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3.1 Abstract

With the exponential growth in available biomedical data, there is a need for data
integration methods that can extract information about relationships between the
data sets. However, these data sets might have very different characteristics. For
interpretable results, data-specific variation needs to be quantified. For this task,
Two-way Orthogonal Partial Least Squares (O2PLS) has been proposed. To facilitate
application and development of the methodology, free and open-source software is
required. However, this is not the case with O2PLS.

We introduce OmicsPLS, an open-source implementation of the O2PLS method
in R. It can handle both low- and high-dimensional datasets efficiently. Generic
methods for inspecting and visualizing results are implemented. Both a standard and
faster alternative cross-validation methods are available to determine the number of
components. A simulation study shows good performance of OmicsPLS compared to
alternatives, in terms of accuracy and CPU runtime. We demonstrate OmicsPLS by
integrating genetic and glycomic data.

We propose the OmicsPLS R package: a free and open-source implementation of
O2PLS for statistical data integration. OmicsPLS is available at
cran.r-project.org/package=OmicsPLS and can be installed in R via
install.packages ("OmicsPLS").

3.2 Introduction

With rapid advances in technology, several levels of biological variation can be mea-
sured. Consequently, multiple omics data sets are available on the same set of subjects.
For a better understanding of the underlying biological systems, these data should be
analyzed simultaneously [12].

Several data integration methods have been developed that estimate joint parts
while ignoring some of the data-specific characteristics. For example, Partial Least
Squares (PLS) [21] maximizes the covariance to calculate joint principal components.
Canonical Correlation Analysis (CCA) [3] considers correlation rather than covari-
ance. Several other methods perform analysis on a concatenated version of the data
sets, such as Simultaneous Component Analysis (SCA) [17]. For many data integra-
tion methods, open source software packages are available [10]. In particular, the
mixOmics R package implements several variants of PCA, PLS and CCA [13].

Omics data sets might be heterogeneous in that they typically differ in data-
specific characteristics, such as size, scale, distribution and experimental error. This
hampers the estimation of joint parts between these data. For correct interpreta-
tion of data integration results, data-specific variation should be modeled [16]. This
variation captures information specific to each data set. Furthermore, it can distort
interpretation of the estimated joint part [14]. Therefore, we consider approaches
that estimate both joint and specific components. Such approaches include Two-Way
Orthogonal PLS (O2PLS) [14], JIVE [9] and DISCO-SCA [18]. O2PLS considers
two data sets and decomposes both in a joint, specific and residual part. The joint
parts are calculated by maximizing the covariation between the two data sets, while
correcting for data-specific variation. JIVE uses iterative PCA on the concatenation
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of multiple datasets to alternately find joint and data-specific parts. DISCO-SCA
performs SCA and rotates the solution to obtain joint and specific components for
each data set.

In the JIVE and DISCO-SCA approach, the joint and specific components are
constrained to be orthogonal to each other. Moreover, they assume that the data sets
share exactly the same joint latent variables. O2PLS only imposes orthogonality of
the components within each part and assumes correlated joint latent variables for each
data set. Therefore, we expect a better performance of O2PLS in complex situations.

O2PLS is implemented within the software package SIMCA [15], which is closed-
source and commercial. Unavailability of source code hampers developing and ex-
tending the methodology. No free and open source alternative implementing O2PLS
is available to the best of our knowledge. Therefore, we propose OmicsPLS, a free
and open-source R software package to decompose two datasets into joint and specific
parts. With regard to the other methods, DISCO-SCA [5] is available only from the
commercial computing environment MATLAB, whereas JIVE is freely available in
the r.jive package [11]. Therefore, we compare OmicsPLS to r.jive.

Our aim is to provide easy access to both the method and visualization tools
and to facilitate the development of more advanced methodology. The rest of the
article is organized as follows. First, we discuss the implementation of OmicsPLS in
detail. Second, the OmicsPLS package is illustrated using genetic and glycan data
from a Croatian population cohort. We also apply JIVE to these data. Motivated by
the data analysis, we conduct a simulation study to compare OmicsPLS to r.jive in
terms of estimation accuracy, execution time and robustness against the presence of
data-specific characteristics. Finally, we discuss future extensions of OmicsPLS.

3.3 Implementation

3.3.1 OZ2PLS Model

Let the observed data be collected in a matrix X = [z1,..., 2] (/N X p) and a matrix
Y =[y1,...,y4] (N xgq). Here, N denotes the number of subjects, and p and ¢ denote
the number of variables in X and Y, respectively. The O2PLS method decomposes
X and Y in two joint, specific and residual parts. The dimension of the joint part is
given by n, the dimension of each specific part is given by nx and ny, respectively.
The joint parts consist of matrices T, U (both N x n), W (p x n) and C (¢ X n).
The matrices T and U are referred to as joint scores or joint latent components, and
the matrices W and C' are referred to as joint loadings or joint principal components.
These joint parts represent the statistical overlap between X and Y. The specific
parts consist of matrices Ty, (N X nx), Uxi (N x ny), Pyy. (p x nx) and Px,
(¢ X ny). These matrices are referred to as specific scores and loadings, respectively.
The residual parts are denoted by E (N x p) and F' (N x ¢). Then, the O2PLS

decomposition is

X = T™W' + Ty, P} + E
_ T T
Data Joint Residuals

Specific
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Each row of X and Y contains measurements on the same subject. Throughout
the paper, it is assumed that the columns of X and Y are centered around zero.
The relationship between T and U is given by the linear model U = T'Byr + H or
T = UBy+H'. Here, By and By are square maftrices of size n, representing regression
coefficients for the two models. The particular choice of the model does not affect the
estimates, as the O2PLS algorithm is symmetric in X and Y.

Note that, in PLS, only a joint and a residual part is considered for each data set.
Any data-specific variation is absorbed by these two parts. This makes interpreta-
tion of PLS results more difficult, as the estimated loadings may be biased and the
correlation between the joint scores typically seem weaker. O2PLS restricts the joint
loadings W and C' and the specific scores Ty and Uy, to have orthonormal columns.
JIVE and DISCO-SCA additionally restrict the columns of the matrices [W Py, ] and
[CPx,] to be orthonormal. Furthermore, both methods assume that U = T, while
O2PLS only assumes a linear relation between U and T

The O2PLS algorithm for estimating the O2PLS components is provided in [14].
Briefly, singular vectors of the covariance matrix X*Y are calculated. From these
vectors, loadings and scores containing both joint and specific variation are estimated.
Then, specific variation is estimated using SVD and subtracted from the data. Finally,
using the corrected data, the joint parts are re-estimated.

Interpretation. Within each part, the components have a similar interpretation as
PCA. In particular, the loading value wjj, indicates the importance of the variable
x; for component k. If w;;, and wj; have the same sign, the corresponding variables
x; and z; are positively correlated within component k. The same interpretation
holds for the other parts. The scores can be used to define similarity between subjects
within each component: for example, if t;, & t;/1,, then subjects ¢ and 7’ are similar in
component k. Between the joint parts, in the k’th joint component, the loading values
wj, and c;y, indicate correlation between x; and y;. High positive or negative loading
values indicate high positive or negative correlation in this component between these
variables, respectively. As a consequence, the joint loading values wj and ¢, can be
sorted to prioritize variables in X and Y based on high covariation.

3.3.2 Implementation
The functions in OmicsPLS can be organized as follows

e Cross-validating: Functions to determine the number of O2PLS components.

o Fitting: Functions to fit the O2PLS model.

e Summarizing & visualizing: Functions to summarize and visualize the results.
Cross-validating. Cross-validation is a well-known technique to choose tuning pa-
rameters of a model, while limiting the risk to overfit. All samples are partitioned in
k blocks (denoted as folds), and the model is fitted on k& — 1 folds. The left out fold
is used to evaluate the model fit. For O2PLS, an approach to determine the number

of components is to maximize the prediction error over a three-dimensional grid of
possible integers and select the triple (n,nx,ny ) that minimizes this error. As O2PLS
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is symmetric in X and Y, the sum of the two prediction errors ||[Y —Y||2 + || X — X||2
is taken as error measure. Here, ||A||? := afj. This approach is implemented in
the crossval_o2m function:

ij

crossval_o2m(X, Y, a, ax, ay, nr_folds)

Here, a, ax and ay are vectors of integers to consider for the number of components
n, nx and ny. The vector a must have positive elements, while both ax and ay may
contain zeros. The number of folds is specified by nr_folds and should be between
two and N. The crossval_o2m function returns a three-dimensional array with the
prediction errors.

Cross-validation over a three-dimensional grid can be computationally intensive,
especially with many grid points. For this reason, we have proposed an alternative
cross-validation procedure [2]. The rationale behind this approach lies in the interpre-
tation of the specific parts: specific variation in the data will affect the joint scores,
thereby reducing the covariance between T" and U. Correcting for specific variation
will increase this covariance. On the other hand, overcorrecting will again reduce the
covariance between the joint scores. Candidates for nx and ny, given n, are those
integers for which the covariance of the joint scores are maximized. This approach is
called by:

crossval_o2m_adjR2(X, Y, a, ax, ay, nr_folds)

It performs the cross-validation over a one-dimensional grid a, while maximizing the
covariance between the joint scores T' and U over a two-dimensional grid given by ax
and ay. The last maximization does not involve cross-validation. Consequently, the
looping over nr_folds folds is omitted in two dimensions. This can drastically reduce
computation time, while often yielding similar minimizers to those obtained with the
full cross-validation approach. The output is a matrix containing the prediction errors
and the number of components (n,nx, ny).

Note that these two cross-validation strategies can be combined: The alterna-
tive cross-validation is used to find candidate minimizers of the prediction error.
Based on these minimizers, a three-dimensional grid is constructed on which the full
cross-validation is performed. Both cross-validation implementations support parallel
computation.

Fitting. In its simplest form, the function call for fitting the O2PLS model is
o2m(X, Y, n, nx, ny)

The input parameters are the two data matrices X and Y, and the number of com-
ponents in the joint, X-specific and Y-specific part. The output is a list containing
scores and loadings in the notation of [14], as well as proportions of explained variance
and residual matrices; these proportions are defined below. The user can choose a
‘stripped’ output, by adding stripped=TRUE as an argument, to discard the residual
matrices (and reduce memory usage).

By default, a Singular Value Decomposition (SVD) of the covariance matrix be-
tween X and Y is used to calculate joint and specific components. If both X and
Y are high-dimensional, the covariance matrix XTY will use a high amount of mem-
ory. Therefore, an alternative algorithm is implemented in the OmicsPLS package,
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named NIPALS [21]. The NIPALS algorithm is an iterative algorithm that avoids con-
struction and storage of the covariance matrix. Moreover, the NIPALS-based joint
components are numerically equal to the SVD-based PLS components (up to sign)
if the number of NIPALS iterations is large enough. In the case that p or ¢ is not
too large, the NIPALS approach can be slower than the SVD approach. Therefore,
a check on data dimensionality is performed to determine the proper approach. The
threshold is by default at p = ¢ = 3000 and can be adjusted.

Summarizing & visualizing A summary of the modeled variation is given by
summary (object). Here, object contains the O2PLS fit as produced by the o2m
call. The output includes proportions of:

e variation in X and Y explained by the joint, specific and residual parts, e.g.,
ITW /1.

o variation in U and T that is predictable by T resp. U, e.g., ||TBr|?/||U]|?.

Note that the proportion of predictable variation in Y by X is then ||TBr||?/||U||* x
[UCTIP/IIY PP = ITBr|]?/|IY ]

The OmicsPLS package provides a flexible framework to plot loadings in each
component. As this framework is built on the ggplot2 package, several plotting layers
can be added to enhance visualization and aid interpretation of the results. The
command for constructing a plot is

plot(x, loading_name).

Here x is the O2PLS fit and the only required object. The parameter loading_name
represents which of the four parts (X-joint, Y-joint, X-specific or Y-specific) should
be plotted. The plot command calls geom_text from the ggplot2 package. Its docu-
mentation contains information about editing, for example, text color, transparency
and size. These attributes can be changed within the OmicsPLS plot function.

Workflow A workflow for OmicsPLS analysis is provided in Figure 3.1. The steps
in the workflow are based on the genetic and glycomic data analysis showed the next
section.

3.4 Results

3.4.1 Analysis of genetic and glycomic data

We consider p = 333858 genotyped Single Nucleotide Polymorphisms (SNPs) and
q = 20 quantified IgG1 glycan (glycopeptide) abundances, measured with nano-LC-
ESI-MS, for N = 885 participants in the CROATIA Korcula cohort [6]. Both data
sets contain highly correlated measurements and are heterogeneous (as they differ in
scale, distribution and measurement error).

Our aim is to investigate how IgG1 glycans relate to genetic variation by deter-
mining the statistical overlap between IgG1 glycan data and genetic data, as in Eq.
(3.3.1). To this end, we use the OmicsPLS package to obtain estimates of the amount
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of joint variation and estimate the contribution of the genetic and IgG1 glycan mea-
surements to this joint variation.

The SNPs were summarized by taking, for each gene (in the UCSC hg18 database),
all SNPs within 50 kilobases from that gene and applying Principal Components
Analysis. For each gene, the set of corresponding SNPs were replaced by as many
principal components as needed to explain at least 80% of this set of SNPs. This
provided a new data set with one or several variables, which we denote as Genetic
PCs, per gene. This ‘Genetic PCs’ data set contains 37819 variables and is referred
to as X. The glycan measurements were log-transformed, batch-corrected [4] and
quantile-normalized [1]. The resulting data matrix is referred to as Y.

Scree plots of XXT, YTY and XTY are shown in Figure 3.2. By identifying an
elbow in these scree plots, the number of joint and specific components are determined.
Based on the plots, 5 joint and 5 genetic-specific components were retained. Note that
no glycan-specific parts were detected. The O2PLS fit took around 5 seconds.

Regarding the five IgG1 glycan joint components, they account for 96% of the to-
tal IgG1 glycan variation. The amount of IgG1 variation that can be predicted with
the Genetic PCs is 70%. The loading values of each IgG1 glycan variable are depicted
in Figure 3.3. The first joint component is proportional to the ‘average’ IgG1 glycan,
as all glycans get approximately the same loading value. The second joint compo-
nent distinguishes fucosylated (negative loading values) and non-fucosylated (mostly
positive loading values) IgG1 glycans. This component is referred to as the ‘fucosy-
lation’ component. The third joint component involves especially non-galactosylated
(negative loading values) and di-galactosylated (positive loading values) IgG1l gly-
cans, while mono-galactosylated glycans have estimated loading values around zero.
This component is referred to as the ‘galactosylation’ component. In the fourth joint
component, GINS and G2NS glycans have high loading values. The fifth joint compo-
nent distinguishes, apart from GINS and G2NS, glycans for which bisecting GlcNAc
is present (negative loading values) or absent (positive loading values).

Regarding the five joint components in the Genetic PCs data set, they account for
0.8% of the total variation. For the specific parts, this percentage is 1.9%. The top
five genes in each Genetic PCs joint component are shown in Table 3.1. In the first
Genetic PCs joint component, the gene with the highest loading value is DNAJC10.
The corresponding protein is involved in recognizing and degrading misfolded glyco-
proteins. This first joint component corresponds to the ‘average’ glycan pattern in the
first glycan joint component. The top gene in the second joint component, which cor-
responds to the ‘fucosylation’ component, is FUTS. It encodes a fucosyltransferase
enzyme that catalyzes the transfer of fucose to a glycopeptide. In the third joint
component, which corresponds to the ‘galactosylation’ component, the gene AKAP9
has second highest loading value. It encodes an A-kinase anchor protein, which is
involved in maintaining the integrity of the Golgi apparatus. Note that in the Golgi
apparatus, glycosylation (in particular galactosylation) takes place. In the fourth and
fifth component, no directly relevant genes were found. More research is needed to
further elucidate these relationships.

For comparison purposes, r.jive was also applied to the data. However, the algo-
rithm did not converge after 500 iterations (and 3000 seconds). We will investigate
possible reasons in the simulation study.



50 INTEGRATING OMICS DATASETS WITH THE OMICSPLS PACKAGE

3.4.2 Simulation study

A simulation study is conducted to compare r.jive and OmicsPLS in terms of accuracy
and speed. To gain insight into the robustness of r.jive, possible reasons for the lack
of convergence of r.jive are investigated. The simulated data follow a model that
satisfies the assumptions of both O2PLS and JIVE:

X=TWT +Ty, Py, +F,

T (3.1)

Y =UC"+Ux,Px, +F,
where U = T. Note that in the O2PLS formulation, By = I, and H = 0. In the
first scenario, we take N = 500, p = ¢ = 100, n = 2, nx = 3 and ny = 1. In the
second scenario, we consider p = ¢ = 10%. Elements of W, C, Py and Px, are drawn
independently from a standard normal distribution. The JIVE constraints are applied
by orthogonalizing each column in both joint and specific parts with respect to each
other. Elements of T', Ty, and Ux, are drawn independently from a standard normal
distribution. Noise, represented by E and F', is added to X and Y to account for
about 10% of the total variation. For both r.jive and OmicsPLS, loading matrices are
extracted. To evaluate estimation accuracy, the absolute value of the inner product
between corresponding columns are calculated. Here, higher values represent lower
estimation errors. For each scenario, we generated 1000 replicates.

To investigate the lack of convergence of r.jive in the data analysis, two additional
scenarios are considered. In the first additional scenario, elements in U have a stan-
dard deviation of 10, i.e., U = 107. In the second additional scenario, elements in
the specific parts will be normally distributed with a standard deviation of 10. The
dimensions and sample size are taken as above. Note that both scenarios represent an
‘imbalance’ in the amount of variation per part. Here, r.jive is considered converged if
it needs less than 500 steps. In these additional scenarios, we generated 100 replicates.

In Table 3.2, median inner product values, together with Median Absolute Devi-
ations (MAD) are shown for p = ¢ = 100. It can be seen that for balanced scenario
settings, OmicsPLS performs as good as r.jive in terms of median inner product. The
results for p = ¢ = 10* were very similar to these results (not shown).

In Table 3.3, elapsed time and convergence ratios are shown. OmicsPLS runs
about 3500 times faster in the first scenario (p = ¢ = 100) and 7 times faster in the
second (p = ¢ = 10%) scenario. In both additional scenarios in which there is an
imbalance in the amount of variation between the joint and specific parts, r.jive failed
to converge in the majority of runs. In case U = 107, r.jive did not converge in more
than 90% of the runs. In case the specific parts contain more variation, r.jive failed to
converge in 74 and 63 out of 100 runs, for p = ¢ = 100 and p = ¢ = 10%, respectively.

3.5 Discussion

In this article, we introduced the OmicsPLS package for integration of two (omics)
data sets. We evaluated its performance with a simulation study and demonstrated
it using genetic and IgG1 glycomic data. Regarding the data analysis, the proportion
of joint variation in the Genetic PCs data set was 0.8%. This proportion is expected
to be small since it is not likely that a large fraction of genetic variation (in particular
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SNPs) is related to IgG1 glycosylation. In the joint components, several genes were
found that might play a role in the genetic regulation of IgG1 glycosylation. Some of
these genes are known to be directly involved (e.g., FUTS8), while others (DNAJC10
and AKAP9) are localized to cell compartments where the majority of glycosylation
takes place (the endoplasmic reticulum and Golgi Apparatus). However, much is still
unknown about the genetic regulation of (IgG) glycosylation.

Additionally, we considered JIVE for this type of data, but without success: the
algorithm did not converge. A potential cause for this lack of convergence is the
different data-specific characteristics of the two data sets. In particular, the dimen-
sionality and amount of variation differ. Therefore, the JIVE assumption U = T
might not be reasonable. This is confirmed by our simulation: the r.jive algorithm is
not robust against an ‘imbalance’ in the amount of variation between the two joint
parts, or between the joint and specific parts. In particular, when U = 107, r.jive
did not converge in more than 90% of the replicates. This suggests that r.jive might
be inappropriate for analyzing heterogeneous data sets (in which data-specific char-
acteristics differ across data sets). Note that in DISCO-SCA the same assumption
(U = T) is made, therefore we expect a suboptimal performance of this method as
well when analyzing heterogeneous data.

As part of a future update of the OmicsPLS software package, we intend to deal
with missing data. To impute missing values and simultaneously estimate O2PLS
components, the OmicsPLS algorithm can be extended [21]. The imputation step
can also be performed prior to analysis. For multiple omics data, Ensemble Regres-
sion Imputation [8] and Multiple Factor Analysis imputation [19] have been proposed.
Note that, as with all imputation methods, uncertainty due to missing data should be
assessed and presented to the user. A probabilistic framework for O2PLS would facil-
itate imputation and simultaneously addresses additional uncertainty due to missing
data.

An important extension of OmicsPLS involves obtaining standard errors for the
estimates. To this end, bootstrap approaches, similar to those found in PLS literature,
can be applied [20]. A drawback of using resampling methods is the computational
burden, especially with high-dimensional data sets. To avoid such procedures, a prob-
abilistic framework for O2PLS can be used to directly calculate asymptotic standard
erTors.

Interpretability of the OmicsPLS output can be increased by extending the algo-
rithm to produce sparse estimates. This extension can be implemented by considering
Sparse PLS [7] or by considering a probabilistic framework for O2PLS and obtaining
penalized maximum likelihood estimates.

We are currently investigating the possibilities of Probabilistic O2PLS for data
integration, which facilitates multiple imputation and statistical inference, such as
calculation of asymptotic standard errors. By penalizing the likelihood, sparse esti-
mates can be obtained.

As OmicsPLS is open-source, it is straightforward to extend the current imple-
mentation to handle more complex situations. For example, in the GitHub repository,
several ‘branches’ can be initialized in which new functionalities can be developed.
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3.6 Conclusion

We propose OmicsPLS, an open-source and freely available R package for robust
integration of heterogeneous data with O2PLS. It includes functions to determine
the number of components, fit, and inspect results. For high-dimensional data, a
memory-efficient implementation is used.

3.7 Tables

Table 3.1: Top 5 genes and loading values of the Genetic-Glycan joint prin-
cipal components. The results are displayed per component. Only the first three
components are shown.

Component 1:‘average’ glycan Component 2:‘fucosylation’

Gene Symbol Loading value Gene Symbol Loading value

DNAJC10 -0.0929 FUTS8 -0.0844
ARID3B -0.0880 LGALSS -0.0781
ZNF502 0.0756 LDB3 0.0766
TBC1D13 0.0611 ARID3B -0.0701
ZC2HC1C 0.0601 LCE2D -0.0677

Component 3:‘galactosylation’

Gene Symbol Loading value

MTO1 0.0875
AKAP9 -0.0627
MRPL33 -0.0622
MYLPF 0.0562

POLR2F 0.0554
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Table 3.2: Simulation results for OmicsPLS and r.jive: inner products. These
results are for p = ¢ = 100. 1000 replicates were generated. Median (MAD) values of
(the absolute value of) inner products between true and estimated loading vectors for
O2PLS and JIVE. Higher values indicate better agreement with true loadings. The
results are very similar for high-dimensional data (p = ¢ = 10%).

OmicsPLS r.jive
X joint 0.88 (0.09) 0.88 (0.09)
X specific 0.79 (0.08) 0.78 (0.09)
Y joint 0.85 (0.08) 0.85 (0.08)
Y specific 0.93 (0.013) 0.92 (0.014)

Table 3.3: Performance comparison of OmicsPLS and r.jive w.r.t. median
(MAD) total elapsed time in seconds across 1000 replicates, and conver-
gence across 100 runs. For the convergence, the heterogeneity scenario U = 10T
was used.

CPU time (sec) Convergence (%)
Dimensions OmicsPLS r.jive OmicsPLS r.jive

Low (p=q=100) | 0.04 (0.007) 14 (2.8) 100 9
High (p=¢=10%) | 18(4.1) 132 (16) 100 8
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3.8 Figures

Figure 3.1: Workflow of the OmicsPLS package. Firstly, each data set is pre-
processed. Secondly, O2PLS is used to decompose each data set in joint, specific and
residual parts. Finally, the output is visualized and interpreted.
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Figure 3.2: Eigenvalues of the covariance matrices of the genetic and glycan
data. The relative contribution of each eigenvalue towards the sum of all eigenvalues
is shown for the Genetic PCs and IgG1 glycan data, and their covariance, respectively.
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Figure 3.3: Genetic-Glycan joint principal components obtained with the
OmicsPLS R-package. Loading values of each IgG1 glycan variable are depicted
per component. The colors and shapes represent the biological grouping of the gly-

cans. In the last row and column, a graphical representation of the structure of a
particular glycan is shown.
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