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5.1 Abstract

We propose Probabilistic O2PLS (PO2PLS), which is a reformulation of O2PLS and
an extension of Probabilistic PLS, to describe the relation between all predictors and
response variables by joint and specific latent variables. The set of predictors and
responses are potentially high dimensional, where the number of variables exceed the
sample size, and highly correlated, both within and between the sets of variables. In
the PO2PLS model, the joint latent variables explain correlations across the two sets,
while the specific variables explain covariance structure within each set. These latent
variables are typically of much smaller dimensions than the original sets of variables.

The PO2PLS model is identifiable, and the parameters are estimated with maxi-
mum likelihood. A memory-efficient EM algorithm is used to simultaneously estimate
joint and specific components under the identifiability constraints. Furthermore, the
observed Fisher information is derived analytically and asymptotic standard errors
for the parameters are obtained.

We investigate the performance of PO2PLS in terms of estimation accuracy and
prediction quality, and compared it to several alternatives. Also, we apply PO2PLS
in two different cohorts: in the first cohort, we consider transcriptomics and metabol-
omics data, in the second cohort, genetic and glycomic data are considered. We
compare the results and top variables in the joint parts with previous literature and
genomic databases. Results show that PO2PLS overall outperforms the alternative
methods in the simulation study in terms of accuracy and prediction performance. In
the data analyses, PO2PLS yields better interpretation of the joint latent variables
and lower prediction error in a independent test cohort.

5.2 Introduction

The multivariate linear model is widely used to describe the relationship between a
vector of response variables y ∈ Rq and a vector of predictors x ∈ Rp. Although the
model is general, we focus here on epidemiological applications in life sciences, where
nowadays multiple ‘omics’ data are available, reflecting variation at several biological
levels for the same set of subjects [19]. The underlying aim of these applications is to
describe the relation between x and y, where x and y are often high dimensional and
correlated.

Studies that try to understand how x and y are related, have mainly been focus-
ing on detecting and interpreting pair-wise relationships between, say, xi and yj (e.g.
see [33]). However, within studies where many subjects are collected, a multivariate
model for the relationship between x and y is feasible and can yield better interpre-
tation of the true underlying mechanisms (also denoted by data integration, see [32]).
These mechanisms can be described by unobservable random variables in a latent
space of smaller dimensions than the original space of the observable variables (as is
the case with, e.g., genetic or metabolic pathways [43]). In addition, these datasets
are typically heterogeneous, where the sets of measurements on x and y may differ
substantially in dimensions, scale, measurement platform and distribution [39].

In this paper, we consider datasets from two studies that contain data on sev-
eral omics levels. These omics data are heterogeneous as they differ considerably,
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in particular in dimensionality and measurement platform. In the DILGOM study,
gene expression (p ≈ 104) and metabolite abundances (q = 137) were measured on
N = 512 participants [17, 18]. The aim was to identify molecular pathways underly-
ing lipid metabolism and gene expression, in particular in relation to inflammation.
Here, we address the same aim using multivariate In the second study, the Croatian
Korcula study, genetic variants (p ≈ 105) and IgG glycosylation (q = 20) are available
on N = 885 subjects [21, 40]. The aim here was to identify genetic regions underlying
changes in the glycosylation of immunoglobulins (Ig, i.e. antibodies).

We consider multivariate latent variable models that perform dimension reduction
and take into account correlations within and between the datasets, also referred to
as “omics data integration”. Several methods have been proposed [32] to describe the
relationship between x and y. The majority of these methods are based on linear
dimension reduction techniques [29] that construct ‘joint parts’ as an estimate of the
common part of x and y. Typically, these joint parts are composed of Joint Principal
Components (JPCs): projections of the data that maximize a measure of relationship,
such as covariance or correlation. However, to take into account the heterogeneity
between x and y and improve model interpretation, specific parts should be included
[38, 39]. Also, to facilitate statistical inference, probabilistic models with identifiable
parameters are needed [8]. Furthermore, within a probabilistic framework, extensions
can be made to accommodate complex study designs (e.g. multilevel and family data).

Among the methods that only include joint parts are Partial Least Squares (PLS)
[41, 1], Canonical Correlation Analysis (CCA) [16] and Envelope Regression [4]. Meth-
ods that also incorporate specific parts are Two-way Orthogonal PLS (O2PLS) [38]
and JIVE [25], where the former is more flexible than the latter in that it does not
assume orthogonality between the joint and specific components.

Regarding probabilistic models for data integration, Probabilistic PLS (PPLS)
has been developed [8] for homogeneous data, where no specific parts need to be esti-
mated. In the machine learning community, Bayesian CCA (BCCA) was proposed as
a prediction model to detect dependencies between multiple datasets, while correcting
for data-specific parts [20]. Although the model is probabilistic, it is not identifiable,
which is a drawback when parameter interpretation and inference is sought. Recently,
a probabilistic method named Supervised Integrated Factor Analysis (SIFA) was pro-
posed for estimating joint and specific components in multiple datasets [24]. However,
SIFA assumes homogeneity of the JPCs, which is not realistic for heterogeneous omics
data (see paragraph 5.3.1 and [9]).

We propose Probabilistic O2PLS (PO2PLS), a flexible probabilistic model that
estimates JPCs and specific components in two heterogeneous datasets. Here, the
JPCs are not assumed to be homogeneous nor required to be orthogonal to the specific
components. The model parameters are identifiable, and estimated with maximum
likelihood. A memory-efficient ECM algorithm [30] is used, where in each step a
constrained optimization is solved to obtain identifiable estimates, even with high
dimensional data.

The remainder of the paper is organized as follows. In Section 5.3, the PO2PLS
model is developed and identifiability of the parameters is shown. Furthermore, max-
imum likelihood estimates are derived. In Section 5.4, the performance of PO2PLS
is studied in a range of simulation scenarios. We focus on interpretability, but also
evaluate prediction performance. In Section 5.5, PO2PLS is applied as illustration to
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perform statistical integration of the datasets in the DILGOM and Korcula studies.

5.3 PO2PLS: model and estimation

5.3.1 The model

Let x and y be two random row-vectors of size p and q, respectively. Note that p and q
do not have to be equal. In the PO2PLS model, both x and y are expressed in terms of
a joint part, a specific part, and a noise part. The joint parts involve random vectors
t and u of size r, where u is dependent on t. The specific parts involve independent
random vectors t⊥ and u⊥ of size rx and ry, respectively. The noise random vectors
are denoted by e (p-dimensional), f (q-dimensional) and h (r-dimensional). Here, h
represents heterogeneity in the joint parts. More precisely, the PO2PLS model for x
and y is described by

x =tWT + t⊥W
T
⊥ + e

y =uCT + u⊥C
T
⊥ + f

u = tB + h

(5.1)

The parameter matrices W (p×r) and C (q×r) are called joint loadings. The matrices
W⊥ (p× rx) and C⊥ (q × ry) are referred to as data-specific loadings.

The random vectors e and f are independent multivariate normally distributed
random vectors, with zero mean and covariance matrices σ2

eIp and σ2
fIq, respectively.

Furthermore, t, t⊥, u⊥ and h are zero mean multivariate normals, with diagonal
covariance matrices Σt, Σt⊥ , Σu⊥ and Σh, respectively. The covariance matrix of u
follows from (5.1): Σu = BTΣtB + Σh. Here, B is a diagonal r × r matrix.

All parameters are collected in θ := [W,W⊥, C, C⊥, B,Σt,Σt⊥ ,Σu⊥ ,Σh, σ2
e , σ

2
f ]. It

parametrizes the distribution of (x, y) ∼ N (0,Σθ) (the explicit expression for Σθ is
given in the supplementary material).

The model for the relation between u and t is taken asymmetrically, as often a
certain hierarchy is assumed for x and y [5]. For instance, it is reasonable to assume
that genetic variability induces glycomic variation, therefore we model u in terms of
t.

PO2PLS as a general data integration framework. PO2PLS models the relation-
ship between x and y through t and u as described in (5.1). The correlation between
u and t is determined by Σt, B and Σh. If the JPCs are assumed to be homoge-
neous, i.e. u = t, the PO2PLS model reduces to the SIFA and BCCA models. In
this case, B = I and Σh = 0, so u and t have the same scale and a correlation of
one. Especially for heterogeneous omics data, the two sets of JPCs typically represent
different biological mechanisms (e.g. genetic versus metabolic pathways). Therefore,
they are biologically not perfectly correlated or on the same scale. Also, it has been
shown that assuming homogeneity of JPCs can negatively affect estimation perfor-
mance [9]. If additionally, the columns of the concatenated components (WW⊥) and
(CC⊥) are orthogonal, the JIVE model is recovered. In this case, combinations of
features involved in the joint and specific parts have to be orthogonal, which is a
strong restriction and not likely to hold for omics data. The Probabilistic PLS model
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is obtained by setting Σt⊥ and Σu⊥ to zero in (5.1). Therefore, PO2PLS can be seen
as a framework in which several other data integration methods are contained.

Methods like CCA and Envelope Regression (ER) have similar models as PPLS
and PO2PLS. However, the number of noise variance parameters to estimate is of
order O(p+ q), whereas PO2PLS introduces one σ2

e and σ2
f for x and y, respectively.

When p or q is larger than the sample size (i.e. a high dimensional setting), CCA and
ER estimators cannot be obtained due to singularity issues. Therefore, such models
cannot be used for omics data integration.

In Table 5.1 an overview is shown with several methods and their features.

5.3.2 Identi�ability of PO2PLS

Linear latent variable models are typically unidentifiable due to rotation indeter-
minacy of the loading components. For example, given a rotation matrix R such
that RRT = I, the models x = tWT and x = tRRTWT yield the same distribu-
tion for x. In PCA, the loading matrices are restricted to be semi-orthogonal, i.e.
WTW = I, whereas in Factor analysis, the latent variables are standard normally
distributed. However, these assumptions separately do not solve the rotation indeter-
minacy. In PO2PLS, identifiability can be obtained using assumptions similar to the
two just mentioned, namely semi-orthogonal loading matrices and diagonal covari-
ance matrices for the latent variables. Note that this generally leads to a constrained
optimization over Stiefel manifolds, as we will see in subsection 5.3.3.

The assumptions in PO2PLS are firstly, WTW = CTC = Ir, WT
⊥W⊥ = Irx and

CT
⊥C⊥ = Iry . Additionally, [WW⊥] and [CC⊥] must not have linearly dependent

columns. Note that the columns of W⊥ and C⊥ do not have to be orthogonal to the
columns of W and C, respectively. Second, the diagonal elements of B are restricted
to be non-negative. This does not restrict the PO2PLS model, as tkbk is equal to
−tkbk in distribution, for k = 1, . . . , r. Finally, the sequence (σ2

tk
bk)rk=1 is assumed

to be strictly decreasing in k. Regarding the number of components, we assume that
0 < r + rx < p and 0 < r + ry < q, where r is positive and both rx and ry are
non-negative.

Given these assumptions, the loading matrices are identified up to sign. The other

Table 5.1: An overview of several data integration methods and their fea-
tures. An ‘X’ indicates presence of a feature. The abbreviations ‘High dim.’, ‘Probab’
and ‘Het. JPCs’ stand for ‘High dimensional estimation’, ‘Probabilistic’ and ‘Hetero-
geneous Joint Principal Components’, respectively.

Features PLS PPLS CCA BCCA ER O2PLS JIVE SIFA PO2PLS
Joint X X X X X X X X X
Specific X X X X X X
High dim. X X X X X X X
Probab. X X X X X
Het. JPCs X X X X X
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parameters in θ are uniquely identified. The following Theorem makes this precise.

Theorem 5.3.1. Let r, rx, ry and θ satisfy the above assumptions. Let Σθ1 and
Σθ2 be the covariance matrices corresponding to PO2PLS parameters θ1 and θ2,
and suppose Σθ1 = Σθ2 . Then W1 = W2∆W , C1 = C2∆W , W⊥1 = W⊥2∆W⊥ ,
C⊥1 = C⊥2∆C⊥ for diagonal orthogonal matrices ∆W ,∆W⊥ and ∆C⊥ , and all other
parameters in θ1 and θ2 are equal.

The proof is given in the supplementary material.

5.3.3 Maximum Likelihood Estimation of the parameters

We propose the maximum likelihood method to estimate θ. Contrary to O2PLS, the
estimation is simultaneous over both joint and specific parts. The log of the likelihood
associated with the PO2PLS model (5.1) is given by

L(θ|x, y) = −1
2
{

(p+ q) log (2π) + log |Σθ|+ (x, y)Σ−1
θ (x, y)T} . (5.2)

Note that L is a complicated and highly non-linear function of θ, and its computation
requires computing and storing covariance matrices of size (p + q)2. If the latent
variables t, u, t⊥ and u⊥ would be observable, maximizing the log-likelihood becomes
analytically tractable and computationally feasible, even for large p and q. Therefore,
we propose an EM algorithm to obtain maximum likelihood estimates for θ.

Denote the complete data vector by (x, y, t, u, t⊥, u⊥). For a current estimate θ′,
the EM algorithm considers the objective function

Q(θ|x, y, θ′) := Eθ′ [log f(x, y, t, u, t⊥, u⊥|θ)|x, y] . (5.3)

Here, the complete data likelihood can be written (with abuse of notation) as

f(x, y, t, u, t⊥, u⊥|θ) = f(x|t, t⊥)︸ ︷︷ ︸
W,W⊥,σ2

e

f(y|u, u⊥)︸ ︷︷ ︸
C,C⊥,σ2

f

f(u|t)︸ ︷︷ ︸
B,Σh

f(t)︸︷︷︸
Σt

f(t⊥)︸ ︷︷ ︸
Σt⊥

f(u⊥)︸ ︷︷ ︸
Σu⊥

. (5.4)

These factors depend on distinct sets of parameters, yielding separate optimization
problems.

The Expectation step involves a conditional expectation of the complete data
likelihood. Since f in (5.3) is a multivariate normal density, this expectation can be
written in terms of the first and second conditional moments of the latent variables
t, u, t⊥ and u⊥ given x and y. Focusing on the first factor in (5.4), the conditional
expectation of log f(x|t, t⊥) is given by

−1
2
{
Np log (2π) +Np log σ2

e + σ−2
e trEθ′

[
||x− tWT − t⊥WT

⊥ ||2F |x, y
]}
. (5.5)

This expectation involves first and second conditional moments of the vector (t, t⊥)
given θ′, x and y. These terms can be explicitly calculated and are given in the
supplementary material.

In the Maximization step, the function in (5.5) is optimized over all semi-orthogonal
matrices W and W⊥ (i.e. over the Vp,r and Vp,rx Stiefel manifolds). To enforce semi-
orthogonality, we introduce Lagrange multipliers ΛW and ΛW⊥ . Maximizing (5.5)
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over semi-orthogonal W and W⊥ is then equivalent to minimizing the following ob-
jective function

Eθ′
[
||x− tWT − t⊥WT

⊥ ||2F |x, y
]

+ ΛW
(
WTW − Ir

)
+ ΛW⊥

(
WT
⊥W⊥ − Irx

)
. (5.6)

Note that the objective function involves both W and W⊥ and cannot be decoupled.
Instead of numerical optimization, we consider a variant of EM that performs se-
quential optimization [30]. First, (5.6) is minimized over W , keeping W⊥ constant.
Then we minimize over W⊥, keeping W equal to its minimizer. Under standard con-
ditions, this algorithm monotonically approaches a (local) maximum of the observed
likelihood L [30].

The above derivation is conditional on the dimensions of the latent spaces. Typ-
ically, the number of components r, rx and ry are unknown a priori. Strategies that
can be used to select the number of PO2PLS components include cross-validation [11]
and eigenvalue plots [28].

The expectation and maximization step for the other parts in (5.4) are calcu-
lated analogously (see the supplementary material). In this calculation, the following
operator is used to obtain semi-orthogonal loading matrices.

Definition 5.3.2. Let A be a p×a full rank matrix with singular value decomposition
A = UDV T. Let R = V D. Then we define the operator orth : Rp×a → Rp×a as

orth (A) = A(RT)−1. (5.7)

Using this operator, the EM parameter updates are made explicit in Theorem
5.7.1, Appendix 5.7.

Standard errors. Maximum likelihood theory entails that, under regularity condi-
tions, the estimator θ̂ has asymptotic distribution N (θ,Σθ), as the sample size goes to
infinity. This also holds in factor analysis models [35]. By calculating the square root
of Σθ, standard errors for θ̂ are obtained. A well-known approach for estimating Σθ
is the inverse observed Fisher information matrix. In an EM algorithm, this matrix
is given by [26]:

E
[
B(θ̂)|X,Y

]
− E

[
S(θ̂)S(θ̂)T|X,Y

]
. (5.8)

Here, S(θ̂) = ∇L(θ̂) and B(θ) = −∇2L(θ̂) are the gradient and negative of the second
derivative of the log likelihood L, respectively, evaluated in θ̂. The Fisher information
matrix for PO2PLS is derived in the supplementary material.

5.4 Simulation study

We conduct a simulation study to evaluate the performance of PO2PLS estimates in
several scenarios. We focus on interpretability of the estimators, but also consider
predictive performance. Furthermore, PO2PLS is compared to PLS, O2PLS, PPLS
and SIFA.

In the simulation scenarios, combinations of small and large sample sizes (N =
100, 1000), low and high dimensional x and y (p = 2000, 10000; q = 25, 125) are
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considered. We additionally include two scenarios for the proportion of noise relative
to the total variation: in the ‘small noise proportion’, we take 40% noise in both
x and y. In the ‘large noise proportion’ these values are 95% and 5% for x and y,
respectively. The impact of heterogeneity of joint parts is considered by increasing
the joint residual variance Σh from 0% to 80% of the total joint variance Σu. These
scenarios are based on the two data analyses in Section 5.5.

The simulated data are generated from the PO2PLS model (5.1), with normally
distributed latent variables and r = rx = ry = 5. In the homogeneous joint parts
scenarios, we set B = I and Σh = 0 to comply with the SIFA assumptions described
in paragraph 5.3.1. The parameter values are drawn at random and kept fixed during
simulation. The PO2PLS restrictions, described in Subsection 5.3.2, are then applied
to these parameters.

Interpretability of each component is derived from the subset of variables that have
the highest absolute loading value, since, in applications, the top features are followed-
up for further investigation. For each joint component, we evaluate interpretability
by sorting the estimated loading values and then calculating the proportion of true
top 25% features among the estimated top 25% (i.e True Positives Rate, TPR). We
then average these proportions across components to obtain an aggregated proportion
across joint components. Regarding predictive performance, we calculate the RMSEP,
defined as the square root of the average value of ||y − ŷ||2F . Here, the RMSEP is
calculated in both training and test data; the test data consist of N = 104 independent
samples generated from the same model as the training data.

The EM algorithm is stopped if the log-likelihood increment is below 10−6 or 103

steps are taken. For each setting in the normal distribution scenario, 1000 replicates
are generated. We additionally match the sign and order of the estimated and true
components.

Furthermore, we investigate the impact of rank misspecification and violation of
the normality assumption. We fit the model using one component too many in the
joint and specific parts, and we apply the algorithm to data generated from non-
normally distributed latent variables. We consider a t2, a Poisson P1 and a binomial
B2,0.25 distribution, reflecting characteristics typically observed in omics data, such
as heavy tailed, skewed and discrete measurements.

5.4.1 Results

The current implementation of SIFA (found on GitHub:reagan0323/SIFA) was un-
able to produce estimates in the scenarios where p = 10000. Therefore, we discuss
only the lower dimensional setting and refer to the supplementary material regarding
results in the high dimensional scenarios.

In Figure 5.1, boxplots of the TPR, difference in TPR with respect to PO2PLS,
and RMSEP, respectively, are shown across several settings. In the RMSEP plot, the
black line represents the prediction error when using the true parameter values on
the test data.

Firstly, the TPR of PO2PLS and SIFA was generally above 25%, even for very
noisy and heterogeneous data. PPLS underperformed in most scenarios compared
to the other methods. O2PLS and PLS behaved very similar. Furthermore, when
considering paired differences of the TPR between each method and PO2PLS, it can
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be seen that PO2PLS generally has higher TPR within the simulation runs. This
difference is more notable under large noise proportion and heterogeneous joint parts
settings. Note that the difference of PPLS and PO2PLS is left out for better visual
comparison of the other methods.

Secondly, regarding the prediction error in the heterogeneous joint parts scenar-
ios, PO2PLS performs better than O2PLS, PPLS and SIFA, and has more realistic
training error than PLS. Here, SIFA has the highest prediction error. Furthermore,
PLS and O2PLS overfit to the data in noisy, small sample size scenarios.

The results for the other settings (rank misspecification, non-normal variables,
and high dimensional data) are shown in the supplement.
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Figure 5.1: True Positives Rate and Root MSE of Prediction. Upper left
figure: proportion of true top 25% among estimated top 25% (TPR) for each method,
stratified by simulation scenario. Lower left figure: Difference in TPR of several
methods and PO2PLS. Lower values are in favor of PO2PLS. In both plots, the left
red boxplots correspond with the low noise scenario, the right blue boxplots with high
noise. Right figure: Root mean squared error of prediction stratified by method and
scenario. The black line represent the test error when using the true parameter values.
The left red boxplots correspond with the training error, the right blue boxplots with
the test error.

5.5 Analysis of heterogeneous omics data

As application of the PO2PLS model, we consider two analyses of heterogeneous
omics data. Firstly, using PO2PLS, joint and specific variation in gene expression
and metabolite levels is estimated. Secondly, PO2PLS is applied to estimate genetic
contributions to glycomic variation. The results are compared with results obtained
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with O2PLS.
SIFA was also applied to data from the two cohorts. However, the current imple-

mentation could not cope with the dimensionality of these data, due to unrealistic
time and memory requirements: in the first analysis, one iteration took 30 minutes
where 500 iterations is the default; in the second analysis, an out of memory error
was issued.

Transcriptomic-metabolomic analysis. The link between lipid metabolite and gene
expression levels has been investigated in the literature, especially in the context of
coronary artery disease and atherosclerosis [2, 18]. Here, it was found that very-low-
density- and high-density-lipoprotein (VLDL and HDL) metabolite concentrations
were associated with expression levels of genes involved in inflammation and allergy
[17]. The same data were analyzed with O2PLS, and was consistent with earlier
reports [7].

In this data application, our aim is to elucidate joint and specific factors regarding
lipid metabolites and gene expression. To this end, we apply PO2PLS to obtain joint
and specific components from the transcriptomic and metabolomic measurements.

After pre-processing and filtering, data on p = 7385 expression probes and q = 134
metabolite concentrations were available for N = 512 participants from the DILGOM
cohort. These data are denoted by X and Y , respectively. For the analysis, 2 joint,
1 expression-specific, and 10 metabolite-specific components were retained (see Sup-
plementary Material).

In Figure 5.2, the two metabolomic joint components (explaining 56% of total
variance) are shown. Note that clusters of VLDL- LDL- and HDL-type metabolites
are observed. The first joint component mostly represented VLDL metabolites, while
in the second component VLDL and HDL were represented. The top 500 probes of
the two transcriptomic joint components (explaining 28% of total variance) mapped
to genes mostly involved in membrane localization and immune response, respectively.

For comparison, we applied O2PLS to these data. The metabolic components are
similar to those reported in Figure 5.2. However, the gene annotation clusters are
different, see Table 5.2. In particular, the first and second components of PO2PLS are
better separated in terms of top gene annotation clusters. They also reflect current
biological literature; the role of VLDL in membrane transport is well known [10],
and the relation between VLDL, HDL and immunology genes has been investigated
previously [17].

Genetic-glycomic analysis. Glycosylation is one of the most common post trans-
lational modifications that enriches the functionality of proteins in many biological
processes, such as cell signaling, immune response and apoptosis [40]. Several stud-
ies have linked the composition of glycans to the risk and status of several diseases
[13, 23, 37].

Glycan synthesis does not have a genetic template, rather, many glycosyltrans-
ferases and DNA binding proteins are involved in glycosylation [14]. Genetic regula-
tion of glycosylation has been investigated, where SNP-glycan pairs were separately
considered[21, 31, 40]. However, individual glycans abundances are highly correlated,
and can be affected by several genes [36]. Therefore, a multivariate approach is more
appropriate.
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Figure 5.2: Metabolomic PO2PLS joint components. The first component is
plotted on the x-axis against the second component. The colors and shapes repre-
sent the biological grouping of the metabolites: very-low-, low-, intermediate-, high-
density-lipoproteins, fatty acids and others
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Table 5.2: Annotation of transcriptomic and metabolomic joint components.
The metabolomic components approximately represent VLDL and HDL metabolite
levels. The corresponding top 550 transcript probes are enriched for the given anno-
tations.

Component Metabolites Genes
1 VLDL protein targeting to membrane; protein localiza-

tion
2 VLDL vs HDL immune/defense response; response to stimulus

(a) Gene annotation clusters for Probabilistic O2PLS

Component Metabolites Genes
1 VLDL immune response; protein targeting to mem-

brane
2 VLDL vs HDL immune/defense response; response to stress

(b) Gene annotation clusters for O2PLS
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In this data application, our aim is to integrate genetic and glycomic data and
understand genetic contributions to variation in glycan abundances. To this end, we
apply PO2PLS to estimate the loading parameters and variance components.

We have data on 333858 genotyped Single Nucleotide Polymorphisms (SNPs) and
20 IgG1 glycan abundances, measured with nano-LCMS, for N = 885 participants
in the Korcula cohort [22]. Both data sets contain highly correlated measurements
(median Pearson correlation coefficient of the glycan data: 0.77, IQR: 0.19), and
are heterogeneous, since they differ in scale, distribution and measurement error.
Recently, these data were also analyzed with O2PLS [9].

Firstly, the SNPs were summarized on gene level, yielding a Genetic PCs (GPCs)
dataset. Then, the GPCs and glycomic datasets were pre-processed, resulting in
datasets X (p = 37819) and Y (q = 20), respectively. Furthermore, based on scree
plots of the eigenvalues of the data matrices, 5 joint, 5 genetic-specific, and no glycan-
specific components were retained [9].

Regarding the five IgG1 glycan joint components, they accounted for 95% of the
total modeled IgG1 glycan variation. The amount of IgG1 variation that can be
predicted with the Genetic PCs was 17%.

The loading values of each IgG1 glycan variable are depicted in Figure 5.3. They
represent different aspects of glycans and their molecular structure, namely the ‘av-
erage’ glycan and presence of fucose, galactose and GlcNAc (last two components),
respectively [9].

The five joint components in the Genetic PCs data set accounted for 2.3% of the
total modeled variation. For the specific parts, this percentage was 2.6%. The top 500
genes in each Genetic PCs joint component were clustered using GSEA. The relevant
clusters are shown in Table 5.3.

The top 500 genes in the Genetic PCs joint component seem to be involved in
inflammatory pathways, signaling, transferases, and localized to the Golgi apparatus
and Endoplasmic Reticulum.

PO2PLS was also applied to genetic and glycomic data in an independent study
consisting of 714 participants from the Croatian Vis cohort. These results were con-
sistent with above findings, indicating that the obtained joint components are not
specific to one population.

The PO2PLS and O2PLS models trained in Korcula were then evaluated in Vis,
in terms of prediction error of Y given X. Here, the ratio of training and test error
was 5/23 for O2PLS and 20/21 for PO2PLS, this is conform the simulation study
that PO2PLS is less prone to overfitting.
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Figure 5.3: Glycomic PO2PLS joint components. The components are sepa-
rately plotted. The colors and shapes represent the biological grouping of the glycans.
In the last row and column, a graphical representation of the structure of a particular
glycan is shown.
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Table 5.3: Annotation of genetic and glycan PO2PLS joint components. The
glycan components represent presence or absence of key molecules (fucose, galactose
and GlcNAc). The corresponding top 500 genes are enriched for the given annotations.

Component Glycans Genes
1 average Inflammatory pathways; B-cell gene regulation

through transcription factors SP1, LEF1 and ELK1
2 fucose Signalling; stimulus processing and transferases; local-

ized to the Golgi apparatus
3 galactose Signalling; stress and immune response; localized to

the Golgi apparatus and Endoplasmic Reticulum
4 and 5 GlcNAc Transferases
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5.6 Discussion

We propose Probabilistic Two-way Orthogonal Partial Least Squares (PO2PLS) to
model the relation between two sets of variables, as well as characteristics specific to
measurements of each set. The model parameters are shown to be identifiable, and an
EM algorithm to compute the constrained maximum likelihood estimator is derived
that is able to handle high dimensional data.

A simulation study is presented to evaluate the performance of PO2PLS, and
compare it to alternative methods. Except for O2PLS, these alternatives do not model
specific parts (PLS, PPLS), or joint heterogeneity (SIFA). Furthermore, SIFA could
not be applied to high dimensional data due to computational constraints. These
features are reflected in the performance of the corresponding methods. For example,
SIFA underperformed in presence of joint heterogeneity. In small sample size and
large noise level settings, PLS and O2PLS suffered from overfitting and had lower
interpretability. This is contrary to the belief that PLS and O2PLS, as distribution
free methods, are more suited in small sample size scenarios [42]. In our simulation
study, PO2PLS yields better interpretation and prediction performance.

In both data analyses, the resulting top features could to be biologically linked
according to the associated annotations. Moreover, the genetic-glycomic results were
replicated in a second independent cohort. Also O2PLS was applied to these data;
the biological interpretation was less obvious. Moreover, when comparing the training
error of the first cohort with the test error in the second genetic-glycomic cohort,
O2PLS overfitted to the first cohort. As concluded from the simulation study, this
has a negative effect on interpretation of the top loadings.

When multiple cohorts are available, such as in Section 5.5, a meta-analysis of pa-
rameter estimates can be performed for more robust interpretation. Several methods
have been proposed in the linear regression and factor analysis framework [6, 15, 3].
Both approaches use the Hessian matrix of the whole parameter vector, which is un-
feasible to calculate for high dimensional data. PO2PLS can be extended by adding
cohort-common and cohort-specific parameters to the model. Maximum likelihood
estimation would then yield an ‘optimal shared joint space’ that incorporates infor-
mation from each cohort.

In many epidemiological applications, a univariate outcome z is available. Recent
interest lies in using the relationship between molecular data x and y to model z
(e.g. [12]). Here, penalized regression approaches can be used with only one set of
predictors x or y. A more holistic approach is to use the information about x and y,
summarized by the low-dimensional component space, to explain variation in z. Based
on the Probabilistic O2PLS framework, a model of z given the joint and specific parts
can be added. For example, by adding z = (t, u, t⊥, u⊥)βz + εz to (5.1), the latent
components will explain joint and specific variation in x and y and be associated to
z.

Within epidemiological studies, two questions often arise regarding omics data
integration: what is the effect size of the relationship between two omics data and
which features are associated with this relationship. Previous data integration meth-
ods focused on estimating effect sizes and applied resampling methods to quantify the
uncertainty of these estimates. Especially with high dimensional data, these meth-
ods are computationally demanding or difficult to carry out due to a non-standard
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study design. As sample sizes are often high, the probabilistic PO2PLS framework
provides an alternative approach based on the asymptotic Fisher information matrix
(see Section 5.3) to assess significance of the estimated effect size and feature load-
ings. Alternatively, likelihood ratio tests can be used to compare two nested PO2PLS
models. Since, in general, asymptotic ML theory is established for N going to infinity,
inference based on PO2PLS would be more reliable in large epidemiological cohorts.
Also, the asymptotic behavior of PO2PLS when increasing dimensionality as well as
sample size is yet to be investigated.

5.7 Appendices for Chapter 5

Appendix A. An ECM algorithm for PO2PLS

Theorem 5.7.1. Let X and Y be data matrices with N i.i.d. PO2PLS replicates of
(x, y) across the rows. Let r, rx and ry be fixed, satisfying max(r + rx, r + ry) < N .
The loading matrix W is estimated with the following iterative scheme in k, given
known starting values for k = 0. Here, Ek[·] := E[·|X,Y, θk].

W k+1 = orth
(
XT Ek [T ]−W k

⊥Ek
[
TT
⊥T
])

W k+1
⊥ = orth

(
XT Ek [T⊥]−W k+1Ek

[
TTT⊥

])
Ck+1 = orth

(
Y T Ek [U ]− Ck⊥Ek

[
UT
⊥U
])

Ck+1
⊥ = orth

(
Y T Ek [U⊥]− Ck+1Ek

[
UTU⊥

])
Bk+1 = E

[
UTT

] (
E
[
TTT

])−1 ◦ Ir

Σk+1
t = 1

N
Ek
[
TTT

]
◦ Ir

Σk+1
t⊥

= 1
N

Ek
[
TT
⊥T⊥

]
◦ Irx

Σk+1
u⊥

= 1
N

Ek
[
UT
⊥U⊥

]
◦ Iry

Σk+1
h = 1

N
Ek
[
HTH

]
◦ Ir

(σ2
e)k+1 = 1

Np
tr
(
Ek
[
ETE

])
(σ2
f )k+1 = 1

Nq
tr
(
Ek
[
FTF

])

(5.9)

The proof is given in the supplementary material.
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5.8 Supplementary material for Chapter 5

Variances and covariances

First, we derive the covariance matrix of (x, y). The PO2PLS model for x and y is

x =tWT + t⊥W
T
⊥ + e

y =uCT + u⊥C
T
⊥ + f

u = tB + h

(5.10)

The covariance matrices of x and y are given by

Var(x) = Var
(
tWT + t⊥W

T
⊥ + e

)
= WVar(t)WT +WoVar(t⊥)WoT + Var(e)

= WΣtWT +W⊥Σt⊥WT
⊥ + σ2

eIp

Var(y) = Var
(
uCT + u⊥C

T
⊥ + f

)
= CVar(u)CT + CoVar(u⊥)CoT + Var(f)

= C(B2Σt + Σh)CT + C⊥Σu⊥CT
⊥ + σ2

fIq

Cov(x, y) = Cov
(
tWT + t⊥W

T
⊥ + e, uCT + u⊥C

T
⊥ + f

)
= WCov(t, u)CT

= WCov(t, tB)CT = WBΣtCT

(5.11)

The covariances between the observed and latent variables are given by

Cov(x, t) = Cov
(
tWT + t⊥W

T
⊥ + e, t

)
= WVar(t) = WΣt

Cov(x, t⊥) = Cov
(
tWT + t⊥W

T
⊥ + e, t⊥

)
= W⊥Var(t⊥) = W⊥Σt⊥

Cov(x, u) = Cov
(
tWT + t⊥W

T
⊥ + e, tB + h

)
= WVar(t)B = WΣtB

Cov(y, t) = Cov
(
uCT + u⊥C

T
⊥ + f, t

)
= CCov(tB + h, t) = CΣtB

Cov(y, u) = Cov
(
uCT + u⊥C

T
⊥ + f, u

)
= CCov(tB + h, tB + h) = C

(
ΣtB2 + Σh

)
Cov(y, u⊥) = Cov

(
uCT + u⊥C

T
⊥ + f, u⊥

)
= C⊥Var(u⊥) = C⊥Σu⊥

(5.12)

See e.g. [34] for more details.
Since (x, y) is a linear transformation of (t, u, t⊥, u⊥, e, f, h), its joint distribution

is multivariate zero mean normal, and is parametrized by the covariance matrix:

Σ :=
[

Σx Σxy
Σyx Σy

]
:=
[
WΣtWT +W⊥Σt⊥WT

⊥ + σ2
eIp WΣtBCT

CBΣtWT CΣuCT + C⊥Σu⊥CT
⊥ + σ2

fIq

]
(5.13)

Identi�ability of PO2PLS

Identifiability entails that if the distribution of (x, y) is given, there is only one corre-
sponding set of parameters yielding this distribution. Since (x, y) follows a zero mean
normal distribution, identifiability can be stated as

Σ = Σ̃ ⇐⇒ θ = θ̃, (5.14)
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where Σ, Σ̃ are two covariance matrices following the PO2PLS decomposition.
In the proof, we assume that B, Σt, Σh, Σt⊥ and Σu⊥ are diagonal, where each

element is non-negative. Moreover, we assume that the diagonal elements of ΣtB are
positive and in strictly decreasing order. Furthermore, we constrain W , W⊥, C and
C⊥ to have orthonormal columns. Additionally, the matrices [W,W⊥] and [C,C⊥]
have full rank. Finally, we assume 0 < r + rx < p and 0 < r + ry < q, where p and q
are the dimensions of x and y, respectively.

Following along the lines of proof in [8], we show that the off diagonal block matrix
is identified.

Theorem 5.8.1. Suppose WΣtBCT = W̃ Σ̃tB̃C̃T. Then W = W̃ , C = C̃ and
ΣtB = Σ̃tB̃, up to sign.

Proof. Since ΣtB and Σ̃tB̃ are diagonal with positive decreasing elements, both sides
of the equation represent a singular value decomposition. This decomposition is
unique up to sign [8]. Therefore, W , C and ΣtB are identified up to sign.

Identifiability of the specific parts is shown by projecting the covariance matrix
onto a subspace orthogonal to the specific loadings. The following Theorem makes
this precise.

Theorem 5.8.2. Suppose

WΣtWT +W⊥Σt⊥WT
⊥ + σ2

eIp = W Σ̃tWT + W̃⊥Σ̃t⊥W̃⊥
T + σ̃2

eIp (5.15)

Then W⊥ = W̃⊥, Σt = Σ̃t, Σt⊥ = Σ̃t⊥ and σ2
e = σ̃2

e .

Proof. Let V DV T and Ṽ D̃Ṽ T be the eigenvalue decompositions of the left and right
hand side of (5.15), respectively. Since p > r+ rx, the latter p− r− rx eigenvalues in
D and D̃ equal σ2

e and σ̃2
e , respectively. Therefore, σ2

e = σ̃2
e . The remaining part of

Equation (5.15) is given by

WΣtWT +W⊥Σt⊥WT
⊥ = W Σ̃tWT + W̃⊥Σ̃t⊥W̃⊥

T

Since the columns of both WΣtWT and W Σ̃tWT span the same space, and the
columns of W are not linearly dependent of W⊥ and W̃⊥, we have that Σt = Σ̃t.
Both sides of the remainder of Equation (5.15) can be recognized as a spectral de-
composition; such decompositions are unique up to sign, so we have that W⊥ = W̃⊥
up to sign and Σt⊥ = Σ̃t⊥ .

Following the same reasoning as the proof above, we have identifiability of C⊥ up
to sign, Σu⊥ , σ2

f and ΣtB2 + Σh. As Σt and ΣtB are identifiable, also B and Σh are
identifiable.

An EM algorithm for PO2PLS

Let X and Y be data matrices consisting of N i.i.d. draws from (x, y) along the rows.
For empirical identifiability of the components, we assume max(r + rx, r + ry) < N .
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Let the complete data vector be (x, y, t, u, t⊥, u⊥). For each current estimate θ′,
the EM algorithm considers the objective function

Q(θ|x, y, θ′) := Eθ′ [log f(x, y, t, u, t⊥, u⊥|θ)|x, y] . (5.16)

Here, the complete data likelihood can be written (with abuse of notation) as

f(x, y, t, u, t⊥, u⊥|θ) = f(x|t, t⊥)︸ ︷︷ ︸
W,W⊥,σ2

e

f(y|u, u⊥)︸ ︷︷ ︸
C,C⊥,σ2

f

f(u|t)︸ ︷︷ ︸
B,Σh

f(t)︸︷︷︸
Σt

f(t⊥)︸ ︷︷ ︸
Σt⊥

f(u⊥)︸ ︷︷ ︸
Σu⊥

. (5.17)

These factors depend on distinct sets of parameters, yielding optimization problems
over separate set of parameters. As f in (5.16) is a multivariate normal density,
Q involves conditional expectations of the first and second moments of the latent
variables t, u, t⊥ and u⊥ given x and y. Focussing on the first factor in (5.17), the
conditional expectation of f(x|t, t⊥) is given by

−1
2
{
Np log (2π) +Np log σ2

e + σ−2
e trE

[
||x− tWT − t⊥WT

⊥ ||2F |x, y
]}
. (5.18)

The EM algorithm first calculates the conditional expectation of the complete data
log-likelihood (5.16), given the observed data (x, y) . Note that, as f in (5.16) is a
multivariate normal density, this objective function involves conditional expectations
of the first and second moments of the latent variables t, u, t⊥ and u⊥ given x and y.
For example, the f(x|t, t⊥) part in (5.17), given by (5.18) involves E [(TT⊥)|X,Y ] and
E
[
(TT⊥)T(TT⊥)|X,Y

]
. The following Lemma is used for calculating such conditional

expectations.

Lemma 5.8.1. Let z ∼ N (0,Σz) be multivariate normal. If (x|z) ∼ N
(
zΓT,Σε

)
then

x ∼ N
(
0,ΓΣzΓT + Σε

)
(5.19)

and
(z|x) ∼ N

(
xΣ−1

ε ΓΣ̃z, Σ̃z
)
, (5.20)

with Σ̃z =
{

Σ−1
z + ΓTΣ−1

ε Γ
}−1.

This Lemma can be applied by noting that Equation (5.10) can be rewritten as

(x, y) = (t, u, t⊥, u⊥)
[
W 0 W⊥ 0
0 C 0 C⊥

]T
+ (e, f), (5.21)

with

Var((t, u, t⊥, u⊥)) =


Σt ΣtB 0 0

ΣtB Σu 0 0
0 0 Σt⊥ 0
0 0 0 Σu⊥

 . (5.22)

We take z = (t, u, t⊥, u⊥) and Γ the loading matrix as in (5.21). Then, Lemma 5.8.1
yields conditional expectations and variances of z given x and y.
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Taking the derivative with respect to W , while fixing W⊥, and setting it to zero
yields

Ŵ =
{(
X − t⊥WT

⊥
)T
T
}{

TTT + ΛW
}−1

= orth
{(
X − t⊥WT

⊥
)T
T
}
.

(5.23)

Here, orth(A) = UV T with U and V the singular vectors of A. The last step is proven
in [8]. The same argument can be applied to W⊥, holding W fixed at Ŵ :

Ŵ⊥ =
{(

X − TŴT
)T

t⊥

}{
tT⊥t⊥ + ΛW⊥

}−1

= orth
{(

X − TŴT
)T

t⊥

}
.

(5.24)

In the same way, maximizers in the M-step are obtained for W⊥, C and C⊥.
Regarding the variance parameters, consider the part of the log-likelihood given

in (5.18). Taking the derivative with respect to σ2
e yields the well-known maximum

likelihood estimator for the residual variance in a linear model:

σ2,next
e = (Np)−1ETE. (5.25)

Similarly, the other variance parameter updates are calculated. The update for the
inner regression matrix B is given by the usual maximum likelihood estimator for the
regression coefficient,

Bnext = UTT (TTT )−1 ◦ Ir. (5.26)
Here, the off-diagonals are set to zero, since B must be a diagonal matrix.

Taking into account that the latent variables are unobserved, we take the expected
value of the respective log-likelihoods. Now the EM updates at step k can be written
as follows, starting with an initial guess at k = 0.

W k+1 = orth
(
XT Ek [T ]−W k

⊥Ek
[
TT
⊥T
])

W k+1
⊥ = orth

(
XT Ek [T⊥]−W k+1Ek

[
TTT⊥

])
Ck+1 = orth

(
Y T Ek [U ]− Ck⊥Ek

[
UT
⊥U
])

Ck+1
⊥ = orth

(
Y T Ek [U⊥]− Ck+1Ek

[
UTU⊥

])
Bk+1 = E

[
UTT

] (
E
[
TTT

])−1 ◦ Ir

Σk+1
t = 1

N
Ek
[
TTT

]
◦ Ir

Σk+1
t⊥

= 1
N

Ek
[
TT
⊥T⊥

]
◦ Irx

Σk+1
u⊥

= 1
N

Ek
[
UT
⊥U⊥

]
◦ Iry

Σk+1
h = 1

N
Ek
[
HTH

]
◦ Ir

(σ2
e)k+1 = 1

Np
tr
(
Ek
[
ETE

])
(σ2
f )k+1 = 1

Nq
tr
(
Ek
[
FTF

])

(5.27)
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Reasonable initial guesses can be obtained by fitting an O2PLS model and extracting
the estimates.

Standard errors for PO2PLS

Standard errors for parameter values are obtained from the Fisher information matrix.
This matrix can be obtained by calculating the conditional expectations of the first
and second derivative of the complete data likelihood Lcomp [26]:

Iobs = E [∆Lcomp]− E
[
(∇Lcomp) (∇Lcomp)T

]
. (5.28)

First, we calculate these derivatives. Then, we calculate the conditional expectations
of these expressions. Finally, we obtain the Fisher information matrix.

Consider the complete data likelihood (5.17). Define Γ and z as in (5.21) and
Lemma 5.8.1. Furthermore, define the concatenated data matrix D = (X,Y ). The
complete data likelihood with respect to Γ is, up to a constant, proportional to

λ(Γ) := −1
2

N∑
i=1

(
di − ziΓT)Σ−1

(e,f)
(
di − ziΓT)T . (5.29)

Here, Σ(e,f) := Var((e, f)) and is a diagonal matrix. We can write λ as

−1
2λ(vec(Γ)) =

N∑
i=1

diΣ−1
(e,f)d

T
i

− 2
N∑
i=1

(
zi ⊗ diΣ−1

(e,f)

)
vec(Γ)

+
N∑
i=1

vec(Γ)T
(
zi ⊗ Σ−

1
2

(e,f)

)T (
zi ⊗ Σ−

1
2

(e,f)

)
vec(Γ)

(5.30)

In this calculation, the identity vec(ABC) = (CT⊗A)vec(B) [27] was used, where ⊗
is the Kronecker product and vec is the vectorization operator.

Differentiating λ with respect to vec(Γ) yields

S(vec(Γ)) :=
N∑
i=1

(
zT
i ⊗ Σ−1

(e,f)d
T
i

)
−
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(5.31)

The negative of the second derivative of λ with respect to vec(Γ) is

B(vec(Γ)) :=
N∑
i=1

(
zT
i zi ⊗ Σ−1

(e,f)

)
(5.32)
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Using these two expressions, we can calculate the Fisher information matrix for the
parameter vector vec(Γ):

Iobs := E [B(vec(Γ))|X,Y ]− E
[(
S(vec(Γ))S(vec(Γ))T) |X,Y ]

= E

[
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)
|di

]

− E

[
N∑
i=1

(
zT
i zi ⊗ diΣ−2

(e,f)d
T
i

)
|di

]

+ E

[
N∑
i=1

(
zT
i zi ⊗ Σ−1

(e,f)

)
vec(Γ)

(
zi ⊗ diΣ−1

(e,f)

)
|di

]

+ E

[
N∑
i=1

(
zT
i ⊗ Σ−1

(e,f)d
T
i

)
vec(Γ)T

(
zT
i zi ⊗ Σ−1

(e,f)

)
|di

]

− E

[
N∑
i=1

(
zT
i zi ⊗ Σ−1

(e,f)

)
vec(Γ)vec(Γ)T

(
zT
i zi ⊗ Σ−1

(e,f)

)
|di

]

(5.33)

The standard errors of the loading elements are given by the diagonal elements of
−I−1

obs.
The information matrix for each column k in Γ is then given by:

Iobs =
N∑
i=1

E
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(5.34)

The first and second conditional moments of zik are given above. From these moments,
the third and fourth moments can be obtained:

E
[
z3
ik|X,Y

]
= E [zik|X,Y ]3 + 3E [zik|X,Y ] Var (zik|X,Y )

E
[
z4
ik|X,Y

]
= E [zik|X,Y ]4 + 6E [zik|X,Y ]2 Var (zik|X,Y ) + 3Var (zik|X,Y )2

.

(5.35)

Simulation study

The results from the high dimensional scenario (without the SIFA method) is shown
in Figure 5.4. The layout is the same as in Figure 5.1 in the main text, but excluding
the column with the SIFA results. The conclusions are similar to those in the low-
dimensional scenario.
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Figure 5.4: True Positives Rate and Root MSE of Prediction (high dimen-
sionality). Upper left figure: proportion of true top 25% among estimated top 25%
(TPR) for each method, stratified by simulation scenario. Lower left figure: Differ-
ence in TPR of several methods and PO2PLS. Lower values are in favor of PO2PLS.
In both plots, the left red boxplots correspond with the low noise scenario, the right
blue boxplots with high noise. Right figure: Root mean squared error of prediction
stratified by method and scenario. The black line represent the test error when using
the true parameter values. The left red boxplots correspond with the training error,
the right blue boxplots with the test error.
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Additional simulations are conducted to evaluate the performance of PO2PLS esti-
mates in several scenarios. Robustness against violation of the normality assumption
and rank misspecification is assessed. Finally, we investigate the impact of hetero-
geneity in the scale of the joint and specific parts on the PO2PLS estimates. The
performance is compared to the performance of O2PLS and SIFA. Also, as often re-
searchers are interested in the top features, we evaluate the accuracy of the top 25%
estimated loading values.

In the first simulation scenario, combinations of large and small sample sizes
(N = 50, 500), low and high dimensional X (p = 20, 200) and small and large noise
proportion (10%, 50%) were considered. Secondly, to evaluate robustness of PO2PLS,
we considered a normal distribution, a t distribution with two degrees of freedom, a
Poisson distribution with rate one and a binomial distribution with two trials and
success probability 0.25 for the latent variables. Note that these distributions reflect
characteristics typically observed in omics data, such as skewed, heavy tailed and
discrete variables. Thirdly, we investigated the impact of rank misspecification, by
setting the number of components to be estimated to (r, rx, ry) = (4, 3, 2). Finally, the
impact of heterogeneity between joint and specific parts was evaluated by considering
imbalanced joint and specific variance levels: trΣu ≈ 10trΣt and trΣt⊥ ≈ 10trΣt,
respectively.

The simulated data were generated from the PO2PLS model (5.10), with r = 3,
rx = 2 and ry = 1. We took B = I and ΣH = 0 to comply with the SIFA assumptions.
The other parameter values were drawn at random from a normal distribution for the
loading values, and a uniform distribution on [1, 3] for the variance parameters. The
PO2PLS identifiability restrictions were applied to these parameters.

Estimation performance was measured by calculating the inner product of each
estimated loading column with the corresponding true loading column. The accuracy
of the top 25% loadings was measured by calculating the proportion of true top 25%
among the estimated top. To avoid inflation of errors, we corrected the sign and order
of the estimated components to match those of the true loading matrices.

The EM algorithm was considered converged when the log-likelihood increment
was below 10−6 or when 104 steps were taken. For each setting in the normal distribu-
tion scenario, 1000 replicates were generated. For the three non-normal distribution
scenarios, we considered 200 replicates.

In the first scenario, the inner products of the joint and specific PO2PLS loadings
were overall larger than 0.75, except for the specific loadings in the high noise and
small sample size scenarios. An increase in performance was observed when the sample
size was larger and when less noise was present. The performance was slightly better
in the high dimensional scenario. Note that, in general, the first joint component was
better estimated than the second and third. Furthermore, the X-specific components
W⊥ were better estimated than the Y -specific component C⊥. Figures are shown in
the supplement.

The proportion in the top 25% was higher in the scenarios with large sample size
and low noise level. For the joint part, this proportion was also higher in the high
dimensional scenarios, while the top 25% specific loadings were better recovered in
the low dimensional scenarios.

Compared to O2PLS and SIFA, the PO2PLS estimates for the joint loadings
performed similar. For the specific parts, the O2PLS performance tended to be lower.
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Results for the scenarios with non-normally distributed variables were very similar
(see supplementary material).

When ranks were chosen too high, the performance of the specific loadings was
lower than when the rank was correctly specified, see Figure 5.7. For large sample
size scenarios, SIFA did not perform well. Furthermore, for the high noise level and
small sample size, the Y -specific loading estimates had larger error.

In Figure 5.9, results for the heterogeneity scenarios are shown. SIFA tended to
underperform in scenarios where p = 200 and specific variation was much larger than
joint variation. In presence of heterogeneity in joint parts, SIFA underperformed for
large sample size, low noise level and high dimensions.
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Figure 5.5: Inner product of loadings; normally distributed variables. Results
for the low and high dimensional scenarios (p = 20, 200) are shown along the rows.
Results for the low and high noise proportion scenarios (10%, 50%), nested within the
small and large sample size scenarios (N = 50, 500), are shown along the columns.
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Figure 5.6: Proportion of true positives in the top 25% of the estimated
loadings; normally distributed variables. Results for the low and high dimen-
sional scenarios (p = 20, 200) are shown along the rows. Results for the low and high
noise proportion scenarios (10%, 50%), nested within the small and large sample size
scenarios (N = 50, 500), are shown along the columns.
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Figure 5.7: Inner products of loadings; rank misspecification. Results for the
low and high dimensional scenarios (p = 20, 200) are shown along the rows. Results
for the low and high noise proportion scenarios (10%, 50%), nested within the small
and large sample size scenarios (N = 50, 500), are shown along the columns.
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Figure 5.8: Proportion of true positives in the top 25% of the estimated
loadings; normally distributed variables. Results for the low and high dimen-
sional scenarios (p = 20, 200) are shown along the rows. Results for the low and high
noise proportion scenarios (10%, 50%), nested within the small and large sample size
scenarios (N = 50, 500), are shown along the columns.
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Figure 5.9: Inner products of loadings; heterogeneity. Results for the low and
high dimensional scenarios (p = 20, 200) are shown along the rows. Results for the
low and high noise proportion scenarios (10%, 50%), nested within the small and large
sample size scenarios (N = 50, 500), are shown along the columns.
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Figure 5.10: Proportion of true positives in the top 25% of the estimated
loadings; normally distributed variables. Results for the low and high dimen-
sional scenarios (p = 20, 200) are shown along the rows. Results for the low and high
noise proportion scenarios (10%, 50%), nested within the small and large sample size
scenarios (N = 50, 500), are shown along the columns.
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Figure 5.11: Inner product of loadings; normally distributed variables. Re-
sults for the low and high dimensional scenarios (p = 20, 200) are shown along the
rows. Results for the low and high noise proportion scenarios (10%, 50%), nested
within the small and large sample size scenarios (N = 50, 500), are shown along the
columns.
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Figure 5.12: Proportion of true positives in the top 25% of the estimated
loadings; normally distributed variables. Results for the low and high dimen-
sional scenarios (p = 20, 200) are shown along the rows. Results for the low and high
noise proportion scenarios (10%, 50%), nested within the small and large sample size
scenarios (N = 50, 500), are shown along the columns.
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A. Jula, J. Leiviskä, A. Palotie, V. Salomaa, M. Perola, M. Ala-Korpela, and
L. Peltonen. Metabonomic, transcriptomic, and genomic variation of a popula-
tion cohort. Mol. Syst. Biol., 6(441):441, dec 2010.

[18] M. Inouye, K. Silander, E. Hamalainen, V. Salomaa, K. Harald, P. Jousilahti,
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