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6.1 Background

In the previous chapters of this thesis, we considered latent variable models to study
the relationship between two omics datasets. In Chapter 2, an algorithmic approach
to decompose data into sets of joint and specific principal components, called O2PLS
[16], was evaluated in omics data from population cohorts with simple random sam-
pling designs, i.e. each member of the population is chosen at random. In clinical
biostatistics and epidemiology, usually more complex designs are applied. For exam-
ple, the longitudinal family study design provides opportunities to investigate changes
in time and compare variation within and between families [13]. Nowadays, studies
with such sampling designs also include molecular data. In this chapter, we consider
the longitudinal family design in omics data integration. The O2PLS framework,
discussed in Chapter 2 and 3, is not suitable to analyze omics data from these de-
signs and can yield misleading results [14]. As discussed in the previous chapters,
the omics data integration approaches need to be extended to non-standard sampling
designs.

In Chapter 4 and 5 of this thesis, a statistical framework for probabilistic omics
data integration was developed. We argued that a likelihood-based approach can
better handle complex study designs. In this chapter, we take this step forward and
show how the PO2PLS framework can be generalized to suit various epidemiological
research questions.

Our methodological work is motivated by the Genetic Analysis Workshop (GAW20)
[15]. Data from the GOLDN study are available, containing measurements on around
2 million (HapMap imputed) genetic variants, 28285 methylation sites, and triglyc-
eride levels. After sample matching and quality control, data from 717 subjects are
available, together with pedigree information. The average sample size within a pedi-
gree is 18 individuals, where most pedigrees are multi-generation. The triglyceride
levels were measured on four different time points: twice before taking a triglyceride-
altering drug, and twice afterwards, each pair was separately averaged. The methy-
lation data were measured on the second and fourth time point. See Table 6.1 for
an overview of the study design. Two centers participated in the study: Minnesota
and Utah. In GAW20, the aim was to discover the pharmaco-epigenetics effects on
triglycerides [5]; these data are described in [1]. Here, we consider genetic variants,
methylation data at both time points, and triglyceride differences as outcome. In this
chapter, the first aim is to capture underlying latent pathways between the genetics
and methylation data, while modeling the longitudinal aspect of these data. The sec-
ond aim is to use these pathways to model the association with a response variable,
taking into account familial correlations between subjects.

For longitudinal omics data, some approaches have been developed for one dataset
based on Principal Components Analysis [18, 17]. These methods project the data
onto a set of latent variables, with loadings for each time point. Penalization is
used to reduce overfitting. However, these approaches are not suitable for multiple
heterogeneous omics data. To the best of our knowledge, no longitudinal method has
been proposed for heterogeneous omics data integration.

We propose a three-stage approach to first decompose epigenetic data in joint
and specific parts that represent time-stable and time-varying variation, respectively.
Then, we capture the genetics underlying these changes by estimating joint genetic-
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epigenetic, genetic-, and epigenetic-specific variation. Finally, we regress the outcome
on these parts, taking into account familial correlations between subjects. The re-
sulting model captures genetic-epigenetic effects on the outcome over time, while
incorporating the kinship correlation structure.

The rest of this chapter is organized as follows. First, the proposed three-stage
approach using O2PLS is presented. Then, we apply this method to the genetic,
epigenetic and triglyceride data from GAW20 and discuss the findings. Finally, a
probabilistic framework for data integration in longitudinal family studies, based on
Chapter 4 and 5, is presented and discussed.

6.2 Methods

Let X represent the genetic data matrix, with N samples across the rows and p
variables across the columns. Denote by Z1 and Z2, the N × q methylation data
matrices at the second and fourth visit, respectively. The triglyceride outcome vector
of length N is denoted by y. To integrate genetic and epigenetic data over time, we
consider Two-way Orthogonal Partial Least Squares (O2PLS) [16, 3]. The analysis
consists of three steps.

In the first step, we decompose the methylation datasets into time-stable and
time-varying parts using the O2PLS decomposition given by

Z1 = T1W
T
1 + U1C

T
1 + E, (6.1)

Z2 = T2W
T
2 + U2C

T
2 + F.

Here, T1 and T2 are the time-stable parts (second resp. fourth visit). The time-
varying parts are given by U1 (second visit) and U2 (fourth visit). The time points
are linked by a linear regression given by,

T2 = T1B1 +H2. (6.2)

In the second step, we are interested in the time-varying parts Uτ , where τ = 1, 2,
and its overlap with the genetic data X. An O2PLS model linking these parts for

Table 6.1: Longitudinal design of the GOLDN study. Triglyceride levels were
measured (denoted by an X) twice before (v1 and v2) and twice after treatment
(v3 and v4). Methylation was measured before and after treatment (v2 and v4).
Genotypes were measured before treatment (v2), and assumed to be constant for all
time points (denoted by a star). The time period between v1 and v2, and between
v3 and v4 is 1 day. The time period between v2 and v3 is 3 weeks. The triglyceride-
altering drug was administered after time point 1, v2.

MeasurementsTime point
1 (v1)

Time point
1 (v2)

Time point
2 (v3)

Time point
2 (v4)

Triglycerides X X X X
Methylation X X
Genetics * X * *
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each time point is given by

X = TGτW
T
Gτ + UGτC

T
Gτ + Eτ , (6.3)

Uτ = TUτW
T
Uτ + UUτC

T
Uτ + Fτ ,

with inner model
TUτ = TGτBUτ +HUτ . (6.4)

The joint parts are TGτ (genetic-joint) and TUτ (Uτ -joint), the specific parts are UGτ
(genetic-specific) and UUτ (methylation-specific).

The last step includes a model for y, the response variable, given the components
in each part separately. A linear mixed model [7] is used to estimate the association of
each variable in each part with triglyceride outcome, corrected for age, sex and center.
Random effects for each family are included to account for familial correlations. The
model is given by

yij = αy +Xcovβcov + X̃ijβ + bj + εij , (6.5)
where yij is the outcome for subject i in family j. The intercept is given by αy,
and Xcovβcov is the contribution of the fixed covariates. Further, bj is a normally
distributed random effect for family j with zero mean and correlation matrix equal
to two times the kinship matrix Kj . The matrix X̃ij represents each part in the
O2PLS decompositions. For example, the first part consists of T1, H2, U1 and U2.
Note here that since T1 and T2 are correlated, H2 is used instead of T2 to include
additional information in T2 not captured by T1. The model for y given the first part
is then given by (6.5), with X̃ = [T1, H2, U1, U2]. In total, twelve parts are considered,
four parts from step one ((6.1) and (6.2)), and eight parts from step two ((6.3) and
(6.4)). Note that by including the joint parts from the second step, joint effects
of genetics and methylation on the outcome is captured. Also, the genetic-specific
parts may provide information about familial variation associated to the outcome,
but unrelated to methylation changes.

6.3 Data analysis results

Pre-processing the data. Prior to analysis, the data were pre-processed. Firstly, we
applied a log transformation to all triglyceride measurements to achieve approximate
normality. Then, we averaged the log transformed measurements from visit one and
two, and separately from visit three and four. The difference of the two averages was
taken as response variable y. Secondly, we summarized the 2 million genotypes, coded
as {0, 1, 2}, per gene. To this end, we considered for each gene all SNPs lying within
50 kilobase (kb) distance from that gene. We took as many principal components of
these SNPs as needed to explain at least 80% of the total variation of the SNPs in
the proximity of that gene.

Results for chromosome 1. The analysis scheme consists of three steps, see Fig-
ure 6.1. First, we estimated time-stable and time-varying parts in the methylation
data (the blue pentagons in the figure). We retained 8 joint components in both T1
and T2 and 16 time-specific components in both U1 and U2, based on visual inspec-
tion of eigenvalue plots. Then, we estimated the joint part between genetics and the
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time-varying methylation parts, together with the genetic-specific and time-varying
methylation-specific parts (the green circles in the figure). We retained 5 joint, 10
gene-specific and 5 methylation-specific components. Finally, we regressed the triglyc-
eride outcome on each part individually (all colored blocks in the figure), followed up
with a regression of triglycerides on the significant components within each part (de-
noted by a star in the figure). Here, significance is defined by a t-value greater than
two.

We considered, in total, 12 separate fits with the time-stable (T1 and T2) and
time-varying (U1 and U2) methylation components from step one in (6.1), and genetic-
epigenetic joint (TG1, TG2, TU1, TU2) and specific (UG1, UG2, UU1, UU2) components
from step two in (6.3), see also Figure 6.1. The variance in the methylation data
explained by the time-specific parts was around 21%. The genetic data explained
around 38% of these time-specific parts in the methylation data. For each fit, we took
the significant variables and combined them in a single final fit using (6.5), in total
with eight latent variables as covariates: X̃ = [(U2)11, (TG1)3, (UG1)1,6,9,10, (UG2)1,10].
The results are shown in Table 6.2.

The estimates for the time-varying methylation part from visit two (U2) and the
genetic-specific parts (UG1) had absolute t-values between 2 and 2.5, indicating signifi-
cant effects of these components on triglyceride changes. The time-stable components
did not have any significant association with the outcome.

The variance of the random effect was 0.0057 (standard deviation 0.075), the resid-
ual variance was 0.079 (s.d. 0.28), thus the residual familial correlation was about 7%.
Furthermore, in Figure 6.2, scatterplots of each component with y are shown. Each
family is colored if there is a member that has a value on the horizontal axis of more
than four times the standard deviation of the corresponding variable. We observed
some families in the genetic-specific components with extraordinary high scores, pos-
sibly indicating that the genetic-specific components pick up familial stratification
among participants. The analysis was repeated for other chromosomes, similar re-
sults were obtained.

6.4 Discussion of the results

Previously in this chapter, we described a three-stage approach to decompose epige-
netics data in time-stable and time-varying parts, integrate these parts with genetics,
and used the resulting common and specific parts in a linear mixed model with changes
in triglyceride levels as response variable and a random effect for each family member.
The data integration steps were performed with O2PLS.

In the original article [5], an epigenome wide association study is described, where
the triglyceride outcome was regressed on each methylation variable separately. Sig-
nificant sites were then inspected and interpreted. Most notably, the most significant
sites were located on the CPT1A gene on chromosome 11. The O2PLS analysis
described here addresses a different question, namely how changes in triglycerides
associate with joint genetic-epigenetic variation over time, while also considering as-
sociations specific to the genetic and epigenetic data, respectively. These effects are
additionally modeled as multivariate, where combinations of genes and CpG simul-
taneously explain triglyceride changes. Therefore, these findings do not necessarily
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Figure 6.1: A schematic representation of the O2PLS analyses. In the first
step, denoted by blue pentagons, the two methylation datasets are decomposed in
time-stable (T1 and T2) and time-varying (U1 and U2) parts. In the second step,
denoted by green circles, the time-varying parts are integrated with genetic data,
yielding genetic-epigenetic joint (TG1, TG2, TU1, TU2) and specific (UG1, UG2, UU1,
UU2) parts. All colored parts are used separately in a linear mixed model for the
triglyceride outcome. Components in the parts that are marked with a star had a
significant t-value (more than 2).
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Component Part Estimate (S.E.) t-value
(U2)11 Time-varying methylation

v4
-0.003 (0.001) -2.491

(TG1)3 Genetic-joint v2 0.004 (0.003) 1.369
(UG1)1 Genetic-specific v2 0.007 (0.003) 2.227
(UG1)6 Genetic-specific v2 0.006 (0.003) 2.018
(UG1)9 Genetic-specific v2 -0.007 (0.003) -2.379
(UG1)10 Genetic-specific v2 0.007 (0.003) 2.109
(UG2)1 Genetic-specific v4 0.003 (0.003) 1.266
(UG2)10 Genetic-specific v4 -0.001 (0.003) -0.128

Table 6.2: Fixed effects estimates for the final model. The components from
this final single fit represent (from top to bottom): time-varying part in methylation
(visit four), genetic-joint (visit two) and genetic-specific parts (first four: visit two,
last two: visit four). The t-statistics larger than 2 in absolute value are boldfaced.
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Figure 6.2: Scatterplots of each included component against y. The com-
ponents represent (from left to right): time-varying methylation-specific (visit four),
genetic-joint (visit two) and genetic-specific parts (first four plots: visit two, last two
plots: visit four). They correspond with the components in Table 6.2.
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need to overlap with what was reported earlier [5].
In equation (6.5), both a family random effect as well as genetic-specific compo-

nents were included in the final fit. Note that these components can also capture
part of the familial effect. This is suggested by Figure 6.2, where it can be seen that
the genetic-specific component scores partially capture segregation between (extreme)
families. A mixed model without the genetic-epigenetic joint components can reveal
whether some of the variation in the family random effect was indeed captured by the
genetic-specific parts.

We found that a functional annotation of the top genes in the joint components of
the genetic data (i.e. TGτ ), for several chromosomes separately, showed some clusters
reflecting immunological pathways, see Table 6.3. Note that these data were measured
on CD4+ T-cells, so further research is needed to identify genes that got high weight
only due to the tissue type. Compared to the original article [5], the CPT1A gene
had a relatively high joint genetic-methylation ranking of 57 out of 28285, indicating
that it plays an important role in the common part of genetic and epigenetics. As a
future step, a follow up on interpreting the top methylation sites can be performed, for
example by investigating how they influence the biological processes of genes related
to triglyceride levels.

6.5 Methodological future work

The O2PLS analysis that is carried out in this chapter consists of three steps: first
the longitudinal aspect of the methylation data is addressed, by considering time-
stable and time-varying parts in these datasets. The latter part is of interest, since
it represents the change in methylation over time. The output of this step is then
used to find the statistical overlap of the time-varying parts with the genetic data.
The components from the second step are finally used in a linear mixed model with
triglyceride changes as outcome. A random effect per family is used to account for
the correlation structure between relatives.

This approach has some disadvantages, mainly in the way the longitudinality and
the association with the outcome is addressed. Firstly, when methylation data are
available for more than two time points, O2PLS cannot be directly applied. Rather
than treating each time point as a distinct source of variation, other methods that im-
pose a functional form for the methylation data over the time points can be used (e.g.
Functional PCA [6]). Secondly, the final regression step uses O2PLS components that
are agnostic of the outcome. The components that are discarded can still contain in-
formation about the outcome. In that case, the last regression step of the outcome on
the components does not (fully) represent the association of triglycerides with genet-
ics and methylation. Several methods have been proposed for supervised dimension
reduction (e.g. supervised PCA [2] and Collaborative Regression [4]) where the com-
ponents also explain variation in the outcome. However, even after implementing
these adjustments, the overall analysis still consists of at least two steps rather than
a joint approach for all data.

From a statistical point of view, a simultaneous approach, rather than three con-
secutive steps, is expected to yield overall more accurate estimates for the parameters
in each step. As argued in Chapter 5, a framework that facilitates such simultaneous
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Chr GO keywords Top Gene
3 Lympho- and leukocyte apoptotic process BCL6
3 Immune system process KIAA0226
4 Fatty acid metabolic process ACSL1
4 Catabolic processes QDPR
4 Humoral immune response RBPJ
11 Immunological synapse PTPRJ
11 Carboxylic/organic acid binding HMBS
21 Cellular lipid metabolic process AGPAT3
21 Apoptotic process IFNG

Table 6.3: Functional annotation of top 200 genes with O2PLS. For each
chromosome (denoted by Chr), the genes are ranked according to the loading weights
in the joint genetic-epigenetic components that were significantly associated with
changes in triglycerides.

approach is probabilistic O2PLS (PO2PLS). The PO2PLS model can be extended
to handle more complex situations. In the GAW case study, these extensions are as
mentioned above: (1) a supervised regression model for PO2PLS with an outcome
variable with random effects to take into account correlations among subjects, (2) a
longitudinal model for the methylation changes in time, and (3) a data integration
model to capture common and specific variation in genetic and methylation data.
While such extension is not proposed yet, the next subsection proposes a model and
briefly discusses modeling strategies to correctly reflect characteristics of the longitu-
dinal family design as found in the GAW case study.

6.5.1 A probabilistic model for supervised data integration in lon-
gitudinal family studies

Within a probabilistic model, extensions are possible to accommodate longitudinal
family designs such as in the data analysis of this chapter. To this end, let x represent
the genetic data, and mτ the methylation data for time point τ . A model resembling
the three-stage analysis consists two parts. In the first part, the methylation and
genetics data are linked over time via latent variables as follows, with τ = 1, . . . , T ,

g = tgW
T
g + ugW

T
ug + eg, (6.6)

mτ = tτW
T
m + uτW

T
τ + eτ , τ = 1, . . . , T , (6.7)

uτ = tgBτ + hτ , τ = 1, . . . , T , (6.8)
tτ+1 = tτBt + htτ , τ = 1, . . . , T − 1. (6.9)

Here, mτ is the methylation data for time point τ . The time effect is decomposed,
similarly as in the previous analysis, into time-stable and time-varying components
tτ and uτ , respectively. In the time-stable parts, factorial invariance [10] is assumed;
the directions Wm are the same across time points to ensure the same constructs are
obtained. For simplicity, the process {tτ} is assumed to be Markov; the relationships
between the tτ are forward in time only and given tτ , the process after τ is independent
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of the process before τ . The genetic data are denoted by g, and are decomposed in
a part joint with methylation per time point, and a genetic-specific part. The same
assumptions as in the PO2PLS model are made regarding independence of the latent
variables and orthogonality of the loadings.

Denote by y the response variable and let f index families. The second model
relates y to the common and specific parts given in the previous model,

yf = β0 + tgβg +
∑
τ

hτβτ + γf + εf , τ = 1, . . . , T . (6.10)

Here, γf is a normally distributed random effect per family with zero mean and
covariance matrix σ2

γKf , where Kf is two times the genetic kinship matrix for family
f . The residual joint components hτ , representing information in uτ not present in tg,
are used in the model for y to avoid collinearity issues. The total model is graphically
depicted in Figure 6.3. Note that, for simplicity, in the model for g and mτ , family
information is not taken into account.

Estimating the joint model The complete data likelihood can be written as∏
τ

f(g,mτ , y, tτ , uτ , tg, ug, γ) (6.11)

where f is a multivariate normal density of proper dimensions. Also here, an ECM
algorithm [9] can be deployed to obtain maximum likelihood estimates for all param-
eters. Note that, since all random variables are normal, the Expectation step involves
computing conditional first and second moments of the latent variables, given the ob-
served data g, mτ and y. Given these quantities, the Maximization step is decomposed
in several distinct optimization problems.

The E and M steps can be computed analogous to the computations in Chapter
5. However, an additional challenge is the multiple time points: in the E step, the
conditioning is performed over all mτ , and the M step involves objective functions
that share the same parameters (e.g. Wm).

6.5.2 Further directions: extending the joint model

In the model for mτ in (6.9), a latent growth model [11] can be recognized. In our case,
multiple instances of a multivariate random vector mτ is related via an underlying
latent system of equations for all tτ . When data are available for more than two time
points, the inner model connecting the latent variables tτ can be extended using a
latent growth model, given in its general form by

x(τ) =
∑
k

gk(τ) + e(τ), (6.12)

where x is an observable random vector measured on time points indexed by τ , and gk
are basis functions. In our analysis, also time-specific parts are included and actually
of more interest, as they indicate the part that is not shared across time points.

In this chapter, the outcome is assumed to be normally distributed, and linearly
dependent on the latent variables. In some applications, these assumptions are not
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Figure 6.3: Path diagram of probabilistic data integration in longitudinal
family studies. The observed variables are denoted with a square. They are modeled
in three steps, these steps are indicated by a number in the top left corner of the two
large rectangles. For the third step, the rectangle and number are omitted. In the first
step, the methylation data from time point 1 and 2, M1 resp. M2, are decomposed in
time-stable (T1 and T2) and time-varying (U1 and U2) parts. In the second step, the
parts from step 1 are related with the genetic data, G, and decomposed in joint (Tg1,
Tg2, Tu1 and Tu2) and specific (Ug1, Ug2, Uu1 and Uu2) parts. In the third step,
the parts from step 2 are related to the outcome, y, together with a latent variable
(γf ) for the family effect. Error variables are omitted.
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suitable for y. In particular, y may be non-normally distributed, or the relationship
between y and its predictors is not linear. In the first case, a generalized linear mixed
model can be employed to model the expected value of η(y), where η is a suitable link
function. A similar model has been described in [12]. If a non-linear link function is
used, the likelihood cannot be obtained analytically, which is a major drawback. In
the second case, a non-linear functional, say F , may be assumed between y and its
predictors:

yf = F (tg, (hτ )τ ) + γf + εf . (6.13)

To estimate F , a non-parametric approach is feasible using kernel or spline-based
methods (see [8]). Since the complete data likelihood can be factored in distinct terms
(see Chapters 5 and 6), the likelihood contribution of y is decoupled and separately
optimized in the M step.
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