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2.1 Abstract

Rapid computational and technological developments made large amounts of omics
data available in different biological levels. It is becoming clear that simultaneous data
analysis methods are needed for better interpretation and understanding of the un-
derlying systems biology. Different methods have been proposed for this task, among
them Partial Least Squares (PLS) related methods. To also deal with orthogonal
variation, systematic variation in the data unrelated to one another, we consider the
Two-way Orthogonal PLS (O2PLS): an integrative data analysis method which is
capable of modeling systematic variation, while providing more parsimonious models
aiding interpretation.

A simulation study to assess the performance of O2PLS showed positive results
in both low and higher dimensions. More noise (50% of the data) only affected the
systematic part estimates. A data analysis was conducted using data on metabol-
omics and transcriptomics from a large Finnish cohort (DILGOM). A previous se-
quential study, using the same data, showed significant correlations between the
Lipo-Leukocyte (LL) module and lipoprotein metabolites. The O2PLS results were in
agreement with these findings, identifying almost the same set of co-varying variables.
Moreover, our integrative approach identified other associative genes and metabolites,
while taking into account systematic variation in the data. Including orthogonal com-
ponents enhanced overall fit, but the orthogonal variation was difficult to interpret.

Simulations showed that the O2PLS estimates were close to the true parameters in
both low and higher dimensions. In the presence of more noise (50%), the orthogonal
part estimates could not distinguish well between joint and unique variation. The
joint estimates were not systematically affected. Simultaneous analysis with O2PLS
on metabolome and transcriptome data showed that the LL module, together with
VLDL and HDL metabolites, were important for the metabolomic and transcriptomic
relation. This is in agreement with an earlier study. In addition more gene expression
and metabolites are identified being important for the joint covariation.

2.2 Introduction

With rapid and continuous technological improvements large amounts of omics data
from different levels (genome, transcriptome, proteome and metabolome) are now
available. In an integrative systems biology approach, it is becoming increasingly clear
that the integration of omics data will provide a better understanding of biological
systems. Towards this end, the simultaneous analysis of two data sets is an important
task to better understand the relationships between different biological functional
levels.

Statistically, integrative approaches face theoretical and computational issues: the
typical “large p, small n” problem as in high dimensional data. Some statistical
methods require the inverse of matrices; often they are singular, this can be dealt with
by penalization or dimension reduction. Interpretation of the results of the analysis
is yet another major challenge. In terms of integrating two data sets the following
questions need to be answered: (i) which variables in one data set are related to those
in another data set, (ii) which variables are not related, but still important, in each



2.2 Introduction 17

of the data sets, and (iii) which variables are relevant, i.e. provide more insight into
the biological systems?

A statistical solution is to perform variable selection while combining the two types
of variables in the modeled integration process: for example, a regularized version of
canonical correlation analysis (CCA) [3], and a variant of partial least squares (PLS)
regression [18] called sparse PLS [6] to simultaneously integrate and select variables
using lasso penalization [13].

The integration and the variable selection of two different types of omics data
sets is nowadays an active research subject. For example, Inouye et al [4] assessed
metabonomic, transcriptomic, and genomic variation for a large population-based co-
hort from the capital region of Finland. For an overview of the data integration and
the different analyses in the study we refer to Figure 1 of their paper [4]. In this work
we focus on the first part of data integration of the paper: ‘metabolite associations
of gene modules’. First they identified the sets of highly correlated genes, such as
the lipid-leukocyte (LL) module, using network analysis of the transcriptomic data.
Next a Spearman’s rank correlation was used to identify fine-scale detail of poten-
tially causative/reactive effects between the LL module expression profile (defined by
its first principal component) and the individual metabolites. The motivation of the
present paper lies in this sequential analysis procedure. In other areas of biostatis-
tics, simultaneous joint modeling of the variables is known to be more efficient than
analyzing data sequentially: network construction, identifying the latent variable or
module, and correlating this identified module with the individual metabolites.

Model estimates for integrative parts in the data are often not representing the
true underlying biological relation when systematic variation unrelated to the outcome
is present, the estimates are biased due to this variation. It has been demonstrated
that PLS suffers from this [16]. To deal with this, extensions of PLS have been devel-
oped. The asymmetric Orthogonal PLS (OPLS) [15], tries to correct for systematic
variation in the design matrix before presenting the data to PLS. The main advantage
is an easier interpretation of the model: the model estimates focus more on the pre-
dictive variation in the design matrix. In order to integrate two data sets, we need a
symmetric approach of OPLS. The Two-way Orthogonal PLS (O2PLS) model [16] is
a symmetric method, modeling both predictive and systematic variation. The model
decomposes the variation present in two data matrices, for example two omics data
matrices X and Y , into three parts. In the first joint part, underlying latent variables
in both data matrices are assumed to induce the relationship between X and Y . This
joint part can be seen as a representation of the integration of the two data sets. The
second part is called the orthogonal part. Underlying latent variables, independent
from those in the joint part, are assumed to be responsible for the unique systematic
variation in X (Y ), which does not contribute to the prediction of Y (X). The third
part indicates the noise part, and captures the unsystematic variation in the data.

The aim of this paper is twofold. Our first aim is to jointly model metabolomics
and transcriptomics data, in the light of previous study by Inouye et al [4], to gain
a better insight in the interplay between the two omics by decomposing the data
in three parts. We extract latent variables for the joint and orthogonal part, and
summarize relevant information by looking at the amount of variation captured by
these latent variables. Our second aim is to investigate the performance of the O2PLS
estimates, in terms of accuracy, with a simulation study under different conditions.
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We will look at the accuracy in terms of bias, using settings similar to those present
in real metabolomics and transcriptomics data.

Integrating metabolomics and transcriptomics using O2PLS is not new. A small
scale integration, on 12 aspen grown in a controlled environment, of 453 metabolomic
variables and 27648 transcriptomic data has been performed in [2]. Our analysis is in
a larger scale, namely human epidemiological study, consisting of 466 participants. In
the metabolomics data set (containing 137 metabolites) we have a classical situation
of more participants than variables; the transcriptomics data contains more variables
(35419) than participants.

This paper is organized as follows: the Methods section discusses the symmetric
integration method O2PLS. A simulation study is set up to assess its performance.
In the Results section the simulation results are discussed, furthermore metabolomics
and transcriptomics data are analyzed with O2PLS. The Discussion section gives
an interpretation of the results from the simulations and data analysis, as well as
commenting on the O2PLS model and arguing for a probabilistic approach.

2.3 Methods

2.3.1 Previous methods

The Partial Least Squares (PLS) method was introduced by Wold [18] to project a
centered design matrix X to a lower dimensional latent variable space:

X = TPT + E. (2.1)

Here T contains the lower dimensional data. The matrix P contains the directions
in the X space which optimizes the covariance TTY (where Y has zero mean). The
matrix TPT is to be seen as a ‘best’ approximation of X based on the covariance with
Y . The proof for this is deferred to a separate paragraph later on in this section. The
matrix E contains the residuals.

The PLS method is a popular method in chemometrics, and from this area an
extension was proposed to deal with orthogonal variation: variation important for X
but unrelated to X. This method was named Orthogonal PLS [15]:

X = T̃ P̃T + T⊥P
T
⊥ + Ẽ. (2.2)

Again T̃ P̃T represents a best approximation based on the covariance with Y , but the
direction vectors in P̃ are corrected for (i.e. do not contain directions of) orthogonal
variation. The orthogonal variation in X is approximated with T⊥P

T
⊥ .

Both PLS and OPLS deal with outcome vectors. While generalizations can be
made to make them suitable for an outcome matrix, they focus on regressing Y on X,
but not simultaneously the other way around. This symmetric approach is appropriate
for integrating multiple omics data, while also prediction in both ways can be done.

2.3.2 The O2PLS model

The Two-way Orthogonal PLS (O2PLS) model [16] is a symmetric method capable
of dealing with systematic variation. It is a generalization of PLS, correcting for
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orthogonal variation in both data matrices X and Y . The model decomposes the
variation in the two data matrices into a joint, orthogonal and noise part. The model
assumes that some underlying unobservable latent variables are responsible for the
variation in the joint and orthogonal part. Define the number of joint latent variables
as a. The number of X-components that are orthogonal to Y is denoted by nx. The
number of Y -components that are orthogonal to X is denoted by ny. Let X be N ×p
and Y be N × q. The O2PLS model can be seen as a factor analysis model:

X = TWT + TY⊥P
T
Y⊥ + E

Y = UCT + UX⊥P
T
X⊥ + F

(2.3)

The inner relations for approximating Y with X and vice versa are

U = TBT +H

T = UBU + H̃
(2.4)

In this model the scores are

T (N × a), TY⊥(N × nx), U(N × a), UX⊥(N × ny). (2.5)

They represent a projection of the observed data X and Y to a lower dimensional
‘optimal’ subspace. The loadings are

W (p× a), C(p× a), PY⊥(p× nx), PX⊥(p× ny), (2.6)

and they assign ‘importance’ to each X and Y variable to the corresponding subspace.
The noise matrices are

E(N × p), F (N × q), H(N × a), H ′(N × a). (2.7)

They capture all ‘left over’ variation not captured by the scores.
To approximate Y with X (or X with Y ), we need the corresponding inner relation

defined via BT (or BU ) in (2.4). A description of the O2PLS algorithm can be found
in Trygg’s paper [16]. The inner relation can be recognized as being an ordinary linear
model.

The optimal number of latent variables (a, nX , nY ) are in the ideal situation
known a priori. In practice this is rare, and a cross-validation (CV) procedure is
often used. However, given the large number of variables in the transcriptome and
the three dimensional space in which optimization takes place, the CV procedure
quickly becomes cumbersome. Hence an alternative method is proposed: we base our
cross validation criterion partially on the mean squared error prediction, and moreover
on the coefficients of determination (R2) of the inner relation fit (2.4), since correcting
for orthogonal variation usually improves the fit of the inner relation regression (2.4)
up to a certain number of orthogonal components. The procedure can be summarized
as follows:

1. We choose a vector of values for the number of joint components a.

2. For fixed a we choose the number of orthogonal components nX and nY that
maximize the sum of the two coefficients of determination (R2) of the inner
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relation regression (2.4). Mathematically: we search in a two dimensional grid
the integers nX and nY that maximize

(nX , nY ) 7→ 1−
∑

(HUT )2
i,j∑

U2
i,j

+ 1−
∑

(HTU )2
i,j∑

T 2
i,j

. (2.8)

We also consider the value zero for the number of orthogonal parts.

3. Two Mean Squared Errors (MSE) of Prediction -concerning
∑

(Ŷ − Y )2 and∑
(X̂ −X)2 - are calculated with 10-fold cross-validation to determine a with

the previously obtained nX and nY fixed.

4. We go back to step 2 using for a the next element in the vector of values as
chosen in step 1.

The quality of the O2PLS estimates depends on the accuracy of the estimated
covariance matrix S = XTY . Suppose X = E and Y = F , so X and Y are only
noise. The covariance matrix S can be decomposed with SVD: S = WDCT, where
W and C are unit norm. It may be that we will observe a ‘large’ positive loading
value, since the norm of the loading vectors are forced to be one, and may mistakenly
conclude that X and Y are related. However since X and Y are independent the
projected data T and U are little correlated (due to noisy variation), thus the inner
relation parameters BT and BU will have a small magnitude.

Orthogonal correction captures variation unrelated to the joint part. The resid-
ual data is hoped to correlate stronger, thus providing a better inner relation fit.
Especially with a high number of variables, this may improve the fit (and thus inter-
pretability of the obtained loadings) substantially. Estimation accuracy will not likely
be improved by correcting for orthogonal variation, since we do not add information
concerning the relation between X and Y . However the exact statistical implications
of orthogonality correction on the joint part estimators is still an unclear matter.

2.3.3 Proof of Optimality

To make clear why the singular value decomposition is important for O2PLS, some
optimality properties are proven.

The joint part maximizes the covariance between the joint scores u = Y c and
t = Xw:

uTt = cTY TXw. (2.9)

The maximization is over the set {w ∈ Rp, c ∈ Rq : wTw = cTc = 1}. Suppose
CYDW

T
X is a singular value decomposition of Y TX, where CY is q × q, D is q × p

and WX is p× p. Then the objective function becomes

(c, w) 7→ cTCYDW
T
Xw. (2.10)

Since CY has orthonormal columns, it is a basis for Rq. This implies that c is a linear
combination of the columns of CY . We can thus write for α = (α1, . . . , αq)T

c = CY α, αTα = 1, (2.11)
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where the latter identity holds since we require cTc = 1. The same holds for w =
WXβ, with β = (β1, . . . , βp) and βTβ = 1. Now, using the orthogonality of CY and
WX , we can see that

cTCYDW
T
Xw = αTDβ =

p∑
j=1

αjβjdj,j , (2.12)

since di,j = 0 for all i 6= j, where i = 1, . . . , q and j = 1, . . . , p. Suppose without loss
of generality that p ≤ q. We can increase the dimensionality of β from p to q, by
adding q − p zeros without changing the unit norm property:

β̃ = [βT, 0, . . . , 0]T. (2.13)

Note that if q were to be smaller than p then we can use the same argument for α.
Cauchy-Schwartz tells us that

p∑
j=1

αjβj =
q∑
i=1

αiβ̃i

= αTβ̃

≤ ||α|| ||β̃||
= 1

(2.14)

The maximum of the covariance (2.9) is attained only if α1 = β1 = ±1. In that case all
summands in (2.12) are zero except when i = 1, yielding the maximum to be the first
(and largest) singular value. The first singular vectors c = CY ;1 and w = WX;1 are
the maximizers. Note that c = −CY ;1 and w = −WX;1 would also yield equivalently
the maximum, this is a minor identifiability problem which does not alter the O2PLS
model fit. To get the second direction vectors, we optimize the objective function
(2.9) over the unit norm vectors c and w; we require also that cTCY ;1 = wTWX;1 = 0.
This last restriction, the orthogonality constraint, on c and w imply that α1 = β1 = 0
in (2.12). The maximal covariance is then attained only if |α2| = |β2| = 1, yielding
c and w to be the second singular vectors CY ;2 and WX;2. Continuing this argument
we find the singular vectors in CY and WX to be the maximizers of (2.9) satisfying
the unit norm and orthogonality constraint. If we have a set of indices I for which
di,i = dj,j for all i, j ∈ I, we choose c = CY ;min(I) and w = WX;min(I) as maximizer. If
we have more of those sets, we choose the maximizer in each set in the same fashion.

The orthogonal components are obtained by finding maximal ‘overlap’ between
the uncorrected scores T and the residuals E = X − TWT. An orthogonal score
vector is defined as tY⊥ := EwY⊥ where wT

Y⊥wY⊥ = 1. We want to maximize the
norm of the covariance between T and tY⊥:

max
tY⊥
||TTtY⊥||2. (2.15)

This can be rewritten as
max
wY⊥

wT
Y⊥E

TTTTEwY⊥. (2.16)
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To incorporate the constraints wT
Y⊥wY⊥ = 1, we introduce a Lagrange multiplier λ

we and take the derivative with respect to wY⊥. We get

ETTTTEwY⊥ = λwY⊥. (2.17)

The maximum is obtained if wY⊥ is the eigenvector of ETTTTE corresponding to
the largest eigenvalue. This is the first left-singular vector of ETT . Together with
the constraint that WY⊥ should have orthonormal columns, we find WY⊥ to be the
matrix with left-singular vectors of ETT . The orthogonal scores can be constructed
via TY⊥ = EWY⊥. The same derivation can be used to find that the maximal
covariance between UX⊥ := FPX⊥ and U , where F = Y − UCT, is obtained if CX⊥
is the collection of left-singular vectors of FTU .

2.3.4 Simulation Study

A simulation study was performed to investigate the performance of the O2PLS load-
ing estimates, W , C, PY⊥ and PX⊥. Although Trygg et al. included a simulation
study in their paper [16], the exact simulation study design was not clearly presented.
Therefore we could not reproduce their simulation results, and the parameters for our
simulation study were arbitrarily chosen.

The loading values were chosen from a normal probability density function, this
reflected the desired property that some variables are important and some not. We
designed two dimensionality conditions for the data: the “low” dimensional design
stands for p = 100 variables in X and q = 50 variables in Y . In the “high” dimensional
setting X contains p = 500 variables and Y contains q = 250 variables. The scores
and noise components were randomly drawn from a normal distribution with zero
mean. The variances of the scores and noise were chosen so that they would satisfy a
noise level condition: the noise level α, the relative amount of noisy variation in the
data, could take two values; the value α = 0.05 corresponds to “little” noise setting,
noisy variation accounted for 5% of the total variation. The value α = 0.5 mimics
“much” noise setting, in this case noise accounted for 50% of the total variation. More
precise, the variances σ2

E , σ2
F and σ2

H are defined as follows:

σ2
E = α

1− α
aσ2

T + nXσ
2
TY⊥

p
, (2.18)

σ2
H = α

1− αB
2
Tσ

2
T , (2.19)

σ2
F = α

1− α
a(B2

Tσ
2
T + σ2

H) + nY σ
2
UX⊥

q
. (2.20)

The number of samples were N = 500. As a large number of components is not
often seen in practice, we chose the number of joint components to be a = 1. The same
holds for the number of orthogonal components: nX = 1, nY = 1. Table 2.1 shows the
chosen parameter values in each case. The number of simulation replicates was 1000.
We corrected the ‘sign’ of all estimated loading vectors by multiplying the estimated
loading vectors with the sign of the crossproduct with the corresponding true loading
vectors, for example: W simul

·,j = sign(WT
·,jŴ·,j) Ŵ·,j for all joint components j =

1, . . . , a.
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Implementation of the O2PLS algorithm, calculations and analyses were con-
ducted in R [10].

2.3.5 Availability of supporting data

The metabonomic measures are available as Supplementary Table 4 in [4]. The raw
and normalized gene expression intensities have been deposited in ArrayExpress which
can be found at:
http://www.ebi.ac.uk/arrayexpress/
under the accession number E-TABM-1036. ArrayExpress is hosted by the European
Bioinformatics Institute.

2.4 Results

2.4.1 Results of Simulation Study

For each loading parameter we obtained 1000 estimates. Boxplots for the joint (left
column) and orthogonal (right column) part estimates in X (upper row) and Y (lower
row) in the “little” noise case (α = 0.05) are shown in Figures 2.1 and 2.2.

Firstly in both “low”(p = 100, q = 50) and “higher”(p = 500, q = 250) dimensions,
the accuracy of the estimates were very similar, as can be seen from the location and
range of the boxplots. Secondly at the variables with a high joint loading value but low
orthogonal loading value, the orthogonal part estimates followed the true orthogonal
loading profiles. The joint part estimates also followed the true joint loading profiles
regardless of the value of the orthogonal loadings at those variables. Thirdly, the
difference between the estimates for the Xand Y components was minor. There was
slightly more variation present in the X data at variables with a low loading value.

Boxplots of the 1000 simulations for the “much” noise case (α = 0.5) are shown in
Figures 2.3 and 2.4. In both “low”(p = 100, q = 50) and “higher”(p = 500, q = 250)
dimensions the estimates performed similar. The joint part estimates still followed
the true loading profile, although the boxplots showed more variation across the 1000
estimates. The orthogonal part estimates were less accurate than the orthogonal part
estimates in the “low” noise case. Especially at the variables with a high joint loading
value, the orthogonal part estimates showed a high variation. The orthogonal part
estimates in Y were visibly higher in at least 75% of the simulation replicates. When
simulating similar sizes as in our data example (we took p = 6000 and q = 140 and
considered α = 0.5), the O2PLS method showed the same behavior (not shown).

2.4.2 Application to DILGOM data

Samples on metabolome (137 variables) and transcriptome (35419 variables) were
collected as part of the ‘Dietary, Lifestyle, and Genetic determinants of Obesity and
Metabolic syndrome’ (DILGOM) study [4]. Study participants were aged 25 to 74
years, median age was 53, and were sampled from the region of Helsinki, Finland.
A total of 506 participants were present in both studies, of which 232 male and
274 female. In this analysis, we excluded participants whenever they had a missing
value for one or more measurements in either the metabolomics or transcriptomics
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data. This resulted in 40 omitted participants, the used data thus finally consisted of
N = 466 participants.

The metabolomics data were derived from nuclear magnetic resonance (1H NMR),
providing absolute quantitative measurements on the serum metabolome. The trans-
criptomics data were derived from averaged gene expression counts on technical repli-
cates. The raw counts were quantile normalized at strip level. For more detailed info,
see [4, 5]. In transcriptomics filters are proposed to reduce the amount of uninfor-
mative (low variance and expression level) variables, which are often interpreted as
containing noise. The original study [4] used a filter retaining only the 10% highest ex-
pression levels, and considered 3520 gene expression variables for analysis. To model
the orthogonal noise components we were less stringent and extracted the top 25% of
the absolute values of the gene expressions, and we intersected this set of expressions
with the set containing the 25% expressions with the largest inter-quantile range con-
form [7]. The reduced transcriptomics data contained 6272 variables. Results of the
analysis with all 35419 variables were very similar (not shown).

A Box-Cox transformation [1] with parameter 1
4 was performed for the metabol-

omics data, to reduce skewness. The ‘best’ choice for the Box-Cox parameter has
been investigated by many, we observed from the first four central moments that 1

4
was sufficient to continue the data analysis. Inouye et al [4] also applied a Box-Cox
transformation per variable, but the powers of the transformations were not stated.
A scaling here would amplify the effect of noise on the estimates, so the data were
only mean centered.

To give an overall impression, the pairwise Pearson correlation coefficients between
the metabolite variables are depicted in a heatmap in Figure 2.5. There was a cluster
of positively correlated variables present within the various lipoproteins (VLDL, LDL,
IDL, HDL) subgroups. The VLDL subgroup and the HDL subgroup had negative
correlation. Due to the large number of variables in the transcriptome data, a heatmap
of the correlations the variables is omitted.

We continued our data analysis with the integration of metabolomics (X) and
transcriptomics (Y ), using O2PLS. To determine the optimal number of components,
we utilized the proposed alternative cross-validation procedure as discussed in Section
Methods, initializing with a = 1, 2, . . . , 10. The optimal number of model components
were found a = 1, nX = 1, nY = 8. The modeled variations per component is shown
in Table 2.2. In terms of explained variances (R2) we observed the following:

• The variation in X and Y explained by the model was 58% and 51% respectively.
The rest of the variation was estimated as noise.

• The joint correlated part in X explained 46% of the variation in X. Further
1% of the total variation in Y was explained by the joint correlated part in Y .
This means that 46% of X and 1% of Y could be explained with one another.

• Of the 46%, Y explained 27% of X. This could be seen relatively as 57% of the
joint variation in X. Furthermore 0.8% of Y was explained by X, which was
58% of the explainable variation in Y .

The sum of squares of all scores in the fitted model are given in Table 2.3. The
orthogonal part in Y explains about half of the variation in Y , while half of the
variation in X is explained by the joint part. This is due to the larger number of
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components in the orthogonal part in Y . About 50% of the total variation is due to
noise.

Next in order to evaluate the quality of predictions of Y with X, a scatter plot of
U versus T is given in Figure 2.6. The slope of the regression line equaled BT = 0.84.
The R2 of the regression of U on T was 0.47.

In the light of Inouye’s results [4], the role of the LL module (a cluster of tightly
correlated co-expressed genes) in metabolic variation was analyzed with O2PLS. The
gene expression labels and corresponding genes are shown in Table 2.4. Figure 2.7
shows the estimated joint loading values for each metabolite (overall mean 0.0363).
The VLDL subgroup together with MOBCH2-MOBCH3 had large estimated loadings
(mean 0.116, max 0.314). The HDL subgroup was estimated to have moderate loading
values (mean -0.0439, min -0.121), note that the loading values were negative. This
coincides with the negative correlation between VLDL and HDL. The magnitude of
the loading values for the other lipoprotein subgroups were small, and approximately
proportional to their size (mean 0.0171, max 0.0763). In Figure 2.8 the estimated
joint loadings for the gene expression variables are shown (overall mean -0.000350).
There are some variables noticeable for their estimated loading size: For the top
10 gene expressions the ID label was shown next to their estimates in black. The
LL module gene expressions were labeled in the plot using a red color. For LL
module gene expressions in the top 10, the color green was used. The labels and
corresponding genes are shown in Table 2.5. The two gene expressions with the
highest absolute loading values were also in the LL module (loading values -0.180 and
-0.150 respectively).

One orthogonal component was identified in the metabolomic data. The loading
vector, which is normed to one, is shown in Figure 2.9. The metabolomic orthogonal
loading values are less diverse than the joint loading values. The HDL subgroup and
amino acids got small absolute loading values, the other metabolites had an equal
share in the orthogonal variation. There were eight orthogonal components identi-
fied in the transcriptomics data. For comparison purposes, the loading vectors were
orthonormalized. The eight loading vectors, together with the variation per compo-
nent, are plotted in Figure 2.10. Note that different loading values across components
cannot directly be compared, since the variations are not equal. The first loading
vectors show little structure. In the last plot we can see few large peaks, indicating
that only some variables are of importance in that component. The variation in the
first component is approximately eleven times larger than the variation in the last
component.

2.5 Discussion

The integrative systems biology approach is becoming increasingly popular and in-
tegration of omics data will provide more insight into the biological systems. The
PLS method is widely known in chemometrics and provides data integration and si-
multaneous modeling, but as shown in [16] the estimates are sensitive to structural
noise. While OPLS [15] provides correction for such orthogonal variation, it is ori-
ented towards predicting an outcome and thus lacks symmetry. We considered here
the O2PLS method [16]; it is a symmetric data integration method, accounting for
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structural noise in both matrices. We particularly aimed to integrate two omics data
sets for embedding a high dimensional data set in terms low dimensional ‘latent’
variables. To extract relevant information in the data sets, we decompose the two
data sets into three parts: joint part in which variables in one data set are related to
those in another data set; orthogonal part in which variables are not related, but still
important, in each of the data sets; and noise. Simultaneously we searched for the
relevant variables in each part.

Several approaches similar to O2PLS are available. To handle more than two
data sets, a generalization of O2PLS has been proposed in [9], called OnPLS. Meth-
ods to deal with the general idea of decomposing data sets in a joint and systematic
part have been proposed. They differ in methodology and estimation. For exam-
ple, DISCO-SCA [12] can handle multiple data sets and may perform better when
prior information about the configuration of the joint and orthogonal components is
available. An essential assumption in this model is that the components scores or
loadings in each data set are exactly the same. Another method providing data de-
composition in a joint and orthogonal part is JIVE [8], which can also handle more
than two data sets. JIVE may be used if the common source underlying all data sets
are similar/homogeneous. One should note that that JIVE restricts the joint part to
be orthogonal to the systematic parts. Though it may be argued that the joint and
systematic loadings in the population are orthogonal, when obtaining a sample from
this population the joint and systematic loadings will typically not be orthogonal.
This orthogonality of the joint and systematic loadings is not essential in O2PLS.
More research is needed to assess the impact of these methods.

A simulation study is conducted to assess the accuracy of the O2PLS estimates,
see Figures 2.1 to 2.4. The estimates were accurate if “little” noise was present
(proportion of noise in the data is α = 0.05). The model can distinguish well between
joint and orthogonal variation. This is the case in both “low”(p = 100, q = 50) and
“higher”(p = 500, q = 250) dimensional simulated data. The presence of “much”
noise (α = 0.5) did not cause a substantial decrease in accuracy of the joint part
estimates. They followed the true underlying loading profile well. The orthogonal
part estimates were affected by more noise in a negative way. Especially in the
“higher” dimensional case, the orthogonal part estimates concerning Y (q = 250) are
biased upwards. The model cannot distinguish well joint and orthogonal variation, it
mixes up both loading profiles. It may be argued that the estimation method of the
joint loadings is borrowing accuracy from both two data sets, while the orthogonal
loadings estimation method is less precise since it uses noisy remaining (total minus
joint) variation. Similar to any method, under noisy circumstances it will be difficult
to estimate the true orthogonal loadings. This effect was less in the orthogonal part
in X (p = 500), which has higher dimensions. It is not clear why the orthogonal part
estimates with less parameters (the orthogonal part in Y ) degrade more than those
with more parameters (the orthogonal part in X) in the presence of noise.

We integrate data on the metabolome and transcriptome, extracting both the joint
and the orthogonal part, provided in the O2PLS fit, in both data sets. Finding the
optimal number of components is a computationally expensive task. A balance be-
tween computation time and accuracy is sought by maximizing the explained variance
in the inner relation to determine the number of orthogonal parts, and then minimiz-
ing the prediction error for determining the number of joint parts. Investing more
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time in this particular subject will aid in choosing a more accurate method, without
compromising computational efficiency. We find four of the eleven LL module gene
expressions among the top ten, in terms of importance for the joint variation (Figure
2.8). Moreover, the two gene expressions with the highest absolute loading values
are in the LL module. Furthermore in the metabolomics data we find the VLDL
subgroup together with the HDL subgroup to be important for the joint variation in
the metabolomics data (Figure 2.7). This shows a contribution of the LL module to
the joint variation, partially induced by the VLDL and HDL subgroups. This result
can be found back in [4]. The simultaneous data analysis approach identifies more
expressed genes important for the joint variation, the ID’s are in Table 2.5. All genes
except SNORD13 are involved in immune/defence system pathways, but information
for SNORD13 is at the time of writing unavailable. Also there is large contribution
from the mobile lipids MOBCH2 and MOBCH3 to the joint metabolite variation.
The orthogonal variation in this data is difficult to interpret, no noticeable trends or
clusters were found in the loading values (Figures 2.9, 2.10). Including orthogonal
components in the model does improve the cross-validated prediction error (which
depends on the joint components), which makes it still useful to include in the model.
As we saw from the simulation results in the “higher” noise (50%) case (the estimated
amount of noise in the metabolomics and transcriptomics data is also around 50%),
the joint loading estimates still follow the profile of the true loadings. The orthog-
onal loading estimates are performing worse, indicating a loss of accuracy and thus
interpretation in the orthogonal components.

To meet the challenge of interpretation of the results and to infer the relative
importance of the variables a structured and tractable probabilistic framework is re-
quired. It is beyond the scope of this paper to propose a new method; nevertheless,
we argue for the necessity and the feasibility of such a framework. Due to a lack of
an explicit probabilistic model in O2PLS, it is not straightforward how to perform
statistical tests on the loadings. For PLS, a bootstrap approach is proposed in [17].
In the O2PLS model we must take into account the orthogonal loadings, which are
correlated with the joint loadings due to the nature of the estimation algorithm. This
may invalidate the bootstrap results. Furthermore a potential problem of multiple
testing may exist, which needs to be correctly addressed. The assumptions made in
the model imply that the orthogonal scores TY⊥ and UX⊥ cannot be seen as reali-
sations of random variables, which is a fundamental property in statistical inference.
Furthermore without additional assumptions on the orthogonal part loadings PY⊥
and PX⊥ the model is unidentifiable. Also, the probabilistic approach gives insight
in hidden flaws of the estimators, which are very difficult to discover with the current
O2PLS algorithm. These potential problems may invalidate statistical inference on
the whole population.

Providing a probabilistic framework to non-probabilistic methods was done earlier.
Probabilistic PCA has been developed in [14], and for the factor analysis model there
is a well written probabilistic approach in [11]. A novel probabilistic approach for
the O2PLS method, which puts the O2PLS method in a statistical framework, is
currently being developed. The optimization criterion will be maximum likelihood.
The use of a parametric model and a likelihood are indeed restricting the researcher,
as one needs to assume a distribution on the data. However we expect that the
probabilistic O2PLS model, just as the ordinary linear model, will be robust against
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small violations of the assumptions. The resulting likelihood can be easily optimized,
using a factorization of the probability density which allows for seperately optimizing
the likelihood.

A new derivation in multiplatform data analysis we intend to do is the use of a
likelihood information score, which will rely on PO2PLS, indicating how much or little
two data sets are related. Combining the data integration approach with a probabilis-
tic framework will aid interpretability and inference in more general epidemiological
studies.

2.6 Tables

Table 2.1: Simulation parameter choices. The loading value for variable i is the
density value of a normal distribution with mean µ and standard deviation σ, denoted
as N(i;µ, σ). The noise terms were drawn from a normal distribution with zero mean.
The scores were drawn from a standard normal distribution. The variances of the
noise terms are such that the expected sum of squares of the noise account for 100α%
(equal to 5% or 50%) of the total sum of squares.

Parameter ‘Low’-dimensional
case

‘higher’-dimensional
case

N 500 500
p, q [100, 50] [500, 250]
W [N(i; 60, 10)]i=1,...,100 [N(i; 300, 50)]i=1,...,500
C [N(i; 70, 5)]i=1,...,50 [N(i; 175, 25)]i=1,...,250
PY⊥ [N(i; 20, 20)]i=1,...,100 [N(i; 100, 100)]i=1,...,500
PX⊥ [N(i; 15, 10)]i=1,...,50 [N(i; 75, 50)]i=1,...,250
BT 2 2
σ2
T , σ

2
TY⊥

, σ2
UX⊥

[1, 1, 1] [1, 1, 1]
σ2
E , σ

2
F , σ

2
H

α
(1−α) [0.02, 0.104, 4] α

(1−α) [0.004, 0.021, 4]



2.6 Tables 29

Table 2.2: Absolute and relative variations in O2PLS. The amount of variation
per model statistic with respect to the total amount of variation, from an O2PLS
fit using Metabolomics (X) and Transcriptomics (Y ). The R2 (definition using the
Frobenius norm is given in last row) in percentages, with respect to the total varia-
tion in X and Y respectively, for each model statistic. The numbers of orthogonal
components are nX = 1, nY = 8. The number of joint components varies from 1 to 5.
The first row was found best according to the proposed alternative cross-validation
(as in Section Methods).

a R2
X R2

Y R2
Xcorr R2

Xcorr

1 57.97 50.81 46.31 1.37
2 67.94 53.40 60.80 4.24
3 74.08 54.79 68.99 7.35
4 78.06 55.62 72.94 9.63
5 80.93 56.69 76.51 11.30

1− ||E||
2
F

||X||2
F

1− ||F ||
2
F

||Y ||2
F

||(TWT)||2F
||X||2

F

||(UCT)||2F
||Y ||2

F

Table continued
a R2

Xhat R2
Yhat R2

Xhat/R2
Xcorr R2

Yhat/R2
Ycorr

1 26.74 0.80 57.74 58.55
2 29.52 1.45 48.55 34.25
3 26.70 2.00 38.69 27.23
4 29.23 2.40 40.07 24.87
5 29.81 3.32 38.97 29.43

||(UBUWT)||2F
||X||2

F

||(TBTCT)||2F
||Y ||2

F

Table 2.3: Absolute and relative variations of the scores and noise in O2PLS.
The sum of squares per model part in an O2PLS fit using Metabolomics (X) and
Transcriptomics (Y ). Absolute quantities as well as percentages with respect to the
total variation in X (first three), Y (second three) and U (last one) are shown.

T TY⊥ E U UX⊥ F H

Absolute 2551 642 2316 3852 138502 137837 2061
Relative 46.3% 11.7% 42.0% 1.4% 49.4% 49.2% 53.5%
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Table 2.4: Gene composition of the LL module identified by Inouye et al.

Gene annotation Ilumina ID
C1ORF186 ILMN 1690209
CPA3 ILMN 1766551
ENPP3 ILMN 1749131
FCER1A ILMN 1688423
GATA2 ILMN 2102670
HDC ILMN 1792323
HS.132563 ILMN 1899034
MS4A2 ILMN 1806721
SLC45A3 ILMN 1726114
SPRYD5 ILMN 1753648
CACNG6 ILMN 1779043

Table 2.5: LL module and top 10 gene expressions. Identified gene expressions in
the top 10 most important variables for the joint variation in the transcriptome. The
corresponding genes are shown. Four gene expressions fall into the earlier identified
Lipid-Leukocyte module.

Gene annotation Ilumina ID Module
CPA3 ILMN 1766551 LL and top 10
FCER1A ILMN 1688423 LL and top 10
GATA2 ILMN 2102670 LL and top 10
HDC ILMN 1792323 LL and top 10

DEFA1B ILMN 1725661 top 10
DEFA1B ILMN 1679357 top 10
DEFA1B ILMN 2102721 top 10
SNORD13 ILMN 1892403 top 10
DEFA3 ILMN 2165289 top 10
IFIT1 ILMN 1707695 top 10
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2.7 Figures

Figure 2.1: Simulation: low dimensions little noise. Boxplots of 1000 simula-
tions in which X (upper row) contains 500 samples and 100 variables, Y (lower row)
contains 500 samples and 50 variables. Noise contributed for 5% of the total varia-
tion. The first column corresponds to the joint part, the second column depicts the
orthogonal part. The red line denotes the true loading profile.
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Figure 2.2: Simulation: high dimensions little noise. Boxplots of 1000 simu-
lations in which X (upper row) contains 500 samples and 500 variables, Y (lower
row) contains 500 samples and 250 variables. Noise contributed for 5% of the total
variation. The first column corresponds to the joint part, the second column depicts
the orthogonal part. The red line denotes the true loading profile.
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Figure 2.3: Simulation: low dimensions high noise. Boxplots of 1000 simulations
in which X contains 500 samples and 100 variables, Y contains 500 samples and
50 variables. Noise contributed for 50% of the total variation. The first column
corresponds to the joint part, the second column depicts the orthogonal part. The
red line denotes the true loading profile.
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Figure 2.4: Simulation: high dimensions high noise. Boxplots of 1000 simu-
lations in which X contains 500 samples and 500 variables, Y contains 500 samples
and 250 variables. Noise contributed for 50% of the total variation. The first column
corresponds to the joint part, the second column depicts the orthogonal part. The
red line denotes the true loading profile.
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Figure 2.5: Pearson correlation heatmap of metabolites. Red indicates high
positive correlation, green is little correlation and blue is high negative correlation.
The variables are in the original order. A histogram of correlations is added in the
top left corner.
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Figure 2.6: Scatterplot joint score vectors. The first joint score vectors (T , U)
obtained from an O2PLS fit using Metabolomics (represented by T ) and Transcript-
omics (represented by U) are plotted against each other. The slope of the fitted line
is 0.84, the intercept is zero due to the mean centering of the data. The coefficient of
determination R2 was 0.47.
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Figure 2.7: Labeled joint metabolomic loading plot. Four groups of interest are
grouped: very-low-density-lipoproteins, high-density-lipoproteins, mobile lipids and
amino acids.
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Figure 2.8: O2PLS transcriptomic joint loadings. Joint part O2PLS loadings
per gene expression. The top ten gene expressions are in black and green. The LL
module gene expressions are in red and green. Four of the eleven gene expressions in
the LL module are in the top ten, indicated in green. The loadings for five other gene
expressions in the top ten and the loadings for the LL module gene expressions have
opposite sign.
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Figure 2.9: O2PLS metabolomic orthogonal loadings. Orthogonal part loadings
obtained from an O2PLS fit with Metabolomics and Transcriptomics. One orthogonal
component in metabolomics was identified.
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Figure 2.10: O2PLS transcriptomic orthogonal loadings. Orthogonal part
O2PLS loadings per gene expression. There were eight orthogonal components iden-
tified. The ratio of the first part sum of squares and last part sum of squares is
approximately eleven.
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