

# **Comparative genomics of nidoviruses: towards understanding the biology and evolution of the largest RNA viruses** Gulyaeva, A.

## Citation

Gulyaeva, A. (2020, June 2). *Comparative genomics of nidoviruses: towards understanding the biology and evolution of the largest RNA viruses*. Retrieved from https://hdl.handle.net/1887/92365

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/92365

Note: To cite this publication please use the final published version (if applicable).

Cover Page



# Universiteit Leiden



The handle <u>http://hdl.handle.net/1887/92365</u> holds various files of this Leiden University dissertation.

Author: Gulyaeva, A. Title: Comparative genomics of nidoviruses: towards understanding the biology and evolution of the largest RNA viruses Issue Date: 2020-06-02

# LIST OF ABBREVIATIONS

| (-)ssRNA                     | negative-sense single-stranded RNA                |
|------------------------------|---------------------------------------------------|
| (+)ssRNA                     | positive-sense single-stranded RNA                |
| 2'-PDE                       | 2',5'-phosphodiesterase                           |
| 3CLpro (3CL <sup>pro</sup> ) | 3C-like protease                                  |
| аа                           | amino acid                                        |
| AAbV                         | aplysia abyssovirus 1                             |
| AIC                          | Akaike information criterion                      |
| AMP, ADP, ATP                | adenosine mono-, di-, triphosphate                |
| ANK                          | ankyrin domain                                    |
| APRAV                        | African pouched rat arterivirus                   |
| AsD                          | arterivirus-specific domain                       |
| BIC                          | Bayesian information criterion                    |
| BNV1                         | Beihai nido-like virus 1                          |
| BPNV                         | ball python nidovirus                             |
| BRV                          | Breda virus                                       |
| BSA                          | bovine serum albumin                              |
| CAVV                         | Cavally virus                                     |
| CIP                          | calf intestine alkaline phosphatase               |
| CMP, CDP, CTP                | cytidine mono-, di-, triphosphate                 |
| CoV                          | coronavirus                                       |
| CPD                          | cyclic phosphodiesterase                          |
| СРЕ                          | cytopathic effect                                 |
| CPU                          | central processing unit                           |
| CR domain                    | cysteine-rich domain                              |
| DdCoV                        | duck-dominant coronavirus                         |
| DEmARC                       | DivErsity pArtitioning by hieRarchical Clustering |
|                              |                                                   |

| DeMAV         | De Brazza's monkey arterivirus                 |
|---------------|------------------------------------------------|
| DNA           | deoxyribonucleic acid                          |
| dsRNA         | double-stranded RNA                            |
| E             | nidovirus envelope protein                     |
| EAV           | equine arteritis virus                         |
| EM            | electron microscopy                            |
| ER            | endoplasmic reticulum                          |
| EToV          | equine torovirus                               |
| EVD           | extreme value distribution                     |
| ExoN          | DEDDh subfamily exoribonuclease                |
| FN2           | fibronectin type II domain                     |
| FSBG          | 5'-(4-fluorosulfonylbenzoyl)guanosine          |
| GAV           | gill-associated virus                          |
| GMP, GDP, GTP | guanosine mono-, di-, triphosphate             |
| GTase         | guanylyltransferase                            |
| HE            | hemagglutinin-esterase                         |
| HEL1          | superfamily 1 helicase                         |
| HGT           | horizontal gene transfer                       |
| НММ           | hidden Markov model                            |
| HVR           | hypervariable region                           |
| IBV           | infectious bronchitis virus                    |
| ICTV          | International Committee on Taxonomy of Viruses |
| InfV          | influenza virus                                |
| ISH           | in situ hybridization                          |
| kb            | kilobase                                       |
| KRCV          | Kibale red colobus virus                       |
| KRTGV         | Kibale red-tailed guenon virus                 |
|               |                                                |

List of abbreviations

| LAMPA                    | LArge Multidomain Protein Annotator              |
|--------------------------|--------------------------------------------------|
| LDV                      | lactate dehydrogenase-elevating virus            |
| LGT                      | lateral gene transfer                            |
| М                        | nidovirus matrix protein                         |
| MAR                      | mono-ADP-ribose                                  |
| МСМС                     | Markov chain Monte Carlo                         |
| MERS                     | Middle East respiratory syndrome                 |
| MHV                      | mouse hepatitis virus                            |
| ML                       | maximum likelihood                               |
| MMP-2                    | matrix metalloproteinase-2                       |
| Mpro (M <sup>pro</sup> ) | main protease                                    |
| MRCA                     | most recent common ancestor                      |
| mRNA                     | messenger RNA                                    |
| MSA                      | multiple sequence alignment                      |
| MTase                    | methyltransferase                                |
| Ν                        | nidovirus nucleocapsid protein                   |
| n.a.                     | not applicable                                   |
| n.d.                     | not done                                         |
| NAD                      | nicotinamide adenine dinucleotide                |
| NDiV                     | Nam Dinh virus                                   |
| NendoU                   | uridylate-specific endonuclease                  |
| NGS                      | next generation sequencing                       |
| NiRAN                    | nidovirus RdRp-associated nucleotidyltransferase |
| NMP, NDP, NTP            | nucleoside mono-, di-, triphosphate              |
| N-MT                     | SAM-dependent N7-methyltransferase               |
| nsp                      | non-structural protein                           |
| nt                       | nucleotide                                       |

| O-MT       | SAM-dependent 2'-O-methyltransferase                   |
|------------|--------------------------------------------------------|
| ORF        | open reading frame                                     |
| p.i.       | post infection                                         |
| p.t.       | post transfection                                      |
| PAR        | poly-ADP-ribose                                        |
| PBJV       | Pebjah virus                                           |
| РСВР       | poly(C) binding protein                                |
| PDB        | Protein Data Bank                                      |
| Pkinase    | protein kinase                                         |
| PLP        | papain-like protease                                   |
| polyA      | polyadenylate                                          |
| рр         | polyprotein                                            |
| PPD        | pairwise patristic distance                            |
| PRF        | programmed ribosomal frameshifting                     |
| PRRSV      | porcine reproductive and respiratory syndrome virus    |
| PSCNV      | planarian secretory cell nidovirus                     |
| PSSM       | position-specific scoring matrix                       |
| PV         | poliovirus                                             |
| RdRp       | RNA-dependent RNA polymerase                           |
| RHD        | Rel homology domain                                    |
| (RLM) RACE | (RNA ligase-mediated) rapid amplification of cDNA ends |
| RMSD       | root mean square deviation                             |
| RNA        | ribonucleic acid                                       |
| RNase T2   | ribonuclease T2                                        |
| RNP        | RNA-protein                                            |
| RsD        | ronivirus-specific domain                              |
| RTC        | replication-transcription complex                      |

List of abbreviations

| RTPase        | RNA 5'-triphosphotase                 |
|---------------|---------------------------------------|
| S             | nidovirus spike protein               |
| SAM           | S-adenosyl methionine                 |
| SARS          | severe acute respiratory syndrome     |
| SD            | standard deviation                    |
| sg            | subgenomic                            |
| SH3 domain    | Src homology 3 domain                 |
| SHEV          | simian hemorrhagic encephalitis virus |
| SHFV          | simian hemorrhagic fever virus        |
| SI            | standard inoculum                     |
| SPase         | signal peptidase                      |
| SPR           | subtree pruning and regrafting        |
| SUD           | "SARS-unique" domain                  |
| ТАР           | tobacco acid pyrophosphatase          |
| TGEV          | transmissible gastroenteritis virus   |
| ТМ            | transmembrane                         |
| tRNA          | transfer RNA                          |
| TRS           | transcription-regulating sequence     |
| Ub            | ubiquitin                             |
| UMP, UDP, UTP | uridine mono-, di-, triphosphate      |
| UTR           | untranslated region                   |
| WBV           | white bream virus                     |
| WJHAV         | Wuhan Japanese halfbeak arterivirus   |
| WPDV          | wobbly possum disease virus           |
| wt            | wild-type                             |
| ZBD           | zinc-binding domain                   |
| ZnF           | zinc finger                           |

302

Curriculum vitae

#### CURRICULUM VITAE

Anastasia Gulyaeva was born on November 6, 1991 in Moscow, Russia (USSR at the time). In June 2009 she graduated from the physico-mathematical lyceum № 1580 in Moscow. In September 2009 Anastasia enrolled in studies at the Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia. In the course of her studies she conducted rotation projects in the research groups of Prof. dr. V.I. Muronetz, Prof. dr. A.A. Mironov and Prof. dr. A.V. Alexeevsky. In July 2012 Anastasia participated in the MoBiLe Bioinformatics Summer School, where she was working on a scientific assignment in the research group of Prof. dr. P.A.C. 't Hoen in the Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands. In 2014 Anastasia graduated from the Lomonosov Moscow State University after defending her MSc. thesis dedicated to the usage of sequence weights in the hierarchical classification of viral genomes, and supervised by Dr. A.M. Leontovich, Dr. I.A. Sidorov and Prof. dr. A.E. Gorbalenya. In the same year, she started her doctoral research in the Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands under supervision of Dr. I.A. Sidorov and Prof. dr. A.E. Gorbalenya. Her doctoral research resulted in the present thesis entitled "Comparative genomics of nidoviruses: towards understanding the biology and evolution of the largest RNA viruses".

## LIST OF PUBLICATIONS

Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, **Gulyaeva AA**, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LLM, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J: The species *Severe acute respiratory syndrome-related coronavirus*: classifying 2019-nCoV and naming it SARS-CoV-2. *Nat Microbiol* 2020, 5:536– 544.

**Gulyaeva AA**, Sigorskih Al<sup>#</sup>, Ocheredko ES<sup>#</sup>, Samborskiy DV, Gorbalenya AE: LAMPA, LArge Multidomain Protein Annotator, and its application to RNA virus polyproteins. *Bioinformatics* 2020.

Kanitz M, Blanck S, Heine A, **Gulyaeva AA**, Gorbalenya AE, Ziebuhr J, Diederich WE: Structural basis for catalysis and substrate specificity of a 3C-like cysteine protease from a mosquito mesonivirus. *Virology* 2019, 533:21-33.

Nijhuis RHT<sup>#</sup>, Sidorov IA<sup>#</sup>, Chung PK, Wessels E, **Gulyaeva AA**, de Vries JJ, Claas ECJ, Gorbalenya AE: PCR assays for detection of human astroviruses: In silico evaluation and design, and in vitro application to samples collected from patients in the Netherlands. *J Clin Virol* 2018, 108:83-89.

Bukhari K, Mulley G, **Gulyaeva AA**, Zhao L, Shu G, Jiang J, Neuman BW: Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the *Coronavirinae*, the proposed genus Alphaletovirus. *Virology* 2018, 524:160-171.

Saberi A<sup>#</sup>, **Gulyaeva AA**<sup>#</sup>, Brubacher JL, Newmark PA, Gorbalenya AE: A planarian nidovirus expands the limits of RNA genome size. *PLoS Pathog* 2018, 14(11):e1007314.

**Gulyaeva AA**<sup>#</sup>, Dunowska M<sup>#</sup>, Hoogendoorn E, Giles J, Samborskiy D, Gorbalenya AE: Domain Organization and Evolution of the Highly Divergent 5' Coding Region of Genomes of Arteriviruses, Including the Novel Possum Nidovirus. *J Virol* 2017, 91(6).

Lehmann KC, **Gulyaeva AA**, Zevenhoven-Dobbe JC, Janssen GM, Ruben M, Overkleeft HS, van Veelen PA, Samborskiy DV, Kravchenko AA, Leontovich AM *et al*: Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. *Nucleic Acids Res* 2015, 43(17):8416-8434.

Lehmann KC, Hooghiemstra L, **Gulyaeva AA**, Samborskiy DV, Zevenhoven-Dobbe JC, Snijder EJ, Gorbalenya AE, Posthuma CC: Arterivirus nsp12 versus the coronavirus nsp16 2'-O-methyltransferase: comparison of the C-terminal cleavage products of two nidovirus pp1ab polyproteins. *J Gen Virol* 2015, 96(9):2643-2655.

<sup>#</sup>equal contribution

#### **ICTV** proposals

Gorbalenya AE, Brinton MA, de Groot RJ, **Gulyaeva AA**, Lauber C, Neuman BW, Ziebuhr J: Pending ICTV taxonomic proposal 2019.023S Create five new families and a new suborder of vertebrate viruses in the order *Nidovirales*. 2019.

Brinton MA, **Gulyaeva AA**, Balasuriya UBR, Dunowska M, Faaberg KS, Goldberg T, Leung F-C, Nauwynck HJ, Snijder EJ, Stadejek T *et al*: Pending ICTV taxonomic proposal 2019.020S Create one new genus (*Nuarterivirus*); move the existing subgenus *Pedartevirus* to the genus *lotaarterivirus*; rename one species from the subgenus *Pedartevirus*; create one new species in the new genus *Nuarterivirus*; create one new subgenus and two new species in the existing genus *Betaarterivirus*. 2019.

Ziebuhr J, Baker S, Baric RS, de Groot RJ, Drosten C, **Gulyaeva AA**, Haagmans BL, Neuman BW, Perlman S, Poon LLM *et al*: Pending ICTV taxonomic proposal 2019.021S Create ten new species and a new genus in the subfamily *Orthocoronavirinae* of the family *Coronaviridae* and five new species and a new genus in the subfamily *Serpentovirinae* of the family *Tobaniviridae*. 2019.

Gorbalenya AE, **Gulyaeva AA**, Hobson-Peters J, Junglen S, Morita K, Sawabe K, Vasilakis N, Ziebuhr J: Pending ICTV taxonomic proposal 2019.022S Create one new species in the genus *Alphamesonivirus* of the family *Mesoniviridae* and one new species in the genus *Okavirus* of the family *Roniviridae*. 2019.

Gorbalenya AE, Brinton MA, Cowley J, de Groot R, **Gulyaeva AA**, Lauber C, Neuman B, Ziebuhr J: ICTV taxonomic proposal 2017.015S Reorganization and expansion of the order *Nidovirales* at the family and sub-order ranks. 2017.

Brinton MA, **Gulyaeva AA**, Balasuriya UBR, Dunowska M, Faaberg KS, Goldberg T, Leung FC-C, Nauwynck HJ, Snijder EJ, Stadejek T *et al*: ICTV taxonomic proposal 2017.012S Expansion of the rank structure of the family *Arteriviridae* and renaming its taxa. 2017.

Ziebuhr J, Baric RS, Baker S, de Groot RJ, Drosten C, **Gulyaeva AA**, Haagmans BL, Neuman BW, Perlman S, Poon LLM *et al*: ICTV taxonomic proposal 2017.013S Reorganization of the family *Coronaviridae* into two families, *Coronaviridae* (including the current subfamily *Coronavirinae* and the new subfamily *Letovirinae*) and the new family *Tobaniviridae* 

(accommodating the current subfamily *Torovirinae* and three other subfamilies), revision of the genus rank structure and introduction of a new subgenus rank. 2017.

Gorbalenya AE, Brinton MA, Cowley J, de Groot R, **Gulyaeva AA**, Lauber C, Neuman B, Ziebuhr J: ICTV taxonomic proposal 2017.014S Establishing taxa at the ranks of subfamily, genus, sub-genus and species in six families of invertebrate nidoviruses. 2017.

Brinton MA, **Gulyaeva AA**, Balasuriya UBR, Dunowska M, Faaberg KS, Leung FC, Nauwynck HJ, Snijder EJ, Stadejek T, Gorbalenya AE: ICTV taxonomic proposal 2015.014a-cS In the family *Arteriviridae* create 10 species (1 unassigned, 9 in the genus *Arterivirus*) and rename one species. 2015.

Ziebuhr J, Baric RS, Baker S, de Groot RJ, Drosten C, **Gulyaeva AA**, Haagmans BL, Lauber C, Neuman BW, Perlman S *et al*: ICTV taxonomic proposal 2015.003a-eS Create 12 species in the family *Coronaviridae*. 2015.

Gorbalenya AE, **Gulyaeva AA**, Hobson-Peters J, Junglen S, Morita K, Sawabe K, Vasilakis N, Ziebuhr J: ICTV taxonomic proposal 2015.004a,bS In the family *Mesoniviridae*, create four species in genus *Alphamesonivirus* and two unassigned in the family. 2015.

Acknowledgements

#### ACKNOWLEDGEMENTS

I would like to thank all the people who supported me on my PhD journey. First of all, I want to express my gratitude to my promotor Sasha Gorbalenya and co-promotor Igor Sidorov. Sasha, thank you for your guidance, advice, sharing your knowledge and ideas with me, and for all the opportunities that you gave me. Igor, thank you for always being there for me when I had difficulties. I am very grateful to my Moscow colleague Dmitry Samborskiy for finding amazing solutions to the most difficult bioinformatics problems. I would like to thank all my co-authors for pleasant and productive collaborations. Over the past five years, I have been fortunate to supervise several students of the MoBiLe Bioinformatics Summer School: Vanya Kuznetsov, Sveta Iarovenko, Andrey Sigorskih, Lena Ocheredko and Dima Penzar, thank you for your excellent work. I loved this experience and learned a lot from it! I would like to thank my former teachers and mentors from the Lomonosov Moscow State University, my supervisors from the MoBiLe Bioinformatics Summer School, and an MSc. thesis advisor Andrey Mikhailovich Leontovich, all of whom inspired me to pursue career in bioinformatics. I am also very grateful to Louis Kroes and Eric Snijder for the support of my work at the Department of Medical Microbiology, and to all my colleagues for wonderful and stimulating research environment. I would like to thank len Dobbelaar, Ineke van Ballegooijen-Molijn, Manon Stijnman, Sophie Greve, Esther Quakkelaar, Annemieke Hofman-Jansen and Marianne Parlevliet-de Gelder for helping me with administrative issues, and Hans van der Geest for maintaining computational environment for my work over these years. I am very grateful to Jeroen Corver and Tim Dalebout for translating thesis summary into Dutch. Finally, from the bottom of my heart, I would like to thank my family, and most importantly, my mum. Without your love, encouragement and support, my PhD journey would be impossible.