is it worth studying them? Why specifically study
their processing, and how does one go about doing that? To answer these
questions, I will discuss the what, why, and how of lexical bundle processing.

In this introductory chapter, I will discuss what a lexical bundle is, and why
studying the way we process them provides linguists and psychologists with
important insights into language and cognition in general. I will then move on
to discuss the diverse experiments researchers have carried out to study the
processing of lexical bundles and other types of multi-word units, the results
they have found, and the conclusions they have drawn from their data.

This thesis focuses on the processing of lexical bundles, and does so by
considering them from different angles: How do we read lexical bundles? Are
there differences in processing between age groups? How do we process spoken
lexical bundles? And how do we produce them? In answering these questions, I
have employed both statistical and computational modeling, techniques which
I will briefly introduce at the end of this chapter.



2 1.1. The What

1.1 The What

Auctioneers and sportscasters are known for their ability to speak incredibly
quickly. They speak fast and fluently in situations where they have to perform
other tasks besides talking, such as keeping track of bids or balls. The way
they achieve this extraordinary feat is by using a restricted set of common
phrases and sentences over and over again (Kuiper, 1996). However, it is not
only auctioneers and sportscasters who abundantly employ ready-made chunks
of language — we all do.

Estimates differ, but in general it is assumed that about half of our spo-
ken and written language consists of stock phrases, formulaic sequences, and
common combinations of words (Biber et al., 1999; Erman and Warren, 2000).
Because of their prevalence, a lot of researchers have investigated different types
of multi-word units, each of them using different terms: Chunks, collocations,
formulae, formulaic sequences, idioms, lexical bundles, lexical patterns, multi-
word units, multi-word expressions, n-grams, prefabs, or superlemmas.

Multi-word units differ from each other on several dimensions: There are
multi-word units that are non-compositional, such that one cannot derive their
meaning from the meaning of their constituent words; there are multi-word
units that are fully compositional. There are multi-word units that are fre-
quent; there are multi-word units that are infrequent. Some multi-word units
are very salient; others are not. After having surveyed experimental evidence on
how different multi-word units are processed, Wray (2012) proposed a multi-
dimensional space along which subtypes of multi-word units are distributed.
See Figure 1.1 for a graphical representation.

As can be seen in Figure 1.1, idioms are typical instances of multi-word units
that are infrequent and non-compositional, whereas lexical bundles — phrases
like I think that or at the end of — are both frequent and compositional. More
frequent and less compositional strings have been found to be processed faster.
Some argue that this shows that we store those strings as wholes (Beckner
et al., 2009; Conklin and Schmitt, 2012; Pawley and Syder, 1983).

1.2 The Why

The idea that we store units larger than a word is uncontroversial. It takes
two to tango cannot be understood by simply combining the meanings of its
single words — you have to rely on the stored meaning of the whole. Likewise,
infrequent and fully compositional word combinations are most likely composed
and parsed on-line. However, controversy arises the further we move into the
lower right corner of Figure 1.1.

Dual-system theories of language assume that language consists of a gram-
mar and a lexicon (Pinker and Ullman, 2002). The lexicon contains all that
cannot be computed; the grammar contains rules that are used on all that is
stored to compute new forms. As such, the lexicon does not contain any redun-
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Figure 1.1: A typology of multi-word units. This thesis focuses on the units
from the lower right corner, lexical bundles. Figure taken from Wray (2012, p.
241).

dancy: If the grammar can compute something, then the end product of that
computation will not be stored in the lexicon. The prediction is, then, that
compositional multi-word units are not stored or used as wholes in processing.

Single-system theories, on the other hand, argue that there is no principled
difference between word forms and grammar in processing. They propose that
both rules and words are part of the same system, where the end products of
applying regular rules to words can be stored. Redundancy is assumed to be
prevalent (Dąbrowska, 2014; Snider and Arnon, 2012). In such a system, it is
possible that frequent and compositional multi-word units, lexical bundles, are
redundantly stored.

The fact that storage is possible does not provide an explanation of why
such units would be stored, and by what mechanisms. Researchers have argued
that we store redundant forms in our long-term memory to compensate for our
limited working memory capacities. Having to repeatedly combine single words
will take up more working memory resources than storing and later retrieving
a multi-word unit, which in turn makes language processing faster and more
efficient (Conklin and Schmitt, 2012; Pawley and Syder, 1983).

Usage based-linguistics (Bybee, 2006, 2010; Green, 2017; Goldberg, 2003;
Tomasello, 2009) has proposed the cognitive mechanism by which lexical bun-
dles come into being: chunking. Through repeated exposure frequent combina-
tions can become more fixed and merge together into a holistic unit. Chunking
is seen in all kinds of cognitive domains, from action sequences such as cycling
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or tying your shoe laces, to remembering the notes that make up a melody
(Bybee, 2010).

Many researchers are hesitant to argue that frequent multi-word units are
stored holistically (Arnon and Cohen Priva, 2013; Siyanova-Chanturia, 2015).
There is a growing body of experimental work showing that lexical bundles are
read, understood, and pronounced faster than their infrequent matched con-
trols (Arnon and Snider, 2010; Bannard and Matthews, 2008; Tremblay et al.,
2012). Even so, faster processing does not necessarily entail holistic storage.
Phrasal frequency effects could reflect experience and therefore greater profi-
ciency in combining and decomposing those specific combinations (Tremblay
et al., 2011). Individual words still play a role in processing in lexical bundles
(Arnon and Snider, 2010; Siyanova-Chanturia, 2015), and experiments have
shown that even single words can prime idioms or other non-compositional
phrases, testifying to the existence of internal structure and against the notion
of holistic blocks (Sprenger et al., 2006).

1.3 The How

When studying a specific phenomenon, it is important to employ different meth-
ods. Each method might shed a different light on that phenomenon, so that
one learns from considering where the insights converge and diverge (Rayner,
1998). Researchers have used different paradigms and experimental methods to
investigate the processing of different types of multi-word units. Most research
has focused on either reading or speaking, while listening to multi-word units
has received far less attention. In the following, I will focus on lexical bundle
processing by discussing what we know so far about reading, listening to, and
producing lexical bundles.

1.3.1 Reading

There are several ways to study the processing of lexical bundles with reading
paradigms. By using simple behavioral methods, such as lexical decision tasks
or self-paced reading, researchers have found that lexical bundles are processed
faster than matched control sequences. Furthermore, by using eye-tracking,
researchers have learned more about the time course of processing.

Durrant and Doherty (2010) used a lexical decision task to see whether the
first word of a frequent collocation, such as mental, would prime its second
word, here picture. When the prime was masked, however, they only found
a significant priming effect when the two words of the collocation were also
associates of each other, as in the collocation card game. As such they only found
convincing evidence for associative priming. Perhaps the priming paradigm was
not sensitive enough to detect any phrasal effects, or presenting only one word
at a time did not prompt any lexical bundle processing.
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Jiang and Nekrasova (2007) as well as Arnon and Snider (2010) took the
lexical decision task a bit further and conducted a phrasal-decision task, where
participants were asked to judge if phrases were grammatical strings or not.
Matched pairs of lexical bundles and control phrases were used. One word from
the lexical bundle was replaced with a word similar in length and frequency
to create a matched control phrase, such that the pairs only differed in their
phrasal frequencies. Both studies found faster reaction times for lexical bundles
than control phrases. Jiang and Nekrasova (2007) also identified phrasal fre-
quency effects in proficient non-native speakers, while Arnon and Snider (2010)
noted that the effects could be observed across the whole frequency range, with
low- and mid-frequency phrases also being processed faster than their matched
controls.

Providing grammaticality judgments is not a very natural task — it in-
volves making meta-linguistic decisions and might not be the best reflection
of what language users do in daily life. A more naturalistic task is self-paced
reading, where people read through whole sentences, or even paragraphs, piece
by piece. Tremblay et al. (2009) found that sentences containing lexical bundles
are read faster, but only if these sentences are presented chunk-by-chunk or as
a whole. Word-by-word presentation seems to disrupt phrasal frequency effects
— which might explain the absence of collocational priming effects in the study
conducted by Durrant and Doherty (2010).

Pressing a button before one can move on with reading is still not very
similar to the way we normally read. Also, it yields only one measure: The
latencies of button presses. Eye-tracking, on the other hand, generates many
different measures, which reflect how difficult processing is, and how processing
proceeds over time. For example, the harder it is to process a text, the longer a
duration will last, and the more fixations a reader will need. Moreover, looking
at differences between early and later fixations tells something about how pro-
cessing proceeds over time (Rayner, 1998). Because one can study the effects
of both single words and phrases at the same time, eye-tracking offers excit-
ing new insights into the processing of multi-word units (Siyanova-Chanturia,
2013).

The first study looking into the eye-movements of people reading multi-
word units is Underwood et al. (2004). The authors compared the number of
fixations and their durations on the final words of idioms and novel phrases.
Identical lexical items attracted fewer and shorter fixations in idioms than in
non-idiomatic phrases. This was interpreted as reflecting holistic storage and
processing of idioms. Similar results were found by Siyanova-Chanturia et al.
(2011a), who found that readers need fewer and shorter fixations for idiomatic
than non-idiomatic phrases, and that these phrases require less re-reading and
re-analysis.

Moving on to non-idiomatic multi-word units, Siyanova-Chanturia et al.
(2011b) studied the eye-movements of people reading binominal phrases such
as bride and groom. These types of phrases are similar to lexical bundles in that
they are compositional, but they are not as frequent. They lie somewhere in the
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bottom middle of Wray’s model as presented in Figure 1.1. Siyanova-Chanturia
et al. (2011b) compared these phrases with their reversed counterparts (i.e.
groom and bride), which are identical in meaning and single-word frequency,
but different in phrasal frequency. Both early measures (first pass reading time)
and late measures (total reading time and fixation count) were influenced by
phrasal frequency, where more frequent phrases were read faster, with fewer
fixations, than less frequent phrases.

Tremblay and Baayen (2010) looked at lexical bundles. They employed an
immediate recall task, where participants were first shown six four-word se-
quences, and then asked to type in as many sequences as they could remember.
During the presentation of the sequences, the authors collected EEG data.
They found that both single words and sequence-internal trigrams modulated
the behavioral results, indicating that both parts and wholes are used in pro-
cessing. Furthermore, phrasal frequencies modulated the electrophysiological
signal from very early on — roughly 100 ms after presentation onset. This sug-
gests that the whole string must be accessed and retrieved as a holistic chunk,
as there is no way that single words can be retrieved and combined in such a
short time frame.

Miwa et al. (2017) also found early effects of holistic processing — in this
case frequency effects of Japanese trimorphemic compounds. In a lexical de-
cision experiment coupled with eye-tracking, the first fixation durations were
modulated by the full compound frequency. Importantly, the frequencies of the
single morpheme also played a role in processing.

Overall, researchers have found that higher phrasal frequencies correlate
with shorter reading times, and that frequent multi-word units need fewer fix-
ations and re-analysis. Moreover, both single words and the multi-word unit
play a role in processing, casting doubt on the idea that multi-word units are
stored as unanalyzed chunks.

All of these studies focus on younger adults. However, if language experi-
ence is indeed the driving force behind the emergence of lexical, as usage-based
theories of language propose, then more language experience should lead to dif-
ferences in the representation or processing of lexical bundles between younger
and older adults. This brings us to the first research question of this thesis:
How do adults read lexical bundles, and are there differences in read-
ing behavior between younger and older adults? Chapter 2 presents an
eye-tracking study of both younger and older adults reading lexical bundles.

Previous work has emphasized the role of traditional frequency measures
in processing; but Which factors other than frequency play a role in
reading lexical bundles?. Moreover, knowing which factors play a role in
processing does not answer the questionsHow does lexical access to lexical
bundles proceed?, and What is their status in the lexicon?. Therefore,
Chapter 4 presents a computational model of lexical bundles and discusses how
this model can shed further light on how lexical bundles are read and accessed
and how this, in turn, sheds light on their very nature.
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1.3.2 Listening

While there is a lot of research on reading multi-word units, it is not yet com-
pletely clear what happens when people listen to them. In Sosa and MacFarlane
(2002)’s study, people listened to utterances containing collocations with the
word of. People were asked to press a button as soon as they heard of. The
more frequent the collocation, the slower people were, and the more misses
they made. According to the authors, this indicates that frequent collocations
are stored holistically. Because of their holistic form, people do not automati-
cally deconstruct the collocation into its constituent parts, and therefore cannot
detect single words immediately, leading to slower response latencies.

In a sentence recall task, Tremblay et al. (2011) presented participants with
spoken sentences containing lexical bundles. They found that recall rate corre-
lated positively with phrasal frequencies, such that sentences containing more
common lexical bundles were remembered correctly more often. Tremblay et al.
(2011) conclude that lexical bundles are a relevant unit in processing.

To summarize, we have evidence that people are better at recalling lexical
bundles that they have listened to, and that during listening, they do not always
seem to parse the single words contained in these lexical bundles. To add new
research to the issue of listening to lexical bundles, Chapter 3 investigates
listening to frequent lexical bundles and infrequent matched controls to answer
the research questions Is there a difference in electrophysiological brain
responses when listening to frequent lexical bundles and infrequent
matched controls?, Which factors influence the electrophysiological
brain response when listening to lexical bundles?, and What is the
time course of processing of auditorily presented lexical bundles?.

1.3.3 Speaking

When speaking, we occasionally make slips of the tongue. These slips may
involve phonemes, clusters of phonemes, syllables, morphemes, words, or even
parts of phrases. Slips are claimed to only occur within linguistic units — they
do not involve random exchanges of phonemes across a unit boundary (Kuiper
et al., 2007). Because slips are found in multi-word units, it seems likely that
these units have a separate entry in the mental lexicon.

To test if children make use of lexical bundles, as proposed by usage-based
theories (e.g. Tomasello, 2009), Bannard and Matthews (2008) used a sentence-
repetition test with 2- and 3-year-old children to see how well they could repeat
different utterances. These utterances were taken from a corpus containing
child-directed speech, and consisted of frequent phrases such as sit in your
chair, and were matched to infrequent phrases such as sit in your truck. Both
groups of children were more likely to repeat the frequent lexical bundles and
made fewer mistakes when doing so. For the 3-year-olds it was even the case
that the durations of their productions were significantly modulated by phrasal
frequency, with higher frequencies correlating with faster productions.
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Several studies have looked at how adults process lexical bundles. Tremblay
and Tucker (2011) had people read out loud four-word strings from a com-
puter screen, and they measured the onsets and durations of those utterances.
The authors found effects of unigram, bigram, trigram, and quadgram frequen-
cies. This suggests parallel processing of both the whole lexical bundle and its
constituent parts.

To advance insights into the production of lexical bundles, Arnon and Co-
hen Priva (2013) looked at both experimentally elicited speech and naturalistic
speech taken from a corpus. They also tested whether a lexical bundle has to
be a single syntactic constituent in order for it to show phrasal frequency ef-
fects. In accordance with other findings, higher phrasal frequencies correlated
with shorter durations. Notably, these effects occurred both within and across
syntactic boundaries.

In a follow-up study, Arnon and Priva (2014) observed that phrasal frequen-
cies play a role across the whole frequency range. Lower phrasal frequencies lead
to a higher prominence of the effects of single words, whereas higher phrasal fre-
quencies lead to a reduced prominence of single word frequencies. Crucially, the
effect of single word frequencies does not disappear, showing that the storage
and processing of frequent multi-word units does not necessarily involve any
holistic, unanalyzable blocks of language. The parallel effects of single-word
and multi-word unit frequencies are similar to the findings of Tremblay and
Tucker (2011).

Besides reading words to elicit multi-word unit production, researchers have
also used picture-naming paradigms. Using Spanish multi-word units, Janssen
and Barber (2012) presented participants with colored and superimposed line
drawings to elicit noun + adjective, noun + noun and determiner + noun +
adjective structures. Naming latencies decreased with increasing phrasal fre-
quencies, suggesting a role for multi-word units in production.

However, Hendrix et al. (2017) did not find any effects of phrasal frequencies
in the naming latencies of nouns in frequent prepositional phrases. They did,
however, find qualitatively different patterns for word frequencies and phrasal
frequencies in the ERP signal: Word frequencies were characterized by oscilla-
tions in the lower theta range, whereas phrasal frequencies did not elicit any
theta oscillations, but showed a prolonged negativity for multi-word units with
higher phrasal frequencies.

In short, the evidence from production studies shows that higher phrasal
frequencies lead to shorter production latencies and better recall. Importantly,
many studies have shown that both single words and multi-word units affect
production.

Building on these existing studies, the second part of Chapter 4 consists
of a production study where participants read high-frequency lexical bundles
out loud from a computer screen. By employing measures extracted from a
computational model incorporating those lexical bundles to model that data,
I aim to answer the question Are there other factors over and above
traditional frequency measures that play a role in reading out loud
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high-frequency lexical bundles?.

1.4 Quantifying processing

Experimental measures taken from either eye-tracking, EEG, or production
studies are but a pale reflection of what is really happening during processing.
Processing language is an intricate, multi-faceted process, and it is therefore
crucial to try to quantify its subprocesses. This can for example be done by
fitting a statistical model on some dependent variable. The predictors of such
a model will consist of the factors that the experimenter has under her control,
such as the frequencies of lexical bundles and their subparts, as well as the
factors that are outside her control, such as the participants’ mental state
during the experiment. Another way is by building a computational model,
which forces the researcher to explicitly specify certain aspects of processing
and lexical bundles so as to obtain predictions on how lexical bundles will
behave in processing.

1.4.1 Statistical modeling

We live in an exciting time where statistical modeling, machine learning al-
gorithms and computational power are constantly improving. Moreover, these
methods are increasingly accessible to a wider group of researchers due to
easy-to-use implementations in software such as the statistical programming
language R (R Core Team, 2017).

In this thesis, a large part of understanding the processing of lexical bundles
comes from applying advanced statistical models to experimental data. Because
previous research has shown that both parts and wholes of lexical bundles
simultaneously play a role in processing, it is important to use techniques that
can take all these factors into account, while at the same time trying to account
for all the unknown noise that affects experiments: How much coffee did a
participant drink today? Did he sleep well? Does she have experience with these
types of experiments? Does the noise from the construction workers distract
the participant? Does this lexical bundle have an unexpected effect on the
participant because she just read a newspaper article containing that very unit?
In what follows, I will briefly present the key models used in this thesis.

Generalized Additive Mixed-Effects Models

Nature is full of dynamic and nonlinear systems — language is but one of them.
We cannot assume therefore that all experimental data are linear: We need
to take into account nonlinearity. Generalized additive mixed-effects models
(GAMMs, Hastie and Tibshirani, 1990; Wood, 2006) are regression models that
can model nonlinear relations in the data. This is done by means of so-called
spline-based smoother functions, which are functions that model a nonlinear
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(or so-called ’wiggly’) curve on the relation of a predictor and the outcome
variable of interest.

In order to fit a reliable regression model, all data points need to be inde-
pendent from each other. However, this is never the case with data gathered
in psycholinguistic experiments: The data points produced by one person are
always correlated to each other because that person has some unique character-
istics that will affect in a certain way all responses he gives. Other participants
will have other unique characteristics, which in turn affect their responses in
other, unique, ways. The same is true for experimental items: Each item might
have certain characteristics that are not or cannot be explicitly included in the
statistical model, but that do introduce commonalities into the responses of all
participants to that specific item. For example, imagine a situation where there
are a lot of news items about an alpaca who was left behind in a city center1.
In that situation, the word ’alpaca’ will be much more salient to participants
than it normally would be, leading to commonalities in how these participants
will react to that specific word.

GAMMs incorporate random-effects structures that take this non-random
noise into account. The random-effects part of a model introduces parameters
specifically for these commonalities in responses from individuals to individual
items. This makes the other model parameters more accurate (Baayen et al.,
2008; Barr et al., 2013; Bates et al., 2015).

Besides offering the possibility to model nonlinear relations and allowing for
a random-effects structure, GAMMs can also include predictors that model the
time course of the whole experiment. This is essential as each participant will
have a different attentional flow throughout the experiment: Some participants
might be alert in the beginning, responding quickly, but then losing attention
along the way, thereby responding more slowly. Other participants start off
slowly, and get faster over the course of the experiment (Baayen et al., 2017a).
Entering a predictor that describes this behavior over time will also improve
the model fit and allow for better estimates of the predictors of interest.

However, regression modeling has several disadvantages. It is intolerant to
multicollinearity: When two or more predictors are highly correlated, their
model parameters can no longer be trusted (Wurm and Fisicaro, 2014). A model
parameter is the estimation of the shape, size and direction of an effect — in
other words, crucial information in understanding what is happening in the data
and for testing if hypotheses hold. Multicollinearity is especially problematic
when modeling behavioral and neural responses to lexical bundle frequencies,
as the frequency of the whole lexical bundle is very often highly correlated to
the frequencies of its constituent n-grams (e.g. single words, bigrams, trigrams).

Researchers have resorted to different techniques to deal with multicollinear-
ity. One is reducing the number of dimensions, by creating a composite variable
from the correlated predictors (for example by Principal Component Analysis

1See for example this news item for more information on alpaca Teddy (in Dutch).
https://www.rtlnieuws.nl/nederland/bert-helpt-gedumpte-haarlemse-alpaca-geen-dier-kun-
je-zo-behandelen

https://www.rtlnieuws.nl/nederland/bert-helpt-gedumpte-haarlemse-alpaca-geen-dier-kun-je-zo-behandelen
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(Baayen, 2008)). Another technique is residualization, where a variable A is
regressed on a collinear variable B. The residuals of that regression are then
entered into the model — the idea being that these residuals are what is ’left’
of variable A when one takes out the parts that correlate with B (see for ex-
ample Tremblay and Tucker, 2011, for an example of how to deal with a large
number of correlated predictors). However, these techniques also have their
disadvantages. It is not so straightforward to understand what a composite or
a residualized variable is, which makes a model with these types of predictors
hard to interpret. Moreover, residualization is not a remedy for multicollinearity
(Wurm and Fisicaro, 2014).

Other problems with mixed-effects regression analyses are 1) the need for
normally distributed data (as all experimental linguists know, no data are ever
normally distributed); 2) the question of how to specify the random-effects
structure of the model (Barr et al., 2013; Bates et al., 2015); 3) the biases of
the researcher in choosing which interactions to enter into the model, thereby
potentially overseeing important interactions; and 4) the fact that forward and
backward model fitting is notoriously susceptible to the order in which predic-
tors and interactions are added and deleted (Strobl et al., 2009).

Despite its disadvantages, regression modeling, and especially mixed-effects
modeling, has proved to be a very useful tool in modeling experimental data,
and has enhanced our understanding of the intricate processes used in lan-
guage production and comprehension. One certainly has to keep in mind its
shortcomings, but the advantage of having a model that allows for non-linearity,
combined with the power of random-effects, make GAMMs the statistical model
of choice for the data in Chapters 2 and 4.

Conditional Inference Random Forest Models

A way to avoid the problems commonly encountered in regression modeling, is
by using non-parametric methods that do not require the researcher to specify
in which order predictors need to be added or deleted, and which interactions
should be tested. We are all but humans — machines are better suited to do
these tasks for us.

A popular machine learning technique, Conditional Inference Random For-
est Models (CForests), does not suffer from the drawbacks discussed in the
previous section. As these are non-parametric models, the data need not be
normally distributed. Furthermore, these models are very robust to noise, and
a large part of the modeling process is data-driven, instead of being based on
fallible human decisions. This way, unexpected or complex higher-order inter-
actions present in the data will still be taken into account, even if the human
modeler never thought of including them.

A random forest consists of a large set of randomly built decision trees.
Consider Figure 1.4.1 for an example of a decision tree. In this decision tree, a
model is presented that classifies animals into two categories: Cats and dogs.
The model uses a continuous variable (body weight) and binary variables (does
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it attack a laser, and does it love you?) to predict which category is most likely.
If you encounter an animal that weights two kilos, and who does not attack
any lasers, then you will most likely have a dog in front of you (probably a
chihuahua). Note however, that the categories at the bottom of the figure only
show the most likely candidates — it is still possible, although less likely, that
the small creature that does not care about the laser is a tired cat.

Cat or dog? 

Body weight 

Attacks laser Loves you 

< 4 kg > 4 kg 

yes yes no no 

cat dog dog cat 

Figure 1.2: A decision tree that helps to distinguish between human’s favorite
pets, cats and dogs.

As has become clear from the example above, decision trees are models
that use a tree-like graph to visualize the internal structure of data. Each node
represents an attribute (predictor) on which a decision (split) of the data is
based. The leaves or end nodes of the tree represent the different groups that
the model identified in the data, and shows the predicted outcomes. This could
be the result of a coin flip (heads or tails), the predicted reaction latency in
a production experiment (the subgroup of responses to content words with a
length of 6 letters or more is on average 720 ms), or the predicted voltage of a
participant hearing a lexical bundle (the subgroup of lexical bundles that has
more than 12 letters and whose first bigram has a higher frequency than 1,000,
correlates with an average signal of -1.2 microVolt).

A decision tree is constructed by repeatedly splitting the data into two,
based on whichever predictor does the best job at identifying two subsets in
the data. In our pet example in Figure 1.2. the body weight has been selected
as the best predictor at dividing pets into cats and dogs. After this first split,
it turned out that for animals less than 4 kilos, the predictor ’attacks laser’
is best at dividing cats and dogs, whereas the predictor ’loves you’ plays the
largest role in splitting the data for animals that weigh more than four kilos.
This process of binary splits continues until, for example, none of the predictors



Introduction 13

reaches significance in a certain subset (Hothorn et al., 2006; Strobl et al., 2009).
The resulting tree will contain information on which predictors are important,
interactions within the data, and the number of data points that fall into each
subset.

The decision trees used for CForest modeling incorporate another feature:
variable preselection. Instead of always testing all predictors on the data and on
all of its subsets, a subset of the predictors is randomly selected for each split
within the tree. That way, even weaker predictors with small and subtle effects,
that otherwise might have gone unnoticed, have a greater chance of entering the
model. Variable preselection results in a diverse set of trees that form the forest.
By aggregating over these trees, even subtle effects and potentially informative
but unexpected interactions are likely to surface.

To make the set of trees even more diverse and therefore more stable to
noise (Strobl et al., 2009), bagging can also be applied to the data. Bagging
means that every tree in the forest is grown on a random subset of the data.
By using variable preselection and bagging, the results of the CForest modeling
in Chapter 3 are very robust, precise and contain information that other types
of modeling might have never brought to light.

Random forests, and specifically CForests, have been applied in diverse
fields such as genetics, epidemiology, medicine, and lately also in psychological
and linguistics datasets (Tagliamonte and Baayen, 2012; McWhinney et al.,
2016). As CForests are able to model all kinds of functional relations between
predictors and an outcome variable over time, they are well-suited to handling
many collinear predictors, such as frequency values of trigrams and their con-
stituent bigrams and single words.

1.4.2 Computational modeling

To further understand what a lexical bundle is, it is helpful to explicitly model
the processing of lexical bundles in a computational model. This way, one can
test if and how the model’s predictions fit experimental data, and if they do,
study how the model functions. The model of choice in this dissertation is a
Naive Discriminative Learning or NDL model (Baayen et al., 2011; Baayen and
Ramscar, 2015).

Naive Discriminative Learning (NDL)

NDL is a theory of lexical processing, which is made explicit in a computational
model. The training phase of the model can be seen as an L1 acquisition process,
whereas the stable end state of the model, where it has reached an equilibrium,
can be considered as the adult state of the linguistic system of the learner. This
end state of the model provides a mathematical characterization of the state
of the lexicon, and can be used to derive several features that describe on-line
processing. Interestingly, these features have proven to be excellent predictors
of a wide range of linguistic phenomena such as lexical decision latencies, word
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frequency effects, phrasal frequency effects, and ERP amplitudes. Moreover,
predictions following from NDL models are consistent with the performance of
young infants in an auditory comprehension task (Baayen et al., 2011; Baayen
and Ramscar, 2015).

An NDL model features a simple two-layer network where input units, such
as sounds or written letters, form the cues that are connected to a set of out-
comes. These outcomes consist of lexomes, which are pointers to a location in
semantic space. See Figure 1.4.2 for an example of a small NDL network. It
is important to note that lexomes are neither form nor meaning, but stable
mediators between variable linguistic forms and meanings (Milin et al., 2017;
Baayen et al., 2017b). Because an NDL network has no hidden layers, the way
its connections are formed over time is a relatively straightforward process.

Figure 1.3: An NDL model with five digraphs as cues, and three lexemes as
outcomes. Figure taken from Baayen and Ramscar (2015).

In an NDL network, all cues and outcomes are connected to each other.
The weights of these connections are established by training the model on a
large set of sentences. First, the form of both the cues and the outcomes have
to be defined: Often the cues are formed by single letters or combinations of
letters (Baayen et al., 2017b, 2016a), and the outcomes are pointers to the
meanings of single words. However, outcomes can also point to grammatical
features (Baayen et al., 2011), idioms (Geeraert et al., 2017), or, as in Chapter
4, lexical bundles.

In the training phase, the model goes over a large set of sentences one by
one, and at each sentence, updates its connections weights between cues and
outcomes. The Rescorla-Wagner learning rule (Rescorla et al., 1972) specifies
how these connection weights are updated. Rescorla-Wagner equations have
been quite successful at describing how animals and humans learn (Arnon and
Ramscar, 2012), which motivates their use in a model that tries to capture how
humans build up their linguistic knowledge over time.

The way the Rescorla-Wagner equations work is by comparing the predic-
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tions made on the basis of the input cues (i.e. what outcomes are expected given
these letters?) and the actual outcomes. When a prediction is correct, the asso-
ciation weight between the cue and outcome is strengthened. Conversely, when
a prediction is incorrect, that is, when a cue occurs without an outcome, their
association weight is weakened.

A cue is informative and thus discriminative if strong connection weights
lead to only a small number of outcomes. However, if a cue is more or less
evenly connected to a lot of different outcomes, then this specific cue is not a
strong predictor of any outcome. Determiners are bad predictors of the identity
of any multi-word unit, whereas the word happily is a strong discriminative cue
for the outcome happily ever after.

After the training phase, the weights of the model provide a mathematical
characterization of the state of the lexicon. More specifically, they indicate
how well outcomes can be discriminated given a certain set of input cues.
From this network predictions can be made: One can extract features that can
subsequently be put into a statistical model that aims to describe experimental
data.

Implementing lexical bundles in NDL

Not only is it relatively easy to understand the inner workings of a NDL model,
its way of learning over time is implemented using a cognitively plausible learn-
ing algorithm. This algorithm has been proven useful in describing (implicit)
learning in animals and humans (Ramscar et al., 2010, 2013; Ramscar and
Yarlett, 2007), thereby positioning this model of linguistic behavior also in
an evolutionarily and cognitively plausible context. In order to further under-
stand the processing of lexical bundles, it is therefore worthwhile to see how
well an NDL model that incorporates lexical bundles performs in explaining
experimental data.

Implementing lexical bundles in NDL would amount to implementing these
units as lexomes — in other words, items that function as unitary items in
processing. Not only will this implementation shed more light on lexical bundle
processing and the factors that play a role therein, but it will also provide a
characterization of lexical bundles, when considering their status in the model.

1.5 This dissertation

Chapter 2 comprises a study on reading lexical bundles by both younger and
older adults. Their eye movements were monitored with an eye-tracker, and
these data have been analyzed using GAMMs. Results showed no differences
in the processing of lexical bundles, but did show differences between the age
groups in how they processed single words and bigrams. These differences are
argued to originate from changes in cognitive and physical skills.



16 1.5. This dissertation

Chapter 3 is about listening to lexical bundles. While being hooked up to an
EEG machine, participants listened to a diverse set of lexical bundles. CForest
modeling of the results reveals the time course of lexical bundle processing and
the intricate roles that single word frequencies, bigram frequencies, and trigram
frequencies play.

Chapter 4 combines two behavioral experiments, where people read and
produced lexical bundles, with an NDL model containing these same lexical
bundles. Predictors taken from the NDL model are quite successful at capturing
variance in the experimental data, testifying to the usefulness of using features
other than traditional frequency measures to explain lexical bundle processing.

The last chapter, Chapter 5, discusses the converging and diverging results
coming from these different experimental techniques and statistical modeling
and aims to provide a rich and multi-faceted overview of lexical bundle pro-
cessing.



CHAPTER 2

Reading
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Old and young: How language experiences
(do not) shape the reading of lexical bun-
dles
Saskia E. Lensink, Niels O. Schiller, Arie Verhagen

abstract
Repeated exposure to common combinations of words is believed to result
in the use of these combinations as chunks in language processing. If this is
true, then it is expected that older participants will process lexical bundles
differently due to their larger experience with language. We report on an
eye-tracking study where a group of younger adults and a group of older
adults read through a list of frequent Dutch lexical bundles. We made use
of non-linear mixed-effects statistical models to study which linguistic and
non-linguistic features play a role in reading, and what functional shape their
relationship with different dependent reading measures has. We found no
age-related differences in how lexical bundles are processed. The results show
an intricate interplay of both language-related factors such as frequencies and
perceptual/oculomotor factors such as viewing position and regressions. We
furthermore found an Inverted Frequency Effect for trigrams, where more
trigrams elicit longer fixation durations. We argue that this effect might be
caused by either lexical competition, phrasal processing that is different from
word processing, or a reading strategy.

Keywords eye-tracking; aging; multi-word units; mixed-effects modeling

2.1 Introduction

Usage-based theories of language propose that language usage shapes language
representations (Bybee, 2010; Goldberg, 2003). These theories predict that if
certain words co-occur often in usage, they become chunked over time. These
multi-word units are thought to increase the speed and efficiency of processing.
Indeed, recent experimental evidence has shown that language users employ
multi-word units in processing. They speed up production latencies, modulate
electrophysiological brain responses, and influence reading behavior (Arnon
and Snider, 2010; Hendrix et al., 2017; Lensink et al., submitted; Siyanova-
Chanturia, 2013; Tremblay and Tucker, 2011). However, most research focuses
on relatively young adult participants.

If usage indeed shapes the way language is represented, then accumulated
years of language experience will have implications for the role multi-word
units play in storage and processing. From this usage-based perspective two
inconsistent predictions can be derived: Either older adults employ more multi-
word units actively to speed up processing, or they employ less multi-word
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units, but instead are more efficient in parsing sentences than younger readers.
This study sets out to explore which of these two possibilities applies to multi-
word unit processing.

Accumulated experience with multi-word units could lead to a stronger
representation of those units, and, due to a growing experience with other and
more diverse forms, older adults would have a larger set of multi-word units in
general. This could lead to a greater use of and reliance on multi-word units in
processing. Conversely, older adults could employ less or no multi-word units
in processing if their accumulated experience with language improves skills in
combining single words and parsing sentences. After all, it is well-known that
children at first use unanalyzed chunks in their speech productions, which they
start to analyze and decompose only later (Tomasello, 2009).

To explore if and how the use of multi-word units in processing changes
over the years, we ran an eye-tracking experiment where we visually presented
frequent lexical bundles to two groups: People in their twenties and people
in their sixties. In what follows, we will first discuss what general differences
exist between younger and older adults in language processing. We will zoom in
and discuss what is known about the processing of multi-word units in reading
paradigms, and discuss our predictions on how multi-word unit processing will
differ between younger and older readers.

2.1.1 Language processing in younger and older adults

Research on the influence of aging on language processing has shown that
production skills deteriorate over the years, whereas most comprehension skills
remain intact (Shafto and Tyler, 2014). Vocabulary size even grows over the
years (Keuleers et al., 2015). Also, there is no evidence for neural reorganization
of core language areas due to age (Shafto and Tyler, 2014). So even though
aging is often associated with becoming slower, less precise, and more forgetful,
most linguistic abilities stay stable or improve over the years. However, when
it comes to reading behavior, there are several differences between younger and
older adults.

Generally, there are more quantitative than qualitative differences
(Laubrock et al., 2006). Older readers have a smaller and a more symmetrical
perceptual span (Rayner et al., 2009). They are affected more by the blocking
of foveal information than younger readers, indicating that they are less effi-
cient in processing parafoveal information (Rayner et al., 2014). Furthermore,
seniors make more and longer fixations, tend to skip more words, make longer
saccades, and more regressions, resulting in slower reading overall (Laubrock
et al., 2006; Rayner et al., 2006, 2009).

Therefore, age-related differences in reading lexical bundles are to be ex-
pected. The next section will outline what we know about reading lexical bun-
dles by younger adults.
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2.1.2 Reading lexical bundles in younger and older adults

In this study, we use eye-tracking to study if and how multi-word units are
processed differently by younger and older adults. Eye-tracking offers detailed
insights into how cognition handles written text, tracking different dependent
measures over time: First fixations reflect early processes, while later fixations
reflect later processes, and the number of fixations reflect the overall processing
difficulty over the whole region considered. Early processes of reading involve
lexical access and early integration of information; later processes involve fur-
ther integration of that information, re-analysis, and recovery from processing
difficulties (Siyanova-Chanturia, 2013). There are several advantages to using
eye-tracking when studying the processing of lexical bundles. Not only can pro-
cessing be tracked precisely over time, it is also possible to study both phrase-
and word level patterns at the same time (Carrol and Conklin, 2015).

In an eye-tracking study, Siyanova-Chanturia et al. (2011b) investigated
how frequent binominal phrases such as bride and groom were processed in
contrast to their reversed counterparts, groom and bride. The authors found
clear phrasal frequency effects, where more frequent configurations such as
bride and groom were read faster than their reversed counterparts. Crucially,
only phrasal frequencies surfaced as significant predictors; the frequencies of the
first and second content word did not influence reading times. A comparable
effect was found in both early and late measures.

Looking at a wider range of compositional multi-word units, Lensink et al.
(submitted) studied the reading of frequent Dutch lexical bundles. They used
predictors from a naive discriminative model (Baayen et al., 2011) to model
reading measures. They found that participants are already sensitive to prop-
erties of a lexical bundle from the first fixation onwards. Research on the reading
of compounds has also shown early full-form frequency effects, sometimes as
early as in the first fixation (Kuperman et al., 2009; Miwa et al., 2017).

2.1.3 The present study

When considering previous research, it is not immediately clear if and how
the reading of multi-word units will differ between younger and older adults.
However, it is likely that the general reading patterns differ quantitatively,
with older adults using more and longer fixations, and, due to their shorter
perceptual span (Rayner et al., 2009), we expect older adults to react differently
to shorter and longer trigrams.

It is unclear if the two groups will respond differently to single word fre-
quencies, bigram frequencies, or trigram frequencies, and what the direction
of the effects might be. Seniors could have more and stronger representations
of lexical bundles due to a larger and more diverse experience with language.
In that case, stronger facilitative effects of frequent bigrams and trigrams are
expected in older adults, leading to shorter fixation durations and less fixations
than in younger adults.
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Alternatively, older adults might use fewer multi-word units in processing
due to their larger experience and greater efficiency with retrieving and com-
bining single words. In that case, they will make less or no use of multi-word
units. This would manifest in the data as a weak or no phrasal frequency effect
for older adults.

This study explores these possibilities by collecting eye-tracking data on
reading lexical bundles from both older and younger adults, and by statisti-
cally modeling these data1. Section 2.2 reports on the eye-tracking experiments
conducted on both groups. In Section 2.3 we report on the results of these ex-
periments. Our interpretations, the limitations, and wider implications of this
study are discussed in Section 2.4.

2.2 Materials and Methods

2.2.1 Participants

We recruited two groups of participants: A group of people between 18 and 30
years of age, and a group of people between 60 and 72 years of age. We will
refer to these groups as the ’younger’ and the ’older’ group, respectively. The
younger group consisted of 32 participants, from which we lost the data of seven
participants due to technical issues. The remaining 25 (10 male) were on average
21.4 years old. For the older group, we recruited 31 participants, out of which
we lost the data of four participants due to technical issues. The remaining 27
(15 male) were on average 66.2 years old. All participants were native speakers
of Dutch, had normal or corrected-to-normal vision, and received a monetary
or culinary2 reward for their time.

2.2.2 Stimuli

A set of three hundred trigrams was randomly extracted from the top one per
cent of the most frequent trigrams in the Dutch OpenSoNaR corpus (Oostdijk
et al., 2013). We sampled from the top one per cent to ensure that under any
usage-based account, these combinations are predicted to be stored as chunks
and are thus likely to influence processing over and above the single words they
consist of (Bybee, 2010). We only included transparant trigrams where the
meaning of the whole can be largely deduced from the meanings of its parts,
so-called ’lexical bundles’ (Tremblay and Tucker, 2011; Wray, 2012).

The stimuli were put in two different experimental lists. We ensured that
there was no semantic or phonological overlap between stimuli in two consecu-
tive trials, to prevent priming effects.

1The data and analyses that support the findings of this study are openly available in
Figshare at https://doi.org/10.6084/m9.figshare.5982340.v1.

2Most participants from the older group refused to accept the monetary reward, so the
experimenter decided to offer them a cup of coffee or tea with a snack instead.
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Trigram Continuation Correct
de hele wereld ’the whole world’ staat de kast ’stands the closet’ incorrect
na de pauze ’after the break’ loop ik terug ’I walk back’ correct
ik denk dat ’I think that’ zij druk is ’she is busy’ correct

Table 2.1: Three trials containing both a trigram and a follow-up sentence
fragment, of which the participants had to indicate whether or not it constituted
a grammatical continuation of the previous trigram.

2.2.3 Procedure

Prior to the experiments, participants filled in a questionnaire about their lan-
guage background and gave informed, written consent. They were seated in a
sound-proof room and were asked to put their chin on a head rest to minimize
head movements. Their dominant eye was recorded with an Eyelink 1000 eye-
tracker (SR Research Ltd) at a 500 Hz sampling rate. At first, the experimenter
performed eye calibration using a 9-point calibration procedure.

After successful calibration, participants saw a screen with written instruc-
tions. The experiment started with a practice block of five trials, where partici-
pants were asked to read silently through a set of trigrams presented one by one
on the computer screen. After the practice block, participants continued reading
the full stimulus set of three hundred trigrams. At random intervals, a trigram
was followed by a small fragment, which could either form a grammatical or an
ungrammatical continuation of the previous trigram. This continuation stayed
on the screen until the participant clicked on a box with ’correct’ or ’incorrect’
with a computer mouse. See Table 2.1 for some example trials. Participants
received immediate feedback by means of a screen displaying either the word
’correct’ or ’incorrect’.

The experiments consisted of three blocks, with short breaks in between.
At the start of each trial, a fixation point was presented for 500 ms at a fixed
position at the left-hand side of the screen, to ensure reading from left to
right. Trigrams were presented in a black, mono-spaced font (Consolas, size
22) against a white background for 1,200 ms. Trials were separated by an inter-
stimulus interval of 1,000 ms.

2.2.4 Generalized Additive Mixed-Effects models

To model the differences in reading behavior of the two groups, we used gener-
alized additive mixed-effects models (GAMMs) (Hastie and Tibshirani, 1990;
Wood, 2006). GAMMs are able to model nonlinear relations between predic-
tors and an outcome variable using spline-based smoother functions, creating
wiggly curves for single predictors and wiggly (hyper-)surfaces for interactions
between predictors. Moreover, they incorporate random effects, that can model
individual variation either as variations in the intercepts or the slopes, or as
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a combination thereof, as variations in wiggly curves. To prevent overfitting,
smooths are penalized for wiggliness. Crucially, the data is not averaged over
participants and items so that the modeler can work with the original, complete
data.

There are several advantages to using GAMMs over traditional analysis
methods used in experimental linguistics, such as ANOVAs. One obvious ad-
vantage is not having to average the data, which allows the modeler to gain
richer and more precise insights into the cognitive processes taking place during
reading, and it is possible to model a random-effects structure (Baayen et al.,
2008; Bates et al., 2015). Second, it is possible to model nonlinearities, so that
the modeler is not restricted by the assumption that the relationship between
the dependent variable and the predictor variables is linear. Moreover, by in-
cluding predictors such as the trial number, one can control for the changes
in attention of participants over the course of the experiment (Baayen et al.,
2017a).

GAMMs have been applied to several linguistic datasets in previous re-
search, including experimental studies using EEG (De Cat et al., 2015; Hendrix
et al., 2017; Kryuchkova et al., 2012) or eye-tracking (Lensink et al., submitted).

We conducted an exploratory analysis in which we tested if and how age has
an effect on several eye-tracking measures. We used the mgcv package (Wood,
2006) for fitting GAMMs to the eye-tracking data. To track the reading of
lexical bundles over time, we looked at the first fixation durations, second
fixation durations, and the number of fixations. For the number of fixations,
we fitted a generalized linear model with a Poisson link.

We explored if age interacted with any of the frequency measures to see if
frequencies have different impacts on different age groups. We furthermore ex-
plored if age interacted with any of the other predictors, to check for differences
in reading patterns between older and younger adults.

2.3 Results

Prior to analysis, we automatically assigned the fixations to different regions of
interest (the first, second, or third word) on the basis of their location on the
screen. We furthermore removed fixations that landed too far from the written
text. We log-transformed all frequencies and fixation durations to approach
normality.

2.3.1 First fixation durations

First fixation durations provide an insight into the first processes that take
place when participants read a trigram. As previous work showed that not
only frequency information plays a role, but also the length of the trigram in
characters, and the horizontal location of the fixation (Lensink et al., submitted,
see Chapter 4), we also tested for inclusion of these measures here.
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As the frequencies of the second word (B) and the first bigram (AB), as well
as the frequencies of the second bigram (BC) and the trigram (ABC) correlated
to a large extent (r > 0.6), we only included the one predictor of the correlated
pairs that explained most of the variance in the data. For this dataset, the
frequencies of the first bigram were better predictors than the frequencies of the
second word, and the frequencies of the trigram outperformed the frequencies
of the second bigram, so we included only the AB and ABC frequencies.

The model of the first fixation durations contains a significant effect of age
group, with younger participants spending more time on their first fixations
than older participants. In contrast, previous studies report that older adults’
fixations are longer than those of younger adults (Rayner et al., 2006, 2009).
However, the effect of age that we found here is small.

The model contains significant smooths of the current fixation position, the
length of the trigram, the frequency of the last word (logFreqC), the frequency
of the first bigram (logFreqAB), and the frequency of the whole trigram (logFre-
qABC). There are furthermore significant random intercepts per subject and
experimental item (trigram), and random slopes per subject for the fixation lo-
cation, the length of the trigram, and the frequencies of the first bigram. These
random slopes show that participants differ significantly from each other on
these dimensions. See Table 2.2 for details.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 4.5155 0.4458 10.1286 < 0.0001
difference young-old 1.0411 0.5103 2.0403 0.0413
B. smooth terms edf Ref.df F-value p-value
s(fixation location) 6.2285 7.3093 25.6189 < 0.0001
s(length) 1.0002 1.0003 130.4974 < 0.0001
s(logFreqC) 1.0744 1.1195 26.6106 < 0.0001
s(logFreqAB) 1.0003 1.0005 4.5563 0.0328
s(logFreqABC) 2.7905 3.2837 5.1029 0.0013
s(trigram) 105.0741 296.0000 0.6267 < 0.0001
s(subject) 43.8588 50.0000 636795.2705 < 0.0001
s(fixation location,subject) 45.8459 51.0000 599751.5208 < 0.0001
s(length,subject) 33.1212 51.0000 32716.1236 0.0008
s(logFreqAB,subject) 19.9314 51.0000 14907.2289 0.0003

Table 2.2: Results of the model of the First Fixation Durations.

The significant smooths are plotted in Figure 2.1. The top panels show the
effects of the fixation location and the length of the trigram. The first panel
shows that when the first fixation lands near the beginning of the trigram,
participants tend to re-fixate quickly, likely because they cannot extract much
information from the text. However, from 425 pixels to the left-hand side of
the screen onwards, participants are able to receive more information from
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the signal, and fixate longer3. The effect of the length of the trigram shows
a negative slope. When a trigram is longer, there is more to be read, and
participants likely want to gain more information as quickly as possible, and
therefore are quick to re-fixate.

300 400 500 600 700

-1
.0

0
.0

0
.5

1
.0

1
.5

location first fixation

fir
st

 fi
xa

tio
n

 d
u

ra
tio

n
s

10 15 20

-1
.0

0
.0

0
.5

1
.0

1
.5

length in characters

fir
st

 fi
xa

tio
n

 d
u

ra
tio

n
s

10 12 14 16 18 20

-0
.4

-0
.2

0
.0

0
.2

0
.4

log frequency word C

fi
rs

t 
fix

a
tio

n
 d

u
ra

tio
n

s

8 10 12 14 16 18

-0
.4

-0
.2

0
.0

0
.2

0
.4

log frequency bigram AB

fi
rs

t 
fix

a
tio

n
 d

u
ra

tio
n

s

4 6 8 10 12 14

-0
.4

-0
.2

0
.0

0
.2

0
.4

log frequency trigram

fi
rs

t 
fix

a
tio

n
 d

u
ra

tio
n

s

Figure 2.1: Partial effects of the model of the First Fixation Durations. The top
panels show the effects of the horizontal location of the fixation in pixels and
the length in characters of the trigram. The bottom panels show the effects of
the frequencies of the last word, the first bigram, and the trigram.

The bottom panels of Figure 2.1 show the effects of the frequencies of the
last word, the first bigram, and the whole trigram. The frequencies of the third
word and the first bigram show negative slopes. That higher frequencies lead
to shorter fixation durations has been reported before (Carrol and Conklin,
2015; Rayner, 1998; Siyanova-Chanturia, 2013). It is striking, however, that
frequency information from the third word of a trigram already plays a role
at the first fixation on that trigram, and that its effect appears to be stronger
than that of the frequency of the first bigram.

The last panel displays the effect of the trigram frequencies. There is a sig-
nificant effect of the trigram frequency, which shows a positive-going, slightly
curved, slope. Already at the first fixation, trigram frequencies modulate read-
ing behavior. Strikingly, higher trigram frequencies lead to longer fixations.
This ’Inverted Frequency Effect’ is highly unexpected. We propose that this

3Recall that all trigrams were left-outlined to the same location on the screen.
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is a reflection of a reading strategy, where readers spend more time on the
first fixation when reading something highly frequent and familiar, as they will
be able to already process a large part of this high-frequency lexical bundle,
without having to re-fixate. We will get back to this point in our discussion of
the second fixation durations and the number of fixations, and in the general
discussion of this paper.

There are no significant interactions of the different frequency measures with
age. A small and probably not robust main effect of age suggests that older
readers on average spend less time on their first fixations than younger readers.
However, this difference is not tied to how the two groups process trigrams.
Older and younger adults seem to process trigrams and their constituent parts
in the same way at this stage.

2.3.2 Second fixation durations

After the initial stage of processing, readers estimate where to move their eyes
next, and jump to their next fixation. In this stage, the reader has already
processed some information of the trigram presented, and continues integrating
previous bottom-up information, top-down expectations, and current input. All
these processes are reflected in the second fixation durations.

Out of the total of 13,960 second fixations made, 6,069 (43.5%) constitute
regressions. To take into account that the second fixation could be a regression
or a forward fixation, we included a factor specifying whether or not the fixation
is a regression (called ’regression’ in Table 2.3).

The model contains a main effect of regression, and two interaction terms
with the locations of the first and second fixations and the regression factor.
The model furthermore includes the length of the trigram, the frequencies of
the last word and the trigram, and trial number. All predictors except for trial
number are significant. We also included random intercepts for items (trigrams)
and subjects, and random slopes of the fixation positions, the length of the
trigram, the frequencies of the last word and the trigram, and random smooths
for trial per participant. The significant random slopes indicate that there is
a significant amount of individual variation in how these measures influence
processing in different participants.

All main smooth terms are displayed in Figure 2.2. The first two panels show
the interaction of regression with the locations of the first and second fixations.
The interaction effect is clearest in the first panel. If the second fixation is a
regression (red color), then this second fixation lasts longer the further the first
fixation landed into the trigram. Because the perceptual span is asymmetrical
with a larger viewing range to the right of the fovea (Rayner, 1998), participants
can benefit less from fixations near the end of the trigram. Therefore, if the
first fixation landed far into the trigram, where less information is available,
then participants benefit more from a regression, where they will then spend
more time.

If, however, this second fixation is a forward fixation (blue color), then the
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.4774 0.1482 36.9602 < 0.0001
regressionY 0.0971 0.0894 1.0861 0.2775
B. smooth terms edf Ref.df F-value p-value
s(firstFixX):regressionN 4.6652 5.7172 4.2490 0.0004
s(firstFixX):regressionY 2.4079 3.0850 26.2545 < 0.0001
s(secondFixX):regressionN 2.1114 2.7240 8.4785 0.0001
s(secondFixX):regressionY 6.0018 6.6730 8.6134 < 0.0001
s(length) 2.8702 3.4394 32.1737 < 0.0001
s(logFreqC) 2.9538 3.5100 9.6736 < 0.0001
s(logFreqABC) 1.0004 1.0007 15.4801 0.0001
s(trial number) 1.0003 1.0005 2.0256 0.1547
s(trigram) 70.0836 297.0000 0.3222 0.0003
s(subject) 36.3351 51.0000 68576.2413 0.0002
s(firstFixX,subject) 23.7373 51.0000 18384.3967 0.0550
s(secondFixX,subject) 44.2694 51.0000 84933.8703 < 0.0001
s(length,subject) 29.3250 51.0000 13099.5019 0.0002
s(logFreqC,subject) 18.1087 51.0000 4495.9120 0.0483
s(logFreqABC,subject) 17.5828 51.0000 3799.1280 0.0090
s(trial number,subject) 31.3173 51.0000 2029.1476 < 0.0001

Table 2.3: Results of the model of the Second Fixation Durations.

effect almost flips: The further the first fixation landed into the trigram, the
less information participants can gain from a forward fixation, and they will
quickly re-fixate. Note that this does not hold if the first fixation landed near
the beginning of the trigram — in that case, a second fixation further into the
trigram does provide new information, leading to longer second fixations.

The interaction of regression and the location of the second fixation is less
clear. Overall, when the second fixation is not a regression (blue color), fixations
further into the trigram will last longer. If the participants did regress (red
color), then the overall trend seems to be that the second fixation will last a
bit shorter the further this fixation lands into the trigram. If a regression does
not land far back, but more towards the end of the trigram, then not much new
information can be gained, and a participant will not feel the need to spend
more time than necessary at that fixation.

The third panel from the top row displays the effect of the length of the
trigram in characters. Like in the case of the first fixation durations, longer
trigrams take longer to read.

The bottom two panels of Figure 2.2 show the effects of the frequencies of
the last word and the trigram itself. The frequency of the last word is small,
and facilitative: The durations of the second fixations are shorter when the
last word of the trigram is more frequent. As for the trigram frequencies, we
are again seeing an Inverted Frequency Effect as in the first fixation durations:
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Figure 2.2: Partial effects of the model of the Second Fixation Durations. The
first two panels in the top row show the interactions of the first and second
fixation locations with a factor specifying whether or not the second fixation
was a regression. The third top panel shows the effect of the length in characters.
The bottom two panels display the effect of the frequencies of the last word
and the trigram.
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The more frequent a trigram is, the longer the fixation will take. As it is a
widely-reported result that higher frequencies correlate with shorter processing
latencies (see e.g. Rayner, 1998), this is highly unexpected.

Discussion early reading measures

Both the models from the first fixation durations and the second fixation du-
rations show surprising and unexpected results in the form of an Inverted Fre-
quency Effect. It is well-known and widely accepted that processing becomes
increasingly easier the higher an item’s frequency is (Harley, 2013). Moreover,
shorter looking times are thought to reflect easier processing (Rayner, 1998;
Reichle et al., 1998, 1999), so high frequency items are expected to correlate
with short looking times. However, we have found exactly the opposite in our
data. Higher trigram frequencies correlate with longer fixation durations. How
to reconcile our findings with decades of psycholinguistic findings?

Besides the duration of fixations, the number of fixations made is also an
indicator of ease of processing. The easier it is to process a (string of) word(s),
the fewer fixations are needed to fully process it (Rayner, 1998). When people
need few fixations to read and process a multi-word unit, because of its high
phrasal frequency, they might strategically spend more time at their early fix-
ations. Due to the high frequency of the item, readers will recognize the item
early in processing, and will spend more time at this early stage of process-
ing because they aim to process as much information as possible as early as
possible.

For a low-frequency multi-word unit, however, more fixations will be needed,
and people are expected to spend less time on their first fixations. As the item
is not as frequent, most readers will not recognize the item straightaway, and
therefore readers will tend to re-fixate quickly to gain more information from
next fixations. This hypothesis can be tested by considering the role that the
early fixation durations play in the number of fixations made. If it is indeed
true that easier processing leads to longer first and second fixations but fewer
fixations in total, then there should be a negative relationship between the
length of the first and second fixations and total number of fixations made. We
will explore this possibility in the next section.

2.3.3 Number of fixations

The number of fixations participants make, reflects the overall difficulty of
processing (Rayner, 1998). The more fixations a participant makes, the harder
it was for him to process the written text. This measure provides a summary
of overall processing, as it aggregates the whole time course of reading of the
presented stimulus. It can test our hypothesis that longer first and second
fixations actually indicate ease of processing: If longer first fixations correlate
with fewer fixations in total, then overall the whole trigram was easy to process,
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and participants actually already used the first fixations to take in and process
as much information as possible.

The model did not show any significant main effects of or interactions with
age. This means that younger and older adults do not differ in how many
fixations they make on frequent lexical bundles. There are significant smooths
of the durations of the first and second fixations, the frequency of the first word,
and a near-significant effect of trial number. There are moreover significant
intercepts of items (trigrams), and significant random slopes of the frequency
of the first word per subject, indicating that the reaction to the first word
frequency varied a lot among the participants.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 1.3691 0.0146 94.0710 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(duration first fixation) 6.7437 7.6910 759.3490 < 0.0001
s(duration second fixation) 4.6009 5.6334 821.3799 < 0.0001
s(logFreqA) 1.0000 1.0000 7.3502 0.0067
s(trial number) 1.0000 1.0001 2.8522 0.0913
s(trigram) 266.4023 299.0000 2785.6496 < 0.0001
s(subject) 0.0025 51.0000 0.0025 0.4890
s(subject, dur first fix) 0.0002 51.0000 0.0001 0.8585
s(subject, dur second fix) 0.0003 51.0000 0.0003 0.6860
s(subject, logFreqA) 32.2192 51.0000 92.2494 < 0.0001
s(subject, trial number) 0.0001 51.0000 0.0001 0.9403

Table 2.4: Results of the model of the Number of Fixations.

The plots in Figure 2.3 show how longer durations in the first and second fix-
ations correlate with fewer fixations overall, as we hypothesized in section 2.3.2.
As fewer fixations indicate easier processing, it must be the case that readers
prefer to spend more time at their early fixations when an item is easy to pro-
cess, while making fewer fixations overall. In other words, it is not necessarily
the early measures that reflect ease of processing of phrasal units, but late
measures such as number of fixations. This is especially relevant in light of the
unexpected findings for the durations of the first and second fixations, where
higher trigram frequencies result in longer looking times.

It is surprising to see that the first word frequency is the only frequency
information that significantly influences the number of fixations — especially
since this first word frequency did not play a role in the earlier measures. Most
of the first words of the trigrams used in this study are function words (93%). It
seems unlikely that high frequency function words would aid in processing, as
high frequency function words typically can be followed by a much larger set of
words than low frequency function words. This would make processing harder,
instead of easier. Because of the unbalanced distribution of function words and
content words at the first position of the trigram in our set of stimuli, it is
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important to run a replication study where this distribution is more balanced.
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Figure 2.3: Partial effects of the model of the Number of Fixations. The first
two plots display the effects of the durations of the first and second fixations.
The third plot show the effect of the frequency of the first word of the trigrams.

2.4 General discussion

To study how the processing of written lexical bundles proceeds over time, we
tracked the eye-movements of older and younger people reading a large set of
high-frequency Dutch trigrams. We expected to see an age-related difference in
the processing of multi-word units. Specifically, we expected that the influence
of the trigram frequencies would differ between the age groups, but we were un-
certain how that difference would manifest itself. We predicted to either see an
increased reliance on multi-word units in older adults, or a decreased reliance
on multi-word units and an increased reliance on combinatorial processes. How-
ever, we found no age-related differences in how trigrams are processed, but
only quantitative differences between the age groups in the first fixations, where
older adults tend to spend less time than younger adults. This is unexpected
as older readers are known to read slower (Laubrock et al., 2006; Rayner et al.,
2006, 2009). However, the effect is small and probably not robust, as we did
not find any effects of age in the second fixations and the number of fixations
made.

There is a possibility that the results do reflect an increased reliance on
lexical bundles in older adults. As older adults are known to have a larger
lexicon (Keuleers et al., 2015), and since searching through a larger lexicon is
more time-consuming, resulting in slower latencies (Ramscar et al., 2014), not
finding any slower latencies in lexical bunding reading might actually indicate
a facilitative effect of lexical bundles in older adults. Still, it is not possible
to establish any findings from a null-effect. Future studies, both experimen-
tal and computational, could perhaps shed more light on the validity of this
speculation.
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The non-linear mixed-effects modeling approach has laid bare a precise
overview of how people read lexical bundles over time, with the surprising
findings that readers seem to employ a strategy of spending more time on
their early fixations when reading a highly frequent lexical bundle. The models
of the first and second fixation durations and the number of fixations show
an intricate interplay of several predictors, among which the locations of the
fixations themselves, the location of the previous fixation, a factor specifying
whether or not a fixation is a regression, the length of the trigram in number of
characters, and several frequency predictors. Moreover, the inclusion of random
effects structures has shown that there are substantial individual differences in
how readers process the trigrams.

From the first fixations onwards, several frequency measures play a role in
processing, including the trigram frequency. From the first fixation onwards,
readers already manage to identify which lexical bundle they are reading. This
is similar to findings in Miwa et al. (2017), who found whole-form frequency
effects of trimorphemic compounds already in the first fixations, and to Lensink
et al. (submitted), where full-form trigrams played a role from the first fixation
onwards.

At first, the trigram, the first bigram, and the last word play a role in
processing. At the second fixation, the effect of the first bigram frequency has
worn off, and the effect of the frequency of the last word has been attenuated.
It seems to be the case that readers try to take into account several levels of
information at once at the beginning — the single words, the bigrams, and the
trigram — whereas later onwards, they focus more on further confirming what
they have already processed, and are more strategic in where they move their
next fixations. The intricate pattern of interactions of fixation locations and
regressions testifies to the latter.

2.4.1 The Inverted Frequency Effect

The shape of the effect of the trigram frequencies is puzzling — higher tri-
gram frequencies lead to longer fixations, whereas higher unigram and bigram
frequencies lead to shorter fixations. Lensink et al. (submitted) also found an
inhibitive effect of trigrams in a reading task. As shorter fixations indicate
ease of processing (Rayner, 1998), and as higher frequencies items are easier to
process, this result is unexpected. Moreover, modeling studies of reading be-
havior (Reichle et al., 1998, 2012) have shown repeatedly that higher frequency
items correlate with shorter reading times, also in older readers (McGowan and
Reichle, 2018).

In order to check if we are not dealing with an effect of suppression or
enhancement (Wurm and Fisicaro, 2014) that caused the sign of the effect
to flip, we inspected the results of a model with trigram frequency as the
sole predictor, and found that the trigram frequencies still have an inhibitive
effect on fixation durations. We also checked the correlation between trigram
frequency and the first fixation duration, and found a positive correlation, r



Reading 33

= 0.05, again showing that the direction of the effect is probably not due to
suppression or enhancement.

We have referred to this inhibitive effect of trigram frequencies as the In-
verted Frequency Effect. It is reminiscent of the Inverted Optimal Viewing
Position Effect (Vitu et al., 2001), where fixations at the center of words —
thought to be the optimal place for processing, and thus expected to corre-
late with shorter fixations — elicit longer fixations. An explanation for this
effect could be that Letters in the center of words have more interference from
neighboring letters than letters at the margins.

As for the Inverted Frequency Effect, it is possible that the effect of trigram
frequencies does not reflect ease of processing, but competition between similar
trigrams. Higher frequency trigrams are part of a larger group of similar multi-
word units, and those might have an inhibitive effect, resulting in longer looking
times. A competition account is consistent with the timing of the effect, early
in processing, where lexical access and thus competition could still take place.
However, this does not explain why only trigrams would be affected in this
way — neighborhood density effects have been reported for single words too
(Baayen, 2010; Yates et al., 2008).

An alternative explanation is that high frequency trigrams activate a larger
semantic network of associated meanings, senses, and synonyms, which might
slow down processing. Again, this does not explain why single words and bi-
grams are affected differently. It could be that enlarged semantic processing is
only elicited by phrasal elements. The trigrams used in this study are mostly
constituents aan het begin ’at the beginning’. If it is indeed the case that more
phrasal units elicit another type of processing than non-phrasal combinations
of words, then it is expected that there will be a clear difference in processing
between phrasal lexical bundles and non-phrasal lexical bundles — a prediction
that has yet to be tested.

A third possibility, i.e. a reading strategy, was tested in Section 2.3.3. We
hypothesized that readers prefer to spend more time at their early fixations
when an item is easy to process, while making fewer fixations overall. Indeed,
we found that fewer fixations correlate with longer first and second fixation
durations. The more time readers spend at their early fixations, the fewer fixa-
tions they will need overall. Therefore, it is not necessarily the early measures
that reflect ease of processing, but late measures such as number of fixations.
Again, like in the competition account and the enlarged semantic processing
account, it is not clear why only trigrams show an Inverted Frequency Effect.

2.4.2 Limitations and future directions

In this study, we looked at two groups: Younger and older readers. However,
by dichotomizing the age variable, it is not possible to know if these differences
change gradually over time, or if there are one or more abrupt changes. Also,
the age split is chosen arbitrarily, and might not align with what the real distri-
bution looks like in the population, which in turn could increase the probability
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of finding spurious results (McWhinney et al., 2016). Moreover, as previous re-
search has shown that the morphological complexity of a language has a bearing
on whether or not age-related differences can be found (Reifegerste et al., 2017),
it could be that age-related differences in lexical bundle processing can be found
in other languages than Dutch.

Furthermore, it might be the case that the age gap between the two groups
was not large enough to find age-related differences in the processing of lexical
bundles. For children, whose lexicon is a representation of a relatively small
set of experiences, each new instance of a word or lexical bundle will have
a relatively large impact on the form of the representation of that word or
lexical bundle. However, for an adult, the impact of each new instance of a
word or lexical bundle will be much smaller, as their present representations
are an accumulations of a much larger set of experiences and as such are much
more stable and robust than the representations a child has. Therefore, the
differences in representations of lexical bundles are expected to be much larger
between children and adults than between younger and older adults.

Moreover, if we assume that representations of lexical bundles in memory
are proportional to the log frequencies of these lexical bundles, then using only
high-frequency stimuli might obscure differences between younger and older
adults4. Suppose that a certain high-frequency item has occurred 20,000 times
in the lifetime of a twenty-year-old, and 60,000 times in the life of a sixty-year-
old. The ratio of the log of these frequencies, ln(60,000)/ln(20,000), is roughly
1.1. However, the ratio of a low-frequency item that has occurred only 200 times
for a twenty-year-old and 600 times for a sixty-year old, is roughly 1.2. This
larger difference in log occurrences of low-frequency items might make it more
likely to detect a difference in age groups, assuming that even low-frequency
lexical bundles play a role in processing (and there is evidence suggesting they
do (Arnon and Snider, 2010)). Still, the difference in ratios is not that large,
and phrasal frequency effects are much larger for high-frequency items.

The set of stimuli used in this study is limited in its distribution of word
categories and trigram frequencies. A large majority of the first words of the
trigrams are function words, which could skew the results. Moreover, all lexical
bundles have been sampled from the top one per cent most frequent lexical
bundles found in the OpenSoNaR corpus. Still, the present study provides a
starting point for future studies investigating age-related differences in lexical
bundle processing.

Therefore, for future studies, a bigger group consisting of participants of a
more diverse and wider range of ages should be tested, specifically including
children. One can then test if the absence of any age-related effects is robust,
and if not, it will be possible to study how the processing of lexical bundles
changes over the years, if the change over time happens gradually or abrupt,
and, if the latter applies, from what age onwards these changes take place.
Future studies should furthermore take into account the distribution of function

4We thank an anonymous reviewer for this suggestion
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and content words, if the lexical bundles are phrasal units or not, and should
sample from a (much) wider frequency range. These studies should also control
for the neighborhood density of the lexical bundles used, as this might also
cause competition and thus inhibitive effects.

2.5 Conclusion

For the present set of stimuli, we did not find any age-related differences in how
younger and older adult readers process frequent Dutch lexical bundles. Still,
the use of non-linear mixed-effect regression models has allowed us to study
how several linguistic and oculo-motor features play a role and how they inter-
act when people are reading frequent lexical bundles. Trigram frequencies are
an important factor at the early stages of reading. Interestingly, trigram fre-
quencies show an Inverted Frequency Effect, where higher frequency trigrams
correlate with longer looking times. These longer looking times for early fix-
ations in turn correlate with fewer fixations overall — an indication of ease
of processing — which suggests that readers strategically spend more time at
the first fixations when an item is easy to process. These findings show that it
is not necessarily the early measures that reflect ease of processing of phrasal
units.
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Processing spoken multi-word units: an
ERP investigation

Saskia E. Lensink, Antoine Tremblay, Lilian Ye, Arie Verhagen, Niels O. Schiller

abstract
We studied the on-line processing of auditorily presented lexical bundles. Par-
ticipants were presented with a set of high-frequency lexical bundles and
matched controls, while EEG data was collected. We found a sustained early
negativity with an early onset that was more pronounced for the matched con-
trol items. The data were analyzed using conditional inference random forest
modeling (CForest) to gain detailed insights into the time course of auditory
processing of lexical bundles, the possible neural sources recruited over time
and linguistic and non-linguistic factors that mediate auditory processing. We
propose there are three stages that are reminiscent of single word compre-
hension, representing 1) predictive and bottom-up processes; 2) inhibition and
competition; 3) lexical integration. The data provide evidence for an interactive
processing model.

Keywords ERPs, multi-word units, auditory processing, comprehension,
conditional forest modeling

3.1 Introduction

There is a growing body of work suggesting that language users are sensitive to
phrasal frequencies (Bannard and Matthews, 2008; Shaoul and Westbury, 2011;
Siyanova-Chanturia, 2013). This is not surprising when considering idioms such
as kick the bucket, where the meaning of the single words combined does not
equal the meaning of the whole. However, phrasal frequency effects are also
found for frequent, completely regular, and transparent combinations of words
(Arnon and Snider, 2010; Tremblay and Tucker, 2011). These combinations
are often referred to as ’lexical bundles’. Examples of lexical bundles are on the
day or I think that. These combinations are thought to play a role in processing
because of their common co-occurrence, which encourages the brain to chunk
these words together into building blocks of language (Bybee, 2006; Green,
2017).

There is a lot of experimental evidence that phrasal frequencies play a role
in processing when speaking and reading. However, it is not yet clear if these
phrasal frequencies are also important when listening to language. Moreover,
little is known about the time-course of processing of common combinations
of words. This study aims to fill this gap by presenting an EEG study on the
on-line processing of auditorily presented lexical bundles.
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3.1.1 Previous work on the time course of multi-word
unit processing

Previous studies have sought to understand the time-course of lexical bundle
processing by running eye-tracking and EEG experiments. The electrophysio-
logical signal of the brain can be used to derive Event Related Potentials or
ERPs, which are reflections of on-line processing unfolding over time (Kutas
and Van Petten, 1994). Only a small number of studies has used ERPs to in-
vestigate frequent combinations of words, and most of those studies focused on
idioms. In a reading study, Vespignani et al. (2010) compared ERPs elicited
by idioms and literal sentences. Past the recognition point of the idiomatic
phrases – the word past which participants could recognize the phrase as being
idiomatic – idioms elicited an enlarged P300 as compared to their matched
literal phrases. The P300 has been found when participants are presented with
highly predictable items, such as the lexical item white after the presentation
of the sentence The opposite of black is . . . , (Roehm et al., 2007), or the cor-
rect answer to a simple calculation (Fisher et al., 2010). The presence of a
P300 in the Vespignani et al. (2010) study shows that after the recognition
of an idiomatic phrase, items completing the idiom are actively predicted and
pre-activated.

Two previous studies have looked at ERPs of lexical bundles (Hendrix et al.,
2017; Tremblay and Baayen, 2010). Tremblay and Baayen looked at the elec-
trophysiological signal of participants reading regular four-word sequences. The
whole-string frequencies of these sequences ranged from anywhere between very
low (0.01 per million) to very high (100 per million). The authors found that a
higher whole-string probability corresponded to a more negative N1 and a less
positive P1. The N1 and P1 are early ERP components occurring just 100 ms
after stimulus presentation. As the earliest reported frequency effects of single
words occur around 100 ms after stimulus onset (Hauk et al., 2006; Penolazzi
et al., 2007; Sereno et al., 1998), Tremblay and Baayen reasoned that it would
not be possible for multiple words to be accessed and combined within this
short time frame. Therefore, they argued that their results show that four-
word sequences are retrieved holistically, as if they were a single word.

A couple of years later, Hendrix et al. (2017) investigated the online pro-
cessing of lexical bundles by presenting participants with a prime consisting
of a preposition plus a definite article, followed by a picture of a concrete ob-
ject. The prepositional phrases had different phrasal frequencies. The authors
found effects of both single word frequencies and phrasal frequencies during the
naming of the object. Effects of single word frequencies were already present
95 ms after stimulus presentation and occurred mostly in the left hemisphere.
Effects of phrasal frequencies were seen as a sustained negativity over the left
hemisphere, with higher frequencies correlating with more negative voltages.
Hendrix et al. (2017) argue that the different ERP patterns observed are evi-
dence that words and phrases are processed differently. Note that Tremblay and
Baayen (2010) did not find any sustained negativities in their study, but only
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found more negative voltages in early ERP components for higher frequency
lexical bundles. Note, however, that Tremblay and Baayen (2010) looked at
reading, whereas Hendrix et al. (2017) focused on speaking.

Another way to study the time-course of on-line processing is by employing
eye-tracking methods. Eye-tracking provides an indirect means of investigating
in which order parts of words and sentences are processed and which cognitive
processes might be involved, the idea being that eyes focus on the item that is
being processed, and that the duration of gazes indicates the ease of processing
(Just and Carpenter, 1980). Recently, Lensink et al. (submitted) used eye-
tracking to study the on-line processing of lexical bundles. In line with previous
research, Lensink et al. found that more frequent lexical bundles are easier to
process than less frequent ones. Moreover, the authors found evidence that
lexical bundle frequencies already play a role in gaze durations of the first
fixation, showing the early onset of phrasal frequency effects in reading.

These previous studies had participants reading silently or aloud from a
screen. There are several disadvantages to studying reading behavior in this
way. People can have different reading strategies, and the researcher has little
control over the order of processing of the item presented. There are also pitfalls
to studying the production of lexical bundles, where participants either have to
first read from a screen, or recall items from a list, before they start to articulate.
Some participants start talking as soon as they have identified or recalled the
first word, whereas others might wait until they have read or recalled the whole
string. These different strategies are likely to originate from different cognitive
processes, which in turn have different effects on the way participants produce
speech. However, there is an alternative where the researcher can precisely
control and track the order in which participants receive the input: listening.

Many ERP studies investigating the auditory processing of speech study
the time course of phonological, semantic, and syntactic processing, and the
influence of context. This is done by presenting participants with full sentences
that are either correct, semantically anomalous, or syntactically anomalous.
Semantic errors are mostly reflected in a larger N400, and syntactic errors are
reflected in larger left anterior negativities (LAN) and a more positive P600
(Friederici, 2002). Oftentimes an enlarged early negativity is also found. Some
researchers interpret this negativity as a marker of a phonological mismatch be-
tween what is expected and what is heard (phonological mismatch negativity
(PMN); Connolly and Phillips, 1994), whereas others consider it a marker of
initial form-based assessment of the incoming signal (N200/250; Hagoort and
Brown, 2000; Van Den Brink et al., 2001; Van Den Brink and Hagoort, 2004),
or a marker of word category violations (ELAN Friederici, 2002; Steinhauer and
Drury, 2012). Besides this early negativity, sometimes a sustained negativity
with an early onset is seen in auditory processing (Holcomb and Neville, 1991).
Although some of these sustained negativities might originate from spill-over
effects due to the processing of the previous word (Mueller et al., 2005; Stein-
hauer and Drury, 2012), they have been linked to working memory processes
in several studies (see e.g. Steinhauer et al., 2010).
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3.1.2 Current study

If lexical bundles are used in processing, and if listeners make use of them during
listening, then it is expected that there is a difference between the ERPs elicited
by lexical bundles and ERPs elicited by matched control phrases. Importantly,
this difference is expected to arise from the moment that listeners notice that
they are listening to a lexical bundle, instead of just any combination of frequent
words.

As soon as a listener strongly suspects she is listening to the first part
of a lexical bundle, she will expect to also hear the last word of that lexical
bundle. When indeed the utterance continues as expected, this match between
the expected and the observed might elicit a P300. However, if a listener hears
a different word than expected, his expectations are violated. This, we predict,
could lead to a larger N400 component at the unexpected word. The N400 is
sensitive to frequency and predictability information and has a more negative
amplitude when the frequency is lower or the item is less predictable.

Another possibility is that we will see a slow anterior negativity for infre-
quent combinations.The amplitude of the slow anterior negativity is thought
to reflect the amount of resources devoted to short-term memory processes
(Kluender and Kutas, 1993; Steinhauer et al., 2010). Retrieving and combin-
ing multiple items from the mental lexicon is likely to require more working
memory than retrieving a single item or a lexical bundle directly from memory.
This could be be reflected in less negative sustained anterior negativities.

In what follows, we will present our exploratory analyses on the time course
of auditory processing of lexical bundles. We will first discuss our methods and
materials in Section 3.2. In Sections 3.3 and 3.4, we will present the results
and will discuss their implications in Section 3.5.

3.2 Materials and Methods

3.2.1 Participants

We recruited forty Dutch native speakers (ten males, mean age 21.4 years)
for this study. All participants had normal or corrected-to-normal vision and
none of them reported any hearing deficits. After the experiment, participants
received a small financial reward for their time.

Two participants were excluded due to technical issues during the experi-
ment, and two participants were excluded because their score on the Edinburgh
Handedness Inventory questionnaire (Oldfield, 1971) was negative, indicating
left-handedness. The remaining 36 participants (ten male) were on average 21.3
years of age.
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3.2.2 Stimuli

We created twenty-six trigram pairs where we contrasted a high-frequency
multi-word unit (MWU) with a matched control (Control). The high-frequency
multi-word units consisted of three words and were randomly sampled from a
set of 1,000 high-frequency trigrams found in the Dutch Ten Ten web corpus
(Jakubíček et al., 2013).

Matched controls were made by taking a high-frequency trigram and chang-
ing its last word, thereby creating a low-frequency trigram. Crucially, we made
sure that, for each MWU and Control pair, the final words had similar frequen-
cies, but that the phrasal frequencies were different by at least a factor ten. To
give an example, we used the trigram een belangrijke rol (‘an important role’)
and changed its last word to create the trigram een belangrijke vorm (‘an im-
portant form’). These trigrams differ only in their phrasal frequencies, whereas
all single word frequencies are similar. This way, we can disentangle the effects
caused by the terminal single words and the effects of the phrasal frequencies
of the whole trigrams. Similar sets of stimuli have been used in several studies
looking into multi-word units (see for example Arnon and Snider, 2010).

To ascertain that our multi-word units had a different phrasal frequency
than their matched controls, we checked for prevalence of each stimulus pair in
different corpora, i.e. the Dutch Ten Ten web corpus (Jakubíček et al., 2013),
the Europarl corpus (Koehn, 2005) and the EUR-lex corpus (Baisa et al., 2016).
We extracted the frequencies of the trigrams and their constituent words from
the Netherlands Dutch subset of the OpenSonar corpus (Oostdijk et al., 2013).
The stimuli and their frequencies can be found in Appendix A.

Besides the target items, we included another 52 trigrams that served as
filler items. This resulted in a total of 104 different Dutch trigrams, which
we pseudo-randomly put into two different experimental lists. We made sure
that there was no semantic or phonological overlap between trigrams within
at least two consecutive trials. Furthermore, we took care in inserting at least
twenty trials between any MWU and Control pair, to minimize the likelihood
that participants would recognize the similar form of een belangrijke rol and
een belangrijke dag. The experiment was built in the experimental presentation
software E-Prime 2.0 (Psychology Software Tools).

We recorded a male voice reading out loud the stimulus and filler items
using a portable USB 2.0 Audio Interface Quad-Capture UA-55 (Roland) at
a sampling rate of 44,000 Hz in mono. We created a list where our MWUs,
Controls and fillers were randomly presented. We did not inform the speaker
about the intention of our study prior to the recordings. Afterwards, we edited
the recordings in Praat (Boersma and Weenink, 2016), adding a 500 ms silence
before the onset of each stimulus and scaling all stimuli to an equal intensity
of 70 dB. There were no significant differences between the acoustic durations
of the control trigrams and the multi-word unit trigrams (p = 0.6392).
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3.2.3 Procedure

Before the start of the experiment, participants completed a questionnaire on
their (linguistic) backgrounds, and they filled in the Edinburgh Handedness
Inventory test to check to what extent they were right-handed. All participants
gave written informed consent before starting the experimental procedure.

Participants were seated in a quiet and sound-proof room in front of a
computer screen. In the room, two audio boxes were placed at the front-left and
front-right corner. Answer buttons were present on both armrests of the chair
in which the participants were seated. Behind the chair, BioSemi ActiveTwo
EEG recording equipment was placed. Participants were all connected to a 32
channel EEG set-up while the experimenter explained the experimental task
detailed below.

The experiment started with an instruction screen, which was followed by
a short practice block where participants could familiarize themselves with
the task, and where the experimenter could check if all audio equipment was
working properly. The experiment consisted of a practice block of four trials
and two experimental blocks of each 52 trials, separated by a short break. The
whole experiment took about ten to fifteen minutes to complete.

Each trial lasted three seconds. It started with a fixation cross that appeared
in the middle of the screen for 250 ms. Then, after a silence of 500 ms, a trigram
was presented auditorily through the audio boxes. To ensure that participants
kept paying attention to the task, one third of the auditorily presented trigrams
was followed by a visually presented follow-up phrase. All texts were presented
in Courier New, font size 12, in black, on a white background. Participants had
to judge whether the follow-up phrase could be a grammatical continuation of
the trigram that they had just heard. For a correct answer, they had to press
the button on their left, and for an incorrect answer, they had to press the
button on their right. The words ‘correct’ and ‘incorrect’ were also printed on
the left-hand side and the right-hand side of the screen to aid the participants.

3.2.4 EEG recordings

The EEG was recorded using 32 Ag/AgCl electrodes (BioSemi ActiveTwo),
which were placed on the scalp sites according to the standards of the American
Electroencephalographic Society (1991). We monitored eye movements with
four flat electrodes, two of which were placed above and below the left eye, and
the other two were placed to the sides of both eyes. Another two flat electrodes
were placed behind the ears, at the mastoids, to monitor jaw movements. We
used the CMS and DRL electrodes as our ground reference and sampled the
EEG signal at 512 Hz. Afterwards, the EEG signal was re-referenced off-line
to the mean of the two mastoids and band-pass filtered (0.05-30 Hz) in Brain
Vision Analyzer (version 2.0). Eye blinks were corrected by means of an ICA
procedure.

Auditory comprehension studies are known to be susceptible to spill-over
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effects due to processing differences of the words prior to the target words. Late
ERP components of a word, such as the N400 or P600, may cause artifacts in
the ERPs of a subsequent word if the words are in close proximity in time.
Also, even lexically identical words may differ prosodically and phonetically
when they are followed by different words, leading to co-articulatory differences,
which in turn could lead to differences in the EEG signal spilling over into the
target word (Steinhauer and Drury, 2012).

Recall that the stimulus items only differ in their last words, but that the
second word might contain articulatory traces of this last word. To control for
these effects, and to also control for any spill-over effects due to the processing
of the second word, we time-locked the ERPs to the onset of the last syllable
of the second word and performed a 200 ms baseline correction. We choose
for the onset of the last syllable of the second word instead of the onset of
the second word, as the number of syllables of the second word differed across
stimuli, with two-thirds of the stimuli having a one-syllable closed-class word
in second position. We also reasoned that any co-articulatory effects would be
most perceptible in the last syllable.

3.2.5 Conditional inference random forest analysis

We analyzed the EEG data using conditional inference random forests
(CForests). Random forests are a widely used machine learning algorithm that
can be used for both categorization and regression analyses. CForests have been
gaining popularity in fields such as genetics, epidemiology, and medicine, and,
more recently, have been applied to several (neuro)cognitive and psychologi-
cal datasets (McWhinney et al., 2016; Strobl et al., 2009) and linguistic data
(Tagliamonte and Baayen, 2012).

A random forest algorithm repeatedly splits the data into two groups based
on a set of predictors. The first split is made by testing which predictor explains
the most variance in a random subset of the data, and then by determining at
which level or value of this predictor the subset can be split into two. The algo-
rithm continues splitting the data until it cannot find any significant features
that would warrant any further splitting. The result of this first set of steps is
a hierarchical structure know as a classification tree.

The name random forest is chosen because the algorithm does not create a
single classification tree, but a large set of classification trees, each based on a
different random subset of the data. The final model is based on an average of
the predictions of the forest. See Strobl et al. (2009) and Hothorn et al. (2006)
for a more detailed discussion.

There are several advantages to using CForests over more traditional para-
metric methods such as mixed-effects regression. CForests are non-parametric
models that do not assume that the data follows a specific distribution. They
can model any type of (non)linear relations between predictor variables and
outcome variables and are very robust to noise. Another significant advantage
is that most of the modeling process is data-driven instead of dependent on
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human decisions. The modeler does not need to define in advance what shape
the functional relation between the predictors and the outcome variable has,
nor does she have to define which interactions have to be tested. Any strong
simple or complex higher-order interactions that are present in the data will
be picked up by the model itself.

Whereas the results from both forward and backward model fitting in re-
gression modeling are notoriously susceptible to the order in which predictors
are added or deleted (Strobl et al., 2009), CForests do not suffer from this draw-
back as they represent an aggregated average of a diverse set of classification
trees - each of which is built on a random subset of the data and can therefore
take on any type of form. It is important to keep in mind that CForests are
truly random models in that there might be slightly different results every time
the model is run. Stability and robustness are established by growing a large
set of trees. Small effects that might go undetected in parametric regression
methods, could still surface in some of the trees in the forest and appear in the
aggregated results.

In this study, a total of 10,000 trees was grown on random subsets of the
data, and furthermore variable preselection was applied, where not only each
tree is grown on a subset of the data, but each tree node is split using a random
subset of the predictors. Variable preselection produces an even more diverse
set of trees (Breiman, 2001). The random subsets consisted of 33.2% of the
data for each tree, and for each tree, one variable was randomly selected at
each tree node.

3.3 ERP results

In Figure 3.1, the ERPs measured at frontal, central, parietal, and occipital
electrodes are plotted. At the frontal, central, and parietal electrodes a clear
P100 component is visible, which is more positive for multi-word units at frontal
and central electrodes at the midline and right hemisphere. The plots further-
more reveal a small N200 component which is most pronounced at frontal
electrodes. Hagoort and Brown (2000) report on an N250 component elicited
by semantically anomalous words in spoken sentences. Although we did not use
anomalous words in the control items, the final word of the control items is less
expected and seems to elicit the same type of response, perhaps less strongly,
as semantically anomalous words.

Overall, there is a slow-going anterior negativity that seems largest at frontal
areas, and which is more pronounced for control items. This negativity is similar
to the sustained anterior negativities found in previous studies on the process-
ing of continuous speech (Hagoort and Brown, 2000; Holcomb and Neville,
1991), which have been linked to increased working memory demands as a re-
sult of syntactic processing (Coulson et al., 1998; King and Kutas, 1995; Müller
et al., 1997). Moreover, research has shown that the distribution of the nega-
tivities is wider and less lateralized for increased working memory conditions
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Figure 3.1: Grand-averaged ERP waveforms time-locked to the last syllable of
the second word. The control condition is presented in red with a dashed line,
and the multi-word unit condition is presented in blue. Presented are frontal,
central, parietal and occipital electrodes at the midline, and the left and right
hemisphere. By convention, negativity is plotted upwards.
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than for grammatical violations (Martín-Loeches et al., 2005), suggesting that
our results reflect increased working memory demands when participants are
listening to control items as opposed to high-frequency multi-word units.

Multi-word units and control items start to diverge very early at frontal and
central electrodes, with a divergence already visible at the P100 at the midline
and right-hemisphere. At the parietal and occipital electrodes, the conditions
start to diverge from approximately 200 ms after the last syllable of the second
word. Overall, the divergence is widely distributed, and seems most prominent
at fronto-central regions. Our results are the opposite of the pattern demon-
strated by Hendrix et al. (2017), who found more negative voltages for high
frequency phrases, which was moreover most prominent in parietal and occip-
ital regions. Note, however, that Hendrix et al. (2017) used a production task.
Moreover, the authors used a picture naming task, which needs involvement of
the visual cortex, which could explain the more posterior distribution of their
results.

3.4 CForest modeling results

Figure 3.2: Dotplot that shows how much each predictor contributes to explain-
ing the variance in the electrophysiological signal.
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Even though interpreting an opaque model such as a conditional random forest
is not straightforward, it is possible to study which variables are considered
most important by the model, and to study which patterns emerge in individ-
ual trees. Figure 3.2 shows how important each variable is within the whole
conditional inference forest model in describing the data. The higher on the
list, the more variance in the data is explained by that variable.

The variable time is by far the most important predictor, which determines
to the largest extent what voltage is generated by the pyramid cells. As the
signal fluctuates quite a lot over time, this result is not surprising. A bit lower on
the list is the electrode, showing that the location on the scalp also determines
to a moderate extent how the signal is manifested. This is not surprising either
as EEG data typically shows a lot of variation between different parts of the
scalp.

The next items on the list are more interesting: Clearly, the skigram and
last bigram frequencies (freqAC and freqAB), the last word frequency (freqC),
and the condition (multi-word unit or control item) play the largest roles in
explaining the shape of the signal. It is interesting to see that the frequencies of
constituent two-word combinations have a larger impact than the frequencies
of the three-word combinations themselves.

The the last bigram, the full trigram, and the first and second word fre-
quencies (freqBC, freqABC, freqA, and freqB), the cloze probability of the last
word and the class of the second word play a moderate role, whereas the word
classes of the first and third words are quite small.

Although these variable importance plots can be insightful, they cannot tell
us anything on the direction of an effect — i.e. does a higher bigram frequency
correlate to a more negative or a more positive signal? —, nor does it show
which interactions might exist — i.e. from which moment in time does the
trigram frequency start to play a role? And are any frequency effects located
in a specific region?

Because we are interested in learning how lexical bundle processing proceeds
over time, it is worthwhile to dive into the structure of a conditional inference
tree, to get a better grasp of how the different predictors interact over time. This
is a trade-off: When only looking at the complete model, one has to accept that
it is quite opaque and cannot provide us with in-depth and detailed insights.
It will however be a quite accurate model for making predictions. However,
by also looking at only a part of the model, one can conduct a detailed and
in-depth study of what factors play a role, how they interact, and how they
develop over time. In this article, we opt for the latter option, explicitly so to
generate new hypotheses on how spoken lexical bundle processing proceeds, to
guide future research.

3.4.1 Results Conditional Inference Tree

In Figures 3.3, 3.4, 3.5 and 3.6, a graphical representation of a conditional
inference tree is presented. The tree-like representation shows a large number of
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binary splits that produce several subgroups of data. Note that all intermediate
and terminal nodes have been numbered for easy reference in the text.

The terminal nodes at the bottom of the figure represent the different sets
the data has been grouped into by the model, with the number of data points
and the average amplitude in microvolts of that specific group. For example,
the leftmost terminal node, number seven, consists of 1970 data points (n =
1970), and its average voltage is -0.203 microvolt (y = -0.203). The binary
splits are displayed in order of importance: The highest split, node number
one, splits the data into two different time bins, and constitutes the strongest
predictor of amplitude values. It is interesting to see that the most important
binary split happens at 402 ms. The N400 component is widely reported to take
place around this time, and has been connected to processes of lexico-semantic
integration (Kutas and Van Petten, 1994; Steinhauer et al., 2008).

The subset of data generated before 402 ms can be found at the left-hand
side of the figure. This subset, in turn, has been split into a group of fronto-
centro-temporal electrodes and more parieto-occipital electrodes by node num-
ber 2. Node number 3 splits the subset of fronto-centro-temporal electrodes in a
subset of data generated before 270 ms and a subset of data generated between
270 and 402 ms after the onset of the last syllable of the second word. The
further one looks down the tree, the more interactions become apparent, and
the way in which different factors play a role in different subsets. Therefore,
the CForest analysis allows for an in-depth investigation of which factors play
a role at different stages of lexical access.

In what follows, we will discuss the results chronologically and topograph-
ically, focusing on which factors play a role at different time windows and at
different locations. We will relate the modeling results to what is known about
the timing of lexical processing and the possible neural sources of subprocesses
of lexical access. Although the source of an ERP amplitude is hard to estab-
lish on the basis of the mere location of the signal (Steinhauer et al., 2008),
it is useful to speculate on its possible neural sources and what the cognitive
functions of these possible sources can tell us about how processing proceeds.

As the model clearly subdivides the data into three periods, we propose
that these subsets reflect three stages of lexical access. Stage 1 takes place up
until 270 ms after hearing the onset of the last syllable of the second word of
the trigram. Here, participants predict what might be coming next, while at
the same time making use of bottom-up information. At stage 2, taking place
between 270 ms and 402 ms, processes of inhibition and competition start to
play a role. Then finally, at stage 3, which takes place after 402 ms, lexical
integration of both bottom-up and top-down information takes place.

3.4.2 Stage 1: Prediction and bottom-up information, 0-
270 ms

Stage 1 starts when participants hear the last syllable of the second word of
the trigram. Since this syllable is likely to already contain acoustic cues of the
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following word, we hypothesized that this could be the earliest point in time at
which participants notice a difference between multi-word units and matched
controls. And indeed, the modeling results already show different neural re-
sponses to multi-word units and matched controls between 0 and 240 ms. In
short, it appears that participants have already built up expectations on what
to expect next, and have different processing strategies for when the bottom-up
information matches their expectations (i.e. they encounter the last word of the
multi-word unit they were expecting) or when it violates these expectations.

The presence of these different processing strategies suggests that within
270 ms after hearing the first acoustic cues of the last word, participants are
sensitive to properties of the full trigram. As can be seen in Figure 3.3, node
number three divides a set of frontal, central and temporal electrodes into a
time frame before and after 270 ms, and node four subsequently splits this
subset by condition, resulting in a subset of multi-word units and a subset of
control items. The model has furthermore split the data into different sets of
electrodes, which correspond to a fronto-central region, a centro-parietal region,
and a parieto-occipital region. In what follows, we will discuss what happens
in each of these different regions at stage 1.

Fronto-central processing (nodes 7-18)

At fronto-central regions, processing spoken multi-word units is mostly influ-
enced by the frequency of the first bigram, freqAB, whereas processing of con-
trol items is mostly influenced by the frequencies of the last word and the
last bigram, freqC and freqBC. We suggest that this reflects different process-
ing strategies when encountering expected or unexpected lexical items, where
an expected item prompts the system to further process the first part of the
trigram (freqAB), whereas unexpected items prompt the system to shift its
attention to these unexpected, new items (freqBC and freqC).

Recall that the ERPs have been time-locked to the onset of the last syllable
of the second word, to take into account co-articulatory cues on that syllable.
When hearing these cues, participants are able to infer what the last word
of the trigram might be. They have already heard and processed most of the
first bigram, and have built up expectations as to which word to expect next.
Apparently, hearing cues for a word that completes a high-frequency trigram
causes participants to continue processing the first part of the trigram. The last
part is predictable, and bottom-up processing of the last part is postponed until
a later stage. However, upon hearing cues for a word that does not complete a
high-frequency trigram, participant’s attention is focused towards the last part
of the trigram.

When zooming in further into the processing of multi-word units, we see
that higher first bigram frequencies are the most important predictor for am-
plitude values before 270 ms, and that higher AB frequencies correlate with
more positive amplitudes. This likely reflects a reduced N1 and an enhanced
P2 component. When considering the ERP plots in Figure 3.1, these early com-
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ponents are indeed visible, with early onsets and most prominently in bilateral
fronto-central regions. In line with our findings, Sereno et al. (1998) found early
frequency effects at the N1 and P2 components in a lexicon decision experi-
ment, with high frequency items corresponding to more positive amplitudes.
In later studies, Sereno et al. (2003) and Hauk and Pulvermüller (2004) also
found frequency effects roughly 150 ms after stimulus onset, with again more
frequent items eliciting more positive amplitudes.

For the control items, the model has split the data into two regions: A
region in the left hemisphere (nodes 14 and 15) that processes the last word,
and a region that is mostly located in the right hemisphere, with electrodes in
frontal, central and temporal regions (nodes 17 and 18), that processes the last
bigram.

Nodes 14 and 15 represent early processing of the last word. We propose
that upon hearing the last word of a control item, participants are prompted
to first process this new and unexpected information, before they can integrate
it into the previous context. Nodes 14 and 15 show activations in a region that
could originate from the left primary auditory cortex (PAC), where auditory
processing takes place, or the left inferior frontal gyrus (LIFG), an area that
has been connected to linguistic processing in a wide range of studies (see
Vigneau et al., 2006, for a meta-analysis of language processing in the left
hemisphere). If we follow Friederici’s (2012) proposal for a cortical language
circuit for auditory processing, then we expect this bottom-up input to pass
from the auditory cortex to the anterior superior temporal cortex and then to
the prefrontal cortex.

Nodes 17 and 18 of the model represent early processing of the last bigram.
The model shows more positive amplitudes for control items with low second
bigram (freqBC) frequencies, in mostly right hemisphere regions. The right
hemisphere has been implicated in context processing and general attentional
and working memory processes (Vigneau et al., 2011) and is claimed to be
biased toward bottom-up, more post hoc, interpretive processing (Federmeier,
2007). Considering the relatively large portion of the right frontal hemisphere
that is significantly activated in these subsets, it seems plausible that these
activations reflect attentional processes and the recruitment of working mem-
ory, where the second and third word of the control item are considered at
once. Moreover, bilateral peaks in the temporal lobes have been found to be
activated during sentence comprehension tasks, and more specifically by tasks
where participants had to generate the last word of a sentence (Kircher et al.,
2001; Vigneau et al., 2011). As participants were at this point listening to the
last part of a trigram, it is likely that they recruit this region associated with
sentence completion tasks.

Centro-parietal processing (nodes 38-42)

Before 214 ms, amplitudes at electrodes CP1, CP2, P3, P4 and Pz are more
positive for higher first bigram frequencies. When this frequent first bigram is
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also part of a multi-word unit, then amplitudes are even more positive. This is
similar to the activations seen in the fronto-central regions (see above). More-
over, more positive amplitudes in an early time window for higher frequency
items has also been found in previous studies (Hauk and Pulvermüller, 2004;
Sereno et al., 1998, 2003).

Parieto-occipital processing (nodes 53-64)

As in fronto-central regions, the most important predictor in this region is
condition, which shows that multi-word units are processed differently from
controls items in more posterior regions too, and already at an early stage.
Note that the terminal nodes of this subgroup are not part of the subgroup of
data that has been split into time windows before and after 270 ms — rather,
these terminal nodes represent what happens in the centro-parietal regions
between 0 and 402 ms after participants heard the first signs of the terminal
word of the stimuli. Generally, language processing does not seem to take place
in the occipital lobe (Friederici, 2012). However, as EEG is quite imprecise in
terms of localization of the neural source, it is possible that the activations seen
in the occipital regions originate from more parietal regions.

Multi-word unit processing at parieto-occipital regions is influenced by the
frequencies of the last words (freqC) and skipgrams (freqAC), with higher last
word frequencies correlating with more positive amplitudes, but with higher
skipgram frequencies correlating with more negative amplitudes. More posi-
tive amplitudes for higher frequencies also occur in fronto-central and centro-
parietal regions. However, it is surprising to see more negative amplitudes
elicited by more frequent skipgrams.

The more negative amplitudes for higher skipgram frequencies are unex-
pected, as the results discussed above all show more positive amplitudes for
higher frequencies in multi-word units. Pylkkänen et al. (2004); Tremblay et al.
(2016) reported increased activity in their MEG studies around 350 ms (M350)
in response to higher lexical and n-gram frequencies. This M350 has been linked
to lexical access and indexes inhibitory neural responses. It is possible that high
skipgram frequencies cause the listener to consider alternative trigrams, lead-
ing to enhanced competition from similar forms, which in turn could lead to
increased processing costs as reflected in the more negative amplitudes.

In general, the early posterior activations might reflect the first stage of
combinatorial processing and the integration of the last word with the rest of
the trigram. In their MEG study investigating language networks involved in
n-gram processing, Tremblay et al. (2016) report on a network that is mainly
located in posterior regions (their ’Network 3’) and whose main function seems
to be integrative processing of several sources of information. The network in-
cludes areas associated with sentence processing, semantic and discourse coher-
ence processing, and the integration of complex semantic and syntactic infor-
mation (among others the posterior superior temporal sulcus and the angular
gyrus) (Friederici, 2012; Vigneau et al., 2006). As such, it seems probable that
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the early activations elicited by last word and skipgram frequencies originate
at an integrative network located at posterior areas.

As for control items, we see more negative amplitudes for lower first word
(word A) and lower second bigram (bigram BC) frequencies. If the second
bigram has a high frequency, however, amplitudes tend to be less negative.
This pattern is similar to what we saw in fronto-central regions, where lower
frequencies also correlate with more negative amplitudes. Note that we also see
an influence of the first word frequency for control items, which we have not
seen in more frontal and central regions.

When the first words of a control item has a high frequency, there is also an
interaction with the cloze probabilites of the last word of the control item: High
cloze probabilities of the last word correlate with more negative amplitudes.
This is unexpected, given that this subset of the data is within the time range of
the N400 component, and higher cloze probabilities have been found to correlate
with a smaller, and thus less negative, N400 component (Kutas and Van Petten,
1994). Moreover, Penolazzi et al. (2007) found more positive-going amplitudes
between 280-320 ms at posterior mid-line electrodes for high probability words
than for low probability ones.

As might be the case with higher skipgram frequencies correlating with
more negative amplitudes, we suspect that the more negative amplitudes for
higher cloze probability last words index greater processing costs as a result
of inhibitory processes. Once a listener has realized that s/he is not listening
to a frequent multi-word unit, s/he is not expecting to hear words with high
cloze probabilities, as these are more likely to occur in multi-word units but
not in control items1. S/he will therefore actively inhibit words with high cloze
probabilities. This extra inhibition will make it harder to identify a high cloze
probability item.

Discussion Stage 1

In general, in fronto-central regions, low-frequency items elicit more nega-
tive amplitudes and high-frequency items elicit more positive amplitudes, with
multi-word units eliciting more positive amplitudes overall. The more positive
amplitudes of the multi-word units seem to reflect reduced N1 and enhanced
P2 components (Sereno et al., 1998, 2003; Hauk and Pulvermüller, 2004). Pro-
cessing spoken multi-word units is mostly affected by first bigram frequencies,
whereas listening to spoken control items is mostly affected by second bigram
and last word frequencies.

These differences in processing suggests that listeners engage in predictive
processing when they encounter lexical items that could form the beginning of
a lexical bundle. If their top-down expectations match the subsequent input,
listeners continue processing the first bigram, engaging in lexical selection and

1However, this is not necessarily the case. A trigram can have a low phrasal frequency,
but a high cloze probability last word. Still, this is less common and therefore less expected.
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perhaps also lexical integration of that first bigram. However, if their expecta-
tions do not match the bottom-up input, listeners focus their attention towards
the unexpected input and start processing the last word and the last bigram,
engaging in the first stage of spoken word recognition, lexical access.

Posterior regions are also involved at this stage, and even seem to be engaged
in later processes of spoken word recognition, i.e. combinatorial and integrative
processing. These regions are involved in the processing of skipgrams and the
last words of multi-word units, and the first words of control items. Moreover,
the cloze probability of the last word of control items also plays a role in
these regions. Although the activations could have originated from the primary
auditory cortex and therefore only reflect the first stage of auditory processes,
it seems likewise plausible that the activations also reflect the involvement of
the posterior superior temporal sulcus and the angular gyrus, which perform
combinatorial and integrative processing (Friederici, 2012; Vigneau et al., 2006).

It is not only because of the possible neural source that we suspect that the
activations seen in posterior regions index later stages in spoken word recogni-
tion; it is also because of patterns of activations we observe. Higher-frequency
items that correlate with more negative amplitudes likely reflect higher pro-
cessing costs. Different processes seem to underlie these enhanced processing
costs: For higher frequency skipgrams, the larger costs are likely a result of
lexical competition effects, and reflect a form of neighborhood density effects
(Luce and Pisoni, 1998). For higher cloze probability words (words C of control
items), the larger costs are likely a result of inhibitory effects. Most control
items are likely to end in a low cloze probability word, and as soon as a listener
is aware that s/he is listening to a control item, s/he seems to actively inhibit
items that s/he is not expecting to hear, i.e. words with a high cloze probability.

3.4.3 Stage 2: Inhibition and competition, 270-402 ms

The most important data split in stage 2 is type of n-gram: Multi-word unit pro-
cessing is influenced mostly by the first bigram frequencies (freqAB), whereas
control item processing is influenced mostly by the second bigram frequencies
(freqBC). In stage 1 there are already some forms of inhibitory and competi-
tory processing in posterior regions. These processes continue and become more
prominent and widespread in stage 2. Higher frequency second bigrams in both
controls items and multi-word units elicit more negative amplitudes, reflecting
larger processing costs: In multi-word units high frequency second bigrams seem
to prompt processes of competition between similar forms, whereas high fre-
quency second bigrams in control items are unexpected and prompt processes
of inhibition.

Fronto-temporal processing (nodes 21-33)

For multi-word units, lower AB frequencies correlate with more negative am-
plitudes at fronto-temporal locations between 270 and 402 ms, similar to the
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direction of the effect before 270 ms. Hagoort and Brown (2000) found a large
negative shift around 250 ms for semantically anomalous words, with a mostly
central distribution. The authors hypothesize that the N250 might reflect the
lexical selection process that takes place at the interface of lexical form and
context integration. Although having lower frequencies is not the same as hav-
ing a semantically anomalous form, the phenomena are similar in that they
constitute less expected events.

For multi-word units with high AB frequencies, the frequencies of the sec-
ond bigram also start to play a role. The higher the first bigram frequency
is, the faster participants will be in processing that trigram, which results in
earlier onsets of the processing of its second bigram. High BC frequencies,
however, correlate with less positive amplitudes than low second bigram fre-
quencies (nodes 25 and 26). Higher first bigram frequencies elicit more positive
amplitudes, whereas higher second bigram frequencies elicit less positive ampli-
tudes. This is similar to the more negative-going amplitudes for high frequency
skipgrams, as we saw in the subsection on parieto-occipital processing in Sec-
tion 3.4.2. Therefore, we suspect that the less positive amplitudes elicited by
higher second bigram frequencies in this time window index competitory pro-
cesses (Pylkkänen et al., 2004; Tremblay et al., 2016).

When considering the control items, there is also a negative correlation
between frequencies and amplitudes: Both higher BC frequencies and higher
cloze probabilities of the last word correlate with more negative amplitudes
(node 33). Once a listener has arrived at stage 2 of processing, s/he has already
realized s/he is not listening to an expected multi-word unit, and therefore
expects a low-frequency second bigram and a low cloze probability item as the
third word. S/he might be actively inhibiting high-frequency bigrams and high
cloze probability third words, which could lead to enhanced processing costs
for these parts of control items, reflected as more negative amplitudes.

Centro-parietal processing (nodes 45-49)

Between 214 and 402 ms at centro-parietal regions, amplitudes elicited by multi-
word units are mostly influenced by skipgram frequencies (freqAC; nodes 45
and 46). Higher skipgram frequencies correlate with more negative amplitudes
for multi-word units, possibly reflecting larger processing costs due to enhanced
competition from similar forms (Pylkkänen et al., 2004; Tremblay et al., 2016).
This is similar to what happens between 0 and 402 ms in parieto-occipital
regions (see Section 3.4.2). It seems then, that these competitory processes
originate in posterior regions and move forward to (or happen concurrently
in) more centro-parietal regions. Control items, on the other hand, are mostly
influenced by the frequencies of the first word (nodes 48 and 49), with higher
first word frequencies correlating with more positive amplitudes.
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Parieto-occipital processing (nodes 53-64)

See ’Occipital-parietal processing’ in Section 3.4.2.

Discussion Stage 2

In stage 2, bigrams and words of multi-word units are further processed and
integrated. Multi-word unit processing is influenced by the first bigram fre-
quencies and, to a lesser extent, by the second bigram frequencies in frontal
and central regions, and by skipgram frequencies (freqAC) in more centro-
parietal regions. Processing of control items is influenced by the second bigram
frequencies and the cloze probability of the last word in fronto-central regions,
and by the frequencies of the first word in centro-parietal regions.

Like in stage 1, multi-word units elicit more positive amplitudes overall.
These positive amplitudes seem to reflect a reduced N250 (Hagoort and Brown,
2000). The occurrence of an N250 suggests that at this point in time, lexical
selection of the target trigram takes place if the trigram is a frequent multi-word
unit. However, if the trigram is a low-frequency control item, then the language
system spends more resources on processing the last part of the trigram.

By now, the first signs of the influence of the last words of high-frequency
multi-word units start to appear. In fronto-central regions, higher second bi-
gram frequencies elicit more negative amplitudes. These more negative am-
plitudes seem to reflect enhanced processing costs, which are likely due to
competition effects between similar high-frequency bigrams that could com-
plete the first frequent bigram. Similarly, in centro-posterior and in occipital
regions, higher skipgram frequencies of multi-word units elicit more negative
amplitudes, indexing competition effects of similar skipgrams.

These reflections of competition effects for both bigrams and skipgrams
might originate from the angular gyrus and the posterior superior temporal
sulcus, locations which have been connected to syntactic and semantic inte-
gration and sentence processing tasks (Tremblay et al., 2016; Vigneau et al.,
2006). They have moreover been linked to semantic processes at the sentential
level (Lau et al., 2008). Therefore, we propose that the emerging activations
of the last bigram and skipgram frequencies in these regions reflect integrative
processes that link the beginning of the multi-word unit to its ending.

As for control items, we see a continued influence of the last word’s
cloze probability. Higher cloze probability items are more unexpected in low-
frequency trigrams, and as such, elicit more negative amplitudes. Moreover,
higher last bigram frequencies also elicit more negative amplitudes, again be-
cause the presence of a high-frequency last bigram is unexpected in a low-
frequency trigram, which increases processing costs.

3.4.4 Stage 3: Lexical integration, 402-800 ms
At the third stage, the most important split in the data is again made by
condition: 402 ms after hearing the first signs of the last word of a trigram,
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frequent multi-word units are still processed differently than matched control
items. Specifically, there is a sustained negativity that is less negative for multi-
word units and most pronounced in central and right-hemispheric electrodes in
fronto-central regions (see also Figure 3.1).

Fronto-central processing (nodes 95-121)

At fronto-central regions, multi-word units are first split by time, into a time
window from 402 - 535 ms, and a time window after 535 ms. Both time windows
are mostly influenced by the frequencies of the last word, with higher last word
frequencies correlating with more negative amplitudes. When the last word
frequencies are low, but the last bigram frequencies (freqBC) are high, then
amplitudes are even more negative (node 96).

Given that previous research has shown that, for lexical access of single
words, lexical integration is taking place after 400 ms (and possibly sooner;
Steinhauer et al., 2008), and since we see more negative amplitudes after 400 ms
for higher frequency items, we propose that negative amplitudes are indications
of easier lexical and contextual integration in stage 3 (Friederici, 2012). This is
in contrast to what happens at stage 1 and 2, where more negative amplitudes
seem to reflect processes of competition or inhibition.

More negative amplitudes that index ease of processing at this stage 3 are
likely to be reduced P600 components. The P600 is an ERP component which
is typically elicited by grammatically erroneous sentences, with the incorrect
sentence eliciting a greater positivity compared to the correct one. It has been
reported to surface as early as 400 ms after stimulus onset (Kaan and Swaab,
2003). Besides grammaticality, the P600 has been reported to vary according
to the effort needed to build a coherent syntactic structure (Hagoort, 2003), to
reflect continued combinatorial analyses efforts of the brain (Kuperberg, 2007),
and to vary according to the degree of probability and salience of a sentence,
with more probable sentences eliciting a reduced P600 (Coulson et al., 1998).
Frequent BC bigrams and last words of multi-word units are expected, probable,
and should therefore take up less processing effort, which would then translate
in a less positive, i.e. a more negative amplitude.

In contrast, control items are less likely to be processed as chunks, which
means that more combinatorial processes must be at work for control items
(Kuperberg, 2007), increasing the P600, leading to more positive amplitudes
for control items overall. The most important predictor of amplitude values in
these control items is the frequency of the second bigram. Like for the multi-
word units, higher frequencies and higher probabilities seem to reduce a P600(-
like) component (Coulson et al., 1998). Generally, the higher the second bigram
frequency, the more negative the amplitude. If moreover the cloze probability
of the last word is also high, then amplitudes are even more negative (node 120
and 121). This reduction in a positive component can also be seen for control
items with a low cloze probability last word, as long as their first word has a
high frequency; when the first word has a low frequency, amplitudes are more
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positive (nodes 117 and 118).
When the last bigram of control items is not frequent, amplitudes vary

mostly in terms of region on the scalp (node 108). In the left hemisphere, the
word class of the second word matters most, with open class words eliciting a
more negative amplitude. This more negative amplitude probably reflects ease
of processing, as discussed above. As over 90% of the first words of the trigrams
start with a closed-class word, most participants will have expected the second
word to be an open-class word2. When this expectation is violated, a more
positive amplitude is elicited (node 110), resembling a P600 effect elicited by
unexpected events as discussed by Coulson et al. (1998). In the right hemisphere
and central locations, amplitudes vary over time, where amplitudes after 543 ms
are more negative. It is likely that these amplitudes reflect context processing,
which is known to happen in the right hemisphere (Vigneau et al., 2011).

Parieto-occipital processing (nodes 70-90)

Node 66 separates electrode P7 from the other parieto-occipital electrodes. A
low cloze probability of the last word leads to more positive amplitudes at
this electrode than high cloze probabilities of the last word (node 75), again
showing that, at this third stage, unexpected or improbable events elicit more
positive amplitudes. Interestingly, when the cloze probability of the last word
is low, and when the frequency of the last bigram is also low, amplitudes are
much more negative (node 70). It is not clear why only electrode P7 is split
from the other subset of electrodes, and it might be the case that the model
is overfitting the data. Note, moreover, that this bin only contains 100 data
points, making it unlikely that this effect is robust and generalizable. Future
studies could ascertain whether or not this effect is robust.

For the other parieto-occipital electrodes, amplitudes vary by condition. The
cloze probability of the last word plays a role in multi-word unit processing in a
region of electrodes O1, Oz, O2, P8 and PO3, whereas the skipgram frequencies
play a role in multi-word unit processing in a region of electrodes CP5, PO4, and
T7. Especially this last region is surprising, as it constitutes a non-continuous
region in both the left and right hemisphere. As participants had to judge,
at random intervals, whether or not a visually presented fragment could be
a correct continuation of the stimuli presented to them, it is possible that
this is a prediction network where the skipgram is aiding the lexico-semantic
system (CP5, T7) in suggesting possible continuations, which in turn feeds into
the visual cortex (PO4) to prepare for a possible visual stimulus. Increased
activations in the visual cortex indexing the pre-activation of predicted visual
features were also found by Dikker and Pylkkänen (2013).

For control items (nodes 86-90), it is mostly the frequency of the first bigram
that plays a role, with higher first bigram frequencies correlating with more

2In the top 1,000 trigrams from the TenTenCorpus (Jakubíček et al., 2013), out of which
our stimuli have been sampled, 81.6% of these frequent trigrams start with a function word.
It seems then, that frequent trigrams tend to start with function words in English.
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positive amplitudes. High frequency first bigrams are unexpected in control
items, which might explain why more unexpected items elicit more positive
amplitudes here, indexing a larger P600 response (Coulson et al., 1998).

Discussion Stage 3

Given the regions involved and the presence of a P600 component, it is probable
that during stage 3 lexical integration of all elements of both multi-word units
and control items takes place. Moreover, the frequencies of the BC bigrams are
playing a clear role in the processing of multi-word units, showing that at this
point the last part of the trigrams is also processed and integrated. Whereas
higher frequencies correspond to more positive amplitudes for multi-word units
in the first two stages, higher frequencies correspond to more negative ampli-
tudes in the third stage. This, we proposed, is likely to be a reflection of a
reduced P600 component indexing ease of lexical integration.

The previous two stages involved more positive amplitudes for items that
are easier to process. However, at this stage, more negative amplitudes are
indicators of ease of processing. A likely ERP component for this stage that
reflects ease of processing is a reduced P600. As multi-word units have a higher
phrasal frequency, are more expected, and do not necessarily need combina-
torial processes, a reduced P600 response is not unexpected. Moreover, higher
frequency single words, bigrams, or higher cloze probabilities of items in both
multi-word units and control stimuli are also more probable, easier to process,
and therefore more likely to elicit reduced P600s — which manifests itself in
more negative amplitudes.

3.5 General discussion

We have collected ERP data of participants listening to both multi-word units
and their matched controls. We selected a group of high-frequency trigrams
and created a set of matched controls by changing the last word for another
word that was just as frequent as the original word, but that would not form
a frequent combination with the first two words. This way, we could compare
processing of high-frequency trigrams and low-frequency similar trigrams that
only differed in their last parts.

When a listener encounters a stream of words, at first, s/he cannot know if
s/he is listening to a multi-word unit, a low-frequency combination of words, or
even a meaningless combination of random words. Because listeners constantly
update their expectations based on what they encounter in this stream of words,
we expect them to also form expectations on whether they are listening to the
first part of a multi-word unit or a low-frequency combination of words 3. If
listeners have different expectations on what to hear next, we expect them to

3They will likely not expect a combination of random words, as verbal communication
typically carries a meaning and a message.
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also employ different processing strategies after hearing at least the first word
of a trigram, which should also manifest as different ERP patterns. In other
words, we expect to see differences in the ERP data at the moment listeners
have already heard and partly processed the first part of a multi-word unit. So
to understand if and how spoken multi-word units and matched controls are
processed differently, we focussed on the processes taken place after a listener
has already listened to the first word and (a part of) the second word of a
trigram.

First of all, the ERPs show a clear difference with an early onset between
the two conditions. This provides clear evidence for the expectations formulated
above, i.e. that spoken multi-word units and matched controls are processed
differently. This must be due to the frequency of the combination, as the indi-
vidual words were matched for their individual frequencies.

Secondly, the different ERPs and their different manifestations provide in-
dications as to what the nature of these differences is: Ease of processing.
Overall, we found a sustained negativity that is more positive for multi-word
units. Multi-word units show reduced N1 and P2 components, a reduced N250,
and a reduced P600 as compared to control items. All these features suggest
that multi-word units are easier to process than non-frequent combinations of
words (Coulson et al., 1998; Sereno et al., 1998; Hagoort and Brown, 2000;
Hagoort, 2003; Sereno et al., 2003; Hauk and Pulvermüller, 2004; Kuperberg,
2007).

Previous experimental work has already shown that ease of processing is
manifested as an increase in speed in naming (see e.g. Arnon and Snider, 2010),
and greater accuracy in recall (Bannard and Matthews, 2008). In this study,
we did not find faster listening per se, but different processing strategies in
how multi-word units are processed in comparison to control items. For future
studies it will be interesting to explore the possibility that easy of processing in
the case of listening to a multi-word unit is also manifested as greater accuracy
in processing the auditory signal.

Thirdly and finally, by studying parts of a CForest model, we were able to
come up with a detailed proposal on how auditory processing of multi-word
units and their matched controls might proceed, and which factors contribute
most. For this study, we only focused on the time window where the auditory
signal of multi-word units and their matched controls starts to diverge, i.e. from
the last syllable of the second word onwards. In view of the early onset of the
differences between the conditions in this study, it would be informative to also
consider the processing of the first part of spoken trigrams, thereby studying
the full course of processing of whole multi-word units.

Our analysis suggests that there are three stages in time during which the
last part of either a frequent multi-word unit or a matched control item is pro-
cessed. The first stage consists mainly of predictive and bottom-up processes,
where more positive amplitudes indicate ease of processing. The second stage
revolves around combinatorial processes that are influenced by competitive and
inhibitory processes, and where again more positive amplitudes indicate ease
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of processing. The third and final stage consists of integrative processes, where
more negative amplitudes indicate ease of processing. Units from different lev-
els of complexity play a role in processing, with trigram, bigram, unigram
frequencies, and word types of single words playing a role concurrently or in
close approximation in time or location. Similar results were found by Trem-
blay and Baayen (2010), who also found that quadgram probabilities as well as
sequence-internal word and trigram frequencies affected event-related poten-
tials.

One of our key proposals is that listeners adapt their processing strategy
on the basis of what they expect to hear and what they actually hear — at
first focusing more on the first part when hearing a multi-word unit, but more
on the last part when listening to a control item — which shows an influence of
top-down processes on further processing. These different processing strategies
offer evidence in favor of interactive models of auditory processing, where
multiple sources of information are employed in parallel (Brink and Hagoort,
2004; Hagoort, 2003; Tremblay et al., 2016).
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Keeping it apart: on using a discrimina-
tive approach to study the nature and
processing of multi-word units
Saskia E. Lensink, Arie Verhagen, Niels O. Schiller, R. Harald Baayen

abstract
A growing number of studies finds frequency effects for common combinations
of words, leading many to assume that these multi-word units have some kind
of cognitive reality. However, it is not clear how lexical access to these multi-
word units takes place. We conducted two experiments, where the tracked the
eye movements and recorded the voices of participants reading silently and
out loud through a list of frequent multi-word units, and modeled the data
using both traditional measures of lexical access and measures taken from a
computational model of lexical access that incorporates multi-word units, the
Naive Discriminative Learner (NDL). Results show that the NDL measures
provide additional insights, showing that lexical access to multi-word units
proceeds from top-down to bottom-up processes, with larger co-activations of
similar items speeding up production. Moreover, the eye-tracking data shows
that readers are faster in reading multi-word units when they spend more time
at initial stage of reading, i.e. the first pass.

Keywords: word naming, eye-tracking, multi-word units, phrasal frequency
effects, naive discriminative learning, Rescorla-Wagner equations

4.1 Introduction

A large part of language is formulaic in nature. Common combinations of words
are claimed to make up at least twenty percent of total usage in spoken and
written language (Erman and Warren, 2000). A growing number of experimen-
tal studies has reported frequency effects for combinations of two or more words
(Arnon and Snider, 2010; Shaoul and Westbury, 2011, and references therein).
Several studies have looked at frequent multi-word units in both production
and comprehension, using experimental paradigms such as self-paced read-
ing, phrasal decision tasks, and word reading tasks. Moreover, different tech-
niques have been used, including EEG and eye-tracking (Siyanova-Chanturia,
2013). Most work has focused on multi-word unit processing in adult native
speakers, but several studies also consider processing in children (Bannard and
Matthews, 2008) and L2 speakers (Conklin and Schmitt, 2012; Han, 2015; Jiang
and Nekrasova, 2007; Siyanova-Chanturia et al., 2011b).

Although there are some differences between the findings of these studies,
an overall finding that emerges consistently is an effect of the frequencies of
multi-word units, even when the frequencies of the individual words have been
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controlled for. The phrasal frequency effect has been interpreted as evidence for
"holistic" multi-word units in the mental lexicon, or as evidence for experience
in using the rules of grammar supporting these multi-word units (Arnon and
Priva, 2014; Siyanova-Chanturia, 2015; Tremblay et al., 2011).

Considering this previous research, there is abundant evidence that multi-
word units play a role in processing. The question of how, given some input,
a lexical unit is accessed is central to all models addressing language compre-
hension and production. However, we know very little nor do we understand
how lexical access to multi-word units proceeds. This study aims to fill this
gap by investigating the lexical access of multi-word units by means of combin-
ing a computational modeling study with newly collected experimental data.
The computational model of choice is a Naive Discriminative Learning network
(NDL; Baayen et al., 2011); the data are collected in an eye-tracking study and
a reading aloud study.

4.1.1 Including multi-word units in models of lexical ac-
cess

Previous research has shown that frequency effects for multi-word units could be
predicted by a model that did not have any representations for multi-word units
itself (Baayen et al., 2013). The phrasal frequency effect was merely an emergent
property of a network that implemented error-driven learning, crucially without
specifying any phrasal units.

The reason for not implementing these units was that there are several
drawbacks to the idea of storing multi-word units in the mental lexicon. One
such drawback is that there are hundreds of millions of word n-grams that
would need to be stored (Baayen et al., 2013), even under the assumption that
n is unlikely to be much larger than five or six (Shaoul et al., 2013, 2014a).
Populating the mental lexicon with such vast numbers of representations raises
issues not only of storage, but also of increased retrieval costs.

So why still consider including full multi-word units in models of lexical
access given these drawbacks? We may be underestimating the memory capac-
ity of our brain. We have a vast inventory of detailed experiences of the world
stored in our memory (see e.g. Brady et al., 2008). Storage of our experience
with language is likewise huge. Not only do we store information about the
meanings of words, but also about the different phrasal contexts in which these
words can be used and the different meanings connected to these contexts,
pragmatics, as well as different syntactic constructions and their meanings, to
name just a few. Baayen et al. (2011) and Milin et al. (2009) have shown that
inflectional, derivational and even prepositional paradigms play a role in lan-
guage processing, suggesting we store all this information. Furthermore, recent
research on Estonian, a Finno-Ugric language related to Finnish, documents
form frequency effects for case-inflected nouns (Lõo et al., 2017, 2018), in this
language the functional equivalent of prepositional phrases in English.



70 4.1. Introduction

Given the vast knowledge we have of the world, and of language, the re-
flection of this knowledge in language processing — in the form of a phrasal
frequency effect — should perhaps not be surprising. Moreover, when we con-
sider the stimuli chosen in many of the experiments studying phrasal frequency
effects, it transpires that many of the multi-word units used encode relevant
and meaningful experiences. These units concern very specific time markers,
such as ’on the day’, discourse markers such as ’I think that’, and affordance
relations, such as ’on the table’. These experiences are easily conceptualized as
being united and therefore as single units of experience.

Although conceptually and referentially transparent (unlike idioms), these
multi-word units have properties that are distinct from the sum of their parts,
which must be represented somewhere and are expected to play a role in pro-
cessing. It seems likely that single words, idioms, and certain multi-word units
are essentially the same type of entity psychologically. This is reminiscent of
one of the central tenets of constructionist approaches, where there is no prin-
cipled difference between morphemes, words, and constructions (Bybee, 2010;
Croft, 2001; Goldberg, 2003). Therefore, there are good reasons to treat at least
some multi-word units in the same way as single words (Baayen et al., 2011)
or idioms (Geeraert et al., 2017).

To summarize, there are both empirical and theoretical reasons to take
multi-word units into account in our models of lexical access. Experimental
evidence has shown that they influence processing, and that it is plausible that
we store a lot of forms, given our huge storage capacity. Furthermore, several
frequent combinations of words encode experiences separate from the sum of
their parts, which could results in the creation of unitary multi-word time
markers, discourse markers, and affordance relations.

4.1.2 Computational modeling of multi-word units

To explain previous findings of phrasal frequency effects, it is not enough to
only consider the frequency with which language users are exposed to multi-unit
words (Baayen, 2010). We also need to know to what extent the smaller parts of
a multi-word unit form informative cues to access the full multi-word unit and
how language users are able to keep different multi-word units apart. We take
a discriminative learning approach, using a computational model that incorpo-
rates principles of learning theory (Baayen and Ramscar, 2015; Baayen et al.,
2011; Ramscar and Yarlett, 2007; Ramscar et al., 2010) using the Rescorla-
Wagner equations (Rescorla et al., 1972).

The model of choice, Naive Discriminative Learning (NDL; Baayen et al.,
2011), has several advantages: first, we understand the inner workings of the
model quite well as it consists of only two layers; second, NDL models provide
us with measures that show how lexical access could proceed (?); third, it is
a cognitively plausible model as it incorporates principles of learning theory,
which we believe are essential in understanding how language works (see e.g.
Baayen and Ramscar, 2015; Arnon and Ramscar, 2012); fourth, the model
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scales up to large lexicons (Arnold et al., 2017); fifth, software to implement
this model in R or Python is freely available (R: ndl2; Shaoul et al., 2014b),
python: available at github.com/quantling/pyndl); sixth, and relevant for
this study, NDL allows for a straightforward implementation of multi-word
units.

For this study, we did not make use of other models of lexical access, as
there are no viable alternatives that allow us to understand lexical access to
multi-word units. TRACE (McClelland and Elman, 1986) does not scale up
to large lexicons, and it is not clear how to implement multi-word units in
the model. The same limitations apply to the Shortlist-B model (Norris and
McQueen, 2008).

In what follows, we will discuss how NDL models function in general, and
how we have implemented multi-word units in an NDL model. We will then
present new experimental data on reading and producing common Dutch multi-
word units, and will test to what extent the NDL measures add anything over
and above the more traditional frequency measures in modeling this data. We
conclude with a discussion of what our findings tell us about how lexical access
to multi-word units proceeds.

4.2 NDL model

Learning is not just the result of keeping track of how often a certain cue
predicts an outcome. It is also dependent on how informative a cue is in light
of other cues that predict the same outcome, and in light of other outcomes
that are predicted by that cue. These aspects of learning can be captured by
the learning equations developed by Rescorla et al. (1972), which are closely
related to the learning rule of Widrow and Hoff (1960) and the perceptron
(Rosenblatt, 1958). These equations do not only predict animal behavior, but
are also able to predict aspects of implicit learning (Ramscar et al., 2010, 2013;
Ramscar and Yarlett, 2007).

Recently, Baayen et al. (2011) implemented the Rescorla-Wagner equations
in a computational model for language learning: naive discriminative learning
(NDL). NDL networks have been shown to predict a wide range of linguistic
phenomena such as lexical decision latencies, word frequency effects, phrasal
frequency effects, and ERP amplitudes. Its predictions are moreover consis-
tent with the performance of young infants in an auditory comprehension task
(Baayen et al., 2011; Baayen and Ramscar, 2015). For technical details we refer
the reader to Baayen et al. (2011).

4.2.1 How the model works

We will briefly describe how the NDL network works conceptually. An NDL
network consists of only two layers: a layer of input units (henceforth cues) and
a layer of output units (henceforth outcomes). By implementing this network

github.com/quantling/pyndl
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we obtain a mathematical characterization of how well outcomes can be dis-
criminated given some set of input cues. Since the weights to outcome i are
estimated independently from the weights to outcome j, the model is “naive”
in the sense that it does not exploit information about how outcomes co-occur.

Cues can be formed by low-level features, often letter bigraphs or trigraphs,
or single words, like we did in this study. Outcomes are formed by pointers
to a location in a high-dimensional semantic vector space (see Landauer and
Dumais, 1997; Lund and Burgess, 1996; Shaoul and Westbury, 2010; Mikolov
et al., 2013, for detailed discussion of such models). This location can reflect
a single word, a grammatical feature, an idiom (Geeraert et al., 2017), or a
multi-word unit. To clarify that the outcomes in an NDL model are not units of
form, nor monadic “meanings”, but pointers to semantic vectors, these pointers
are called lexomes (Milin et al., 2017; Baayen et al., 2017b). They are best
understood as stable mediators between variable linguistic forms - the cues -
and variable experiences of the world.

In an NDL model, every cue is connected to all outcomes and every outcome
is connected to all cues. The weights of these connections are estimated from
a corpus. As a first step, learning events have to be derived from the corpus.
A learning event is defined by a set of cues and one or more outcomes that
are jointly evaluated by the Rescorla-Wagner learning rule. Learning events
can comprise single words (see, e.g., Arnold et al., 2017; Linke et al., 2017), or
multiple words (cf. Baayen et al., 2011, 2017b; Geeraert et al., 2017).

The model learns by going over sentences of a corpus one by one, updat-
ing the weights from cues to outcomes, based on the information present in
that specific learning event. At each step, the predictions of the network given
the cues in the learning event are compared with the outcomes in the learning
event. When a cue and an outcome are both present, their association weight
is strengthened. Conversely, when a cue occurs without an outcome, their as-
sociation weight is weakened.

A cue is informative and thus discriminative if strong connection weights
lead to only a small number of outcomes. However, if a cue is more or less
evenly connected to a lot of different outcomes, then this specific cue cannot
be a strong predictor of any of the outcomes. Articles are bad predictors of
the identity of any multi-word unit, for example, whereas the word happily is
a strong discriminative cue for the outcome happily ever after.

For the modeling of lexical access to multi-word units, we specified learning
events and the cues and outcomes therein. As learning events, we used the
19,091,130 utterances in a Dutch subtitle corpus, which comprises 109,807,716
word tokens. Since our working hypothesis is that multi-word units are cognitive
units, the outcomes of the network will represent such units. We selected a set
of 296 trigrams - combinations of three words - that frequently occur in the
Dutch language and that have a transparent meaning. A transparent trigram
does not have a figurative or idiomatic meaning; the meaning of the whole
trigram can be deduced from the sum of the meaning of its parts. On the table
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is an example of such a transparent trigram.1
The question now arises what outcomes for multi-word units might repre-

sent. Given that in naive discriminative learning the outcomes represent point-
ers to semantic vectors, we propose to interpret the outcomes for multi-word
units in the same way. Interestingly, in semantic vector spaces, operations can
be defined such that the semantic vector for one word, e.g., sister, is a math-
ematical function of the semantic vectors of related words, e.g., female plus
sibling (see, e.g., Mitchell and Lapata, 2008; Mikolov et al., 2013; Lazaridou
et al., 2013). Therefore, the lexome for a word trigram such as the president
of could likewise be a pointer to a location in the semantic space that is some
compositional function of its constituents. Unlike the case of female sibling,
where a separate word co-exists (sister), Dutch and English multi-word units
have no such single-word counterpart. However, note that there are language
where such meanings as the president of are encoded as a single word.

Furthermore, multi-word units could highlight different perspectives on or
affordances of objects or actions. For instance, the trigram the president of
may highlight that presidents are officers having responsibilities for and power
over countries or organizations, whereas president in an utterance such as Mr.
President functions as a title and formal mode of address.

As input units, we defined the cues as all the unique individual words in
the utterance. This model set-up stays close to approaches in which higher-level
units are predicted primarily from the units one level lower in a hierarchy of
units for ever smaller features.

So our NDL model used in this study takes single words as its input cues,
and multi-word unit lexomes as its outcomes. We made use of the ndl2 package
for R (Shaoul et al., 2014b), which runs on linux only. A platform-independent
implementation in python is available at github.com/quantling/pyndl. The
learning rate (the product of the α and β parameters in the Rescora-Wagner
equations) was set at 0.001, and the λ parameter (representing the maximum
evidence) was set at 1.0. See Figure 4.1 for a graphical representation.

4.2.2 NDL measures of lexical access
From the model we can calculate several different measures that reflect the
availability of trigrams, bottom-up activation of trigrams, and the uncertainty
about the identity of trigrams. These measures have been found to be strong
predictors of lexical processing.

The first measure is the L1-norm of an outcome, henceforth the outcome’s
prior. It is calculated by summing over all the absolute values of the afferent
weights that lead to a specific trigram.The L1-norm is a distance measure. It
can be understood as the distance covered when a point can be reached only
by traveling along one of the axes at a time. Thus, in the two-dimensional

1Still, despite their transparent meaning, we do suspect that frequent multi-word units
do encode additional meanings in that they often function as time or discourse markers, and
affordance relations.

github.com/quantling/pyndl
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Figure 4.1: Part of the Rescorla-Wagner network used in this study, where the
cues are formed by single words and the outcomes by the word trigrams used in
the two experimental studies. Each cue is connected to all outcomes, and vice
versa all outcomes are connected to each and every single cue. Red lines indicate
strong support for a certain multi-word unit, blue lines a weaker support and
the grey lines very weak support.The Dutch de dag dat, op de dag and de oorlog
in mean "the day that", "on the day" and "into the war", respectively.
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plane, the distance traveled to reach the point (3, -4) is 3 units along the
horizontal axis plus 4 units along the vertical axis, a total of 7 units. (The L2-
norm of a vector is the more familiar Euclidian distance, the distance covered
when traveling straight from the origin to the point (3, -4), thus, the Euclidian
distance is 5.) Assuming that the groups of neurons underlying cues have a
background firing rate - seen in several kinds of neurons - the prior reflects how
active an outcome is when there is no visual input. In other words, this L1-norm
provides a measure of network entrenchment that is independent from the input
and functions as a proxy for resting-state activity. For detailed discussion of this
measure, as well as empirical evidence for its predictivity for lexical processing,
see Milin et al. (2017).

The prior is strongly correlated with frequency of occurrence in the corpus
on which the network is trained. Indeed, the correlation between NDL priors
and trigram frequencies for our data is as high as 0.96. We systematically
explored which of the two measures performed the best, and kept only the
predictor that explains most of the variance in the data. In some of our models,
the frequency predictors performed slightly better, in other models the NDL
priors. We expect that higher frequencies and priors will lead to shorter fixation
durations or a lower number of fixations in our eye-tracking data, and shorter
production durations in our production data.

The second measure taken from the NDL networks, the activation of an
outcome unit, is the sum of the weights on the connections from the cues that
are present in the input to that outcome. This measure gauges the bottom-up
support for an outcome. Activations are predictive of a wide range of linguistic
phenomena, such as lexical decision latencies, word frequency effects, phrasal
frequency effects, and ERP amplitudes (Baayen et al., 2011; Baayen and Ram-
scar, 2015; Hendrix et al., 2017; Baayen et al., 2016a). Higher activations indi-
cate easier processing. Therefore, we expect that in our data higher activations
will correlate with either shorter fixation durations or a lower number of fixa-
tions, and shorter production durations.

The third measure, the activation diversity, gives an indication of the un-
certainty regarding the identity of a trigram. It assesses the extent to which
activation is dispersed over many different outcomes with the L1-norm of the ef-
ferent weights of the cues in the input to all outcomes. The larger the activation
diversity is, the larger the number of other outcomes that are also supported by
the cues in the input. One can think of this measure as quantifying the extent
to which the cues perturb the distribution of the outcomes’ priors. In an ideal
situation, the cues in the input would support only the targeted outcome, leav-
ing all other outcomes completely unaffected. In such a case, the perturbation
of the priors of the outcomes would be minimal. However, in reality, learning
is seldom this crisp and clear-cut, and the states of outcomes other than the
targeted ones are almost always affected as well, sometimes substantially. The
more the distribution is perturbed, the greater the uncertainty about which
outcome is the targeted outcome. Conceptually, the activation diversity resem-
bles measures of neighborhood density.
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Slower latencies are expected when the diversity values are high, as higher
values indicate that many other irrelevant outcomes are also highly activated.
Indeed, Milin et al. (2017) found slower response latencies for increasing values
of activation diversity in lexical decision experiments. Likewise, Arnold et al.
(2017) found that higher activation diversity values correlated with longer la-
tencies in auditory lexical decision. We expect that in our eye-tracking data,
high diversity values will correlate with longer fixation durations or more fixa-
tions, and in our production data, that high diversity values will correlate with
longer production durations.

One technical note is in order with respect to how we estimated activation
diversities. Because NDL implements naive discrimination learning, it is not
necessary (even if it were possible) to include huge numbers of word trigrams
in the simulation. Because the weights on the connections from the cues (25,163
letter triplets) to a given outcome are estimated independently for each out-
come, it suffices to include in the simulation only the 296 word trigrams used in
the experiments below. For each learning event in which none of the 296 word
trigrams were present, a dummy trigram was included as outcome. This en-
sures that weights on connections from cues to the target trigrams are properly
decreased across all learning events. Activation diversity for a given set of input
cues is calculated over the vector of activations over all trigrams, including the
dummy, that these cues give rise to.

4.3 Generalized additive mixed models

How exactly the three NDL measures work together to predict an experimental
response variable is not specified by NDL theory. In general, higher activations
and priors should reflect reduced processing costs, whereas a higher activation
diversity should predict increased processing costs. But whether they interact,
and if so, how, is not straightforwardly predictable. As a consequence, models
using discrimination measures are intrinsically exploratory in nature, and we
will depend on generalized additive mixed-effects modeling to screen the data
for possible nonlinear effects and interactions.

The generalized additive model (GAM) (Hastie and Tibshirani, 1990; Lin
and Zhang, 1999; Wood, 2006, 2011; Wood et al., 2015) extends the linear
model with tools for modeling nonlinear functional relations between a response
variable and one or more predictors. GAMs are especially useful for data where
the precise nature of these functional relations is not known. GAMs provide
spline-based smoothing functions that take one or more predictors as input and
construct wiggly curves or wiggly (hyper)surfaces. Spline smooths are set up
such that a proper balance is found between staying faithful to the data and
model parsimony. This is accomplished by penalizing smooths for wiggliness.

The effective degrees of freedom (edf) of a smooth, which are used to evalu-
ate the significance of a smooth, reflect the degree of penalization. Penalization
may result in all wiggliness being removed from the smooth, resulting in a term
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with one effective degree of freedom, in which case the effect of the predictor is
linear. Thus, if a predictor has a linear effect, the smooth will simplify to a stan-
dard line with a slope parameter. Nonlinear terms in the model are interpreted
by plotting the partial effect of the smooth together with confidence intervals.
As it is impossible to interpret a non-linear effect from just the model summary,
it is essential to always consider the plots of the partial effects. Therefore, plots
are used to clarify the size, shape and direction of effects.

The generalized additive mixed model (GAMM) incorporates random-effect
factors. When using GAMMs, the modeler has the possibility to replace the
combination of random slopes and random intercepts in the linear mixed model,
used to model by-participant (or by-item) random variation in regression lines,
by wiggly curves. The summary of a GAMM reports both the parametric part
of the model (intercept and the betas of the linear terms) and the smooths
(wiggly curves and wiggly (hyper)surfaces, as well as random effects). For a
brief introduction to GAMMs, see (Baayen et al., 2017a). GAMMs have been
used in previous (psycho)linguistic studies, and have been applied to, for exam-
ple, dialectological data (Wieling et al., 2014) and experimental data (Winter
and Wieling, 2016; Baayen et al., 2016b; Van Rij et al., 2016). We used the
mgcv package (Wood, 2006) for fitting GAMMs to our experimental response
variables. For some of the models reported below, the residuals showed thick
tails. Here, we dropped the assumption that the errors are normally distributed
and instead modeled the scaled residuals as following a t-distribution.

In our analyses, we checked all numeric predictors for non-linearity. Pre-
dictors with strictly linear effects can be identified in the model summaries
as smooths with only 1 effective degree of freedom (edf). By-subject factor
smooths for trial (the rank of a trial in the experiment) were used to model the
ebb and flow of attention in the course of the experiment (see Baayen et al.,
2017a, for detailed discussion). Smoothing splines were also essential for clar-
ifying the nature of the effects of the NDL predictors. For wiggly curves, we
made use of thin plate regression splines, and for wiggly surfaces, we made use
of tensor product smooths.

The statistical models reported below are based on exploratory data anal-
ysis. From highly correlated predictors, only the one predictor that explained
most of the variance was included. Two-way interactions were explored system-
atically.

4.4 Eye-tracking experiment

Eye-tracking has thus far not been used to study lexical bundles — semanti-
cally transparent and compositional multi-word units.2 Previous eye movement
research on multi-word expressions has focused on idioms (Siyanova-Chanturia
et al., 2011a; Underwood et al., 2004) and binominal expressions, such as bride

2With the exception of our study on differences in reading lexical bundles between younger
and older adults, see Chapter 2.
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and groom (Siyanova-Chanturia et al., 2011b). A processing advantage of id-
ioms over literal language was found in the number of fixations participants
made, where idioms were fixated on less, and in the total reading time, which
was shorter for idiomatic phrases than for matched novel phrases. Siyanova-
Chanturia et al. (2011b) presented participants with binominal phrases in their
prototypical form, e.g. bride and groom, and in their reversed form, groom and
bride. All phrases were matched on single word frequency, and only differed in
phrasal frequency. They found that phrasal frequency significantly affected the
number of fixations made, the total reading time, and the first pass reading
time, a measure that sums all fixation durations before the first regression is
made.

For this study, we focus on the first fixation durations, which reflect the
first stage of reading, the first pass reading times, which reflect early processing
during reading, and the number of fixations, which reflect the overall difficulty
of processing during the whole reading process.

4.4.1 Materials

We randomly selected a set of three-hundred trigrams from the top one percent
most frequent trigrams in the Netherlands Dutch part of the OpenSoNaR cor-
pus of contemporary Dutch (Oostdijk et al., 2013). We specifically selected a
subset from the most frequent combinations of three words so as to make sure
that the stimuli selected were very likely to be stored under any usage-based
account (Goldberg, 2003; Bybee, 2010).

The trigrams selected were all semantically transparent combinations of
words, so that the meaning of the whole is not idiomatic or opaque, but com-
posed of the meanings of the separate words. These types of multi-word units
are often referred to as lexical bundles in the literature (Wray, 2012; Tremblay
et al., 2011). Moreover, we did not limit the set of stimuli by choosing only con-
stituents, or combinations of words that can stand alone as utterances. Arnon
and Cohen Priva (2013); Tremblay and Baayen (2010); Tremblay et al. (2011)
have all shown that phrasal frequency effects appear regardless of whether or
not a multi-word unit is a constituent. Nevertheless, we included a predictor
in our models specifying if a multi-word unit is a constituent or not, to further
test if constituency plays a role in multi-word unit processing.

4.4.2 Design

The experiment started with a practice block of five trials, where each trial was
followed by a comprehension question. The rest of the experiment consisted of
three blocks, containing 100 trials each. These blocks were separated by short
breaks. At random intervals, experimental items were followed by a string of
words that was either a grammatical continuation or an incorrect continuation
of the trigrams. Participants had to click with a mouse on a ’correct’ or ’incor-
rect’ label on the screen and received direct feedback on their choice. One third
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of the experimental items was followed by these comprehension questions.

4.4.3 Participants

We recruited thirty-two students from Leiden University (20 female, average
age 21.8 years). All participants were native speakers of Dutch and had normal
or corrected-to-normal vision. Due to technical issues data from two partici-
pants had to be discarded. Participants gave informed written consent prior to
participating and they received a monetary reward for their participation.

4.4.4 Procedure

Participants were seated in a sound-proof room. They received verbal instruc-
tions about the task, which was reading the trigrams presented on the screen
silently, and to answer a set of comprehension questions that were presented
at random intervals. The eye movements of their dominant eye were recorded
with an Eyelink 1000 eye-tracker (SR Research Ltd). We used a 500 Hz sam-
pling rate and performed eye calibration at the beginning of the experiment,
using a 9-point calibration procedure. To minimize head movements, we asked
participants to put their head on a head rest. After calibration was achieved,
participants received final written instructions on the screen before the exper-
iment started.

At the start of each trial, a fixation point was presented for 500 ms at the
left-hand side of the screen, to ensure that they would read from left to right.
Trigrams were presented in a black, monospaced font (Consolas, size 22) against
a white background for 1,200 ms. One third of the trigrams was followed by a
comprehension question, that stayed on the screen until the participant clicked
on a box with ’correct’ or ’incorrect’ with a mouse. Trials were separated by
an inter-stimulus interval of 1,000 ms.

4.4.5 Analyses

In order to understand how readers process trigrams, we looked at several eye-
tracking measures that reflect different processes over time. To gauge what
is happening at the very first moment readers encounter a trigram, we mod-
eled the first fixation durations. Previous research has shown that whole-form
frequencies of complex compounds can already influence this early measure
(Kuperman et al., 2009; Miwa et al., 2017; Pollatsek et al., 2000). In order to
approach normality, we raised the first fixations duration to the power 0.2. The
results of the modeling are discussed in Section 4.4.6.

The first fixations durations are not fully representative for early processes
in reading of units that consist of several words (Carrol and Conklin, 2015).
Therefore, to get a more complete picture of early processing of written tri-
grams, we also considered the first pass reading times (see Section 4.4.7). First
pass reading times represent the duration from the start of the first fixation
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until the first regression is made. This measure gives an indication of the pro-
cesses employed during the initial reading of the trigrams. In order to approach
normality, we took the square root values of the first pass reading times.

We also looked at the number of fixations participants made. This measure
is thought to reflect processing difficulty. The harder a text is, the more fixations
a reader makes (Rayner, 1998). Additionally, it is a measure that provides a
summary of the full reading process, giving an indication of what happened
during the whole course of reading. To model the fixation counts, we used a
generalized linear model with a Poisson link.

4.4.6 First Fixation Durations

The model of the first fixation durations contains significant main effects for the
length of the trigram, interactions of the horizontal position of the first fixation
(firstFixX) with the age of the participant and the NDL prior (logPrior), and
the log frequencies of the third word of the trigrams. There are furthermore
random intercepts for items (trigrams), factor smooths of trial number per
participant, and by-participant random slopes of the trigram length, fixation
position, the frequencies of the single words, and the NDL prior. Only the
latter did not reach significance, but was kept in the model as the NDL prior
is included in an interaction term. Table 4.1 reports the results.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 3.0788 0.0596 51.6781 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(length) 1.0001 1.0002 79.0230 < 0.0001
te(firstFixX,age) 14.0521 16.0490 6.2623 < 0.0001
te(firstFixX,LogPrior) 3.9835 4.6942 5.6477 0.0009
s(logFreqC) 3.8941 4.5074 4.9069 0.0003
s(trigram) 94.4559 289.0000 0.4866 < 0.0001
s(trial,ptc) 72.3468 268.0000 15.5696 < 0.0001
s(length,ptc) 21.0110 29.0000 6.9429 < 0.0001
s(firstFixX,ptc) 24.5172 28.0000 20.7602 < 0.0001
s(logFreqA,ptc) 2.8022 30.0000 0.1047 < 0.0001
s(logFreqB,ptc) 12.7689 30.0000 1.5642 0.0035
s(logFreqC,ptc) 13.8035 29.0000 1.4906 0.0027
s(LogPriorptc) 0.0004 29.0000 0.0000 0.8092

Table 4.1: Table of the results of the model of first fixation durations.

Figure 4.2 displays the fixed effects of the model. The upper left panel
shows how longer trigrams elicit shorter first fixation durations. When a reader
encounters a long trigram, it is unlikely that she will be able to process the
whole trigram already at the first fixation, and so she will re-fixate as quickly
as possible. If the trigram is short, however, then the reader will be able to
see most if not all of the trigram from her foveal and parafoveal view (Rayner,
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1998), and as a consequence, will not re-fixate quickly.
The top right panel displays the interaction of the first fixation location and

the age of the participant. When the first fixation lands near the beginning
of the trigram, this fixation tends to be very short, especially so for older
participants. However, a similar eye-tracking study with a younger group of
participants in their twenties and an older group of participants in their sixties,
did not find any age-related effects, despite the much larger differences in age
(Lensink et al., submitted). It is not clear if the absence or presence of an age
effect is due to false negatives or false positives. It could be the case that due
to a larger experience with reading, the older participants in this study were
quicker to realize that they need to re-fixate when their first fixation lands near
the beginning of the trigram.

If the first fixation landed further into the trigram, however, then the first
fixation lasted longer, as there is more information that can be extracted from
the signal from that position. For older participants, this effect was even larger.
Again, it might be the case that the larger reading experience of older readers
makes them better at estimating what the optimal fixation duration is at a
certain location, so as to extract as much information as possible.

The bottom left panel shows the interaction of the fixation location with
the NDL prior. In this interaction, the further the first fixation landed into the
trigram, the shorter this fixation will last. For fixations near the beginning of
the trigram, a higher NDL prior will speed up processing, leading to shorter
fixations. If the fixations landed near the end of the trigram, the effect flips,
and larger NDL prior values correspond to longer fixation durations.

Lastly, the panel on the bottom right shows how the effect of the frequency
of the third word has a quadratic shape: First fixation durations tend to get
longer only for trigrams where the third word has a log frequency near zero.

It is interesting to see that already at the very first fixation, participants
employ top-down information of the full trigram (the NDL prior) and the fre-
quency of the third word. We expected the NDL prior to have a facilitative
effect on reading measures, such that higher prior values would correspond to
shorter fixation durations. However, when the first fixation lands far enough
into the trigram, we see that higher priors correspond to longer fixations. In
Section 4.4.9 we will get back to this unexpected finding.

4.4.7 First Pass Reading Times

First pass reading times are the total durations of all reading that happens be-
fore readers make a regression. They reflect early processing and are especially
useful when considering multiple words at once (Carrol and Conklin, 2015).

The model for the first pass reading times (Table 4.2) contains a significant
effect of age, where older readers spend more time on their first passes. The
position of the first fixation (firstFixX), trial number, the frequency of the
second word, and the NDL trigram activation (LogActTrig) form the significant
main effects of the model. Strikingly, the length of the trigram did not reach
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Figure 4.2: Partial effects of the model of the First Fixation Durations. The
panel on the top left shows the effect of the lenght of the trigram, the panel
on the top right shows the interaction of participant age and the horizontal
location of the first fixation. The bottom left panel shows the interaction of the
first fixation location and the NDL prior. The panel on the bottom right shows
the effect of the third word frequency.
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significance and model comparisons showed that it did not have to be included
as a main effect in the model. However, there is a significant random slope of
length per participant, showing that participants did differ among themselves in
how their first pass reading times were influenced by the length of the trigram.

The random effects part of the model contains random intercepts for sub-
jects (ptc) and items (trigram), factor smooths of trial number per participants,
and random slopes for the fixation location, the length of the trigrams in char-
acters, the frequencies of the single words, and the NDL trigram activations.
Only the latter did not reach significance, showing that there are no significant
individual differences between participants in how their first pass reading times
are affected by the trigram activations.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 8.5570 4.5979 1.8611 0.0628
age 0.5861 0.2106 2.7838 0.0054
B. smooth terms edf Ref.df F-value p-value
s(firstFixX) 5.3022 6.4162 64.8170 < 0.0001
s(trial) 1.0003 1.0005 9.7653 0.0018
s(logFreqB) 1.0001 1.0001 10.7538 0.0010
s(LogActTrig) 3.8976 4.4551 2.7768 0.0142
s(ptc) 9.1028 28.0000 0.6302 < 0.0001
s(trigram) 112.1411 279.0000 0.6793 < 0.0001
s(length,ptc) 13.9800 30.0000 1.4194 0.0043
s(firstFixX,ptc) 19.8131 29.0000 3.3395 < 0.0001
s(trial,ptc) 75.6200 268.0000 66.1222 0.0279
s(logFreqA,ptc) 13.0652 30.0000 1.0319 < 0.0001
s(logFreqB,ptc) 13.1648 29.0000 1.1846 0.0045
s(logFreqC,ptc) 8.7518 30.0000 0.5420 0.0600
s(LogActTrig,ptc) 3.2482 29.0000 0.1287 0.2382

Table 4.2: Table of results of the model of first pass reading times.

The partial effects are plotted in Figure 4.3. The first pass reading times
tend to get longer over the course of the experiment, which could indicate
fatigue (Baayen et al., 2017a). There is a negative direction to the effect of
the location of the first fixation on the first pass reading times: When the
first fixation landed near the beginning of the trigram, readers spent more
time at their first pass than when the first fixation landed near the end of the
trigram. This makes sense, as the first pass includes all fixations before the first
regression is made — if the first fixation landed near the end of the trigram,
then a reader cannot make many forward fixations, so a regression is likely to
take place already at the second or third fixation, reducing the time of the first
pass.

Higher frequencies of the second word of the trigram correspond to shorter
first pass reading times, showing the expected facilitation and shorter reading
times for high frequency items (Rayner, 1998). Higher bottom-up activations,
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however, correspond to longer first pass reading times. Note that it is mostly
the lower values of the NDL activations that have a clear effect on the reading
times. As we expected to see facilitative effects of the NDL activations, this is
unexpected, and we will further discuss this in Section 4.4.9.
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Figure 4.3: Partial effects of the model of the First Pass Reading Times. The
top two panels show the effects of the trial number — reflecting the temporal
position in the experiment — and the position of the first fixation. The bottom
two panels show the effects of the second word frequencies and the trigram
activations.

4.4.8 Number of fixations

The number of fixations that participants made on each trigram can tell us
something about the overall course of processing. Ease of processing is reflected
in a lower number of fixations made (Rayner, 1998).

Table 4.3 shows the results of the model. There are significant main effects
for the locations of the first and second fixations, the durations of the first
stage of processing — the first pass reading times —, and the frequency of
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the first word of the trigram. The effect of the length of the trigram is near
significant. There are furthermore significant random intercepts for subjects
(ptc) and items (trigram), and non-significant random slopes per participant of
the length of the trigram, the locations of the first and second fixation, the first
pass reading times, and the frequencies of the first words of the trigrams. Note
that none of the NDL measures reached significance, and only the frequency of
the first word of the trigram influences the number of fixations made.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 1.3214 0.0311 42.5068 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(length) 1.0001 1.0001 3.7318 0.0534
s(firstFixX) 1.1504 1.2823 72.0942 < 0.0001
s(secondFixX) 2.0572 2.6427 53.8001 < 0.0001
s(firstPassRT) 4.5627 5.6345 362.4722 < 0.0001
s(logFreqA) 1.0000 1.0000 6.3252 0.0119
s(ptc) 23.4770 29.0000 127.8936 < 0.0001
s(trigram) 214.2674 264.0000 1217.8949 < 0.0001
s(length,ptc) 0.0000 29.0000 0.0000 0.9997
s(firstFixX,ptc) 0.0001 29.0000 0.0001 0.6687
s(secondFixX,ptc) 1.2191 29.0000 1.3156 0.4117
s(firstPassRT,ptc) 0.0000 29.0000 0.0000 0.8698
s(logFreqA,ptc) 0.0010 29.0000 0.0009 0.4946

Table 4.3: Table of the results of the model of the number of fixations.

In Figure 4.4 the main effects are plotted. The near significant effect of
the length of the trigram shows an upward trend, where longer trigrams elicit
more fixations. The effects of the horizontal locations of the first and second
fixations are each other’s opposite: The further the first fixation landed into
the trigram, the less fixations overall participants made; the further the second
fixation landed into the trigram, the more fixations participants made. This
seems to suggest that reading a trigram is optimal when the first fixation lands
relatively far into the trigram, and when the second fixation lands relatively
near the beginning of the trigram — in other words, when readers make a
regression.

How the first stage of processing proceeds, has a large influence on the
overall reading process, as shown by the large effect that the duration of the
first pass reading time has on the number of fixations made. The longer the
first pass lasted, the less fixations readers will need overall. The more time a
reader spends at the first stages of processing, the less fixations in total she
will need, which is an indication of ease of processing. In other words, it pays
off to take more time at the initial stages of processing a written trigram.

The frequency of the first word of the trigram, lastly, has a facilitative
effect, such that more frequent first words correlate to less fixations overall.
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It is striking that only the first word frequency plays a role in how many
fixations readers make, especially since the large majority of the first words of
our stimuli are function words. We will come back to this at our discussion of
the eye-tracking data in the next section.
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Figure 4.4: Partial effects of the model of the number of fixations. The top
panels show the effects of the length of the trigram, and the horizontal locations
of the first and second fixation. The bottom panels show the effects of the
duration of the first pass reading times, and the frequency of the first word of
the trigram.

4.4.9 Discussion eye-tracking data

The eye-tracking data show that the NDL measures provide additional insights
over and above more traditional measures of lexical processing, especially for
the early stages of reading. The NDL priors and NDL activations explain more
of the variance in the data than trigram frequencies, and provide moreover a
more nuanced picture of how reading trigrams proceeds. The reader starts with
top-down information and continues to process the text using more bottom-up
information, where the time spent at the initial stages of reading are predictive
of how easy the overall reading process will be.

Already at the durations of the very first fixation, the NDL priors play a
role in processing. Recall from Section 4.2 that the priors reflect how active
a trigram is when there is no visual input. This could be conceptualized as a
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type of resting-state activation (Milin et al., 2017). We expected to see that
higher prior values would lead to easier processing and thus to shorter fixation
durations. The priors are employed as soon as the first piece of information is
perceived by the reader. They have a facilitative effect, i.e. higher priors lead
to shorter fixation durations, when the first fixation lands near the beginning
of the trigram. However, when the first fixation lands more towards the end of
the trigram, then higher priors lead to longer first fixation durations.

This unexpected effect shows that high prior values do no necessarily lead
to shorter first fixation durations. This shortening only happens when this first
fixation lands near the beginning of the trigram. From this location, the reader
is likely to be able to see the full trigram from his foveal and parafoveal view,
especially since the parafoveal view of readers of languages that are written from
left-to-right is asymmetrical and larger on the right-hand side (Rayner, 1998).
This provides the reader with enough visual information to gain facilitative
effects from higher prior values. However, when the first fixation lands more
toward the end of the trigram, then the reader is not likely to see the full
trigram at once, missing useful visual input especially from the beginning of the
trigram. From this suboptimal viewing position, perceiving parts of trigrams
that moreover have low prior values, will prompt the reader to re-fixate as
quickly as possible, as he will not be able to gain much information during that
fixation. However, if the prior values are high, then the reader will attempt to
process the visual information, and spend a bit more time at the first fixation.

The first pass reading times reflect a further stage in processing, that sums
up what happens at the initial stages of processing, before readers make a
regression to reread, re-evaluate, or reconsider text that they have read before.
Instead of measures reflecting resting-state activations, which could be seen as
top-down influences, now the NDL activations start to play a role. These NDL
activations reflect bottom-up processes, in this case the bottom-up support
from the visual signal to the trigram outcomes. So at the first fixation, readers
begin using top-down expectations, and along the way start to use bottom-up
input.

We predicted that the NDL activations have a facilitative effect on process-
ing. For the first pass reading times, however, we see that higher activations
correspond to longer first pass durations. It seems to be the case that readers
prefer to spend more time at the early stages of processing when the visual
input provides them with stronger support for a know trigram, in order to try
to perceive and process as much information as possible, as early as possible.
This explanation fits with the large influence that the durations of the first
pass reading time have on the total number of fixations made, which reflects
the overall reading process — longer first pass reading times lead to less fixa-
tions overall. Previous research has moreover found similar reading strategies
for lexical bundles (Lensink et al., submitted). To conclude, there is a clear
trade-off of the amount of time spent at the first stages of reading, and the
total cost of reading and processing the whole trigram, where a longer first
stage corresponds to easier processing overall.



88 4.5. Production experiment

A final remark is in place about the role that the frequencies of the single
words play. Even though it is clear that readers use the full trigram from the
first fixation onwards, they also make use of the single word frequencies. At
the first fixation, there is an effect of the frequency of the third word, at the
first pass reading times, there is an effect of the frequency of the second word,
and at the total number of fixations, there is an effect of the frequency of the
first words. It could be that at the first fixation, participants focus more on
the end of the trigram as a way to check if their top-down expectations match
reality, and that over the course of processing, they focus more on the middle
and beginning of the trigram.

4.5 Production experiment

Moving further into the processes that underlie reading out loud, we now con-
sider the processes giving rise to differences in naming latencies of trigrams and
their production durations. Phrasal frequency effects have been well-established
for production data (Arnon and Cohen Priva, 2013; Arnon and Priva, 2014;
Tremblay and Tucker, 2011). Previous work has largely only looked at English.
We extend previous research by replicating these types of experiments with
another language, Dutch. We use a word-reading paradigm, where participants
are instructed to read Dutch multi-word units out loud from a computer screen.
Our prediction is that phrasal frequency will also have a significant effect on
production durations of Dutch multi-word units. We moreover explore if, over
and above the frequencies, the NDL priors, activations and activation diversi-
ties play a role.

4.5.1 Materials

We used the same set of stimuli as used in the eye-tracking experiment (see
Section 4.4). We created two new experimental lists, taking care again to ensure
that items with phonological or semantic overlap did not precede or follow each
other in two consecutive trials.

4.5.2 Design

Two different experimental lists were created, consisting of three blocks of one
hundred items, where no trigrams following each other within two trials had
any phonological or semantic overlap. The two lists were assigned randomly to
the participants. See the online appendix for a full list of the stimuli and the
two experimental lists. The three experimental blocks, each consisting of 100
trials, were preceded by a practice block of five trials. All blocks were separated
by a short break.
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4.5.3 Participants

Thirty students from Leiden University were recruited to participate in the
study (21 female, average age 22.0 years). All were native speakers of Dutch.
Participants gave their written consent before the start of the experiment and
received a monetary reward for their participation.

4.5.4 Procedure

Before the start of the experiment, participants were given written information
about the experiment and they gave their written consent. Participants were
asked to read out loud the words on the screen as fast and as accurately as
possible. First a fixation cross was presented in the middle of the screen (font:
Arial, size: 18) for 500 ms, followed by a 100 ms blank screen. Then a trigram
was presented (font: Arial, size: 18) for 1,200 ms. All letters were printed in
black against a white screen. Each trial was separated by an inter-stimulus
interval of 1,000 ms. A microphone recorded the speech of each participant.

4.5.5 Analyses

In order to gain more insight in the processes active during the production of
trigrams, we considered the onset latencies that mark the beginning of the ut-
terances, and the total durations of those utterances. Both dependent measures
were log-transformed to approach normality.

4.5.6 Production onset latencies

When reading a trigram out loud, it makes a difference if this trigram is a
constituent or not, as shown by the significant effect that constituency has on
the onset latencies (see Table 4.4). A participant that has to read out loud
a trigram that is a constituent is a bit slower in starting to speak than a
participant that has to read out loud a trigram that is not a constituent.

Next to an effect of constituency, the model contains a near significant effect
of trial number and a near-significant interaction of the NDL activations and
the NDL activation diversities. There are moreover significant main effects of
the length of the trigram and the single word frequencies. The model includes
random intercepts for items (trigrams), factor smooths of trial per participant,
and random slopes for the NDL activations, the NDL activation diversities,
and the single word frequencies, which all reached significance.

Figure 4.5 shows how speakers got a bit faster over the course of the exper-
iment, how longer trigrams take longer to read out loud, what the interaction
between the NDL activations and the NDL activation diversities looks like, and
how higher frequencies of the single words speed up the onset latencies.

The plot in the upper right corner, displaying the interaction of the two NDL
measures, shows that larger NDL activations tend to speed up naming. The
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -1.9596 0.0584 -33.5792 < 0.0001
constituentY -0.0631 0.0195 -3.2410 0.0012
B. smooth terms edf Ref.df F-value p-value
s(length) 3.1420 3.2463 9.3388 < 0.0001
s(trial) 2.7254 2.9455 2.3240 0.0621
te(LogActTrig,logActDiv) 5.6942 5.8812 2.0514 0.0681
s(logFreqA) 2.1530 2.2256 16.2560 < 0.0001
s(logFreqB) 1.0002 1.0002 7.6802 0.0056
s(logFreqC) 3.4033 3.5162 5.8700 0.0004
s(trigram) 212.9775 258.0000 5.6714 < 0.0001
s(length,Ptc) 15.1292 29.0000 1.3553 0.0001
s(trial,Ptc) 177.0317 269.0000 4426.6984 < 0.0001
s(LogActTrig,ptc) 9.0629 29.0000 0.4712 0.0497
s(logActDiv,ptc) 6.0253 29.0000 0.2730 < 0.0001
s(logFreqA,ptc) 14.6149 29.0000 1.2567 0.0013
s(logFreqB,ptc) 20.4309 29.0000 4.0641 < 0.0001
s(logFreqC,ptc) 13.9648 29.0000 1.5245 0.0003

Table 4.4: Table of results of the model of the production onset latencies.

better the bottom-up support is, the better participants can prepare themselves
for articulation, and the faster they will start speaking. This facilitative effect
of NDL activations is strongest for trigrams with high activation diversities.

The NDL activation diversity is a measure that conceptually resembles mea-
sures of neighborhood density. The larger the diversity, the larger the number
of other outcomes that are also supported by the cues in the input. This leads
to more difficulty in processing, which in turn could lead to delayed onsets and
larger durations. However, this inhibitive effect of activation diversities is only
seen for trigrams with very low activation values. For trigrams with moderate
or higher activation values, higher diversity values lead to faster naming. So
when the visual input supports a lot of different possible trigrams, and when
this is accompanied by an moderate to large bottom-up support for the in-
tended trigram too, then the participant will start speaking faster. We will get
back to this result in Section 4.5.8.

4.5.7 Production durations

Whether or not a trigram is a constituent has no influence on the production
durations of a trigram. There are significant main effects of the length of the
trigram, trial number, the frequencies of the first and second word, and the
trigram frequencies in our model. NDL measures did not reach significance
as main effects in the model, but do play a role in the random effects struc-
ture. This means that individual participants differ significantly in how their
production durations are influenced by NDL activations and NDL activation
diversities, but that there was no overall effect of these measures. See Table 4.5
for an overview.
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Figure 4.5: Partial effects of the model of the Onset Latencies of the production
data. The first two top panels show the effects of trial number and length of
the trigram. The panel at the top right shows the interaction of the NDL
trigram activation (logActTrig) and the NDL trigram diversity (logActDiv).
The bottom three panels show the effects of the single word frequencies.
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The model furthermore includes random intercepts for items (trigrams),
factor smooths of trial number per participant, and random slopes per partic-
ipant of the length of the trigram, the NDL activations, the NDL activation
diversities, the single word frequencies, and the frequencies of the full trigram.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 6.7543 0.0256 264.2721 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(length) 1.0003 1.0003 518.5208 < 0.0001
s(trial) 1.0000 1.0000 4.2511 0.0393
s(logFreqA) 2.6453 2.6638 2.9704 0.0318
s(logFreqB) 1.0001 1.0001 5.6982 0.0170
s(logFreqABC) 1.0001 1.0001 12.9681 0.0003
s(trigram) 251.7944 262.0000 32.5657 < 0.0001
s(length,ptc) 23.6631 29.0000 7.6113 < 0.0001
s(trial,ptc) 186.9775 269.0000 20506.0712 < 0.0001
s(LogActTrig,ptc) 11.1132 30.0000 0.7370 0.0190
s(logActDiv,ptc) 5.7714 30.0000 0.2491 < 0.0001
s(logFreqA,ptc) 11.3527 29.0000 0.9122 0.0141
s(logFreqB,ptc) 22.4854 29.0000 9.9231 < 0.0001
s(logFreqC,ptc) 19.7342 30.0000 5.7716 < 0.0001
s(logFreqABC,ptc) 8.5092 29.0000 0.8089 0.0681

Table 4.5: Table of results of the model of the production durations.

Figure 4.6 shows that production durations get slightly shorter over the
course of the experiment, that longer trigrams take longer to pronounce, and
the effects of the frequencies of the first two words and the trigram itself. The
frequency of the first word has a quadratic shape, with high frequency first
words slowing down production durations, which is unexpected. However, the
effect is quite small, and might not be robust. The effect of the frequency of
the second word goes in the expected direction, with higher frequency second
words leading to shorter overall production durations. Lastly, the frequency of
the trigram also has a facilitative effect on production durations: The higher
the frequency of the trigram, the less time participants need to produce the
whole trigram.

4.5.8 Discussion production data

This section seeks to study the processes involved in lexical access of trigrams
when people are speaking, and to see to what extent NDL measures could add
any new insights over and above traditional measures of lexical processing such
as the frequency of an item or its length in characters. The NDL measures play
a role in how fast people start to speak, but we did not find any main effects
of NDL measures in the production durations.
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Figure 4.6: Partial effects of the model of the production durations. The top
two panels show the effects of trial number and the length of the trigram. The
bottom panels show the effects of the first word frequencies, the second word
frequencies, and the trigram frequencies.
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Arnon and Cohen Priva (2013) found robust trigram frequency effects in
their study, irregardless of the constituency of those trigrams. To see if the
same applies to Dutch trigrams, we also considered the constituency of the
trigram. We found that onset latencies are delayed for constituents, but did
not find any effect of constituency on the production durations. Participants
are quicker in starting to speak when reading out loud non-constituents. It could
be the case that constituents evoke more semantic and pragmatic associations,
slowing down the speaker. It could also be the case that constituents prompt
the speaker more to use a certain intonation contour, whereas non-constituents
can be pronounced with a more monotone intonation. The latter might require
less planning and speakers will therefore be quicker to start speaking.

When considering the model of the onset latencies, it appears that all sin-
gle word frequencies influence how fast people start to speak. This suggest that
before speaking, all single words have been recognized and are employed in
preparing the utterance. There are however no effects of the full trigram fre-
quencies or the NDL prior on onset latencies, which is unexpected given that
we found trigram effects already at the first fixation, and previous work has
shown early influences of whole-form compound frequencies (Kuperman et al.,
2009; Miwa et al., 2017; Pollatsek et al., 2000).

However, there are trigram effects at play, but these effects are different
from traditional frequency measures. There is a small interaction of the NDL
activations and the NDL activation diversities, which index the total bottom-
up support for the target trigram, and the number of other outcomes that are
also supported by the visual input, respectively. The interaction between the
NDL activations and NDL activation diversities shows an inhibitive effect of
activation diversities for trigrams with very low activation values. So when the
visual input only weakly supports the target trigram, and when there is a large
uncertainty about the identity of the trigram, participants are slowed down.
However, when the visual input provides moderate to strong support for the
target trigram, then larger activation diversities lead to faster onset latencies.
This could indicate that a larger activation of similar candidates aids in pro-
cessing, by means of spreading activation from the non-target trigrams to the
target trigram, promoting the articulatory processes needed for its production.

Tremblay and Tucker (2011) conducted a production study where partic-
ipants had to produce frequent four-word sequences. The authors found that
the onset latencies in their data were mostly influenced by log probability of
occurrence, which they interpreted as indicating a competition of the target
multi-word unit with its family members. As the NDL activation diversities are
conceptually similar to measures of neighborhood densities, this fits well with
our finding that the NDL activation diversities influence the onset latencies in
our data. However, Tremblay and Tucker (2011) found that trigrams were the
most important predictor for the onset latencies, whereas single words formed
the most important predictors for the production durations. We did find tri-
gram frequency effects in the production durations, and only a small interaction
effect of trigram activation and diversities measures. That said, Tremblay and
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Tucker (2011) also took into account the effects of bigram (AB and BC) and
skipgram (AC) frequencies, which we did not. This could explain the difference
between the results. For future studies, it will be interesting to also look at the
effects of bigrams and skipgrams using a discriminative approach.

4.6 General discussion

We started off by proposing that multi-word units are a feasible theoretical
construct. If we however do assume that multi-word units are units of process-
ing, we can ask the questions why these units exist, what they are, and how
these units can be discriminated from each other in lexical access.

As to the usefulness of multi-word units as a theoretical construct for gaug-
ing lexical processing, we pointed out that lexical storage is extremely rich.
Moreover, most multi-word units used in experiments are actually semantic
units of their own that encode more than just the sum of their parts. They en-
code time markers such ’on the day’, discourse markers such as ’I think that’,
and affordance relations such as ’on the table’. As for the question pertaining
to the lexical access of multi-word units, we took a discriminative learning per-
spective to explore to what extent these multi-word units can be discriminated
from orthographic input. The computational implementation of this learning
perspective, NDL, incorporated multi-word unit lexomes as outcomes. Allow-
ing for multi-word unit lexomes assumes that there is no principled difference
between these units and single words, which were posited as outcome units in
previous NDL models (Baayen et al., 2011). We predicted that if multi-word
units are indeed units, then measures predicting a phrasal frequency effect
should also arise in a discrimination model for lexical access to these units. In-
deed, we found that the priors taken from the network are very similar and show
a high correlation (r = 0.96) to trigram frequency values taken from a corpus.
Furthermore, the NDL network offers us measures that quantify the amount of
activation a trigram receives from the orthographic input (activations) and the
uncertainty about the identity of a trigram (activation diversities). We have
shown that in silent reading and reading out loud of multi-word units, these
measures add additional insights over and above frequency values. These results
testify to the plausibility and usefulness of a discriminative approach.

Moreover, by including NDL and frequency measures pertaining both to
single words and trigrams, and the location of the fixations as predictors in
our model, we also tackled the methodological issue of how to use eye-tracking
to study units that are simultaneously compositional strings and whole units,
each of which has their own set of factors influencing reading behavior (Carrol
and Conklin, 2015).

The question remains why we only found clear effects of the NDL measures
in the eye-tracking data, a small interaction effect in the onset latencies of
the production data, and no main effects of NDL measures in the production
durations. Recall that we aimed to study how lexical access of multi-word units
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proceeds. NDL networks provide us with new measures of lexical access, i.e.
priors, activations, and activation diversities. Lexical access occurs during the
first stage of reading, but will become less active and important over time —
explaining why NDL measures of lexical access do not play a role in the model
of the total number of fixations made. The same applies to the production data,
where at the time of the onset of articulation, speakers are still influenced by
measures of lexical access, whereas further down the production process, lexical
access has already taken place and its measures do not play any significant roles
anymore for most speakers in the total production durations.

4.6.1 Lexical access of multi-word units

Our data show that lexical access to multi-word units proceeds from top-down
processes as indexed by the NDL priors, to bottom-up processes where the
support for a certain multi-word unit from the visual input goes hand in hand
with processes of lexical neighborhoods as indexed by the activation diversities.
When reading a trigram, readers are at first influenced by the top-down NDL
priors, and then by the NDL activations. It pays off to spend more time at the
first pass, by taking the time to let bottom-up visual input inform processing
— as indexed by the positive slope of the effect of the NDL activations on the
first pass reading times.

When wanting to read out loud a written trigram, speakers will go through
at least the first stages of reading before starting to speak. When they are
ready to start articulating, it is the frequencies of the single words that speed
them up, and trigram measures in the form of bottom-up support and the
activation measures. Enhanced bottom-up support speeds up processing, and
granted that this bottom-up support is high enough, the co-activation of similar
items also aids in processing. The fact that higher trigram frequencies lead to
overall shorter production durations, shows that more frequent forms tend to
get reduced more in production (Bybee, 2010).

One thing to note is that frequency values outperformed the NDL priors
in our production data, whereas these measures produced very similar models
and are highly correlated (r = 0.96). The reason for this better performance of
the frequency values is that NDL priors only capture the form-driven discrim-
ination, whereas frequencies capture more than that. The frequency measures
capture two aspects of lexical processing, one relating to the "prior availabil-
ity" — which is also captured by the NDL priors — and the other relating to
higher-order lexical knowledge such as how often things happen in the world,
and how these things cluster in the world. This additional layer seems to be
more important during production than during reading, where the NDL priors
outperformed the phrasal frequency predictors.

For future studies, it will also be worthwhile to see the extent to which
trigrams with no clear functional pattern — in contrast to the time markers,
discourse markers, and affordance relations mentioned above — can also be
implemented as multi-unit words, or single lexomes, in an NDL network. In
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this study, we used constituency as a proxy for semantic unity and found that
constituency only affected the onset latencies of the production data. Previ-
ous research has moreover also indicated that phrasal frequency effects arise
irregardless of the constituency of a multi-word unit (Arnon and Cohen Priva,
2013). For future studies, it will be insightful to clearly define what would con-
stitute a ’semantic unit’ and contrast semantic with non-semantic units. If the
function of the trigrams drives their coherent, single form, then it is expected
that trigrams that lack such a coherent function are not processed as chunks. It
is also worthwhile to use more sophisticated features than single words as cues,
such as the frequency band summary features used by Arnold et al. (2017).
In modeling reading, we could implement cues that consist of sub-graphemic
orthographic features, which are known to play a role in reading (Dehaene,
2009; Linke et al., 2017).

Overall, this study has shown that incorporating multi-word units as
single-unit outcomes in an NDL model works well in predicting empirical
data. Moreover, it leads to more insights into the nature and processing of
multi-word units. Both single words and the full trigram, their frequencies,
priors, bottom-up activations and the activation diversities play a role in
lexical access of trigrams. The fact that the NDL approach is successful,
hints at the possibility that single words, idioms, and multi-word units are
essentially the same type of entity cognitively. NDL theory proposes that
linguistic categories, such as morphemes, words, and phrases, are all emergent
from a system that simply discriminates between linguistic encodings of
relevant pieces of experiences (Ramscar, 2013; Baayen et al., 2017b; Ramscar
and Port, 2015; Baayen et al., 2016a). Sometimes these experiences are
encoded as a morpheme, sometimes as a single word, an idiom, a multi-word
unit or even as a whole phrase - and all are units that we need to keep apart.
Discrimination measures can enrich our understanding of the processing of all
parts of language.
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CHAPTER 5

Conclusion

Essentially, all models are wrong, but some are useful

George E. P. Box

In this dissertation I investigated the on-line processing of lexical bundles, and
did so by reporting on reading and production experiments, statistically model-
ing this experimental data, and using a computational model of lexical access.
The results presented add novel insights to the existing literature on lexical
bundle processing, where the main extensions on those previous findings are a)
the focus on advanced statistical models that bring to light the subtle intrica-
cies of lexical bundle processing; b) the first data on how older adults process
lexical bundles; c) a more in-depth analysis of the time-course of processing
spoken lexical bundles; and d) by explicitly modeling lexical access of units
larger than a word in a computational model, this dissertation has proposed
a way in which lexical access to written lexical bundles (both when reading
silently and when reading aloud) might proceed, and has thereby also made
claims on the status of lexical bundles in the lexicon.

Overall, this dissertation has shown that, regardless of modality (reading,
speaking, and listening), there is a clear frequency effect of units larger than a
single word in Dutch. This concurs with the claims made by usage-based mod-
els of language, that state that our usage of language shapes the way language
is represented in the brain. From this claim, it follows that frequently used
combinations of words become chunked over time and might eventually be-
come units in processing, similar to single words. Indeed, the phrasal frequency
effects, the similar syntactic structure of the majority of lexical bundles, the
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similar time course and processes involved in processing single words and spo-
ken lexical bundles, and the similar processes of lexical access to single words
and the spoken and written lexical bundles investigated in this dissertation, all
provide evidence in favor of regarding frequent lexical bundles as units similar
to single words.

This notwithstanding, this dissertation has also shown that lexical bundles
still retain their internal structure, as the frequencies and other features of
their constituent single words and bigrams also play a role in processing, next
to their trigram frequencies. In other words, even though lexical bundles are
processed as wholes, the language system also analyses their internal structure
and takes into account their constituent parts in parallel.

5.1 Reading

Chapter 2 investigated to what extent language experience influences the way
lexical bundles are read, by testing two groups of participants: People in their
twenties and people in their sixties. The main research question asked wasHow
do adults read lexical bundles, and are there differences in reading
behavior between younger and older adults?. Assuming a usage-based
view on language representations, where usage is believed to shape the way
language is represented, it is expected that lexical bundles are represented
differently in younger and older adults, given that the latter group has a larger
experience using lexical bundles. This in turn is expected to manifest itself in
differences in reading behavior of lexical bundles.

The data reported in Chapter 2 did not show any age-related differences
in how lexical bundles are read. This suggests that additional language experi-
ence has no measurable consequences for how lexical bundles are read, which
does not concur with predictions from a usage-based perspective. In a usage-
based approach, it is assumed that language experience over time changes the
way language is represented in the brain, which in turn is expected to result
in different processing strategies in younger and older adults, which might be
measured in an experimental study. So at least for the time being, this claim
from the usage-based approach, has not been confirmed. It is, of course, also
possible that differences between younger and older adults do exist, but are so
subtle that they are only measurable using a larger data set, different experi-
mental techniques such as EEG, or only become manifested when people listen
to or produce lexical bundles. Moreover, it should be taken into account that
older adults have larger lexicons, which means that they have a larger search
space to go through, which in turn will slow down processing overall. Even
when older adults might be faster at processing lexical bundles, their longer
search through the lexicon might flatten out any of the processing benefits. In
other words, we could be facing a ceiling effect, the mechanics of which are
still unknown to us. Future studies could help in further investigating whether
language experience changes the way lexical bundles are processed.
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The data did show effects of trigram frequencies, already at the first fixation
durations. Interestingly, these trigram frequencies show an Inverted Frequency
Effect, where higher frequency trigrams correlate with longer looking times.
These longer early fixation durations in turn correlate with fewer fixations made
overall, suggesting that longer early fixations are part of a reading strategy
where readers spend more time on their fixations when an item is easy to
process, and will spend less time and fewer fixations overall, whereas readers
will spend less time at early fixations when an item is difficult to process, quickly
re-fixating to get more information, and spending more time and fixations on
reading the trigram. As such, longer early fixation durations are indicators of
ease of processing, and ease of processing can only be gauged when looking at
either later measures such as the number of fixations made, or by considering
the whole process from beginning to end.

5.2 Listening

Chapter 3 sought to study how comprehension of spoken lexical bundles pro-
ceeds, a process that has not been studied before. Research questions asked were
Is there a difference in electrophysiological brain responses when lis-
tening to frequent lexical bundles and infrequent matched controls?,
Which factors influence the electrophysiological brain response when
listening to lexical bundles?, and What is the time course of process-
ing of auditorily presented lexical bundles?.

Two sets of stimuli were created, a list of frequent lexical bundles, and a
list of their matched controls. The matched controls were made by replacing
the last word of the lexical bundles by a word that is equally frequent, but that
forms the end of a less frequent phrase. For example, the lexical bundle een
belangrijke rol (‘an important role’) formed the basis of the matched control
een belangrijke dag (’an important day’), where all single word frequencies were
equal, but the second bigram and trigram frequencies differed. Participants lis-
tened to recordings of the trigrams read out loud and completed comprehension
questions, while an EEG machine collected electrophysiological data.

The ERPs were time-locked to the last syllable of the second word, to cap-
ture the moment in time where the lexical bundles started to diverge in terms
of pronunciation from their matched controls. The ERPs collected show a sus-
tained negativity, with a clear and widely distributed difference in amplitudes
between the conditions. Lexical bundles show less negative amplitudes overall,
and start to diverge from the control items at an early point in time. Using a
conditional inference random forest analysis, the chapter explores the different
roles that a diverse set of predictors has on ERP amplitudes, and how the signal
evolves over time.

A result from the random forest model shows three stages in processing.
The first stage shows signs of processes of top-down predictions and bottom-up
processes initiating the first stage of lexical access. This stage is characterized
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by more positive amplitudes for more frequent forms. The second stage in-
volves competition between similar word, bigram and trigram candidates, and
the inhibition of similar forms. At this stage, higher frequency first bigrams
in lexical bundles correlate with more positive amplitudes, whereas more fre-
quent second bigrams seem to elicit competitory effects and thus more negative
amplitudes. The third stage consists of processes of lexical integration, where
ease of integration is indexed by a reduced P600 in the form of more negative
amplitudes.

Chapter 3 has come up with proposals on how auditory lexical bundle
processing proceeds, proposing that top-down expectations take place concur-
rent with bottom-up signals, and that both single word and bigram frequencies
already play a role at the first stage of processing. These parallel influences sug-
gests listeners make use of an interactive comprehension process where different
types of information on lexical bundles are employed simultaneously. Moreover,
the stages of processing are similar to those of single word processing, suggest-
ing that single words and lexical bundles are quite similar in nature.

5.3 Reading and speaking

Chapter 4 considered new data of both a reading study and a production
study of frequent Dutch lexical bundles, and explored to what extent measures
from a discriminative learning model of lexical access could add further insights.
We know that lexical access to single words involves, among other factors, the
frequency of the word, its length, and the properties of its lexical neighbors.
Previous research on lexical bundle processing has considered frequencies and
length, but did not consider neighborhood densities. The computational model
used in this chapter, Naive Discriminative Learning (NDL), provides a proxy
for lexical neighborhood effects in the form of an ’activation diversity’ measure,
which indeed provided additional insights.

The chapter aims to answer the research questions How does lexical ac-
cess to lexical bundles proceed?, What is their status in the lexicon?,
andAre there other factors over and above traditional frequency mea-
sures that play a role in reading out loud frequent lexical bundles?.

It is shown that the measures extracted from a discriminative model proved
better predictors of the reading measures than traditional frequency mea-
sures: The NDL prior and the NDL activations, which represent top-down and
bottom-up processes, explain more of the variance in the data than frequency
counts. Note that traditional frequency measures are not able to tease apart
bottom-up and top-down processes. This makes an NDL approach more in-
sightful as it is more explicit on when information from the written text itself
is playing a role, and when top-down information is employed.

The reading study from Chapter 2 has shown that properties of the whole
trigram are already playing a role at the very first fixation durations. Readers
are very quick to recognize that they are reading a lexical bundle, and they
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are able to access properties of the lexical bundle from an early point onwards.
In Chapter 4, this process is further teased apart as the data show that
readers are at first mostly influenced by top-down expectations. Given that
they had to read through a list containing only trigrams, it is not surprising
that the participants are primed to expect trigrams, and that they employ top-
down processes during the experiment. Initial lexical access of those trigrams
is moreover not only determined by top-down expectations, but also by the
landing position of the eye on the trigram.

Furthermore, the time spent at the initial stages of reading are predictive of
how easy the overall reading process will be. Similar to the results of Chapter
2, readers tend to spend more time at the initial stages of reading when an
item is easy to process, and will spend less time overall. Although this result
has been replicated throughout studies reported on in this dissertation, and has
also been found in an eye-tracking study of Japanese lexical bundles (Lensink
et al., in preparation), it has not been recorded in the literature before.

After the initial stages, readers start to pay more attention to bottom-
up input, as seen in the larger influence of NDL activations. They also shift
their attention from the last word of the trigram to the single words at the
beginning of the trigram. It seems to be the case that readers first check if
their expectations match reality by going over the input on the right-hand side
of their foveal vision, and after that focus more on the middle and beginning
of the trigram. This seems to go in the opposite direction of the way listeners
process spoken trigrams (Chapter 3), who, upon hearing the last word of a
lexical bundle, first further process and integrate the beginning of the bundle,
before focusing on the last parts. Written lexical bundles are presented at once
and as such can be perceived and processed in any given order, whereas sound
can only be perceived and thus processed unidirectionally, from the beginning
of the lexical bundle to the end.

Note that a small effect of age was found in these data, as opposed to the
data discussed in Chapter 2, where no age effects were found, even though
the age differences between the participants of the study discussed in Chapter
4 are much smaller than the age differences between the participants of the
study discussed in Chapter 2. It is not clear yet if the age effects found in
Chapter 4 are true effects, and if the absence of any age effects in Chapter 2
is due to false negatives. This would mean that the usage-based approach makes
correct predictions, and that the absence of an effect in Chapter 2 is due to
type II errors. More research is needed, preferably using different experimental
techniques and experiments focusing on speaking and listening.

The production study showed how single word frequencies, NDL bottom-
up activations, and an NDL measure of neighborhood density influence onset
latencies, whereas the total duration of reading out loud a lexical bundle is
mostly determined by the trigram frequencies and to a lesser extent by the
frequencies of the first two single words.
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5.4 Overall conclusions

Lexical bundle processing proceeds in a similar way as single word processing,
but with additional lexical factors, i.e. the properties of trigrams and bigrams,
and lexical neighborhood effects based on similar lexical bundles. The way
lexical bundles are processed differs between written, auditory, and spoken
stimuli, but all three include bottom-up and top-down processes, and influences
from smaller parts. The ERP data from Chapter 3 have moreover shown that
lexical access to lexical bundles involves similar stages as lexical access of single
words, where after an initial competition among similar forms and an inhibition
of non-target lexical bundles, the target lexical bundle is selected for further
lexical integrative processes as reflected in the ERP amplitudes.

Besides exploring how lexical access to lexical bundles proceeds and how
lexical bundles are processed,Chapter 4 also discusses why certain transparent
combinations of words would and could exist in the mental lexicon. It seems
likely that these combinations are not just very frequent by chance alone: the
majority of items used as stimuli in this dissertation seem to encode relevant
experiences in the world that form either discourse markers such as I think that,
affordance relations such as on the table, and complex time or space markers
such as on the day and in the middle of — items that happen to be expressed
as multiple words in languages such as English and Dutch, but that can be
encoded as single words in other (morphologically rich) languages.

In Chapter 2 it was furthermore shown that most stimulus items tend to
have very similar structures, with function words forming the first word of the
trigram in over 90 percent of the time — this could point to the possibility of
a link between language structure, frequency, and semantic unity. Moreover,
our conventions to place spaces between certain combinations of sounds are to
some extent arbitrary and do not necessarily reflect any grammatical (or even
phonetic) reality. As long as we linguists cannot agree on any definition of what
exactly constitutes a word, only considering where orthographic conventions
have agreed to place white spaces is nowhere near any satisfactory account of
what should be considered as a semantic unit that we like to call a ’word’.
Concluding, this thesis has provided experimental evidence that units of form
and meaning are not necessarily single words or opaque idioms, but could also
consist of transparent, frequent combinations of words. By considering certain
combinations of words as units of form and meaning, equal to single words, we
gain a more realistic view on what the building blocks of language are.

Overall, the eye-tracking data from Chapter 2 and Chapter 4, and the
ERP data from from Chapter 3, have shown that lexical bundles play a role
at several stages in processing, in both production and comprehension, and can
be found in eye-tracking data, ERP data, and production data. At first mostly
top-down prior expectations play a role in processing, after which the bottom-
up input is employed, similar trigrams that have been activated either aid in
processing or need to be inhibited, while information from single words, bigram,
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and the whole trigram are combined and integrated. This provides additional
evidence for a model of language processing where different units are processed
in parallel, including units larger than a word, and without distinction between
syntactic and semantic processes.

5.5 Useful models - an outlook

A large focus of this thesis is statistical and computational modeling. Therefore,
some closing remarks on using statistical modeling as a way to understand the
world around us are in order.

We all know the famous adage of statistician George E.P. Box that all
models are wrong, but some are useful (see e.g. Box and Draper, 1987). But
what constitutes a ’useful’ model?

Breiman et al. (2001) distinguishes two different approaches to statistical
modeling: One he refers to as the ’Data Modeling Culture’, which includes
most academic research, and the other one the ’Algorithmic Modeling Culture’,
which includes most work done in industry. In the Data Modeling community,
the focus is on trying to discover the underlying mechanisms that produce the
data measured, as a way to better understand the phenomenon at hand. A
useful model is understood as a model whose inner workings can be dissected,
described, and interpreted. Most importantly, it is often assumed that by using
machine learning this way, one can arrive at an approximation of the underlying
true mechanisms that cause a certain phenomenon.

This thesis is following this tradition to a large extent by using statistical
models that are amenable to such an interpretation: Regression models are
transparent in that they show which predictors are more heavily weighted to
model the data measured. By visualizing the functional relationship of those
predictors with the outcome variables, as done throughout this thesis, it be-
comes clear how every single predictor adds to producing the phenomenon
studied. Making use of a two-layer neural network whose inner workings are
relatively easy to capture (the NDL model of Chapter 4), is also an example
of using a model for its interpretability. The assumption made by many is that
using machine learning this way, we will start to understand the true nature of
linguistic processing better.

A pitfall of this approach, however, is that it is limited by the imagination
of the researcher: As the researcher has to define which might be the relevant
factors to input to a machine learning model, it is quite possible that important,
unexpected, factors are not included, considered, and discovered, leading to
spurious correlations between the factors that the researcher has selected and
the data measured. It is quite worrying, at the very least, that there often
exist multiple models that fit the data equally well, but that give very different
pictures of which predictors are important, and what the relationship between
those predictors and the outcome variable are (also known as the Rashomon
Effect, see Breiman et al., 2001).
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On the other hand, there exists the Algorithmic Modeling Culture. It in-
cludes most work done in industry, and includes models such as deep neural
networks that are often perceived of as ’black boxes’. Although quite a lot of
steps are being taken in the direction of more transparent, ’explainable’ models
(Samek et al., 2017), it is at the very least quite hard to understand all the
underlying rules and heuristics that emerge from the different hidden layers of
a deep neural network.

In this Algorithmic Modeling culture, a useful model is not a model that is
interpretable and thus explainable, but a model that is as accurate as possible
in making predictions, explicitly so without having to approach the way the
data has been truly generated in nature. In other words, the focus is not on
approaching the truth, but creating a model that works, regardless of the way
in which this is achieved. In the last couple of years, these types of models
are starting to exceed human performance on tasks such as image classification
(e.g. in medical screening) and natural language processing.

Breiman et al. (2001) argues that a model that is better at predicting new,
unseen data, is more likely to approach the truth than a model that is as simple
and interpretable as possible, even though the model that is better at predict-
ing is less parsimonuous and it is too complex is to completely understand
all its inner workings with current tools. We cannot be sure that the mecha-
nisms proposed by a more complex, algorithmic model approach human brain
functions, but it is worthwhile to consider the possibility that we might learn
new insights from them. "The evolution of science", Breiman argues, "is from
simplex to complex" (p. 229 Breiman et al., 2001), and he mentions the devel-
opments in the field of physics, where one has moved from Newton’s equations
to the more complex equations of general relativity, and the emergence of the
extraordinarily difficult to interpret equations of quantum mechanics. Despite
the complexity of these models, physicists consider them as the current best
models of the physical world, and try their best to gain as most knowledge as
possible from them.

We live in exiting times, where both computing power and machine learning
algorithms are constantly improving, and where the potential to gather and
use bigger and more complex data is growing. It is crucial to understand the
shortcomings and possibilities of machine learning. Although we should never
abandon linguistic theory to guide our questions and interpretations, neither
should we shy away from using advanced machine learning algorithms to give
us new, unexpected insights. There is still so much we do not understand about
one of the most complex behaviors of human beings, language. Let machines
assist us in understanding it just a little bit better.
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trigram translation frequency ABC
aan de man to the man 15373
aan de universiteit at (the) university 4073
aan de vooravond on the eve 7798
aan het begin at the beginning 89579
aan het eind at the end 150873
aan het werk working 1285050
aan te pakken to deal with 39314
aan te passen to adapt 41295
achter het raam behind the window 9642
begin dit jaar at the beginning of the year 13635
bij grote bedrijven at big companies 969
bij hem thuis at his house 10643
bij hun moeder at their mother’s 1754
daar gaan we there we go 241060
dat blijkt uit that appears from 1461
dat is altijd that is always 67085
dat is jammer that is a pity 42773
de aanpak van the approach of 10757
de aanslagen van the (terrorist) attacks of 1152
de actie van the action of 19982
de afgelopen jaren the past years 41346
de afgelopen maanden the past months 17046
de Amerikaanse president the American president 2542
de Amerikaanse regering the American government 875
de andere kant the other side 426100
de bacterie is the bacteria is 45
de besten van the best of 989
de bouw van the construction of 37885
de buurt van the neighborhood of 217614
de dag dat the day that 194752
de discussie over the discussion on 13560
de dood van the death of 42027
de economie van the economy of 3566
de eerste plaats the first place 34783
de finale van the finals of 103195
de foto van the picture of 68385
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de gevolgen van the consequences of 30608
de halve finale the semi-finals of 81520
de handen vol hands full 1988
de hele dag the whole day 1946081
de hele wereld the whole world 249719
de helft van half of 417353
de inval in the invasion of 666
de jaren negentig the nineties 2893
de jaren twintig the twenties 387
de kans dat the chance that 41581
de keuze van the choice of 12330
de komende jaren the coming years 48187
de komende vier the next four 6470
de komst van the arrival of 48370
de kwaliteit van the quality of 45240
de laatste twintig the last twenty 507
de markt is the market is 6906
de mensen hier the people here 11779
de mogelijkheid om the possibility to 31704
de moord op the murder on 24169
de nabijheid van the proximity of 2100
de nationale ploeg the national team 3493
de ontvangst van the reception of 2864
de oorlog in into the war 5740
de oorlog tegen the war against 1573
de organisatie van the organization of 24050
de ploeg van the team of 6725
de politie had the police had 957
de positie van the position of 11485
de presentatie van the presentation of 37769
de prijs van the price of 59208
de rand van the edge of 66531
de rechtbank in the court in 17346
de rest van the rest of 782197
de resultaten van the results of 16923
de rol van the role of 55053
de Russische president the Russian president 1116
de sociale zekerheid the social security 2577
de strijd tegen the battle against 34540
de trainer van the coach of 10399
de tweede helft the second half 59770
de tweede plaats the second place 11487
de tweede ronde the second round 22796
de universiteit van the university of 5810
de vader van the father of 68116
de vleugels van the wings of 2756
de vraag is the question is 62321
de website van the website of 107326
de woorden van the words of 24221
de zoon van the son of 28840
door het ministerie by the ministry 704
door onze correspondent by our correspondent 105
drie jaar geleden three years ago 9994
een aantal weken a couple of weeks 16249
een actie van an action by 11974
een belangrijke rol an important role 10667
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een bezoek aan a visit to 47188
een brief aan a letter to 9675
een deel van a part of 130958
een film van a movie of 20778
een gesprek met a conversation with 97516
een groot aantal a large number 16102
een groot deel a big part 49737
een half jaar half a year 220540
een half uur half an hour 1031387
een hoger niveau a higher level 11297
een idee van an idea of 9561
een jaar eerder a year earlier 4725
een jaar geleden a year ago 123936
een kans om a chance to 17502
een kwart van a quarter of 17557
een kwestie van a question of 80116
een moment dat a moment that 17900
een onderzoek naar an investigation into 16947
een opkomst van a rise of 1276
een paar dagen a couple of days 399097
een paar jaar a couple of years 155619
een paar weken a couple of weeks 177710
een tentoonstelling van an exhibition of 1062
een vorm van a form of 43031
een winst van a profit of 3386
een woordvoerder van a spokesman for 2266
eerder deze week previously this week 13746
einde van het end of the 77611
elke keer weer every time again 92297
en de manier and the way 6222
en te weinig and too little 18505
euro per maand euro per month 47736
genieten van een enjoying a 132200
ging het mis it went wrong 64252
het afgelopen jaar the past year 35986
het begin van the beginning of 212462
het belang van the importance of 51523
het bestuur van the board of 17895
het centrum van the center of 128503
het centrum voor the center for 2134
het eerst sinds for the first time since 91715
het eerste kwartaal the first quarter 19414
het functioneren van the functioning of 2732
het gebied van the area of 128659
het gebruik van the use of 63198
het gevoel van the feeling of 29980
het ging om it was about 15042
het herstel van the recovery of 5251
het is geen it is no 155183
het is niet it is not 512730
het kader van the framework of 128254
het laatste kwartier the last quarter 4456
het ministerie van the ministry of 19317
het moment dat the moment that 158686
het najaar van the fall of 2818
het plan van the plan of 10331
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het spel van the game of 13382
het tweede kwartaal the second quarter 14558
het vertrek van the departure of 19881
het werk van the work of 45904
het zoeken naar the search for 27018
ik denk dat I think that 1770156
in de aanloop in the run-up 9802
in de auto in the car 1520967
in de buurt in the neighborhood/close 944910
in de eredivisie in the premier division 39637
in de hoek at the corner 53419
in de krant in the newspaper 224065
in de lucht in the air 320247
in de ogen in the eyes 62735
in de omgeving in the neighborhood 73136
in de partij in the party 3097
in de politiek in politics 47360
in de praktijk in practice 75131
in de regio in the region 175792
in de rij in line 202447
in de stad in the city 1106466
in de strijd in the battle 52453
in de wereld in the world 207594
in de zomer during summer 335094
in de zorg in health care 125713
in dit gebouw in this building 2176
in een open in an open 5010
in eigen land in your own country 32385
in Europa zijn being in Europe 2226
in handen van in the hands of 22157
in het begin at the beginning 133282
in het boek in the book 51266
in het centrum in the center 143835
in het kader in the framework 78640
in het land in the country 93987
in het noorden in the north 58157
in het openbaar in public 67556
in het verhaal in the story 12894
in het ziekenhuis in the hospital 350649
in ons land in our country 41727
is een beetje is a little 337220
is er ook is there too 347370
is niet alleen is not alone 75895
is niet nodig is not necessary 68369
is nog steeds still is 448018
is zo goed is so good 77105
kans op een chance of a 358386
kijken naar de to look at the 105645
maakt niet uit does not matter 1306258
maar het was but it was 260391
met de mededeling with the announcement 9055
met de speler with the player 466
met een optie with an option 2562
met een winst with a profit 1453
moet ook nog also has to 333650
na de oorlog after the war 5851
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na de pauze after the break 28459
naar het buitenland abroad 46869
net als hij just like him 1766
niet al te not too 195025
niet de enige not the only one 432110
niet te veel not too much 209056
niet te vergeten not to forgot 116559
niets weten van knowing nothing of 2986
nog een seizoen yet another season 7423
nog niet bekend not yet known 62111
nog ver weg still far away 14766
nu is dat now is that 19928
oktober vorig jaar October last year 1739
om dit jaar to ... this year 8176
om het leven to the life 52336
om te buigen in order to bend 2712
om te overleven in order to survive 15291
ook wel eens every now and then 332971
op dat moment at that moment 103274
op de bank on the couch 3286884
op de beurs at the stock market 46130
op de dag on the day 159050
op de eerste at the first 126026
op de markt on the market 176993
op de schouder on the shoulder 5291
op de website on the website 229875
op die manier in this way 92344
op dit moment at this moment 1037494
op een aanslag at an attack 503
op het moment at the moment 222221
op het nieuwe at/on the new 34288
op het werk at work 386510
op langere termijn in the long run 3658
op te lossen to solve 104502
op zijn bureau at his desk 1171
op zijn minst at least 27093
over de geschiedenis about the history 8633
over de manier about the way 4767
over de toekomst about the future 43455
over het land about the country 9189
paar jaar geleden couple of years ago 57132
pas sinds kort only recently 3790
raad van bestuur board of directors 7008
sinds lange tijd since a long time 26597
te beseffen dat to realize that 16136
te staan in to stand in 7740
te weten dat to know that 106478
te zien zijn to be visible 32458
terug te komen to return 46567
tijdens de dictatuur during the dictatorship 30
tot nu toe until now 632637
twee weken op two weeks on 6750
uit de grond from the ground 31069
uit de ploeg from the team 874
uit een boek from a book 5952
uit eigen ervaring from my own experience 8863
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uit het Engels from English 1175
uit te leggen to explain 172789
uit te nodigen to invite 16723
van de aandelen of the shares 2190
van de aarde from the earth 29344
van de beurs from the stock market 8974
van de bevolking from the population 18109
van de drie out of three 33303
van de economie of the economy 8738
van de families of the families 263
van de gemeente of the municipality 102650
van de jaren of the years 15061
van de mogelijkheden of the possibilities 4651
van de overheid from the government 31026
van de tien from the ten 11905
van de trainer from the trainer 6949
van de twee from the two 50064
van de volgende from the next 17977
van de vorige from the previous 43525
van de wereld from/of the world 447158
van dit jaar of this year 181143
van het aanbod of the offer 2090
van het Britse of the British 3003
van het kabinet from the cabinet 18244
van het land from/of the country 116573
van het museum from/of the museum 4352
van het onderzoek from/of the research 8406
van het publiek from the public 10216
van het seizoen from/of the season 202065
van onze redactie from our editorial staff 848
van zijn proces of his process 208
verdacht van fraude suspected of fraud 1469
volgens het boekje according to the rules 3106
voor de bescherming for the protection 1022
voor eigen publiek for your own audience 7444
voor het eerst for the first time 1025405
voor het leven for life 106138
voor iemand die for someone who 89362
wel of niet yes or no 286718
wordt beschuldigd van is being accused of 1593
zo lang geleden so long ago 40677

Table 1: Stimuli used in the eye-tracking experiment of Chapter 2. Translations
in English are provided in the second column. Phrasal frequencies (freqABC)
are listed in the righter-most column.
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trigram translation condition frequency ABC frequency C
aan de beurt turn MWU 1743 7458
aan de prins to the prince Control 80 12030
aan het eind at the end MWU 6395 33356
aan het bed at the bed Control 140 24021
aan te passen to adapt MWU 2307 10335
aan te steken to strike Control 103 7385
de andere kant the other side MWU 8113 30948
de andere groep the other group Control 108 38917
de eerste plaats the first place MWU 5853 80379
de eerste vraag the first question Control 237 63831
de hele dag the whole day MWU 5243 112638
de hele weg the whole way Control 142 101363
een belangrijke rol an important role MWU 2875 33764
een belangrijke vorm an important shape Control 21 33661
een groot deel a big part MWU 5427 69946
een groot kind a big child Control 26 46095
een paar dagen a couple of days MWU 4809 56414
een paar miljoen a couple of million Control 159 58205
er is geen there is no MWU 5264 384494
er is wat there is something Control 101 525923
in de praktijk in practice MWU 5764 11017
in de uitspraak in the statement Control 79 9997
in dit geval in this case MWU 4333 55463
in dit verhaal in this story Control 240 34648
in het centrum in the center MWU 3284 15338
in het vertrek in the room Control 73 8615
is de kans is the chance MWU 1224 30148
is de druk is the pressure Control 78 33051
mee te maken to experience MWU 2548 143877
mee te komen to join Control 90 130534
met de auto by car MWU 1302 28882
met de partij with the party Control 117 35702
na te denken to think about MWU 2349 42304
na te vragen to inquire Control 28 47636
nog een keer again MWU 5217 91196
nog een week another week Control 324 76650
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om te kijken to watch MWU 1987 50552
om te nemen to take Control 18 58350
op dat moment at that moment MWU 6441 48502
op dat idee on that idea Control 58 37396
op de markt on the market MWU 5900 24936
op de brief on the letter Control 159 17057
op korte termijn at short-notice MWU 2060 14004
op korte afstand at short distance Control 104 13658
op te lossen to solve MWU 2974 4409
op te drukken to push up Control 23 4308
van de bevolking from the population MWU 6022 20512
van de discussie from the discussion Control 319 17251
van het jaar of the year MWU 6150 294718
van het nu from nowadays Control 75 358059
voor de toekomst for the future MWU 1926 23744
voor de liefde for the love Control 127 19180

Table 1: Stimuli used in the experiment. On the left all frequent multi-word
units are listed, directly followed by their matched control. Translations in
English are provided in the second column. Phrasal frequencies (freqABC) and
frequencies of the third word (freqC) are listed in the two righter-most columns
next to the stimuli.
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Nederlandse samenvatting

Veilingmeesters en sportcommentatoren staan bekend om de enorme snelheid
waarmee ze praten over biedingen en ballen. Om dit te kunnen, maken ze ge-
bruik van een beperkte set van zinnen en zegswijzen die ze als kant-en-klare
brokstukken aan elkaar kunnen knopen. Toch zijn het niet alleen de veiling-
meesters en de sportcommentatoren die vaak in vaste formules praten — we
maken er allemaal gebruik van in ons dagelijks leven.

De schattingen lopen uiteen, maar over het algemeen wordt aangenomen
dat zeker de helft van onze gesproken en geschreven taal bestaat uit formules,
standaardzinnen, en vaak voorkomende combinaties van woorden. Sommige van
deze combinaties zijn ondoorzichtig: De betekenis van het geheel is niet af te
leiden uit de som van de betekenissen van de losse woorden. Daar komt de aap
uit de mouw gaat niet letterlijk over apen die uit kledingstukken klimmen. Er
zijn echter ook veelvoorkomende combinaties waarvan de betekenis transparant
is: Als je weet wat in, de, en auto, betekenen, dan weet je ook wat in de auto
betekent. Deze transparante combinaties worden ’lexicale bundels’ genoemd in
de literatuur, en vormen het onderwerp van onderzoek van deze dissertatie.

Omdat lexicale bundels veel vaker gebruikt worden dan op basis van kans
verwacht kan worden, rijst de vraag waarom juist die combinaties door taal-
gebruikers gebruikt worden. Binnen de taalwetenschap bestaat de gebruiksge-
baseerde (usage-based) taalbenadering, die stelt dat de cognitieve representatie
van taal voortkomt uit de manier waarop taal gebruikt wordt. Vanuit deze be-
nadering is het aannemelijk dat vaakvoorkomende combinaties van woorden
door gebruik samensmelten en ingesleten raken als brokstukken van taal die
als eenheden verwerkt worden, zonder dat de gebruiker keer op keer de losse
woorden moet samenvoegen op basis van grammaticale regels. Dit proces van
samensmelten en inslijten staat bekend als chunking, en is een welbekend pro-
ces in andere cognitieve taken. Het zorgt ervoor dat deze taken snel, soepel en
foutloos uitgevoerd kunnen worden. Het onthouden van een telefoonnummer,
bijvoorbeeld, gaat makkelijker als de cijfers in brokstukken van meerdere losse
getallen worden geleerd.
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Deze gebruiksgebaseerde benadering voorspelt dus dat hoogfrequente com-
binaties van woorden als eenheden worden verwerkt. De afgelopen jaren zijn er
steeds meer experimentele studies uitgevoerd waarvan de resultaten lijken te
bevestigen dat vaakvoorkomende combinaties van woorden als eenheden in de
verwerking gebruikt worden. Zo is gebleken dat de frequenties van gehele com-
binaties een grote rol spelen in het voorspellen van de snelheid waarmee mensen
lexicale bundels lezen en uitspreken, los van de frequenties van de losse woorden
waaruit die combinaties bestaan. Er waren echter nog erg weinig studies gedaan
naar andere talen dan het Engels; er was nog nauwelijks onderzoek gedaan naar
de verwerking van gesproken lexicale bundels; geavanceerde statistische mod-
ellen om goed te begrijpen welke factoren een rol spelen tijdens de verwerking
van lexicale bundels werden nog weinig toegepast; en er is ook nog maar weinig
gebruik gemaakt van computationale modellen om betere inzichten te krijgen in
het verwerkingsproces van lexicale bundels. De onderzoeken in deze dissertatie
pogen deze hiaten op te vullen.

De belangrijkste vraag die deze dissertatie tracht te beantwoorden is hoe
lexicale bundels verwerkt worden door lezers, luisteraars, en sprekers van het
Nederlands. Daarbij wordt gebruik gemaakt van geavanceerde statistische tech-
nieken en een computationeel model dat een cognitief plausibel model van
leren biedt. Door gebruik te maken van grote corpora van het Nederlands,
was het mogelijk om vast te stellen welke woordcombinaties van drie woor-
den zeer vaak voorkomen. Na checks door twee onafhankelijke codeerders kon
vervolgens bepaald worden welke hoogfrequente combinaties een transparante
betekenis hebben, en dus als lexicale bundel van het Nederland beschouwd
zouden kunnen worden. De dissertatie is verdeeld in drie delen, waarbij het
eerste deel zich richt op het lezen van lexicale bundels door zowel jongere als
oudere lezers, het tweede deel op het luisteren naar lexicale bundels, en het
derde deel op het lezen en het uitspreken van lexicale bundels, en welke extra
inzichten in deze processen een computationeel model kan toevoegen.

Hoofdstuk 2 richt zich op de vraag hoe jongere en oudere volwassenen lexi-
cale bundels lezen, en of er verschillen zijn tussen de leeftijdsgroepen. De vraag
of er verschillen bestaan tussen jongere en oudere lezers, komt voort uit een
usage-based standpunt dat aanneemt dat de representatie van taal in het brein
bij ieder individu het gevolg is van de individuele ervaring die deze persoon
met taal heeft gehad. Daardoor heeft eenieder ook een unieke taalrepresentatie,
omdat iedereen weer andere ervaring met taal opdoet. Aangenomen wordt dat
een grotere blootstelling aan een bepaalde combinatie van woorden tot het
versmelten van deze combinatie leidt, waarbij deze lexicale bundel steeds meer
als eenheid in taalverwerking gebruikt wordt. Omdat ouderen een veel grotere
ervaring met taal hebben dan jongeren, en dus ook veel vaker frequente lexi-
cale bundels tegen zijn gekomen, volgt uit een usage-based benadering dat bij
ouderen lexicale bundels anders gerepresenteerd zijn dan bij jongeren. Het kan
zijn dat ouderen een sterkere en uitgebreidere representatie van lexicale bun-
dels hebben door de grotere blootstelling, of juist minder gebruik maken van
kant-en-klare brokstukken, omdat ze meer oefening hebben dan jongeren in het
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ophalen van losse woorden uit het lexicon en het samenvoegen daarvan volgens
de regels van de grammatica. Als er een verschil bestaat in de representatie van
lexicale bundels, dan heeft dat zeer waarschijnlijk ook gevolgen voor de manier
waarop deze verwerkt worden.

Door gebruik te maken van eye-tracking is in een experiment in kaart ge-
bracht hoe zowel 60-plussers als twintigers hoogfrequente Nederlandse lexicale
bundels lezen. We hebben gebruik gemaakt van statistisch modelleren om in
staat te zijn de effecten van verschillende linguïstische eenheden van verschil-
lende groottes in kaart te brengen — zijn het vooral de losse woorden die
bijdragen aan hoe snel een combinatie van woorden wordt gelezen, of spelen
ook de frequenties van combinaties van twee of zelfs drie woorden mee?

Het gekozen statistisch model, een zogenaamd generalized additive mixed-
effects model of GAMM, is een regressiemodel dat in staat is om niet-lineaire
relaties te modelleren, en daarbij bovendien ook rekening houdt met de indi-
viduele verschillen tussen proefpersonen die losstaan van de kenmerken van de
lexicale bundels zelf, en het tijdsverloop door het experiment heen. Deze mod-
elleertechniek maakt het mogelijk om te zien welke linguïstische factoren een rol
spelen in de duur van verschillende onderdelen van het lezen, en wat voor vorm
deze relatie heeft. Er zijn duidelijke aanwijzingen dat representaties van gehele
lexicale bundels een rol spelen in lezen, en al in een vroeg stadium, aangezien er
frequentie-effecten van trigrammen zijn gevonden in modellen van de duraties
van al de eerste fixaties gemaakt op de bundels. Deze frequentie-effecten spelen
samen met verschillende oogmotorische kenmerken, zoals de positie van een
fixatie, een rol in de duur en het aantal fixaties.

Opvallend is dat deze frequentie-effecten een andere richting hebben dan
verwacht: Hoe frequenter een lexicale bundel, hoe langer de eerste fixatie op
deze bundel duurt. Dit is het Inverted Frequency Effect genoemd, en zou verk-
laard kunnen worden door ofwel 1) lexicale competitie die hoger is zodra er
sprake is van hoogfrequente combinaties, waarbij een grotere competitie leidt
tot een vertraagde en dus langere verwerking; 2) een leesstrategie die proefper-
sonen (on)bewust inzetten bij lexicale bundels versus ’gewone’ combinaties van
woorden of 3) een andere verwerking van lexicale bundels dan losse woorden,
omdat de verwerking van lexicale bundels een ander en trager proces is dan het
verwerken van losse woorden.

Er is geen enkel verschil gevonden in de manier waarop jongeren en oud-
eren lexicale bundels lezen. Dit is onverwacht vanuit een usage-based perspec-
tief, waar de voorspelling zou zijn dat een verschil van dertig tot veertig jaar
aan taalervaring een groot verschil in representaties in het lexicon tot gevolg
zou moeten hebben, en dus ook op online taalverwerking. Het zou kunnen zijn
dat taalrepresentaties bij jongvolwassenen al gestabiliseerd zijn en nog maar
weinig veranderen in de jaren daarna. Het is ook mogelijk dat de stimuli ge-
bruikt voor dit experiment niet optimaal waren, of dat er door toeval geen
effect is gevonden — een ’false negative’. Hoe het ook zij, het zal interessant
zijn om in toekomstige experimenten vast te stellen of een grotere taalervaring
daadwerkelijk geen effect heeft op de verwerking van lexicale bundels, of dat
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de usage-based benadering deels herzien zal moeten worden.
Hoe mensen gesproken lexicale bundels verwerken, is het thema van hoofd-

stuk 3. Er bestond nog vrijwel geen onderzoek naar de online verwerking van
gesproken lexicale bundels, en dit hoofdstuk bespreekt een experiment waarin
proefpersonen moesten luisteren naar allerlei frequente lexicale bundels zoals
aan de beurt en een laagfrequente tegenhanger zoals aan de prins. Hoewel beide
combinaties bestaan uit losse woorden die gematcht zijn op hun frequentie, en
met dezelfde twee woorden beginnen, zijn er grote verschillen in de frasale
frequenties: Aan de beurt komt veel vaker voor dan aan de prins. Wanneer
een proefpersoon deze lexicale bundels hoort, zal zij pas aan het einde van
het tweede woord doorhebben wat het laatste woord zou kunnen zijn — een
verwachte continuatie die het einde van een hoogfrequente lexicale bundel vormt
(aan de beurt) of juist een onverwacht, maar even frequent woord, prins, dat
in combinatie met aan de weinig voorkomt. Deze twee condities zijn vervolgens
met elkaar vergeleken door met machine learning de ERP-data te analyseren.

De analysetechniek die voor deze dataset is gebruikt, is een conditional
inference random forest (CForest). CForests zijn een krachtig machine learn-
ing algoritme waarbij een grote groep van verschillende beslisbomen worden
gegenereerd. Iedere afzonderlijke beslisboom is gebaseerd op een willekeurige
subset van de data, en voor iedere splitsing in de beslisboom wordt steeds
uit een willekeurige subset van predictoren bepaald welke predictor de beste
tweedeling in de data maakt. Dit zorgt voor een grote variatie in de afzonder-
lijke beslisbomen, die samen een bos of ’forest’ vormen. Random forests zijn in
staat om niet-lineaire relaties in de data vast te leggen, en staan bekend om
hun grote nauwkeurigheid en stabiele voorspellingen.

Naast deze voordelen van random forests, is een belangrijke reden om bij
deze EEG-studie voor CForests te kiezen, dat CForests het mogelijk maken
om de effecten te beoordelen van sterk aan elkaar gecorreleerde predictoren.
De frequentie van de gehele lexicale bundel is vaak sterk gecorreleerd met de
frequenties van de bigrammen en unigrammen waaruit deze is opgebouwd. In
regressie-analyses is het daarom niet mogelijk om al deze predictoren tegelijker-
tijd in één model mee te nemen — terwijl het heel goed mogelijk is dat al deze
eenheden in parallel een effect hebben op de verwerking van lexicale bundels.
Bovendien is EEG-data afkomstig van verschillende electrodes niet onafhanke-
lijk van elkaar — het signaal gemeten door een willekeurige electrode is sterk
gecorreleerd met het signaal van aangrenzende electrodes.

In de EEG-data is een duidelijk verschil te zien tussen het signaal
gegenereerd door frequente lexicale bundels, en het signaal gegenereerd door
de controle-items. Er is een continu en vroegbeginnend negatief signaal dat
bij de controle-items een nog negatievere voltage had. In het random forest
model is de vorm van het verloop van de voltages gemodeleerd door het effect
van de lengte van de stimuli, de kans dat een woord op de derde plek van een
stimulus zou staan, de frequenties van de losse woorden, de bigrammen, en de
trigrammen mee te nemen, rekening te houden met de status van een item (een
lexicale bundel of controle-item), het tijdsverloop, en de electrode waar het sig-



Nederlandse samenvatting 133

naal gemeten is. Door naar een representatieve boom uit de random forest te
kijken, is het mogelijk om een deel van het random forest model te doorgron-
den en hypotheses te vormen over hoe auditief gepresenteerde lexicale bundels
verwerkt worden.

We stellen voor dat bij de verwerking van gesproken lexicale bundels drie
stadia te onderscheiden zijn. Als eerste worden er voorspellingen gemaakt over
wat er zou kunnen komen, terwijl er tegelijkertijd volop bottom-up verwerking
is. Na deze eerste stappen worden mogelijke concurrende vormen actief on-
derdrukt, terwijl er een competitie ontstaat tussen andere mogelijke lexicale
kandidaten. Deze competitie zorgt ervoor dat de verwerking van lexicale bun-
dels met vele lexicale concurrenten moeilijker is voor het cognitieve systeem. In
de derde en laatste fase vindt de lexicale integratie plaats van alle vrijgekomen
informatie. In al deze drie fasen is duidelijk dat de frequenties van zowel enkele
woorden, bigrammen, en de gehele trigram een rol spelen, vaak parallel aan
elkaar.

In hoofdstuk 4, ten slotte, worden de eerste stappen gezet naar een beter
begrip van lexicale toegang tot lexicale bundels. Hoewel er een groeiend aantal
studies is dat frequentie-effecten voor vaakvoorkomende combinaties van woor-
den vindt, wat veel onderzoekers doet vermoeden dat deze bundels een cogni-
tieve realiteit hebben, is het niet duidelijk hoe het brein toegang krijgt tot deze
bundels. Om beter te kunnen begrijpen wat een lexicale bundel is, helpt het om
expliciet in een computermodel vast te leggen hoe lexicale toegang zou kunnen
verlopen, en dan te testen of predictoren uit een dergelijk model even goed of
zelfs beter in staat zijn om experimentele data te beschrijven dan traditionele
predictoren zoals frequenties.

We hebben twee experimenten uitgevoerd, een leesexperiment waarbij we
data van oogbewegingen registreerden met behulp van eye-tracking, en een
productie-experiment, waarbij we registreerden hoe snel proefpersonen be-
gonnen met hardop voorlezen van lexicale bundels, en hoe lang ze erover deden
om deze bundels helemaal uit te spreken. De data van beide experimenten zijn
gemodelleerd met zowel traditionele predictoren zoals de frequentie van de lexi-
cale bundels, als predictoren uit een computationeel model van lexicale toegang,
de Naive Discriminative Learner (NDL), waarbij lexicale bundels expliciet in
het model zijn opgenomen.

NDL is een eenvoudig neuraal netwerk dat uit slechts twee lagen bestaat,
een inputlaag waar fonemen, letters, of losse woorden de cues vormen die ver-
bonden zijn met de outputlaag, een set van outcomes of uitkomsten, in dit
geval symbolische eenheden, lexomes. Deze lexomen wijzen naar de locatie van
lexicale bundels in een semantische ruimte, en zijn stabiele eenheden die een
connectie vormen tussen immer veranderende taalvormen en betekenissen. In
een NDL netwerk zijn alle cues met alle uitkomsten verbonden, en worden
connecties gevormd via de Rescorla-Wagner leerregels. Deze leerregels zijn erg
succesvol gebleken in het modelleren van uiteenlopende gedragingen van dieren,
en vormen daarmee een cognitief plausibel algoritme dat gebruikt kan worden
om te modelleren hoe mensen hun linguïstische kennis in de loop der jaren
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opbouwen.
Volgens het NDL-model vormt een taalgebruiker op basis van woord-

cues verwachtingen over welke lexicale bundel hij kan verwachten. Behalve
verwachtingen op basis van de input, heeft een taalgebruiker ook verwachtingen
op basis van eerdere ervaringen, zodat een lexicale bundel die vaker is gebruikt,
ook eerder verwacht wordt. Door verwachtingen op basis van zowel de input als
eerdere ervaringen te combineren, en dat te vergelijken met de daadwerkelijke
combinaties van woorden in het signaal, leert het systeem van zowel correcte
als incorrecte voorspellingen. De kracht van NDL zit niet alleen in het feit dat
het rekening houdt met woorden die vaak samen voorkomen, maar dat het ook
inzichtelijk maakt hoe onderscheidend een cue is: het woordje een kan door
vele andere woorden gevolgd worden, en is dus een slechte cue, terwijl paarse
een sterke cue vormt voor krokodil.

Een getraind NDL-netwerk vormt een mathematische karakterisatie van
de toestand van het lexicon. Uit een dergelijk netwerk kunnen allerlei predic-
toren worden gehaald, zoals hoe sterk de verwachting van een bepaalde lexicale
bundel op voorhand al is (een predictor die sterk lijkt op een traditionele fre-
quentiemaat), hoe sterk bepaalde losse woorden de verwachting opwekken van
bepaalde lexicale bundels, en hoe makkelijk bepaalde lexicale bundels van elkaar
te onderscheiden zijn. Uit hoofstuk 4 is gebleken dat deze NDL-predictoren
beter in staat zijn om de experimentele data te beschrijven dan traditionele
frequentiematen alleen, en bovendien meer inzichten verschaffen.

Lexicale toegang tot lexicale bundels vindt plaats vanuit zowel een top-down
als een bottom-up proces, waarbij trigram-frequenties een grote rol spelen, en
een grotere co-activatie van vergelijkbare items het uitspreken van lexicale bun-
dels versnelt. Als alleen gebruik gemaakt wordt van frequentiematen, zouden
bottom-up en top-down processen niet los van elkaar beschouwd kunnen wor-
den. Daarnaast blijkt uit de eye-trackingdata dat lezers sneller lexicale bundels
lezen als ze meer tijd besteden aan de first pass, de eerste keer dat ze een stuk
tekst van links naar rechts lezen.

Door de hele dissertatie heen komt keer op keer naar voren dat een-
heden groter dan het woord een rol spelen in lezen, luisteren en spreken in
het Nederlands. Uit de data blijkt dat het tijdsverloop en de processen be-
trokken bij taalverwerking vrijwel hetzelfde zijn bij losse woorden en bij lexi-
cale bundels, wat suggereert dat hoogfrequente lexicale bundels op een zelfde
manier functioneren en gerepresenteerd zijn. Het lijkt er bovendien op dat
vaakvoorkomende lexicale bundels niet alleen vanwege hun frequentie als een-
heid in het lexicon functioneren — semantische eigenschappen van deze bundels
spelen vermoedelijk ook een rol. Kijkende naar de items gebruikt in deze disser-
tatie, valt op dat dit voornamelijk discoursmarkeringen zijn zoals ik denk dat,
affordances zoals op de tafel en complexe tijd- op ruimtemarkeringen zoals op
de dag of in het midden. Hoewel deze items puur op frequentie van de trigram-
men geselecteerd zijn, blijken ze in het algemeen een soort functionele eenheden
te zijn. Deze items worden toevallig door meerdere woorden uitgedrukt in het
Nederlands, maar worden in (sommige) morfologisch rijke talen uitgedrukt als
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een enkel woord. Deze dissertatie laat hiermee zien dat eenheden van vorm en
betekenis niet altijd overeen hoeven te komen wat wij wegens orthografische
redenen als meerdere losse woorden beschouwen.

Toch betekent dit niet dat lexicale bundels ondoorzichtige brokstukken zijn:
Ook de kleinere eenheden waaruit de lexicale bundels zijn opgebouwd, de bi-
grammen en unigrammen, spelen een rol in de verwerking, parallel aan de gehele
lexicale bundels zelf. Dit laat zien dat, hoewel vaak voorkomende combinaties
als brokstukken verwerkt worden, het taalsysteem deze brokstukken ook nog
steeds opbreekt in kleinere delen, die ieder op zich ook van belang zijn in de
verwerking. Dit is aanvullend bewijs voor een model van taalverwerking waarin
meerdere eenheden van verschillende groottes parallel worden verwerkt.

De belangrijkste toevoegingen aan bestaand onderzoek zijn a) de focus op
geavanceerde statistische modellen die subtiele patronen van verwerking aan
het licht kunnen brengen; b) de eerste data die laten zien hoe oudere volwasse-
nen lexicale bundels verwerken; c) een uitgebreidere analyse van de manier
waarop gesproken lexicale bundels online verwerkt worden, en d) het inzetten
van een computationeel model van lexicale toegang, waarin lexicale bundels
als eenheden zijn opgenomen — dit maakt het mogelijk om lexicale toegang
tot lexicale bundels in subprocessen op te delen en daardoor beter te begri-
jpen, en daarmee ook de status van lexicale bundels in het mentale lexicon te
beschrijven.
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