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4.1 Abstract

With a rapid increase in volume and complexity of data sets, there is a need for meth-
ods that can extract useful information, for example the relationship between two data
sets measured for the same persons. The Partial Least Squares (PLS) method can be
used for this dimension reduction task. Within life sciences, results across studies are
compared and combined. Therefore, parameters need to be identifiable, which is not
the case for PLS. In addition, PLS is an algorithm, while epidemiological study designs
are often outcome-dependent and methods to analyze such data require a probabilis-
tic formulation. Moreover, a probabilistic model provides a statistical framework for
inference. To address these issues, we develop Probabilistic PLS (PPLS).

We derive maximum likelihood estimators that satisfy the identifiability condi-
tions by using an EM algorithm with a constrained optimization in the M step. We
show that the PPLS parameters are identifiable up to sign. A simulation study is
conducted to study the performance of PPLS compared to existing methods. The
PPLS estimates performed well in various scenarios, even in high dimensions. Most
notably, the estimates seem to be robust against departures from normality. To il-
lustrate our method, we applied it to IgG glycan data from two cohorts. Our PPLS
model provided insight as well as interpretable results across the two cohorts.

4.2 Introduction

With the exponentially growing volume of data sets, multivariate methods for re-
ducing dimensionality are an important research area in statistics. For combining
two data sets, Partial Least Squares (PLS) regression [28] is a popular dimension
reduction method [1]. PLS decomposes variation in each data set in a joint part and
a residual part. The joint part is a linear projection of one data set on the other
that best explains the covariance between the two data sets. These projections are
obtained by iterative algorithms, such as NIPALS [28].  Partial Least Squares is
popular in chemometrics [3]. In this field, the focus is on development of algorithms
with good prediction performance, while the underlying model is less important. For
applications in life sciences, interpretation of parameter estimates is necessary to gain
understanding of the underlying molecular mechanisms.

For interpretation, a model needs to be identifiable. A model is said to be uniden-
tifiable if the model corresponds to more than one set of parameter values. For PLS,
rotation of the parameters does not change the model [26]. Hence, PLS does not
provide an identifiable model. By constraining the parameter space, identifiability
can be obtained. This involves solving a challenging optimization problem, since PLS
requires estimating a structured covariance matrix [19].

For many problems in life sciences the study design needs to be accounted for,
and algorithmic approaches such as PLS cannot be applied. Hence, a probabilistic
formulation is necessary. Since likelihood method provides asymptotic standard errors
of parameter estimates, computer-intensive resampling procedures can be avoided.

Also for other dimension reduction techniques, probabilistic methods have been
developed. In 1999, Tipping and Bishop [23] developed the Probabilistic Principal
Component Analysis (PPCA), in order to deal with missing data and dependent



4.3 Model and estimation 61

samples. In 2005, Bach and Jordan [2] developed Probabilistic Canonical correlation
analysis (PCCA). However, for both PPCA and PCCA the model parameters are not
identifiable, since rotation of the parameters does not change the model [23, 2]. In
addition, in 2015, simultaneous envelopes models have been developed [4] for ‘low-
dimensional’ settings. Further, Probabilistic PLS Regression and Probabilistic PLS
have been proposed [14, 30]. For all these approaches, the model parameters are not
identifiable.

In this paper we propose the Probabilistic Partial Least Squares (PPLS) model
and show that the model parameters are identifiable up to a sign. We propose to
maximize the PPLS likelihood with an EM algorithm that decouples the likelihood
into several factors involving distinct sets of parameters. In the M step, a constrained
optimization problem is solved by using a matrix of Lagrange multipliers.

The rest of the paper is organized as follows: In section 4.3 we develop the PPLS
model and establish identifiability of the model parameters. We develop an efficient
algorithm for estimating the PPLS parameters. In section 4.4 we study the perfor-
mance of the PPLS estimators via simulations. In section 4.5 we illustrate the PPLS
model with two data matrices from two cohorts. We finish with a discussion.

4.3 Model and estimation

4.3.1 The PPLS model

Let x and y be two random row-vectors of dimension p and ¢, respectively. The
Probabilistic Partial Least Squares (PPLS) model describes the two random vectors
in terms of a joint part and a noise part. The joint part consists of correlated latent
vectors, denoted by t and u, while the noise part consists of isotropic normal random
vectors referred to as e, f and h. The dimension of ¢ and u is denoted by r. The
PPLS model describing the relationship between z, y and the joint and noise parts is

r=tWT+e, y=uCT+f w=tB+h. (4.1)

Specifically, e = (e1,...,ep), f = (f1,..., fg) and h = (h1,..., h,) are independent
with zero mean and referred to as noise variables. The distributions of e, f and h
are multivariate normal with positive definite covariance matrix proportional to the
identity matrix,

e~N (O,Uglp) , [~ N(O,afz[q) . h~N(0,011,).

The latent vector ¢t = (t1,...,t,) is an r-dimensional multivariate normal vec-
tor with with zero mean and diagonal positive definite covariance matrix ¥, =
diag(o? ,...,0% ), so

t~ N (0,%). (4.2)

The matrix B = diag (by, ..., b,) is a diagonal matrix of size r, containing regression
coefficients of w on ¢t. Finally W (p x r) and C (¢ X r) are parameter matrices,
referred to as loadings. The PPLS model for the random p-dimensional row-vector x
and random ¢-dimensional row-vector y is given in Eq. (4.1). Let 0 be the parameters
of the PPLS model, i.e.,

0= (WC7B7Zt7UE7UfaUh)- (43)
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The PPLS model and its parameters are formulated conditional on the value of the
dimension of the latent space r.

The PPLS model (4.1) assumes a multivariate normal distribution for the ob-
servable random vectors x and y. The covariance between x and y is modeled by
the regression of the latent vector u on t. The distribution of (x,y) is N (0,%) with
density given, for x € RP and y € R?, by

flz,y) = (2m) P2 g~ elzn)B T @)

and covariance matrix

s_(Ze Sey)_ (WEWT 402, Wy, BCT (4.4)
“\Ze =) T\ CBSWT O O(BS+03L)CT + 03, ) '

This follows from the normality property and from computing the variances and
covariances of the random vectors; see Appendix 4.7 for the details.

4.3.2 Identifiability of probabilistic PLS

To establish identifiability of the PPLS model, some assumptions about its parameters
have to be made. First, we assume that 0 < r < min(p,¢). Second, we assume that
the diagonal elements of B are positive, by, > 0 for k € {1,...,r}. This will not
restrict the model, since t5by, is equal to —txby in distribution. To identify the order of
the loading vectors, the elements of (afk bi)y_, are assumed to be strictly decreasing
with k. Finally, we assume that the loading matrices W and C' are orthogonal,
ie., W'W = CTC = I,. Together with the diagonality of ¥; in (4.2), it implies
identifiability of all parameters up to sign. This is shown in the following theorem.

Theorem 4.3.1. Let r be fived such that 0 < r < min(p,q). Let (z,y)1 and (z,y)2
be generated by the PPLS model (4.1) having covariance matriz X1 and Xo with
underlying parameters 01 and 02 (as defined in (4.3)), respectively. Then, we have
that

31 =3
implies that W1 = Wo A, C1 = CoA for some diagonal matriz A with on the diagonal
elements 6; € {—1,1}, fori € {1,...,r}, and all other parameters in 01 and 0y are

equal.

The formal proof is given in Appendix 4.7. Identifiability up to sign can be rep-
resented by a diagonal orthogonal matrix (a diagonal matrix with diagonal elements
in {—1,1}). For example, taking the model for x in (4.1), we may substitute W by
WRs and t by tRg, where Rg is a diagonal orthogonal matrix, and get

.
r=tRsRIW" +e= th(RS)?jij +e.
Jj=1
Since (Rg)3; = 1 and the distribution of t; and —t; is the same, the right-hand side
reduces to the original model for z in (4.1). Note that the PPLS model is not invariant
under general rotation matrices. Take a general rotation matrix R, then we still get

z=tW"' +e=tRR™WT +e¢,
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since RRY = I,.. Inspecting the covariance of TR we see that Cov(TR) = RTY,R,
which is not diagonal if R is not diagonal, and violates the PPLS model assumption
on ¥ in Eq. (4.2).

4.3.3 Estimating the parameters

Unlike the iterative PLS methods, we propose a simultaneous approach for estimating

the parameters, while taking the constraints in the PPLS model into account. Given

the number of PPLS components, r, the log likelihood of an independent and identi-

cally distributed (iid) sample (X,Y) = {(X1,Y1)Y,..., (XN, Y¥)T}7T of size N from

(z,y) is

N(p+aq)
2

with S = N~1 Zijil(Xi,Yi)T(Xi,Yi) and ¥ as in Eq. (4.4). To ensure empirical
identifiability, we assume that r < N. Note that the data dimensionality p and ¢ may
be larger than N. For estimation of 8, maximum likelihood is used.

The log likelihood (4.5) depends in a non-linear way on the theoretical covari-
ance matrix ¥, which contains the loadings and variances. Optimizing this function
directly is a non-trivial task, especially in high dimensions (i.e. when p and ¢ are
large). However, the PPLS model allows for a more simple (but iterative) optimiza-
tion approach. Indeed, the maximum likelihood estimates for 6 are a least squares
type solution if the latent variables ¢t and u are observed, as the model for z and y
in (4.1) involves known ¢ and u. In contrast, knowing 6 allows for reconstruction of
t and v by computing their conditional means given x and y. Alternating these two
scenarios is actually an Expectation-Maximization (EM) [5] algorithm, with observed
data (z,y) and missing data (¢, u).

L(9) = — —gmm—%m$ﬂ) (4.5)

The EM algorithm The joint distribution of the complete data (x,y,t,u) can (with
abuse of notation) be decomposed as

fl@,y,tu) = f(@[t) f(ylu) f(ult) (). (4.6)

This follows from

f(@,y,tou) = @, ylt, u) f(Eu) = flalt, ) f(ylt,w) fEw).

The second equation is implied by the fact that = and y are independent given ¢ and
u. The first two factors in the right-hand side can be rewritten as f(x|t,u) = f(z|t)
and f(y|t,u) = f(y|u), since z and u are independent given ¢, and y and t are
independent given u. The last factor can be rewritten as f(u|t)f(t), yielding Eq.
(4.6). The logarithm of the first three factors in the product in (4.6) can be written
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as
Npln2mo? 1 &
In f(X|T) = ————= — - Y _||X; —T.W"|7,
2 20 pt
Ngqln2no? 1 X
nf(YIU)= ————""F = Y, — U,CT| 2
n f(Y|U) 5 ZU?;H uiCT|?,
Nrln2ro? 1 &
In f(U[T) = =~ 22T% _ L SNy, — 1B
2 20}, p

Denote by Loomp = In f(X,Y,T,U) the complete data log-likelihood, and define
Q(a) =E {LCOmp(9)|Xa Yva 0/} )

where the expectation is taken conditional on the observed X and Y, and 6’ is a
fixed current estimate of the parameters. By optimizing @ over all allowed 6, we get
a non-negative increase in the observed log-likelihood L. Moreover, by iterating this
process of taking the expectation and maximizing over 6, the estimates in general
converge to a stationary point or, in particular, a (possibly local) maximum of L
[5, 29]. The expectation step calculates the conditional expectation of the missing
data given the observed data given by Q(6), which may in general involve intractable
integration. However, for the exponential family, in particular the multivariate normal
family, the complete likelihood depends on the complete data only via the sufficient
statistics (called ¢(x) in [5]), which are given in terms of the first and second mo-
ments of the complete data for the multivariate normal distribution. Computing
Q(0) implies computing the expected first and second moment of the latent variables:
E(T|X,Y,0), E (TTT|X, Y, 9), E(U|X,Y,0), E (UTU|X, X, 0) and E (UTT|X, Y, 9);
see Appendix 4.7 for details. Moreover, the decomposition in (4.6) allows for op-
timization of E{ln f(X|T)}, E{ln f(Y|U)} and E{ln f(U|T)} separately, while only
considering parameters involved in each factor. Maximizing @ over 6 yields parameter
estimates for the next iteration in the EM algorithm. This leads us to the following
theorem.

Theorem 4.3.2. Let X and Y be an observed data sample of size N, generated
according to the PPLS model (4.1). Let r be fized such that 0 < r < min(N,p,q).
The parameters in 0 can be estimated with an EM algorithm, yielding the following
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iterative scheme in k with given starting values for k = 0.

Wkt = XTE (T|X,Y,6%) (LF) ™ ;

CH=YTE (U|X,Y,6%) (L&)
BM =B (UTT|X,Y,6%) {E (TTT|X,Y,6%)} ' o L,;

1
nit = NE (TTT|X,Y,0%) o I,;

1
(o2)k+l = ~ U (HTH|X,Y,0%);
r

e

1

(c2)F+! = N—ptrE (ETE|X,Y,0%);
1

2\k+1 __ T AW

where Ly and Lo are such that

Lw Ll =E(T7|X,Y,6") X X"E (T|X,,6").
LeLE =E (UTX,Y,0%) YYTE (U|X,Y,0%).

The proof for Theorem 4.3.2 and the expressions for the conditional expectations
are given in Appendix 4.7. Note the dependency of W**+1 and C**! on the matrices
Ly and L. These matrices ensure orthogonality of W#*+! and C**1 in each iteration:

(WA At = LT X XTT (L) = Ly Lw Ly (L) =T,

where T = E(T|X,Y,0%). The exact forms of Ly and Lg are not unique. Two
choices are the eigenvectors of E(TT|X,Y,6%) X XTE (T|X,Y,6") and the lower tri-
angular matrix of XTE(T|X,Y,6*) in the Cholesky decomposition. Note that these
two orthogonalization matrices are straightforward to calculate with standard linear
algebra tools. Since the PPLS model is identifiable, all choices for Ly and Lo will
lead to the same optimum as the iteration number k tends to infinity.

Standard errors for PPLS Asymptotic standard errors for maximum likelihood
estimators are found by inverting the observed Fisher information matrix. Following
the reasoning of [16], the observed information may be given by

E {B(§)|X, Y} _E {S(é)S(é)T|X, Y} .
Here S(0) = VA(A) and B(0) = —V2A(0) are the gradient and negative of the second
derivative of the log likelihood A(#) respectively evaluated in the MLE 6. The explicit
form of the asymptotic covariance matrix of wy, is given in Appendix 4.7. The square

root of the diagonal elements are the asymptotic standard errors for the corresponding
loading estimates.
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Finding the number of components » Available approaches to determine the num-
ber of PPLS components r are minimizing a cross-validated loss function [9], visually
inspecting eigenvalues of a covariance matrix [17], and selecting the number of compo-
nents needed to achieve a certain proportion of variance explained by the components.
In this paper we apply the last approach.

The PLS and PPLS algorithms are available as R packages at
github.com/selbouhaddani under repository OmicsPLS and PPLS, respectively.

4.4 Simulation study

To evaluate the performance of the PPLS estimates, a simulation study was con-
ducted. The aim was (1) to investigate the performance of PPLS for various scenar-
ios, (2) to evaluate robustness of the PPLS estimates against departures from the
normality assumption, (3) to compare the performance of the loading estimates with
other probabilistic approaches, and (4) to compare the asymptotic PPLS standard
errors with the bootstrap standard errors.

The simulated data were generated according to the PPLS model (4.1). The
number of components was chosen to be 3, both in the data generation and in the es-
timation. We considered combinations of small and large sample size (N € {50, 500}),
low and high dimensionality (p € {20,1000}), and small and large proportion of noise
(denoted by a, € {0.1,0.5}). The robustness of PPLS was evaluated by considering
four different continuous and discrete distributions for the latent variables t, u, e,
f and h; we chose the normal distribution, the ¢ distribution with two degrees of
freedom, the Poisson distribution with rate 1, and the Binomial distribution with two
trials and success probability 0.25. These distributions cover a wide range of charac-
teristics typically observed in omics data: heavy tailed, skewed and/or discrete. The
latent variables were scaled to have mean zero and variances as specified below. All
scenarios are summarized in Table 4.1.

The true loading values per component were generated from the normal density
function with parameters p and o, denoted by N(x;p,0?), as follows

wjk = N{j; (1/2+1/10j)p,1/10p},  cjr = N{j; (3/5 + 1/105)q,1/10q}.

The second columns in W and C' were orthonormalized with respect to the first
columns, and the third columns were orthonormalized with respect to the first two
columns; we used a Gram-Schmidt procedure for both operations. The elements of
the diagonal matrix B were set to by, = e(1-2)=3(k=1)/10 — (1 5 1.11,0.82), for ¥; we
chose oy, = e~ (*=1/10 = (1,0.90,0.82).

For comparing the parameter estimates with the true values 6, we computed the
bias and the variance of the estimates. To deal with the identifiability up to sign, we
multiplied each estimated loading vector by —1 if the inner product of the estimated
loading vector and the true loading vector was negative. Moreover, we swapped
columns in W and C to maintain the same ordering as the ordering in the true
loadings. This was done to avoid inflation of the bias or variance due to a wrong sign
or ordering of the individual components.

PPLS estimates were compared to PLS estimates (with orthogonal loadings, see
[20] for an overview) for all scenarios above. For comparing PPLS with PPCA and
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PCCA, we constructed a ‘null model’, i.e., B = 0, as well as B # 0. We used the
same scenarios as above, but we only considered the normal distribution.

Table 4.1: Overview of the simulation scenarios. The noise level is defined as
the proportion of variation in the noise matrices E, F' and H relative to the total
variation in X, Y and U respectively.

Sample size N = (50, 500)
Dimensionality p = ¢ = (20, 1000)
Noise level a, = (0.1, 0.5)

Distribution of ¢, u, e, f and h || {N(0,1), t2, P(1), Binom(2,0.3)}

Regarding standard errors for PPLS loadings, we compared asymptotic standard
errors (as in Section 4.3) and bootstrap standard errors [27]. One set of two data
matrices X and Y was simulated from a PPLS model with p = ¢ = 20 normally
distributed variables. Based on these data, asymptotic and bootstrap standard er-
rors were calculated. The number of bootstrap replicates was 1000. Furthermore,
simulation-based standard errors for the loadings (based on standard deviations over
1000 data matrices drawn from the PPLS model used to generate the original data)
were included as reference. Low and high noise levels (a;, = 0.1 resp. «,, = 0.5), and
small, large and ‘extra large’ sample sizes (N = 50, N = 500 and N = 5000 respec-
tively) were considered. In the ‘extra large’ sample size scenario, no simulation-based
reference was calculated. The PPLS estimation algorithm was considered to be con-
verged when either the log-likelihood increment was below 1076, or 10* EM steps
were made. For each scenario, 1000 replicates are used.

4.41 Results

Results for the loadings The biases and variances of the estimated first component
W for the low dimensional case for normally distributed latent variables are graph-
ically depicted in Figure 4.1. A black dot represents the average estimated PPLS
loading value across 1000 simulations, whereas the width of the black dashed vertical
line equals two times the standard deviation across 1000 simulations. The red star
and red dashed vertical line represent the average loading value and twice the stan-
dard deviation for the PLS estimates. The true loading values are represented by a
step function with steps at each index j € {1,...,p}. Results for other components
and scenarios are included in the Supplement.

Comparing the estimates for the first loading component W7, a better performance
of PPLS compared to PLS was observed in terms of bias. In all scenarios the bias of the
PPLS estimators were about the same as or less than the bias of the PLS estimators.
Both estimators showed larger bias towards zero for higher absolute loading values.
The biases decreased with a larger sample size and lower noise level. The biases of
both estimators were very similar across different distributions. In the scenario where
there is 50% noise and few (50) samples the variance of the PPLS estimators tended
to be slightly larger than the variances of the PLS estimators when the true loading
values were larger. This was observed across all distributions. The variances of the
PPLS estimates were about the same or lower than the PPLS estimates in all other
scenarios, where either the noise level was less or more samples were available. For
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both PPLS and PLS estimators the variances tended to increase with higher loading
values. The variances decreased with larger sample size and lower noise level. The
variances of bots estimators were very similar across different distributions. For the
loading component C; and their PLS and PPLS estimators the same conclusions were
obtained.

For the second loading component Wy (shown in the Supplement), the biases of
the PPLS loading estimates were as good as, and often better than the PLS loading
estimates, especially at lower values. In the scenarios of 50% noise and a small sample
size (N = 50) the bias was slightly larger for PPLS estimators compared to PLS
estimates when the loading values were larger. Both estimators showed larger bias
towards zero for higher loading values. The biases decreased with a larger sample size
and lower noise level. For all distributions, the biases of both estimators were very
similar. The variances of the PPLS estimators were as good as or lower than the PLS
estimators, except in the scenario in which both the noise level was high (50%) and
the sample size was small (50). In this scenario the variances of the PPLS estimators
were still lower if the true loading values were close to zero, but higher for higher
loading values. For both PPLS and PLS estimators the variances tended to increase
with higher loading values. The variances decreased with larger sample size and
lower noise level. The variances of both estimators were very similar across different
distributions. For the loading component C5 and their PLS and PPLS estimators the
same conclusions were obtained.

For the third loading components W3 and C5 (shown in the Supplement), the same
observations were made as for the first loading components W7 and Cq, both for the
biases as for the variances.

For the high and extra high-dimensional case, the same results were obtained for
the loadings W and C'. See the Supplement for more details.

With regard to the comparison of PPLS with PPCA and PCCA, PPLS performed
better than PCCA and similar to PPCA in most scenarios. Details are given in the
Supplement.

Results for the variance parameters The performance of the estimators of the
variance parameters B, oy, 0¢, 0¢ and o, were also evaluated, the results are shown
in Figure 4.2. We did not compare with PLS as these model parameters are not present
in the PLS framework. For sake of comparison, we calculated the relative biases and
variances of the estimates with respect to the true corresponding parameter value.
The biases of the PPLS estimators for all variance parameters were very small for large
sample size (N = 500), regardless of the noise. For small sample size (N = 50), the
first two diagonal elements of B and ¥; were overestimated, while the last component
was underestimated. The noise parameters o, and oy were underestimated in these
scenarios, while the estimator for o, was unbiased, except in combination with a
low noise level (10%). The relative biases decreased slightly with lower noise level,
except for the earlier mentioned oy, and decreased more with larger sample size. The
relative variances of the estimators of B, 3; and o} were larger than the variances
of the estimators of o, and oy. For B, there was a slight increase in variance across
the three components. The variances decreased slightly with lower noise and more
with larger sample size. The variances slightly decreased in the scenario of high
dimensionality and high noise level. The same observations were made across the
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different distributions.

Ordering of the loadings We compared the ordering of the true loadings W and
C with the ordering of the estimated loadings. This provides a proportion across the
1000 simulation replicates in which the ordering matched. In Table 4.2, the proportion
of correct orderings of W for the scenario with normally distributed latent variables is
shown for different scenarios. It can be seen that the proportion of correct orderings
tends to be lower with smaller sample size and with higher noise level. Moreover, if
the sample size is small, the proportion of correct orderings is much lower with higher
noise. A higher dimensionality has a slightly negative impact on the correct ordering
proportion when the sample size is larger, but a positive impact in the small sample
size scenario. Especially, when also the noise level is high, this can be considerable.
The same observations were made for the other distributions. Exactly the same
proportions were observed for the loadings C.

Table 4.2: Proportion of correct order of loadings W and C across 1000 sim-
ulation replicates. These were obtained for different values of the dimensionality
(high = 1000 variables, low = 20 variables), sample size (large = 500 subjects, small
= 50 subjects) and noise level (high = 50% noise, low = 10% noise).

Dimensionality | Sample size | Noise level || Correct ordering proportion

large low 1.000
ow high 0.989
snall low 0.932

high 0.435

large low 0.990

high high 0.985
snall low 0.940

high 0.665

Comparison of PPLS standard errors The results for low noise level are shown
in Figure 4.3. In all scenarios, the asymptotic standard errors were smaller than the
bootstrap standard errors for nearly all loading elements. In particular, for high load-
ing values the difference between asymptotic and bootstrap standard errors tended to
be large. This difference decreased with larger sample size: In the ‘extra large’ sample
size, the bootstrap and asymptotic standard errors had similar magnitude. Similar
observations were made for other distributions. For details, see the Supplement.

4.5 Data analysis

To illustrate the Probabilistic Partial Least Squares model, we apply it to IgG glycan
datasets. Glycans, in particular IgG glycans, play an important role in the innate
immune system, as well as in cell signaling. IgG2 glycans are less abundant than IgG1
glycans and more difficult to measure. Therefore, by using the relationships between
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Figure 4.1: True and estimated loadings W; over 1000 simulation replica-
tions. The black dots and dashed vertical lines (on the left of each pair) represent
PPLS estimates, the red stars and dashed vertical lines (on the right of each pair)
represent PLS estimates. The dots and stars are the average loading values across
1000 simulation replications; the width of the dashed lines are twice the standard
deviations. The results are for normally distributed latent variables (¢, e, f and h)
and low dimensionality (p = ¢ = 20 variables).
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Figure 4.2: Relative estimated variance parameters B, ¥, 0., oy and oy
(w.r.t. the truth) over 1000 simulation replications. The dots are the average
values across 1000 simulation replications; the width of the dashed lines are twice the
standard deviations. The results are for normally distributed latent variables (¢, e, f
and h) and low dimensionality (p = ¢ = 20 variables).
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Figure 4.3: Standard errors of the W loading elements per component. Boot-
strap standard errors (solid green line), asymptotic standard errors (dashed red line)
and simulation-based standard errors (dotted black line) are plotted for the loading
estimates in each component. Plots for the three sample sizes (small N = 50, large
N =500, ‘extra large’ N = 5000) are shown along the rows. The three loading com-
ponents (W7, W3 and W3) are plotted column wise. The last row does not include
simulation-based standard errors. The data are generated from a normal distribution
with p = ¢ = 20 variables and low noise level (o, = 0.1).
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IgG1 and IgG2 glycans, the characteristics of IgG2 can be better estimated. Hence,
we will use IgG1 as X matrix, and IgG2 as Y matrix.

In total, 40 IgG glycans were measured, of which p = 20 are of subclass IgG1l
and g = 20 are of subclass IgG2. These data were measured in two cohorts (CROA-
TIA Korcula with 951 participants and CROATIA _Vis with 796 participants) [12].
The data matrices containing IgG1 and IgG2 glycan variables are denoted by X,
and Y,,, with m € {1,2}, where m = 1 corresponds to CROATIA Korcula and m = 2
corresponds to CROATIA _Vis. We apply PPLS to IgG1 and IgG2 glycans in each
cohort separately and compare results.

In Figure 4.4, heatmaps of the correlations within and between the IgGl and
IgG2 glycans are shown, from which it is clear that there are many highly positive
correlations between and within IgG1 and IgG2 in each data set. The RV coefficient
[18], which generalizes the squared Pearson correlation coefficient to two matrices, was
about 0.60 and 0.45 for CROATTA Korcula and CROATTA _Vis cohorts respectively.

To determine the number of latent variables to use, we considered the total amount
of variance explained by the latent space relative to the total amount of variation in
the data: ||Tn||/|| Xm|| and ||Unl|/||Ym|| for m € {1,2}. By using four components,
at least 89% of the total variation in each of the matrices X;, X», Y7 and Y5 was
accounted for.

For both cohorts, we fitted the PPLS models using r = 4 latent components. The
amount of overlap in each cohort, estimated by tr3, ,/trS, given in (4.4), was 58%
and 46% for CROATIA Korcula and CROATIA _Vis cohorts, respectively. The PPLS
loadings are inspected to identify which IgG glycans contribute most to this overlap.
The estimated IgG1 loadings wj i, j € {1,...,p} and k € {1,...,4}, for both cohorts
and both subclasses are depicted in Figure 4.5. The first joint component is propor-
tional to the average glycan, as all glycans get about the same loading value. The
second joint component involves especially GO and G2 glycan subtypes, in which they
are negatively correlated. Inspection of the loading values for the third component
shows contibutions of fucosylated and non-fucosylated glycan subtypes. In the fourth
component a pattern of positive and negative loading values is visible regarding the
presence and absence of bisecting GlcNAc, respectively. The large loading value for
GINS is remarkable. The same conclusions hold for IgG2, as the estimated loading
values were very similar. It is interesting to note that the observed patterns within
components potentially reflect enzymatic synthesis where monosaccharides are added
to glycan substrates [22]. Additionally, similar patterns are seen reflecting the inflam-
matory characteristics of glycans in aging and several different diseases [13]. Finally,
the observed loading patterns were strikingly similar for both cohorts.

4.6 Discussion

We proposed PPLS to model the covariance matrix of two data sets. Maximum
likelihood estimators for the model parameters were derived by solving a constrained
optimization problem, and the parameter loadings were shown to be identifiable up
to sign. This property ensures that PPLS estimates are comparable across several
studies.

Our simulation study showed that the PPLS estimators had good performance
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(a) The first (CROATIA Korcula) cohort (b) The second (CROATIA _Vis) cohort

Figure 4.4: Heatmaps of the correlations between IgG1l and IgG2 glycans.
In left the correlations of the CROATTA _Korcula cohort is shown. In right the CROA-
TTA_Vis cohort is shown. The upper-left and lower-right block are the within subclass
correlations, the off-diagonal block contains the correlations between IgG1l and IgG2
glycans. In both cohorts the glycans exhibit high positive correlations, especially
between glycans within the IgG1 and IgG2 subclasses.

and lower bias compared to PLS. Most notably, the performance of PPLS was robust
to misspecification of the distribution of the variables. A smaller sample size and high
noise level had a negative effect on the accuracy of the estimates, but large loading
values were still non-zero. Also, compared to Probabilistic CCA estimates, the PPLS
estimates were less biased and more efficient. For high-dimensional data, PCCA
estimates have larger bias and higher variance. This is likely to be caused by the
unstable inverse sample covariance matrix calculated when using PCCA. Moreover,
if the number of variables is larger than the sample size, PCCA estimates cannot be
obtained. Therefore, especially in omics data analysis, PPLS provides more robust
findings.

As an illustration of the PPLS model, we analyzed IgG glycomics data from two
cohorts. The high correlations in the data (Figure 4.4) and the use of multiple cohorts
illustrate the applicability of PPLS to facilitate combination of results derived from
different experimental settings. We found that the estimated loading values were
almost identical across the two cohorts (Figure 4.5).

When multiple cohorts are available, a meta-analysis on the parameter estimates
can be performed. In ordinary regression models, this has been addressed for both
low-dimensional [6] and high-dimensional [10] design matrices. When there is no
access to all data, PPLS estimates can be combined by using standard meta-analysis
approaches [6]. Such an approach requires that the PPLS parameter estimates are
identifiable and asymptotically normally distributed. For the PLS framework, several
approaches to combine estimates across cohorts were developed when there is access
to all data. A group-PLS approach was considered [15] to incorporate several groups
of subjects in the model. The authors showed that under certain assumptions this
approach provided better predictions than a model without group effects. However
their model is not identifiable and requires N > p. Another method is based on
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Figure 4.5: Loadings per component for both cohorts. In the top four plots
loading values of IgG1 glycans (W) are plotted per glycan. The red dots connected by
red lines are for the CROATIA Korcula loadings. The four loading vectors are plot-
ted left-to-right and top-to-bottom. The blue triangles and lines are for the CROA-
TTA_Vis cohorts. In the bottom four plots the IgG2 glycan loading values are plotted

in the same order and style.
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weighted least squares to combine data from different studies with potentially different
covariates [11]. An alternative method, when access to data is possible, is to estimate
joint parts between the data sets and the studies simultaneously. This yields a joint
space with variables that have high loading values in most studies. For example, in
[25], a non-probabilistic approach is pursued in a least squares estimation method
using PCA. Performing data integration across studies, while taking into account
uncertainties within each study, is one of our topics for future research, and will lead
to more powerful analysis of the IgG glycans across cohorts.

To assess the statistical significance of loadings, the probabilistic framework pro-
vides alternative approaches to jackknifing and bootstrapping [27]. The observed
Fisher information matrix can be used to estimate standard errors for individual
loading parameters. For small sample sizes, bootstrap approaches appears to better
reflect the uncertainty of the parameters. For large enough sample sizes, the asymp-
totic standard errors are close to the simulation-based standard errors. Typically, in
epidemiological studies, the sample size is large enough to use asymptotic standard
erTors.

In this paper we ignored the fact that different biological ‘omics’ measurements
have different error structures. An extension of Partial Least Squares was proposed
to correct for systematic variation (variation induced by latent variables uncorrelated
to the other data set) in the data sets, named Two-Way Orthogonal PLS (O2PLS)
[8, 24]. Such an extension can be pursued for PPLS by adding for both X and Y
in (4.1) a set of independent latent variables multiplied by their loading parameters.
We are currently working on exploring the possibilities of a Probabilistic O2PLS for
heterogeneous data sets.

4.7 Appendices for Chapter 4

Appendix A. Variances and covariances
The covariance matrix of (z,y) is given in (4.4). First note that Var(u) = Var(tB +
h) = B?Y, + U,QLIT, then compute

Var(z) = Var (tW™ +¢) = WVar(t) W' + Var(e) = WEWT + 021,

Var(y) = Var (UC" + f) = CVar(u)C" + Var(f) = C(B*S; + 07 1,)C" + O'chIq,
Cov (tWT + e,uC™ + f) = WCov(t,tB)CT = WB%,C".

Cov(x, 1)

The covariances between the observed and latent variables are as follows

Cov(z,t) = Cov (tWT +e,t) = WVar(t) = Wy

Cov(z,u) = Cov (tWT +e,tB + h) = WVar(t)B = W, B

Cov(y,t) = Cov (uCT + f,t) = CCov(tB + h,t) = C,B;

Cov(y,u) = Cov (uC™ + f,u) = CCov(tB + h,tB+h) = C (,B* + o7 1,) .

See, e.g., [21] for more details.
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Appendix B. Identifiability of PPLS

For establishing identifiability of the PPLS model, we need to prove that if the dis-
tribution of (x,y) is given, there is only one corresponding set of parameters yielding
this distribution. Since (z,y) follows a zero mean normal distribution, identifiability

is equivalent to } ~
=X & 6=0,

where ¥, % is defined, through 6, 0, in (4.4). The following lemma will be very useful
in establishing identifiability.

Lemma 4.7.1. Singular Value Decomposition. Let W, W be p x r and C,C be q x r,
all orthogonal matrices. Let D, D be r x r diagonal with r distinct positive elements
on the diagonal. Then WDCT = WDC™ (B.1) implies W = WA, C = CA for
some diagonal matriz A of size v x r with on the diagonal elements d; € {-1,1} and
D=D.

Proof. Let Ay = WDCT and Ay = WDCT. Consider A; AT and AT A, i € {1,2}.
The assertion (B.1) then implies the following.

A AT =WD*WT =WD*WT = A,AT; ATA, = CD?*C™ = CD?C™ = AT A,.

Note that both WDQWT and VT{DQWT are eigenvalue decompositions, as D? and D?
are diagonal and W, W and C,C are orthogonal. The spectral theorem for matrices
[7] then implies that whenever the elements in D?, D? are distinct, the corresponding

columns in W, W and C,C are equal up to multiplication with the same sign. We
thus get W =WA, C =CA and D = O

Using this Lemma, we show identifiability of the off-diagonal block part of the
covariance matrix as given in (4.4).

Lemma 4.7.2. If for matrices W,W, C,C and diagonal B, B and X, ¥y, given as in
the PPLS model, W%, BCT = WY,BCT, then W = WA, C = CA and B = %,B.

Proof. Applying Lemma 4.7.1 with D = ¥; B and D = %, B gives the desired result,
since ;B and X; B are diagonal matrices with distinct ordered elements. O

Given ¥, , we can identify W and C up to sign and the product ¥, B. We now
show that in particular also the individual parameters ¥; and B are identified from
the upper diagonal block matrix ¥,.

Lemma 4.7.3. If for matriz W, diagonal matrices ¥y and %y and positive numbers
02,52, given as in the PPLS model, WS, WT + 021, = WS,WT 4 621, (B.2), then

Oe =G and Xy = 3.

Proof. Suppose (B.2) holds. Since r < pand p > 1, one can find a unit vector w, such
that WTw, = 0. Multiplying with such vector yields o2w, = 62w, . Multiplying
again with wT yields 02 = 2. It follows that we can 1dent1fy o2. We can now reduce
(B.2) to WE,WT = WZ WT Pre-multiplying with W7 and post—multlplymg with
W on both sides yields ¥; = . O
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We have seen in Theorem 4.7.2 that we can identify ¥;B. Since we identified %
we get identifiability of B. The remaining parameters J% and 0]20 are now shown to
be identified using the lower block diagonal .

Lemma 4.7.4. If for matrices C, B, ¥, 0]2075? and 03,53, given as in the PPLS
model, the assertion 3, = f]y holds, i.e.,

C(B*Sy + 03 1,)C" + 031, = C(B*S, + 631,)C" + 6314,
then UJ% = &J% and o} = 53.

Proof. Tn Theorem 4.7.3 take W equal to C, o7 equal to 0%, 67 equal to 57, and the
diagonal covariance matrices ¥; and ¥ equal to ¥;B? + 071, and %, B? + 67 1,. We
find that we can identify ¥;B? + o7 and O'J%. Since we already identified ¥; and B,
we have also identifiability of 7. O

We conclude with the proof of Theorem 4.3.1.

Proof. Suppose ¥ = X. This is true if and only if
Yoy =22y Te=3%, ¥,=3,. (4.7)

Applying Lemma 4.7.2 to the first equation, we identify W and C' up to sign. Con-
sidering Lemma 4.7.3 together with Lemma 4.7.2, the second equation implies identi-
fiability of ¥;, B and o.. The three Lemmas 4.7.2, 4.7.3 and 4.7.4 together with the
last equation imply identifiability of o} and o.

O

Appendix C. An Expectation-Maximization algorithm for PPLS

To obtain parameter estimates in the PPLS model, maximum likelihood is used. The
EM algorithm is an iterative procedure for maximizing the observed log-likelihood
(4.5) and consists of an Expectation step and a Maximization step. The following
Lemma is convenient to make the expectation step explicit.

Lemma 4.7.5. Let the pair (z,z) be jointly multivariate normal row vectors with
zero mean and covariance matrix

( EZ EZ,.'L')

Ex,z Y '

Then z|z is normally distributed with conditional mean E (z|z) = 2X;'%, ., and
conditional covariance matriz Var (z|lz) =X, — %, . S 5, .. Secondly, if z = (t,u),
Cov(t,x) = Xt 4 and Cov(z,u) = X, ,,, then the conditional covariance between t and
w is Cov(t,u|z) = Cov(t,u) — By X7t Tu -

Proof. The proof for the first part of the Lemma is found in [21]. The second part
follows from the off diagonal blocks of Var(z|x). O
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Expectation The conditional first moments can be obtained by applying Lemma
4.7.5 while substituting ¢t or u for z and (z,y) for z.

pe = E(ta,y,0) = (2,y) 57! Cov{(z,y), 1},
o = E (u|z,y,0) = (z,9) 27! Cov{(z,y),u}.
The same substitution can be made for the conditional second moments. Using
E(aTb|z) = Cov(a,b|z) + E(al2)TE(b|2), we get
C'TT = E(tTﬂx» Y, 9) = Ir - COV{t, ({E, y)} E_l COV{({I?, y)7 t}—’_
Cov{t, (x,y)} S71SE7" Cov{(z,y), t},
CUU = E(UTUM, Y, 9) = Ir - COV{U, (.’B, y)} 271 COV{(.’E, y)v u}+
Cov{u, (z,y)} 271SE™" Cov{(z,y), u},
where S is the biased sample covariance matrix of (x,y). The conditional cross term
equals
CUT = E(’U,Tﬂ.’l,‘, Y, 9) = ZtB - COV{U, (LU, y)} 2_1 COV{(LIZ‘, y>7 t}+
Cov{u, (z,y)} 27182t Cov{(z,y),t}

The covariances are given by

Cov{(z,y),t} = (Cﬂglg) , Cov{(z,y),u} = <c<zgz+€%b)>

Although the the conditional expectations involve random variables and parameters,
in the maximization step the calculated quantities are considered fixed and known.

Maximization The maximization step involves maximizing the complete-data like-
lihood (4.6), we have seen that it can be decomposed in distinct factors. This al-
lows optimization of the expected complete data likelihood to be split into four sub-
maximizations, given by the individual factors and their respective parameters in the
following annotated product:

S(xlt) f(ylu) f(ult) f(2)
N~
W,o. C,oy B,op 3

Moreover, it will become apparent that each parameter within each component can
be decoupled, yielding a separate maximization per component per parameter. We
focus on the part of f(x|t) that depends on W, which is given by

E{ln f(X|T)|X,Y} = —E(||X — TWT|2|X,Y) + const.
=tr(—XTX +2X T, WT —WCrrWT) + const.

To take into account the constraints on W, namely WTW = I,., we introduce a matrix
of Lagrange multipliers A. We get as objective function

tr(—XTX 42X W — WCpr W) — te{(WTW — I)A}.
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Differentiating with respect to W yields 2X ™ u; — 2W Crpp —2WA = 2W (Crr + A) —
2X7T;. One may choose A so that Cpr + A is invertible. In a maximum W then
satisfies W = X Ty (Crr + A)_l. We want to find a A such that the constraint holds,
ie.,

L =W™W ={(Crr + A"} uf XX i (Crr + 4) 71,
pt XXy = (Crr + N (Crr + A).
The last identity can be recognized as a Cholesky or Eigenvalue decomposition.
pE XX = (Crr + A" (Crr + A) = L LT

with L; the lower triangular matrix of a Cholesky decomposition of uf X X T ;. Note
that L; exists, since uf X X Ty, is always positive semi-definite. Choosing A = L} —
Crr, we get as update W = X Ty, (LT)~!. Following the same reasoning, we obtain
for the f(Y|U) part C = YTy, (LT)~1, where L, is the lower triangular matrix from
the Cholesky decomposition of ul Y'Y Ty,.

The parameter B involves maximizing In f(U|T), which is given by

—||U =TB|? = —~tr(UTU — 20T B + BTTTB) + const.

Taking the conditional expectation with respect to (z,y) yields —trE(UTU —2UTT B+
BTTTB|X,Y). Differentiating with respect to B and equating to the zero matrix
yields

BE(T'T|X,Y)=EU™T|X,Y) B=EU'TIX,Y){E(T'T|X,Y)} !

To incorporate the constraint that B should be diagonal, we set the diagonal elements
to zero, yielding
B=EU'T|X,Y){E(T'T|X,Y)} ‘oI,
with o the elementwise (Hadamart) product operator.
For the covariance matrix of ¥;, we consider In f(7') which is given by
2In f(T) = const. — N1n |Sp| — tr(TTTELY) = const. + NIn |25 — tr(TTTEL).

After taking the conditional expectation of the last expression, it can be differentiated
with respect to 3, ! which yields
2% Inf(T) = N2r —E(T*T|z,y) =0, Sp=N'E(T*T|z,y)01,
T

The last Hadamart product ensures ¥ is diagonal.

To maximize over o2, we consider In f(X|T) and note that E = X — TW?T. Then
In f(X|T) is given by
2In f(X|T) = const. — Npln |0?| — o %tr(ETE) = const. + Nplno,? — o, *tr(ETE)
After taking the conditional expectation of the last expression, we differentiate it with
respect to o, 2, yielding

5 871 In f(X|T) = Npo? —E(ETE|X,Y) =0, o= (Np) 'E(ETE|X,Y)
Oe¢

The same derivation can be applied to In f(y|u) and In f(ult) to find
of = (Nq)'E(F'F|X,Y), o}, = (Nr)'E(H'H|X,Y)

2
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Appendix D. Asymptotic standard errors for PPLS loadings

Using notation as in [16] we define

AWg) = —

952 (XTX — 2XTtkwg + wkt;ftkwg)

e
to be the part of the log likelihood depending on wy. We calculate the following first
and second derivatives.

S(wp) =VA=02(XTty —witpty), Blwy)=-V?A=0.2(tpty) L.
We obtain
4S(wk)S( )T = Xt X — 2X Tttt thwl + wity titd tpwy
oo E{S(wi)S(we) "X, YV} = XTE (tt} | X,Y) X — 2X"E (tty te| X, Y) wy +
wiE (4 tetn ty] X, Y ) wy
= op XX = 2X7 (gl par|5 + 3pwoft) wy +
wr, (||]]3 + 6]kl 507 + 30%) wy -

Here pr = E(tx|X,Y) and o, = E(t}t4]|X,Y). For explicit expressions of these
expectations, see Appendix 4.7. For the second derivative we get E{B(wy)|X,Y} =
021,/0?%. The observed Fisher information is now

Lobs = E{B(wp)|X, Y} — E{S (wy) S (wi) " |X, Y},

and the asymptotic covariance matrix of wy, is Iobi The square root of the diagonal

elements are the standard errors of the corresponding loading elements.

4.8 Supplementary material for Chapter 4

Introduction

This supplement provides results, figures and tables referred to in the main article
“Probabilistic Partial Least Squares: identifiability, estimation and application”. In
the main article some of the results are already discussed, in particular regarding the
low-dimensional (p = ¢ = 20) case with normally distributed variables. Here, figures
and tables corresponding to all other scenarios are presented.

The rest of the supplement is organized as follows. In Section 4.8 figures for true
and estimated parameter values are presented. The discussion of these figures can be
found in the main article. In Section 4.8 a comparison is made between PPLS and
PLS in the cases in which the data are very high-dimensional (p = ¢ = 10* while N =
50, 500) and contain 50% noise. In Section 4.8 the performance of PPLS is compared
to PLS, PCCA and PPCA. Here, the inner product between the true and estimated
loading vectors is taken as performance indicator. An additional scenario was included
in which the covariance between X and Y is zero. Only the normal distribution is
considered in these simulations. In Section 4.8 the behavior of asymptotic standard
errors of PPLS estimates is investigated and compared to a bootstrap approach. In
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this simulation study an additional case is added in which the sample size was ‘extra
large’ (N = 5000). We considered the scenarios in which the data were normally
distributed and low-dimensional (p = ¢ = 20).

Section 4.8 contains tables for Section 4.8. Section 4.8 contains figures for Section
4.8. Section 4.8 contains figures for Section 4.8. Section 4.8 contains figures for
Section 4.8.

Extended simulation study
Simulation study as in main article

The results of this simulation study are presented in the main article. We refer to
Figures 4.6-4.15 for the results.

Extra high dimensional scenario

A simulation study is conducted to evaluate the performance of the PPLS estimators.
To compare PPLS to PLS, scenarios in which PLS is applied are chosen: both X
and Y have p = ¢ = 10* variables and the noise level is set to 50% of the total
variation. All four distributions (normal, student-t Poisson and Binomial) and both
large (N = 500) and small (N = 50) sample sizes are considered in the simulation
study. A summary of these scenario’s is presented in Table 4.3. All parameters are
defined as in the simulation study in the main article. Results of all scenarios are

Sample size N = (50, 500)

Dimensionality p=q=10%

Noise level a, = 0.5

Distribution {N(0,1), ta, Pois(1), Bin(2,0.3)}

Table 4.3: Overview of the simulation scenarios. The noise level is defined as
the proportion of variation in the noise matrices F, F' and H relative to the total
variation in X, Y and U respectively. The last row contains the distributions from
which the latent variables ¢, u, e, f and h were generated.

shown in Figures 4.18-4.23.

Comparing the estimates for the first loading component W7, a better perfor-
mance of PPLS is observed compared to PLS in terms of bias. The biases of the
PPLS estimators are about the same or less than the biases of the PLS estimators,
regardless of distribution or sample size. For higher absolute loading values, larger
biases are observed. The variances of the PPLS estimators are similar to the vari-
ances of the PLS estimators. For the loading component C; and their PLS and PPLS
estimators, the same observations are made.

For the second loading component Wy similar conclusions can be drawn. The
biases of the PPLS estimators are about the same or less than the biases of the PLS
estimators regardless of distribution or sample size. For higher absolute loading values
larger biases are observed. The variance of the PPLS estimates are less whenever the
loadings are near zero. For the variables with high positive loading values in the third
component, the variance of PPLS estimates for these loading values in the second
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component is slightly higher than the variance of the PLS estimates. For the loading
component Cy and their PLS and PPLS estimators, the same observations are made.

In the third component, the same conclusions hold, except for the variables with
high positive loading values: they v estimated with less bias and variance by PPLS.
The difference between PLS and PPLS in bias and variance is even more prominent
for the Y loadings C5. These observations are similar across all four distributions.

The run-time of the PLS algorithm is less than the run-time of the PPLS algorithm.
The median ratios of the PPLS run-time to the PLS run-time in each scenario is
between 605 and 714 for small sample size and between 1137 and 1257 for large
sample size.

Comparison to PCCA and PPCA

A simulation study is performed to compare PPLS, PLS, PPCA and PCCA. A ‘null’
scenario is included in which the data are not related, i.e. B = 0. However the latent
structure TWT and UCT underlying each dataset is still present. Here PPCA is
applied to each dataset separately to estimate W and C. In the scenarios for which
B # 0 we did not consider PPCA, as it cannot estimate relationships between X
and Y (which is fundamental to our research question). In the high dimensional case
p = q = 1000, PCCA estimates cannot be obtained, as it requires N > max(p, q).

For each scenario, 1000 replicates are performed. For each method (PLS, PPLS,
PPCA and PCCA) median inner products between the estimated and true loading
vectors together with the Median Absolute Deviations (MAD) are calculated and
shown in Table 4.4-4.6. For the null scenarios both PLS and PCCA fail to accurately
recover the loading values (median inner products were between 0.449 and 0.772).
Moreover, as PCCA breaks down if max(p,q) > N, no comparison was possible in
the high dimensional case. The PPLS and PPCA methods are both accurate in
estimating the true loadings (median inner products were between 0.786 and 0.984).
In addition, PPLS inner products are nearly as high as PPCA inner products. For
the scenario in which T and U have non-zero correlation, both PLS and PPLS have
good performance (median inner products were above 0.748). In this scenario, PPLS
performs better. The PCCA method performs slightly worse than PLS (median inner
product above 0.842), except for the high noise and small sample size scenario. Here
the median inner product lies between 0.469 and 0.687 for the W loadings.

For the loading vectors in C' similar observations are made. The median inner
products are in general smaller than the median inner products with W, probably
due to the extra noise component H in Y.

Asymptotic and bootstrap standard errors

To assess variability of PLS estimates, a bootstrap approach is often used. This
approach is also available for PPLS. Additionally, asymptotic standard errors for
the loading estimates can be calculated based on the observed Fisher information.
To compare asymptotic and bootstrap standard errors, a dataset is simulated for
several scenarios. In all cases the data are normally distributed and low dimensional
(p = q = 20). We compare the standard errors of the elements of W and C under low
and high noise levels (a,, = 0.1 resp. «a, = 0.5), and small, large and ‘extra large’
sample sizes (N = 50, N = 500 and N = 5000 respectively). Also simulation-based
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standard errors (based on standard deviations of the 1000 replicates) are included as
reference. The results are shown in Figures 4.24 and 4.25.

In all scenarios the asymptotic standard errors (SEs) are smaller than the boot-
strap SEs for nearly all loading elements. In particular for high loading values the
difference between asymptotic SEs and bootstrap SEs tends to be large. The boot-
strap SEs are close to the simulation-based standard errors. All SEs tend to increase
with increasing noise level, while a decrease is observed with increasing sample size.
In the ‘extra large’ sample size the bootstrap SEs and asymptotic SEs have similar
magnitude.
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Tables

Table 4.4: Median (MAD) inner product between true and estimated load-
ing profiles. Results for scenarios with zero correlation between T and U are shown,
therefore PPCA was not included in the comparison. Data were simulated from a
normal distribution and were low-dimensional (p = ¢ = 20).

Method H Component Wy ‘ Component Wy ‘ Component W3
PLS 0.771 (0.139) 0.755 (0.142) 0.713 (0.144)
PPLS 0.869 (0.087) 0.810 (0.135) 0.864 (0.093)
PPCA 0.875 (0.076) 0.842 (0.130) 0.872 (0.085)
PCCA 0.718 (0.168) 0.703 (0.161) 0.657 (0.197)
(a) Low noise level (a, = 0.1), small sample size (N = 50).
Method H Component Wy ‘ Component Wy ‘ Component W3
PLS 0.772 (0.136) 0.753 (0.135) 0.726 (0.147)
PPLS 0.981 (0.019) 0.963 (0.035) 0.978 (0.023)
PPCA 0.982 (0.018) 0.968 (0.030) 0.981 (0.019)
PCCA 0.718 (0.158) 0.690 (0.177) 0.668 (0.171)
(b) Low noise level (an = 0.1), large sample size (N = 500).
Method H Component Wy ‘ Component Wy ‘ Component W3
PLS 0.680 (0.156) 0.641 (0.155) 0.585 (0.187)
PPLS 0.836 (0.111) 0.787 (0.110) 0.819 (0.107)
PPCA 0.840 (0.106) 0.786 (0.122) 0.820 (0.100)
PCCA 0.529 (0.194) 0.501 (0.201) 0.464 (0.213)
(c) High noise level (a, = 0.5), small sample size (N = 50).
Method H Component Wy ‘ Component Wy ‘ Component W3
PLS 0.684 (0.151) 0.646 (0.160) 0.600 (0.171)
PPLS 0.970 (0.029) 0.947 (0.047) 0.966 (0.030)
PPCA 0.971 (0.027) 0.951 (0.044) 0.969 (0.026)
PCCA 0.535 (0.202) 0.494 (0.210) 0.449 (0.199)

(d) High noise level (v, = 0.5), large sample size (N = 500).
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Table 4.5: Median (MAD) inner product between true and estimated load-
ing profiles. Results for scenarios with zero correlation between 7" and U are
shown. Data were simulated from a normal distribution and were high-dimensional
(p = ¢ = 1000). PCCA results are not available as it cannot cope with max(p,q) > N
situations.

Method H Component W1 ‘ Component Ws ‘ Component W3
PLS 0.762 (0.142) 0.726 (0.139) 0.699 (0.156)
PPLS 0.883 (0.078) 0.836 (0.126) 0.866 (0.076)
PPCA 0.881 (0.074) 0.842 (0.126) 0.870 (0.080)
PCCA - - -
(a) Low noise level (a, = 0.1), small sample size (N = 50).

Method || Component Wy | Component W5 | Component W
PLS 0.760 (0.137) 0.721 (0.152) 0.706 (0.150)
PPLS 0.984 (0.017) 0.973 (0.027) 0.980 (0.020)
PPCA 0.984 (0.017) 0.972 (0.026) 0.982 (0.018)
PCCA - - -

(b) Low noise level (a, = 0.1), large sample size (N = 500).

Method H Component W1 ‘ Component Wy ‘ Component W3
PLS 0.679 (0.127) 0.617 (0.144) 0.548 (0.159)
PPLS 0.852 (0.085) 0.792 (0.125) 0.828 (0.087)
PPCA 0.863 (0.072) 0.822 (0.115) 0.836 (0.081)
PCCA - - -
(c) High noise level (a, = 0.5), small sample size (N = 50).

Method H Component Wy ‘ Component Wy ‘ Component W3
PLS 0.704 (0.127) 0.626 (0.140) 0.558 (0.171)
PPLS 0.981 (0.018) 0.968 (0.031) 0.976 (0.022)
PPCA 0.980 (0.018) 0.966 (0.029) 0.979 (0.017)
PCCA - - -

(d) High noise level (a,, = 0.5), large sample size (N = 500).
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Table 4.6: Median (MAD) inner product between true and estimated load-
ing profiles. Results for scenarios with non-zero correlation between 7" and U are
shown. Data were simulated from a normal distribution and were low-dimensional

(p=q=20).

Method H Component Wy ‘ Component Wy ‘ Component W3

PLS 0.964 (0.034) 0.940 (0.053) 0.955 (0.039)

PPLS 0.984 (0.014) 0.960 (0.041) 0.970 (0.029)

PPCA - - -

PCCA 0.913 (0.086) 0.847 (0.121) 0.842 (0.118)
(a) Low noise level (a, = 0.1), small sample size (N = 50).

Method H Component Wy ‘ Component Wy ‘ Component W3

PLS 0.996 (0.004) 0.993 (0.007) 0.995 (0.004)

PPLS 0.999 (0.001) 0.997 (0.003) 0.998 (0.002)

PPCA - - -

PCCA 0.996 (0.004) 0.992 (0.008) 0.995 (0.005)
(b) Low noise level (an, = 0.1), large sample size (N = 500).

Method H Component Wy ‘ Component Wy ‘ Component W3

PLS 0.878 (0.075) 0.784 (0.117) 0.748 (0.115)

PPLS 0.878 (0.089) 0.816 (0.116) 0.853 (0.103)

PPCA - - -

PCCA 0.687 (0.155) 0.584 (0.183) 0.469 (0.218)
(c) High noise level (a, = 0.5), small sample size (N = 50).

Method H Component Wy ‘ Component Wy ‘ Component W3

PLS 0.986 (0.009) 0.971 (0.018) 0.961 (0.018)

PPLS 0.989 (0.008) 0.977 (0.021) 0.983 (0.014)

PPCA - - -

PCCA 0.984 (0.011) 0.961 (0.025) 0.938 (0.033)

(d) High noise level (o, = 0.5), large sample size (N = 500).
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Table 4.7: Median (MAD) inner product between true and estimated load-
ing profiles. Results for scenarios with zero correlation between 1" and U are shown,
therefore PPCA was not included in the comparison. Data were simulated from a
normal distribution and were low-dimensional (p = ¢ = 20).

Method H Component C
PLS 0.770 (0.131)

‘ Component Cy

0.770 (0.135)

‘ Component Cfy
0.773 (0.129)

PPLS 0.811 (0.125) 0.818 (0.127) 0.820 (0.125)
PPCA 0.743 (0.096) 0.741 (0.096) 0.737 (0.081)
PCCA 0.712 (0.169) 0.717 (0.168) 0.710 (0.173)
(a) Low noise level (a, = 0.1), small sample size (N = 50).
Method H Component C ‘ Component Co ‘ Component Cg
PLS 0.770 (0.131) 0.770 (0.135) 0.773 (0.129)
PPLS 0.811 (0.125) 0.818 (0.127) 0.820 (0.125)
PPCA 0.743 (0.096) 0.741 (0.096) 0.737 (0.081)
PCCA 0.712 (0.169) 0.717 (0.168) 0.710 (0.173)
(b) Low noise level (a,, = 0.1), large sample size (N = 500).
Method H Component C ‘ Component Co ‘ Component Cs
PLS 0.666 (0.160) 0.670 (0.151) 0.674 (0.152)
PPLS 0.806 (0.116) 0.799 (0.122) 0.804 (0.119)
PPCA 0.750 (0.101) 0.757 (0.100) 0.748 (0.102)
PCCA 0.494 (0.212) 0.527 (0.209) 0.522 (0.213)
(c) High noise level (a, = 0.5), small sample size (N = 50).
Method H Component C ‘ Component Co ‘ Component C3
PLS 0.683 (0.145) 0.687 (0.128) 0.688 (0.144)
PPLS 0.822 (0.120) 0.819 (0.118) 0.828 (0.113)
PPCA 0.776 (0.099) 0.772 (0.097) 0.783 (0.109)
PCCA 0.509 (0.204) 0.520 (0.205) 0.511 (0.214)

(d) High noise level (o, = 0.5), large sample size (N = 500).
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Table 4.8: Median (MAD) inner product between true and estimated load-
ing profiles. Results for scenarios with zero correlation between 7" and U are
shown. Data were simulated from a normal distribution and were high-dimensional
(p = ¢ = 1000). PCCA results are not available as it cannot cope with max(p,q) > N
situations.

Method H Component C4 ‘ Component Cy ‘ Component Cj
PLS 0.767 (0.122) 0.766 (0.120) 0.767 (0.133)
PPLS 0.721 (0.094) 0.725 (0.099) 0.726 (0.100)
PPCA 0.714 (0.120) 0.725 (0.095) 0.722 (0.099)
PCCA - - -
(a) Low noise level (a, = 0.1), small sample size (N = 50).

Method || Component, Cy | Component C | Component C
PLS 0.767 (0.118) 0.767 (0.114) 0.781 (0.120)
PPLS 0.762 (0.076) 0.752 (0.117) 0.758 (0.109)
PPCA 0.721 (0.101) 0.723 (0.099) 0.719 (0.106)
PCCA - - -

(b) Low noise level (a, = 0.1), large sample size (N = 500).

Method H Component C4 ‘ Component Cy ‘ Component Cj
PLS 0.704 (0.109) 0.696 (0.110) 0.699 (0.114)
PPLS 0.745 (0.107) 0.747 (0.109) 0.742 (0.112)
PPCA 0.703 (0.091) 0.709 (0.098) 0.706 (0.087)
PCCA - - -
(c) High noise level (a, = 0.5), small sample size (N = 50).

Method H Component C ‘ Component Co ‘ Component C3
PLS 0.724 (0.113) 0.715 (0.109) 0.729 (0.113)
PPLS 0.767 (0.084) 0.746 (0.113) 0.761 (0.104)
PPCA 0.727 (0.106) 0.723 (0.081) 0.722 (0.097)
PCCA - - -

(d) High noise level (a,, = 0.5), large sample size (N = 500).
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Table 4.9: Median (MAD) inner product between true and estimated load-
ing profiles. Results for scenarios with non-zero correlation between 7" and U are
shown. Data were simulated from a normal distribution and were low-dimensional

(p=q=20).

Method H Component C ‘ Component Co ‘ Component C3

PLS 0.964 (0.034) 0.940 (0.053) 0.955 (0.039)

PPLS 0.984 (0.014) 0.960 (0.041) 0.970 (0.029)

PPCA - - -

PCCA 0.913 (0.086) 0.847 (0.121) 0.842 (0.118)
(a) Low noise level (a, = 0.1), small sample size (N = 50).

Method H Component C ‘ Component Co ‘ Component Cg

PLS 0.996 (0.004) 0.993 (0.007) 0.995 (0.004)

PPLS 0.999 (0.001) 0.997 (0.003) 0.998 (0.002)

PPCA - - -

PCCA 0.996 (0.004) 0.992 (0.008) 0.995 (0.005)
(b) Low noise level (an, = 0.1), large sample size (N = 500).

Method H Component C; ‘ Component Co ‘ Component Cs

PLS 0.878 (0.075) 0.784 (0.117) 0.748 (0.115)

PPLS 0.878 (0.089) 0.816 (0.116) 0.853 (0.103)

PPCA - - -

PCCA 0.687 (0.155) 0.584 (0.183) 0.469 (0.218)
(c) High noise level (a, = 0.5), small sample size (N = 50).

Method H Component C ‘ Component Co ‘ Component C3

PLS 0.986 (0.009) 0.971 (0.018) 0.961 (0.018)

PPLS 0.989 (0.008) 0.977 (0.021) 0.983 (0.014)

PPCA - - -

PCCA 0.984 (0.011) 0.961 (0.025) 0.938 (0.033)

(d) High noise level (o, = 0.5), large sample size (N = 500).
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(a) Low noise (10%); small sample size (N =  (b) Low noise (10%); large sample size (N =
50) 500)

(c) High noise (50%); small sample size (N =  (d) High noise (50%); large sample size (N =
50) 500)

Figure 4.6: True and estimated loadings W; over 1000 simulation replica-
tions. The black dots and dashed vertical lines (on the left of each pair) represent
PPLS estimates, the red stars and dashed vertical lines (on the right of each pair)
represent PLS estimates. The dots and stars are the average loading values across
1000 simulation replications; the width of the dashed lines are twice the standard
deviations. The results are for normally distributed latent variables (¢, e, f and h)
and low dimensionality (p = ¢ = 20 variables).
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(a) Low noise (10%); small sample size (N =  (b) Low noise (10%); large sample size (N =
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(c) High noise (50%); small sample size (N =  (d) High noise (50%); large sample size (N =
50) 500)

Figure 4.7: Bias and variance of the PPLS and PLS estimates of the loadings
Wy over 1000 simulation replications. The black dots and dashed vertical lines
(on the left of each pair) represent PPLS estimates, the red stars and dashed vertical
lines (on the right of each pair) represent the PLS estimates. The dots and stars are
the average loading values across 1000 simulation replications; the width of the dashed
lines are twice the standard deviations. The results are for normally distributed latent
variables (t, e, f and h) and low dimensionality (p = ¢ = 20 variables).
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(c) High noise (50%); small sample size (N =  (d) High noise (50%); large sample size (N =
50) 500)

Figure 4.8: True and estimated loadings W3 over 1000 simulation replica-
tions. The black dots and dashed vertical lines (on the left of each pair) represent
PPLS estimates, the red stars and dashed vertical lines (on the right of each pair)
represent the PLS estimates. The dots and stars are the average loading values across
1000 simulation replications; the width of the dashed lines are twice the standard de-
viations. The results are for normally distributed latent variables (¢, e, f and h) and
low dimensionality (p = ¢ = 20 variables).
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(c) High noise (50%); small sample size (N =  (d) High noise (50%); large sample size (N =
50) 500)

Figure 4.9: True and estimated loadings W; over 1000 simulation repli-
cations. The black lines represent PPLS estimates, the red lines represent PLS
estimates. The middle lines are the average loading values across 1000 simulation
replications; the width of the two outer lines are twice the standard deviations. The
results are for normally distributed latent variables (¢, e, f and h) and low dimen-
sionality (p = ¢ = 1000 variables).
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Figure 4.10: True and estimated loadings W> over 1000 simulation repli-
cations. The black lines represent PPLS estimates, the red lines represent PLS
estimates. The middle lines are the average loading values across 1000 simulation
replications; the width of the two outer lines are twice the standard deviations. The
results are for normally distributed latent variables (¢, e, f and h) and low dimen-
sionality (p = ¢ = 1000 variables).
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Figure 4.11: True and estimated loadings W3 over 1000 simulation repli-
cations. The black lines represent PPLS estimates, the red lines represent PLS
estimates. The middle lines are the average loading values across 1000 simulation
replications; the width of the two outer lines are twice the standard deviations. The
results are for normally distributed latent variables (¢, e, f and h) and low dimen-
sionality (p = ¢ = 1000 variables).
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(c) High noise (50%); small sample size (N =  (d) High noise (50%); large sample size (N =
50) 500)

Figure 4.12: True and estimated loadings C; over 1000 simulation replica-
tions. The black dots and dashed vertical lines (on the left of each pair) represent
PPLS estimates, the red stars and dashed vertical lines (on the right of each pair)
represent PLS estimates. The dots and stars are the average loading values across
1000 simulation replications; the width of the dashed lines are twice the standard
deviations. The results are for normally distributed latent variables (¢, e, f and h)
and low dimensionality (p = ¢ = 20 variables).
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(c) High noise (50%); small sample size (N =  (d) High noise (50%); large sample size (N =
50) 500)

Figure 4.13: True and estimated loadings C over 1000 simulation replica-
tions. The black dots and dashed vertical lines (on the left of each pair) represent
PPLS estimates, the red stars and dashed vertical lines (on the right of each pair)
represent the PLS estimates. The dots and stars are the average loading values across
1000 simulation replications; the width of the dashed lines are twice the standard de-
viations. The results are for normally distributed latent variables (¢, e, f and h) and
low dimensionality (p = ¢ = 20 variables).
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Figure 4.14: True and estimated loadings C3 over 1000 simulation replica-
tions. The black dots and dashed vertical lines (on the left of each pair) represent
PPLS estimates, the red stars and dashed vertical lines (on the right of each pair)
represent the PLS estimates. The dots and stars are the average loading values across
1000 simulation replications; the width of the dashed lines are twice the standard de-
viations. The results are for normally distributed latent variables (¢, e, f and h) and
low dimensionality (p = ¢ = 20 variables).
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Figure 4.15: True and estimated loadings C; over 1000 simulation repli-
cations. The black lines represent PPLS estimates, the red lines represent PLS
estimates. The middle lines are the average loading values across 1000 simulation
replications; the width of the two outer lines are twice the standard deviations. The
results are for normally distributed latent variables (¢, e, f and h) and low dimen-
sionality (p = ¢ = 1000 variables).
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Figure 4.16: True and estimated loadings C> over 1000 simulation repli-
cations. The black lines represent PPLS estimates, the red lines represent PLS
estimates. The middle lines are the average loading values across 1000 simulation
replications; the width of the two outer lines are twice the standard deviations. The
results are for normally distributed latent variables (¢, e, f and h) and low dimen-
sionality (p = ¢ = 1000 variables).
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Figure 4.17: True and estimated loadings C3 over 1000 simulation repli-
cations. The black lines represent PPLS estimates, the red lines represent PLS
estimates. The middle lines are the average loading values across 1000 simulation
replications; the width of the two outer lines are twice the standard deviations. The
results are for normally distributed latent variables (¢, e, f and h) and low dimen-
sionality (p = ¢ = 1000 variables).
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Figures for extra high dimensionality
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Figure 4.18: True and estimated loadings W; over 1000 simulation replica-
tions. The black and red lines represent PPLS and PLS estimates, respectively. The
middle lines represent the average loading values. The distance between the upper
and lower lines is twice the standard deviation for each loading value. The smooth
golden line is the true loading profile. In the first column, the sample size is small
(N = 50), the second column corresponds to large sample size (N = 500). The four
rows correspond to a normal, student-t, Poisson and binomial distribution, respec-
tively. Furthermore, the dimensionality is high (p = ¢ = 1000) as well as the noise
(equal to 50%).
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Figure 4.19: True and estimated loadings W5 over 1000 simulation replica-
tions. The black and red lines represent PPLS and PLS estimates, respectively. The
middle lines represent the average loading values. The distance between the upper
and lower lines is twice the standard deviation for each loading value. The smooth
golden line is the true loading profile. In the first column, the sample size is small
(N = 50), the second column corresponds to large sample size (N = 500). The four
rows correspond to a normal, student-t, Poisson and binomial distribution, respec-
tively. Furthermore, the dimensionality is high (p = ¢ = 1000) as well as the noise
(equal to 50%).
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Figure 4.20: True and estimated loadings W3 over 1000 simulation replica-
tions. The black and red lines represent PPLS and PLS estimates, respectively. The
middle lines represent the average loading values. The distance between the upper
and lower lines is twice the standard deviation for each loading value. The smooth
golden line is the true loading profile. In the first column, the sample size is small
(N = 50), the second column corresponds to large sample size (N = 500). The four
rows correspond to a normal, student-t, Poisson and binomial distribution, respec-
tively. Furthermore, the dimensionality is high (p = ¢ = 1000) as well as the noise
(equal to 50%).
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Figure 4.21: True and estimated loadings C; over 1000 simulation replica-
tions. The black and red lines represent PPLS and PLS estimates, respectively. The
middle lines represent the average loading values. The distance between the upper
and lower lines is twice the standard deviation for each loading value. The smooth
golden line is the true loading profile. In the first column, the sample size is small
(N = 50), the second column corresponds to large sample size (N = 500). The four
rows correspond to a normal, student-t, Poisson and binomial distribution, respec-
tively. Furthermore, the dimensionality is high (p = ¢ = 1000) as well as the noise
(equal to 50%).
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Figure 4.22: True and estimated loadings C5 over 1000 simulation replica-
tions. The black and red lines represent PPLS and PLS estimates, respectively. The
middle lines represent the average loading values. The distance between the upper
and lower lines is twice the standard deviation for each loading value. The smooth
golden line is the true loading profile. In the first column, the sample size is small
(N = 50), the second column corresponds to large sample size (N = 500). The four
rows correspond to a normal, student-t, Poisson and binomial distribution, respec-
tively. Furthermore, the dimensionality is high (p = ¢ = 1000) as well as the noise
(equal to 50%).
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Figure 4.23: True and estimated loadings C5 over 1000 simulation replica-
tions. The black and red lines represent PPLS and PLS estimates, respectively. The
middle lines represent the average loading values. The distance between the upper
and lower lines is twice the standard deviation for each loading value. The smooth
golden line is the true loading profile. In the first column, the sample size is small
(N = 50), the second column corresponds to large sample size (N = 500). The four
rows correspond to a normal, student-t, Poisson and binomial distribution, respec-
tively. Furthermore, the dimensionality is high (p = ¢ = 1000) as well as the noise
(equal to 50%).
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Figure 4.24: Standard errors of the W loading elements per component.
Bootstrap standard errors (shown in green), asymptotic standard errors (shown in
red) and simulation-based standard errors (shown in black) are plotted for the loading
estimates in each component. Plots for the three sample sizes (small N = 50, high
N = 500, ‘extra high’” N = 5000) are shown along the rows. The three loading
components (W7, W3 and W3) are plotted column wise. The last row does not include
simulation-based standard errors, as they are unavailable.
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Figure 4.25: Standard errors of the C loading elements per component.
Bootstrap standard errors (shown in green), asymptotic standard errors (shown in
red) and simulation-based standard errors (shown in black) are plotted for the loading
estimates in each component. Plots for the three sample sizes (small N = 50, high
N = 500, ‘extra high’” N = 5000) are shown along the rows. The three loading
components (C7, C5 and C3) are plotted column wise. The last row does not include
simulation-based standard errors, as they are unavailable.
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