
Statistical integration of diverse omics data
Bouhaddani, S. el

Citation
Bouhaddani, S. el. (2020, June 2). Statistical integration of diverse omics data. Retrieved from
https://hdl.handle.net/1887/92366
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/92366
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/92366


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/92366 holds various files of this Leiden University 
dissertation. 
 
Author: Bouhaddani, S. 
Title: Statistical integration of diverse omics data 
Issue Date: 2020-06-02 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/92366
https://openaccess.leidenuniv.nl/handle/1887/1�


1
Introduction



2 INTRODUCTION

1.1 Background

One of the aims in statistics is to describe the relationship between two sets of vari-
ables, for which the multivariate linear regression model is widely used. In this model,
the relation between the underlying random vectors x ∈ Rp and y ∈ Rq is given as
[20]

y = xβ + ε. (1.1)

The p × q coefficient matrix β describes how the variables in x relate to those in y.
The random vector ε ∈ Rq is the residual error; its variance indicates a lack of a linear
relation between x and y.

The most frequent method to estimate β from data matrices X and Y , with N
rows, minimizes the squared residual error

∑
i ||Yi −Xiβ||2 over {β ∈ Rp×q}, where

i = 1, . . . , N . Under some assumptions [31], the solution is given by

β̂ = (XTX)−1XTY. (1.2)

This estimator is unbiased, and optimal in the sense that any linear combination of
the elements of β̂ has a lower variance than the same linear combination of any other
linear unbiased estimator [31].

The linear regression approach has some drawbacks. Firstly, when x is high di-
mensional, i.e. p > N , the inverse of XTX does not exist. Secondly, when the
columns of X are highly correlated, XTX will be nearly singular. Consequently,
the covariance matrix of β̂, given by (XTX)−1XTVar(ε), will have large eigenvalues.
Unless the number of rows of X is also large, this leads to an inflation of the mean
squared error of β̂ and imprecise estimates ([6, 32]). Finally, each column of β̂ can
be derived by regressing the columns of Y on X separately, since β̂ is equivalent
to (XTX)−1XT[Y1, . . . , Yq]. Therefore, β̂ does not take into account the correlation
structure of Y .

The described scenarios, high dimensional and highly correlated data, are becom-
ing common in many research areas, especially in the field of biomedical and life
sciences. The ongoing technological developments have led to an unprecedented in-
crease in the amount of available data. These data contain several types of molecular
measurements for the same samples, and are often suffixed with -omics. Examples in-
clude genomics, transcriptomics and glycomics, see Figure 1.1. These omics datasets
are typically high dimensional (e.g. more than 107 genetic variants, 104 transcripts
measured on fewer subjects) and highly correlated, where relationship exist both
within and between the different ‘omics’ levels. Since these data are measured on the
same samples, statistical research also focuses on investigating relationships between
these omics levels to better understand the underlying biology.

The research presented in this thesis is part of the European FP7 project, Methods
for Integrated analysis of Multiple Omics datasets (MIMOmics), see mimomics.eu.
One of the objectives of MIMOmics is “to integrate data derived from multiple omics
platforms across several study designs and populations”. This thesis addresses the aim
by firstly evaluating existing ‘data integration’ methods, and secondly developing a
statistical framework for integrating multi-omics data.
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Figure 1.1: Overview of several types of omics data. Each rectangle represents
an omics domain, where arrows depict possible relations between the domains. For
example, a simple model for the relation between four ‘main’ omics domains goes
from genomics to transcriptomics to proteomics to metabolomics. Relations among
the measurements in one domain also exist. Figure taken from [44].

1.1.1 Omics data characteristics

Shared characteristics. In this thesis, several omics datasets are analyzed. A
prominent characteristic present among these data is the complex dependence struc-
ture, both within as well as between the datasets [34]. An explanation for these
dependencies is that, typically, the features xj in each dataset x are organized such
that several sets of molecules (e.g. genes or proteins) {xj , j ∈ P} are involved in the
same biological “pathway” P ⊆ N, see e.g. [8]. Pathways from different datasets can
be connected, in the sense that the molecules in these pathways share the same goal.
Measurements on molecules in connected pathways should then be statistically cor-
related [28], i.e. for two connected pathways P1 and P2 the off-diagonal elements of
the correlation matrix of (xP1 , yP2), are not zero. Interpretation of currently known
pathways is documented in several bioinformatics databases that provide high-level
information about their functions [13, 23]. Furthermore, a direction of the depen-
dence between several omics is sometimes assumed. For example information can
explained to flow from genomics to transcriptomics to proteomics [4]. For developing
methodology for analyzing omics data, these concepts can be utilized to build models
that describe the relation between these datasets.

Data-speci�c characteristics. Omics data are also different in several aspects, in
particular with respect to dimensionality, distribution and measurement platform.
Firstly, as example, the dimensionality of genetic data is of order 106, while in glyc-
omics, the number of features is of order 101. Secondly, the distributions of the genetic
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measurements often have support on two or three points, while other omics measure-
ments are known to be non-negative with few or many zeros, skewed or symmetric and
discrete or continuous. Finally, the platforms to measure the data are by design very
different, each with another type of measurement error distribution (see [43], Table
1). These data-specific characteristics need to be considered when performing statis-
tical analysis of omics data [37]. Furthermore, in a model where data-specific parts
are included, this type of variation can be inspected. In particular, it can provide
information about technical or biological artifacts in the data. The aim of this thesis
is to model the relation between all features in x and y and incorporate data-specific
characteristics.

Aims and datasets in MIMOmics. The data used in this thesis are obtained from
two studies. The DILGOM (DIetary, Lifestyle, and Genetic determinants of Obesity
and Metabolic syndrome) study [9] is conducted in 2007, and contains data on, in
total, 4974 participants in the working age population, in 3 to 5 large study areas
of Finland. In particular, transcriptomic and metabolomic data are available for the
same 466 individuals [10]. The transcriptomics dataset contain 35419 expression lev-
els, measured with the Illumina HT-12 expression array. Regarding the metabolomics
data, 137 serum metabolite levels were determined with 1H NMR. In this study, a
sequential approach was used to investigate how lipid metabolism relate to gene ex-
pression. First, the individual genes were summarized to features representing sets
of correlated genes. Then, these features were associated with the metabolites us-
ing pair-wise correlation tests [9]. An improved statistical framework to test these
associations using a subset of the metabolites was also proposed [27]. Here, we con-
sider statistical approaches to simultaneously estimate relationships between all gene
expression and metabolite variables, taking into account the correlations within and
between each dataset, as well as data-specific variation.

The Croatian study consists of two cohorts, Korcula and Vis [15]. In the Korcula
cohort, 969 participants of adult age were recruited in 2007. The Croatian Vis cohort
consists of, in total, 1008 participants recruited in 2003 and 2004. Within these
studies, 333858 SNPs were genotyped. Also, glycomics measurements are available,
consisting of 50 IgG glycan abundances. In this study, one of the aims is to find genetic
contributions to changes in glycosylation. Univariate tests were performed for each
pair of genetic variants and glycans separately. However, the glycan measurements
are highly correlated and often contain substantial measurement error. In this thesis,
the relation between both datasets is modeled and the genetic contributions to glycan
variation is estimated.

1.2 Modeling the relationship

Many statistical approaches that relate y to x focus on detecting linear associations be-
tween features. Two research questions are formulated: how strong is the association
between x and y, and which variables are (most) involved? Traditional approaches
are based on statistical measures of association between pairs of features xj and yj′

in both datasets [29]. To this end, p-values are calculated for each test statistic for
the null hypothesis of no association, and multiple testing corrections are applied to
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control the probability or rate of falsely rejecting any null hypothesis among all tests.
Note that these methods do not take into account correlations among the features, as
the p-values are obtained from univariate analyses. Furthermore, when considering
all pairs of two high dimensional omics data, the large number of tests lead to com-
putational issues and loss of statistical power. We consider multivariate approaches
that model the relation between x and y simultaneously.

An approach to model the relationship between two omics datasets, reflecting
biology, involves unobserved ‘pathways’ that explain correlations within and between
the measurements. These pathways are represented by latent variables, say t ∈ Rr
and u ∈ Rr, capturing the variation common to two datasets. Typically, r is much
smaller than p and q. The latent variable approach firstly implies that given t and u,
x and y are conditionally independent. Secondly, since r << p, q, such methods also
yield dimensionality reduction. In this thesis, these methods are called (omics) data
integration methods. A latent variable approach to model the relationship between
two datasets X and Y takes into account the correlation structure of the datasets,
often has good statistical power compared to univariate testing methods, and, due to
the dimensionality reduction step, is computationally attractive [24].

1.2.1 Unifying the data integration methods.

A statistical framework for data integration of x and y based on latent pathways is
the Structural Equations Modeling framework (SEM). An SEM is a model for x and
y in terms of t and u, given by

x = tWT + e, (1.3)
y = uCT + f,

u = uA+ tB + h.

The first two equations are referred to as the outer model, while the last equation is
called the inner model. The latent variables t and u represent the pathways underly-
ing x and y, respectively. The loading matrices W and C represent the association
strength of each feature for the respective variable in t and u. It is further assumed
that (I − A) is non-singular and that the error variables e, f and h are independent
of each other and of t and u. Furthermore, the regression matrix B represents the
relations between the latent variables t and u. The matrix A captures relationships
among the u, and provides a flexible framework for explaining multi-level structure
in y. For high dimensional omics data, such additional correlation structure is usu-
ally ignored, and the matrix A = 0 is taken. A graphical representation is given in
Figure 1.2. It is worth mentioning that in Chapter 6, this additional structure will
be exploited.

Many data integration methods for omics data have been proposed. To give an
indication, more than 20 methods were compared and their application to multiple
omics data was discussed [21]. Several of these methods can be unified in the general
structural equation modeling (SEM) framework, as they model (x, y) in terms of (t, u).
The main difference between these models is in the parametrization of the residual
error covariance matrices. For example, in the Canonical Correlation Analysis (CCA)
[7] model, the covariance matrices of e and f are assumed to be diagonal with p+ q



6 INTRODUCTION

X1

T1

U1

U2
X2

X3

Y4

Y5

Y6

Y2Y1 Y3

Figure 1.2: An SEM model with two sets of measurements X and Y and
three latent variables. In the inner model, U2 depends on T1 as well as U1, while
U1 depends on T1 only. The outer model relates the X variables to T1, the first three
Y variables to U1, and the last three to U2.

error variance terms, i.e. Σe = diag(σ2
ej ) and Σf = diag(σ2

fj
). Partial Least Squares

(PLS) [2] restricts the diagonal elements to be exactly equal, yielding two covariance
matrices proportional to the identity matrix with two error terms, i.e. Σe = σ2

eIp
and Σf = σ2

fIq. The Envelope Regression (ER) [3] framework in a way compromises
between the two by allowing (p + q) − rank(t, u) degrees of freedom for the error
covariance matrices; it restricts the space spanned by e and f to be orthogonal on the
space spanned by t and u, respectively. In the Redundancy Analysis (RA) method,
a diagonal residual variance matrix is assumed for x, while one variance parameter is
retained for y, yielding p+ 1 variance terms.

Note that in many proposed methods, the inner relation is reduced to an equality
u = t. This has drawbacks when dealing with heterogeneous omics data. Firstly, t
and u represent unobserved pathways from different biological layers. These pathways
are biologically not perfectly correlated or on the same scale. Therefore, some inter-
pretation is lost when assuming u = t, as the corresponding loading components do
not reflect the true biological mechanisms. Secondly, in Chapter 3 and 5 it is shown
that this assumption may have a negative effect on the performance of the method.

For data integration methods, identifiability of the parameters needs to be inves-
tigated. If a model is unidentifiable, several solutions can be constructed that cannot
be distinguished in terms of model fit. This can be problematic when individual pa-
rameters are interpreted. Roughly stated, identifiability can be established with two
assumptions: independence between and within the joint and residual latent variables,
and orthogonal loading matrices. One of the most well-known identifiability issues in
the SEM is the ‘freedom of rotation’, [39, 11]. Without restrictions on the model pa-
rameters in (1.3), one can take a rotation matrix R, such that RRT = I, and introduce
it in, e.g., the equation x = tRRTWT + e. The model remains unchanged, with the
joint latent variable as tR and corresponding loadings WR. Even if the loadings are
assumed to be orthogonal, this issue remains. However, note that Cov(tR) = RTΣtR
is not diagonal in general. If independence among the t is assumed, then a non-trivial
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rotation leads to joint latent variables that violate this assumption. Identifiability is
studied in more detail in Chapter 4 and 5.

1.2.2 Estimating the data integration models

To estimate the SEM (1.3), two approaches have been considered in the literature
[40]. The first approach is based on a sequence of least squares estimations, the
second approach optimizes the likelihood given a probabilistic formulation of (1.3). In
the first approach, the parameters W and C are estimated per column by iteratively
projecting (x, y) onto (t, u) via current estimates for the respective columns in W
and C, and vice versa [41, 33]. An initial guess for W and C is required to start
the algorithm. This approach is also known as the PLS path modeling algorithm
and converges to a PLS, CCA or RA solution, depending on the exact form of the
projection. For example, an update of the form w ∝ xTu yields PLS, while w ∝
(xTx)−1xTu yields CCA (see [33] page 194). Note that in the CCA case, the inverse
of xTx is required. With high dimensional datasets, where p or q is large or larger
than the sample size, this inverse is unstable or does not exist, therefore CCA is not
suitable for omics data integration. Many data integration methods in this category
rely on algorithmic descriptions in which it is difficult to incorporate the identifiability
conditions without resorting to post-hoc modifications. As a result, most of these
methods fail to produce unique solutions.

A probabilistic approach to estimate SEMs has also been considered for data
where N > p. By specifying a distribution for the latent variables, a likelihood can
be formulated and maximized to obtain estimates. Typically, the latent variables are
assumed to be jointly normally distributed, with zero mean and unknown covariance
matrix Σ. Given the model specified in (1.3) and a distributional form for the latent
variables, the covariance matrix equals

Σ =
[
WΣtWT + Σe WΣtBCT

CBTΣtWT C
{
BTΣtB + Σh

}
CT + Σf

]
. (1.4)

The log-likelihood of the data X and Y then takes the following form:

L = −N2 log(2π)− N

2 log |Σ| − 1
2tr
(
(X,Y )T(X,Y )Σ−1) , (1.5)

where N is the sample size. For this model, the sample covariance matrix S =
N−1(X,Y )T(X,Y ) is a sufficient statistic. Maximum likelihood methods effectively
optimize the similarity between the theoretical and sample covariance matrix, given
the observed data. Note that when maximizing over all covariance matrices Σ, without
assuming any latent structure, the solution is known to be S [12]. However, when a
structure as in (1.4) is assumed, directly optimizing L becomes difficult and iterative
procedures are needed.

Optimization methods such as Newton-Raphson (e.g. [25]) can be used. Note
that these methods typically depend on the Hessian matrix which is, if p or q is large,
computationally infeasible as O((p + q)2) numbers need to be stored. A memory-
efficient approach to obtain maximum likelihood estimates is the EM algorithm [5]
where O(p+ q) numbers are stored in each step (shown in Chapter 4 and 5). Under
the normal distributions assumption, the EM algorithm first calculates the expected
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value of the first and second moments of the latent variables of the model (1.3),
given the observed data and an initial guess for the parameters. In the second step,
maximizers of the complete likelihood are obtained, where the expectations are used
as predictions for the latent quantities. This step involves a constrained optimization,
to incorporate the identifiability restrictions on the parameters. The two steps are
alternated, and under some assumptions, the sequence of estimates converge to a local
optimum of the likelihood [5, 42].

Data integration within a probabilistic framework with identifiable parameters
facilitates statistical inference. Under certain conditions, the maximum likelihood
estimates asymptotically follow a normal distribution around the true parameter val-
ues [38, 1]. The covariance matrix of these estimates is given by the inverse of the
Fisher information matrix. In an EM algorithm, this matrix can be estimated in the
last step, by applying the missing information principle [19]. Based on this matrix,
standard errors and, if asymptotic normality is assumed, p-values for the parameter
estimates can be calculated.

1.3 Modeling the data-speci�c characteristics

In the SEM (1.3), the covariance matrix of (x, y), given in (1.4), is decomposed in
joint and residual parts. As discussed before, data-specific characteristics introduce
additional covariance structure in the variance matrix of x and y (see [14], section
3.4). Fitting an SEM without taking into account data-specific variation can lead to
misleading results regarding the joint parts, since the estimates need to account for
the specific variation using the joint components. Especially if the residual covariance
matrices have fewer degrees of freedom, this appears to be an issue. Furthermore, the
estimated shared components can erroneously represent specific components if this
is the most prominent type of variation in the data. Finally, modeling data-specific
parts facilitates further interpretation of the unrelated parts in the data.

The SEM model can be extended to include data-specific components, by including
latent variables ts and us, independent of the joint and residual parts:

x = tWT + tsW
T
s + e, (1.6)

y = uCT + usC
T
s + f.

The parameters Ws and Cs are data-specific loading matrices of appropriate size. The
theoretical covariance matrix of (x, y) is then given by

Σ =
[
WΣtWT +WsΣtsWT

s + Σe WΣtBCT

CBTΣtWT C
{
BTΣtB + Σh

}
CT + CsΣusCT

s + Σf

]
. (1.7)

Note that without the specific parts, the covariance structure represented by, e.g.,
WsΣtsWT

s is absorbed by the joint covariance structure and Σe.
To estimate the extended model (1.6), the same two approaches can be used as in

Section 1.2.2, namely least squares and maximum likelihood. In the first approach,
two separate models are fitted. Using an initial guess for the joint parts, (1.6) reduces
to PCA models for x and y where Ws and Cs are the PCs. Next, these components are
subtracted and the model reduces to an SEM without data-specific parts as in (1.3).
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This approach is used especially in chemometrics, where the Two-way Orthogonal PLS
(O2PLS) algorithm was proposed [35]. The JIVE method [18] alternates between the
two steps until convergence. The DISCO-SCA algorithm [30] has a somewhat different
algorithm: it first estimates a regular SEM (1.3), and performs a post-hoc correction
by rotating the solution to also represent specific components. Among these methods,
O2PLS has the advantage that it does not assume that u = t.

The maximum likelihood approach involves optimizing all parameters of the model
(1.6) simultaneously. Since directly calculating the score function is analytically and
computationally not feasible, an EM algorithm can be used. In the EM algorithm, the
joint and specific loading matrices should also be optimized simultaneously. However,
two conditional maximization [22] steps can be performed, where the joint parts are
optimized while keeping the specific parts fixed and vice verse. This approach also
yields a sequence of estimates that converge to a local optimum of the likelihood [22].
This approach is used in SIFA [16] with the assumption that u = t. The methodology
in Chapter 5 is based on this approach, where in the M step a constrained optimization
problem is solved to satisfy the identifiability conditions.

Free and open-source so�ware. Software development for data integration meth-
ods is an important way to stimulate scientific advances in this area. By providing
free access to the source code, experiments can be replicated and the methodology
can be validated. Potential solutions for drawbacks and further improvements can
be incorporated in the source code, with better and robuster software being the end
result. Moreover, new methodology can be compared to alternatives to verify added
benefits of the new method. Finally, free access to the software and visualization tools
is of direct benefit for users of the methods.

Especially in this field, methodology is sophisticated and difficult to implement
from scratch. Furthermore, high dimensional data pose challenges for an implemen-
tation in terms of memory usage and computation speed. Several software packages
exist for omics data integration on various computing platforms (see [17], Table 2).
However, some of the data integration methods are only available via expensive soft-
ware packages (e.g. O2PLS in SIMCA [36]), or on commercial computing platforms
(e.g. DISCO-SCA and SIFA on Matlab). Other implementations cannot be applied
to high dimensional data, where p or q are large, due to computational issues. Some
tools fail to converge to a solution when applied to heterogeneous omics data. There-
fore, continuous development of new methodology and software tools is needed to
advance in the field of omics data integration.

1.4 General outline of the thesis

The remainder of this thesis is structured into two parts. The first part, consisting
of Chapter 2 and 3, studies current data integration methods, evaluates a specific
method in omics data from population cohorts, and implements it in a free and
open access software package. The second part, covering Chapter 4 and 5, proposes
a probabilistic data integration framework to model the relation on a population
level. The estimators are obtained with maximum likelihood using an EM algorithm
that can deal with high dimensional variables. A discussion is included at the end,
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summarizing the methodology in this thesis and discussing, with a case study, future
directions in omics data integration.

In Chapter 2, omics data integration in population cohorts is evaluated and dis-
cussed. Here, transcriptomics and metabolomics data from the DILGOM study are
decomposed in joint, specific and residual parts using O2PLS. The methodology in
Chapter 2 simultaneously estimates a relation as in (1.6) between transcripts and
metabolites, using O2PLS. The top genes in the resulting joint transcriptomic com-
ponents (represented by t in (1.6)) as well as top metabolites in the joint metabolomic
components (represented by u) are further investigated using pathway analyses and
compared to the previous results.

In Chapter 3, a free and open-source software package that implements O2PLS
is proposed. The aim of this Chapter is to facilitate the use of O2PLS for high
dimensional omics data, by developing a memory-efficient algorithm and providing
several visualization tools. The package, OmicsPLS, is evaluated in a simulation
study in terms of accuracy and speed and compared to an implementation of JIVE
[26]. OmicsPLS is also applied to genetic and glycomic data from the Korcula cohort
to investigate how IgG1 glycans are related to genetic variants.

Chapter 4 presents a probabilistic method to integrate two homogeneous omics
datasets from large population cohorts, based on the model in (1.3). The proposed
model, Probabilistic PLS (PPLS), is inspired by PLS in the sense that it also uses
isometric normal distributions for the residual latent variables. The PPLS model
is fitted by maximizing the likelihood using an EM algorithm. Identifiability con-
straints are incorporated by solving a constrained optimization in the M step, and
the asymptotic standard errors are derived. The PPLS model is applied to data from
the Korcula and Vis cohorts separately, and the results are compared.

Chapter 5 extends the probabilistic framework of PPLS to accomodate heteroge-
neous omics data. The resulting method, Probabilistic O2PLS (PO2PLS), is similar
to (1.6) with identifiable parameters. Maximum likelihood estimates are calculated
with EM, as well as standard errors. In a simulation study, the PO2PLS method
is compared to PLS, PPLS, O2PLS and SIFA in terms of interpretation and predic-
tion performance. PO2PLS is then applied in two data integration analyses: trans-
criptomics and metabolomics from the DILGOM cohort (Chapter 2), and genetics
and glycomics from the Korcula cohort (Chapter 3). The results are compared with
O2PLS: in the first data analysis we compare pathway interpretation of the top genes,
in the second analysis we validate the results in the Vis cohort.

Finally, in Chapter 6, we briefly review the methodology presented in this the-
sis. Further extensions are discussed regarding omics data integration in population
cohorts, where the sampling design is not standard; it cannot be assumed that the
observations on x and y are i.i.d. A case study is presented using data on genetics,
methylation and triglycerides, measured on several time points where subjects are
grouped in families. The chapter concludes with other future directions to extend the
data integration methodology presented in this thesis.
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U. Gyllensten, J. F. Wilson, A. F. Wright, N. D. Hastie, H. Campbell, P. M.
Rudd, and I. Rudan. Genomics meets glycomics-the first gwas study of human
N-glycome identifies HNF1A as a master regulator of plasma protein fucosyla-
tion. PLoS Genet., 6(12):1–14, 2010.

[16] G. Li and S. Jung. Incorporating Covariates into Integrated Factor Analysis of
Multi-View Data. Biometrics, 73(4):1433–1442, dec 2017.

[17] Y. Li, F.-X. Wu, and A. Ngom. A review on machine learning principles for
multi-view biological data integration. Brief. Bioinform., 19(2):325–340, dec
2018.

[18] E. F. Lock, K. A. Hoadley, J. S. Marron, and A. B. Nobel. Joint and individual
variation explained (JIVE) for integrated analysis of multiple data types. Ann.
Appl. Stat., 7(1):523–542, 2013.

[19] T. A. Louis. Finding the observed information matrix when using the EM algo-
rithm. J. Roy. Stat. Soc. Ser. B, 44:226–233, 1982.

[20] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate analysis. Academic
Press, 1979.

[21] C. Meng, O. A. Zeleznik, G. G. Thallinger, B. Kuster, A. M. Gholami, and
A. C. Culhane. Dimension reduction techniques for the integrative analysis of
multi-omics data. Brief. Bioinform., 17(October 2015):bbv108, 2016.

[22] X.-L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika, 80(2):267–278, 1993.

[23] H. Mi, A. Muruganujan, D. Ebert, X. Huang, and P. D. Thomas. PANTHER
version 14: more genomes, a new PANTHER GO-slim and improvements in
enrichment analysis tools. Nucleic Acids Res., 47(D1):D419–D426, jan 2019.

[24] L. H. Nguyen and S. Holmes. Ten quick tips for effective dimensionality reduction.
PLOS Comput. Biol., 15(6):e1006907, jun 2019.

[25] J. Nocedal and S. Wright. Numerical optimization. Springer, 2006.

[26] M. J. O’Connell and E. F. Lock. R.JIVE for exploration of multi-source molecular
data. Bioinformatics, 32(June):btw324, 2016.

[27] T. Padayachee, T. Khamiakova, Z. Shkedy, M. Perola, P. Salo, and
T. Burzykowski. The Detection of Metabolite-Mediated Gene Module Co-
Expression Using Multivariate Linear Models. PLoS One, 11(2):e0150257, feb
2016.



BIBLIOGRAPHY 13

[28] M. D. Ritchie, E. R. Holzinger, R. Li, S. A. Pendergrass, and D. Kim. Methods of
integrating data to uncover genotype–phenotype interactions. Nat. Rev. Genet.,
16(2):85–97, 2015.

[29] E. Saccenti, H. C. J. Hoefsloot, A. K. Smilde, J. A. Westerhuis, and M. M. W. B.
Hendriks. Reflections on univariate and multivariate analysis of metabolomics
data. Metabolomics, 10(3):361–374, 2014.

[30] M. Schouteden, K. Van Deun, T. F. Wilderjans, and I. Van Mechelen. Performing
DISCO-SCA to search for distinctive and common information in linked data.
Behav. Res. Methods, 46(2):576–587, nov 2013.

[31] G. A. F. Seber and A. J. Lee. Linear regression analysis. Wiley Series in Prob-
ability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ,
second edition, 2003.

[32] S. D. Silvey. Multicollinearity and Imprecise Estimation. J. R. Stat. Soc. Ser.
B, 31(3):539–552, sep 1969.

[33] M. Tenenhaus. Pls Regression and Pls Path Mod- Eling for Multiple Table
Analysis. Analysis, 2004.

[34] R. Tissier, J. Houwing-Duistermaat, and M. Rodŕıguez-Girondo. Improving sta-
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