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ABSTRACT 

Motivation: To facilitate accurate estimation of statistical significance of sequence 

similarity in profile-profile searches, queries should ideally correspond to protein domains. 

For multidomain proteins, using domains as queries depends on delineation of domain 

borders, which may be unknown. Thus, proteins are commonly used as queries that 

complicates establishing homology for similarities close to cut-off levels of statistical 

significance. 

Results: In this report we describe an iterative approach, called LAMPA, LArge 

Multidomain Protein Annotator, that resolves the above conundrum by gradual expansion 

of hit coverage of multidomain proteins through re-evaluating statistical significance of hit 

similarity using ever smaller queries defined at each iteration. LAMPA employs TMHMM 

and HHsearch for recognition of transmembrane regions and homology, respectively. We 

used Pfam database for annotating 2985 multidomain proteins (polyproteins) composed 

of more than 1000 amino acid residues, which dominate proteomes of RNA viruses. Under 

strict cut-offs, LAMPA outperformed HHsearch-mediated runs using intact polyproteins as 

queries by three measures: number of and coverage by identified homologous regions, 

and number of hit Pfam profiles. Compared to HHsearch, LAMPA identified 507 extra 

homologous regions in 14.4% of polyproteins. This Pfam-based annotation of RNA virus 

polyproteins by LAMPA was also superior to RefSeq expert annotation by two measures, 

region number and annotated length, for 69.3% of RNA virus polyprotein entries. We 

rationalized the obtained results based on dependencies of HHsearch hit statistical 

significance for local alignment similarity score from lengths and diversities of query-target 

pairs in computational experiments. 

Availability: LAMPA 1.0.0 R package is placed on GitHub (https://github.com/Gorbalenya-

Lab/LAMPA). 
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1 INTRODUCTION 

Due to high-throughput next-generation sequencing, genomics is outpacing functional and 

structural characterization of proteins [1]. This gap is especially pronounced and fast 

growing for viruses, whose discovery and characterization in diverse habitats has been 

driven by metagenomics over the last ten years [2, 3]. 

In genomics projects, conceptually translated open reading frames (ORFs) are functionally 

characterized by bioinformatics tools which use homology recognition for annotation. To 

improve accuracy of protein annotation, bioinformatics tools use iterative searches of 

databases of individual sequences (e.g. PSI-BLAST [4] vs GenBank [5]), search profile 

databases (e.g. HMMER [6] or HHsearch [7, 8] vs Pfam [9], or HHblits [8] vs Uniclust30 

[10]), and may involve comparison of query and target secondary structure (e.g. HHsearch 

vs SCOP [11]). Annotation pipelines favor selectivity over sensitivity by imposing stringent 

cut-offs on similarity between query and database entries. Scores of similarity are 

interpreted in statistical frameworks using either expectation values (default cut-off 

E=0.001, BLAST, HMMER, HHsearch) or homology Probability (default cut-off P=95%, 

HHsearch). 

To recognize distant homologs, popular HHsearch was fine-tuned based on a subset of 

SCOP 1.63 database with less than 20% pairwise sequence identity of structural domains 

[7], where mean sequence length is equal 178 aa [11] (Fig. 1), typical of functional and 

structural domain [12]. Its hit statistical significance increases with score of similarity 

between query and target, and it depends on sizes and diversities of query and target [13]. 

Specifically, large size increases likelihood of a hit score emerging by chance, while the 

opposite is true for small size. Notwithstanding HHsearch training on protein domains, it 

has been routinely used in analysis of proteins of unknown domain organization. For a 

single-domain protein, statistical significance of hit similarity must be applicable to its 

domain, since sizes of both are similar. On the other hand, for multidomain queries, 

statistical support of a hit associated with individual domain may be underestimated due 

to inflated search space that encompasses other domains of the query protein [4, 14]. 

The query size issue could be of little practical consequence for proteins having closely 

related homologs in sequence databases. However for identification of distant 

relationships, accurate estimation of statistical significance could be impactful. The above 

problem may be particularly acute for RNA viruses [15], which typically encode large 

multidomain proteins (>1000 aa) [16]. (Hereafter and for sake of simplicity, we’ll use 

polyprotein to refer to virus multidomain proteins). They are much larger than most 

proteins of cellular organisms, whose length distributions resemble lognormal, with a 

mean below 500 aa [17]. Human immunodeficiency virus, Ebola virus, severe acute 
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respiratory syndrome coronavirus, and poliovirus, and very many other eukaryotic viruses 

encode polyproteins [18, 19]. These polyproteins mediate replication/transcription and 

promote virus particle formation in either the synthesized form or after being 

proteolytically processed. Furthermore, the already known proteomes of RNA viruses are 

exceptionally diverse due to high mutation rate of RNA viruses [20], with many 

relationships in twilight and midnight zones of homology [21, 22]. 

In our recent HH-suit-mediated analysis of the largest known polyprotein of RNA virus 

(PSCNV, 13,556 aa) [23], we initially annotated only three regions by homology 

(polyprotein 7.1%). To check whether this result could be partially attributed to an 

underestimation of genuine statistical significance of the similarity between polyprotein 

domains and target protein profiles, we split the polyprotein using comparative genomics 

and, indeed, identified three other homologs with high confidence [23]. 

The above positive experience led us to formalize this approach in R package, called 

LAMPA, LArge Multidomain Protein Annotator, that we describe in this report. Also we 

Figure 1 | Length distribution of proteins in datasets relevant to comparison of HHsearch and LAMPA. This plot 
depicts sizes of six protein datasets labelled from A to F and used or cited in this study. (A) 6271 SCOP domains 
used for HHsearch training (range: 21-1504 aa); (B) 2985 RefSeq virus polyproteins (range: 1001-8572 aa); (C) 
431 RefSeq virus polyproteins which include 507 regions exclusively annotated by LAMPA (range: 1039-8572 aa); 
(D) 507 hit regions generated by LAMPA from 431 RefSeq polyproteins (range: 88-2172 aa); (E) 507 domains 
tentatively demarcated around LAMPA hits (range: 164-732 aa); (F) 41 designed sizes of each of three proteins, 
123 in total, tested in computational experiments (range: 10 – 100,000 aa). 
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present proof-of-the principle for LAMPA in study of homology between RNA virus 

polyproteins and pfamA_31.0 database. It was further supported and expanded by 

evaluation of dependences of HHsearch statistics for fixed similarity score from lengths 

and diversities of query and target in computational experiments. 

2 METHODS 

2.1 Databases and virus protein dataset 

We used pfamA_31.0 database [9], accompanying HH-suite [8], as target database to 

identify homology by profile searches and transfer annotation. We were interested in 

annotating virus proteins and selected a subset of NCBI Viral Genomes Resource database 

(RefSeq) [1] to serve as queries in homology searches and the source of expert annotation 

(Text S1.1). Only proteins of true RNA viruses that use RNA-dependent RNA polymerase 

(RdRp), positive and negative single-stranded RNA viruses, (+)ssRNA and (-)ssRNA, 

respectively, and double-stranded RNA viruses, dsRNA, were included in the query protein 

dataset (Fig. S1). Protein sequences were obtained from “translation” qualifiers of “CDS” 

features in RefSeq genome entries. The query database included all 2985 protein 

sequences of RNA virus genomes listed in “Viral genome browser” table on 2018.07.26 

(Table S1), that were 1000 aa or longer (protein length ranged from 1001 to 8572 aa, 

median=2081 aa; Fig. 1). It was further grouped into 884 clusters using MMseqs2 [24], 

following the authors recommendations for multidomain proteins and defining sequence 

identity rate (--cluster-mode 1 --min-seq-id 0.3 --alignment-mode 3) and local alignment 

coverage (--cov-mode 0 -c 0.8) (see Text S1.2 and Table S1). Most of these proteins are 

encoded in a single ORF [25]. We parsed RefSeq entries corresponding to the analyzed 

proteins to extract region annotations from “Region” features [26]. Other annotation 

features, such as “CDS”, “Protein”, and “Site”, which were not taken into analysis, may 

overlap with the “Region” or include extra information. For further details about 

polyprotein query dataset see Text S1.1. 

2.2 Comparative sequence analysis 

Transmembrane (TM) helices in protein sequences were predicted by TMHMM 2.0c [27]. 

Secondary structures (SS) of query sequences, regardless of their length, were derived 

from the predictions made for the respective entire polyproteins by script addss.pl from 

HH-suite 3.0.0 (2015.03.15) [28], which used PSIPRED 3.5 tool [29]. Query profiles were 

built and compared to a database by programs HHmake and HHsearch from HH-suite 

2.0.16, respectively [7]. In all analyses, parameters of HH-suite programs were left at 

default values, with the exception of HHmake parameter “-M first”, indicating that 

columns with residue in the first sequence of the FASTA file are considered match states, 
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and HHsearch three parameters: “-p 0”, allowing hits with Probability as low as zero; 

“-norealign”, blocking realignment of reported hits using maximum accuracy (MAC) 

algorithm; “-alt 10”, enabling reporting up to 10 significant alternative alignments 

between a query and a target profile [14] (Text S1.3). To identify statistically significant 

hits and homologous regions, HHsearch hits were subjected to post-processing under 

three cut-offs: Probability >95%, E-value <10, and hit length of >50 aa of the query 

sequence. Hits satisfying these thresholds and overlapping on query were combined into a 

cluster, extreme N- and C-terminal residues of which defined boundaries of region in the 

query that was homologous to target(s). Statistics of the top-scoring hit in the cluster 

defined the entire cluster, and name of the top-scoring target profile in the cluster 

annotated the query region. Unless stated otherwise, all reported analyses used the hits 

post-processing. Also we used HHblits v.3 [8] for analysis of selected polyproteins as 

detailed in Text S1.4. Analysis and visualization were performed using R 3.3.0 [30]. 

2.3 Statistics 

P value of Wilcoxon signed rank test (PW) was calculated using function “wilcox.test” from 

R package “stats”, with arguments “paired” and “alternative” set to values “TRUE” and 

“greater”, respectively [30]. 

2.4 Calculation of HHsearch P-value and Probability dependence from lengths 

and diversities of query-target pair for fixed hit score 

HHsearch uses extreme value distribution (EVD) model for estimating hit's P-value, E-

value, and Probability from query-target local alignment similarity score. P-value for a 

given score is defined as: 

Pvalue(score) = 1 − exp(−exp(−λ * (score − μ)))  (1) 

where λ and μ are the EVD parameters that optimally approximate the score distribution 

of false positives for a given pair of query and target profiles. E-value is defined as 

Pvalue(score)*NDB, where NDB is the number of searched target profiles in the database. For 

calculations of λ and μ, HHsearch uses ‘profile auto-calibration’ that employs two simple 

artificial neural networks [13]. This default procedure makes use of dependence of λ and μ 

on four characteristics: profile lengths and sequence diversities of both query and target. 

The parameters of the neural networks were derived by training on a set of profiles based 

on 6271 sequences of SCOP20 v1.73 database (minimal, median and maximal protein 

lengths = 21, 142 and 1504 aa, respectively; 5-to-95% range = 48-to-392 aa) (Fig. 1). 

Estimation for Probability of detecting homologous relationship (true positives) is also 

based on the EVD distribution but involves correction by the SS alignment score. 
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To learn how HHsearch performs on queries of our study with sizes close to or exceeding 

the largest protein in the training SCOP database, we conducted computational 

experiments using the HHsearch procedure that generates EVD parameters by adapting 

corresponding C++ source code into a Python Jupyter notebook 

(https://github.com/Gorbalenya-Lab/hh-suite-notebooks/tree/LAMPA). We approximated 

P-value and Probability of hit for fixed local alignment similarity score (including also SS 

alignment score for Probability) in relation to lengths and/or diversities of the 

corresponding query and target profiles, one of which may have been  set to vary in large 

range of values (see Text S1.5). 

3 RESULTS 

3.1 LAMPA, iterative approach for homology recognition and functional 

annotation of multidomain proteins 

LAMPA approach is aimed at improving detection of remote homology in large 

multidomain proteins (queries). Its multistage iterative procedure includes prediction of 

TM regions in query by TMHMM at the pre-iteration stage #0 and comparisons of query 

and its regions with HH-suite profile database(s) (targets) using HHsearch for iterations at 

stages #1-#3 (Fig. 2). As query, intact protein is used for stages #0 and #1, and various 

protein regions are used for stages #2 and #3. Iteration is a single execution of a 

procedure involving protein regions demarcation and submission of regions to HHsearch-

mediated homology searches to identify statistically significant hits (values of post-

processing cut-offs, specified in 2.2, are default). The approach stages are detailed below: 

Stage #0. Detection of TM regions in original query. TM region (domain) may include either 

single or few helices predicted by TMHMM. By default, more than one helix is included in 

a region if each helix is separated from its neighbor by less than 100 aa. Region boundaries 

are defined by either helix boundaries (single-helix region) or opposite boundaries of two 

respective terminal helices (multiple-helix region). TM regions are used to split original 

query into smaller regions (see stage #2). 

Stage #1. Detection of homology regions in original query. This is the first iteration of the 

annotation procedure that uses HHsearch-mediated homology search. Its input and 

output are the original query and hit annotated regions, respectively. 

Stage #2. Detection of homology regions in split query: query-protein-specific (QP-specific) 

iterations. To initiate this stage, the procedure selects regions of the original query that 

are flanked by either of the following: N- or C-terminus of the original query, TM regions 
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and hits clusters identified at the stages #0 and #1, respectively. These regions are used as 

input to HHsearch-mediated homology searches. Obtained hits are used for annotation 

and to demarcate flanking smaller non-annotated regions. The latter are used to initiate a 

new iteration in the manner described above. The iterations are repeated until no hits 

satisfying the cut-offs are identified. 

Stage #3. Detection of homology regions in split query: average-protein-size-specific (AP-

specific) iterations. Non-annotated regions after the stage #2 are split into two 

overlapping sets of 300 aa queries (default). The most C-terminal queries of both sets are 

extended to include the remaining part of the respective region, if the remaining part is 

shorter than 300/2=150 aa (default) and if the extended query does not cover the entire 

region. The default 300 aa size is close to that of an average protein (AP), hence respective 

iterations are called AP-specific. Queries are defined starting from either the N-terminus 

(first AP-specific iteration) or 300/2=150 aa (default) downstream the N-terminus (second 

Figure 2 | LAMPA workflow and its application to RNA virus polyprotein. Presented is outline of the LAMPA 
approach (blue background) applied to polyprotein 1a (pp1a) of ball python nidovirus (BPNV). Grey bars, regions 
of BPNV pp1a that served as TMHMM or HHsearch queries. Iterations of the procedure and programs used are 
depicted on the left; stages are indicated on the right. Clusters of TM helices are depicted in dark red, clusters of 
hits – in dark blue. Hit double digits refer to iteration and hit position on polyprotein from left to right, 
respectively, except for hits at stage #0 which are labelled with the position only. Hits and annotations obtained 
on stage #1 represent output of conventional HHsearch. Q-rich, region rich in glutamine residue; ZBD, zinc-
binding domain; Pkinase, protein kinase; MTase, methyltransferase; 3CLpro, 3C-like protease. For other details 
see text. 
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AP-specific iteration) of the non-annotated regions of stage #2. They are run 

independently. During this stage one and the same region of polyprotein may be found to 

have homolog and be annotated on both AP-specific iterations, since two sets overlap. 

3.2 LAMPA implementation 

The above approach was realized as LAMPA 1.0.0 R package (see also Text S1.6) that 

includes a single command ‘LAMPA’ with 15 arguments that allow user to specify a single 

protein query sequence, target database(s), information required to run HH-suit and 

TMHMM, and parameters of the LAMPA procedure, which are detailed in the package 

manual. LAMPA package employs two external R packages: seqinr [31] and IRanges [32]. 

Output of the command is a directory, name of which is identical to the name of the file 

with query sequence by default. This directory contains a plot (similar to Fig. 2) and two 

tables summarizing TM predictions and homology annotations made for the query 

sequence (overlapping with Table S2), as well as files with detailed information about hits 

constituting each cluster, and a folder with raw data (see package manual for details). 

Analysis of 2985 virus polyproteins against pfamA_31.0, detailed below, required 2000 

min on 16 CPUs for LAMPA to complete (with 0.3 - 2.5 min per query, and approximately 

extra 1000 min compared to HHsearch). A separate script, not included in the LAMPA 

package, was used to automate analysis of multiple queries in this study. 

3.3 Evaluation of LAMPA performance relative to HHsearch in analysis of RNA 

virus polyproteins 

We evaluated LAMPA performance under default parameter values by querying 

pfamA_31.0 with 2985 RNA virus polyproteins (see 2.1; Fig. 1). This analysis documents 

dependence of HHsearch statistics on query size: split protein fragments or regions 

(‘LAMPA’) relative to intact proteins (‘HHsearch’). Only the most N-terminal cluster of hits 

was considered in 26 cases of overlapping clusters from the LAMPA AP-specific stage. For 

annotation-related statistics, we did not consider TM domains (LAMPA stage #0, Fig. 2). 

The output of the LAMPA stage #1 represented also output of the HHsearch run on intact 

proteins. 

Additionally, HHsearch was also used for further statistical analyses of the difference 

between outputs of two tools. For these analyses, HHsearch output was not subject to 

post-processing (see 2.2) that allowed to analyse hits with Probability ≤ 95%, E-value ≥ 10 

and size on query ≤ 50 aa (see below). This use of HHsearch was outside the LAMPA 

framework and required matching of hits obtained by LAMPA and HHsearch for 

evaluation. We restricted this matching to the top-scoring hits of LAMPA hit clusters and 

HHsearch that overlapped on query and targeted the same Pfam profile. 
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3.4 LAMPA outperforms HHsearch in recognizing homology and facilitating 

annotation of RNA virus polyproteins 

Neither LAMPA or HHsearch found homology between 163 proteins (5.5% of the dataset) 

and pfamA_31.0. For 2391 proteins (80.1%), LAMPA and HHsearch hit the same 

homologous regions, from 1 to 18. For 420 proteins (14.1%), LAMPA annotated from 1 to 

3 extra regions on top of 1 to 15 found also by HHsearch (Fig. 3A). For each of the 

remaining 11 proteins (0.4%), a single region was hit by LAMPA only. Increase in number 

of annotated regions per protein by LAMPA was statistically significant (PW=9.5e-86). By 

design of the procedure, HHsearch outperformed LAMPA for none of the polyproteins. For 

the three virus genome classes (2273 proteins in total), share of proteins, for which gain in 

number of annotated regions by LAMPA was observed, varied five-fold: (-)ssRNA viruses 

(3.1%), dsRNA viruses (10.2%), and (+)ssRNA viruses (15.9%). Among the 712 proteins with 

unknown virus genome class, LAMPA outperformed HHsearch for 22.2% of polyproteins. 

Figure 3 | Gain of homology recognition by LAMPA compared to HHsearch. Presented are four depictions of 
results of querying pfamA_31.0 with 2985 RNA virus proteins using LAMPA and HHsearch. (A) Number of regions 
(hit clusters) per query protein annotated by the two tools. Each protein is depicted by a transparent grey dot. 
Since multiple proteins may have the same or similar number of regions annotated by the two tools (X and Y dot 
coordinates), dots may overlap. Grey density is proportional to the number of overlapping dots. Black line, 
diagonal. (B) Share of protein length (%) annotated by the two tools. For other details see panel A. (C) Overlap 
between Pfam profiles that were linked to RNA virus proteins by the two tools. (D) Overlap between RNA virus 
polypro-tein regions annotated by the two tools. 
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Increase in the number of annotated regions (Fig. 3D) was accompanied by the increase in 

the polyprotein coverage by annotations, which ranged from 1.0% to 25.5% of polyprotein 

length (Fig. 3B; PW=1.18e-72). 

Also we compared lists of Pfam profiles hit by LAMPA and HHsearch, and were used for 

region annotation (Fig. 3C, Table S2). Both tools selected 173 profiles to annotate 5737 

virus regions, and extra 67 profiles were used to annotate 5508 and 5947 virus regions by 

HHsearch and LAMPA, respectively. Also, additional 35 profiles were solely used by 

LAMPA to annotate 68 virus regions. Key enzymes of RNA viruses (RdRp, helicases, 

proteases, methyltransferases) dominated the shared part of the LAMPA and HHsearch 

Pfam profile lists (Fig. S2A). In contrast, the LAMPA-restricted profiles did not include RdRp 

but included types of enzymes and non-enzymatic proteins not found in the shared list, 

e.g. seven kinase profiles (Fig. S2B, Table S2). Many protein regions exclusively annotated 

by LAMPA were from most divergent RNA viruses [33]. 

3.5 Both QP- and AP-specific stages of LAMPA procedure contributed to gain of 

annotation 

Gain of annotation by LAMPA compared to HHsearch is fully attributed to QP- and AP-

specific stages. The gain was observed for 431 polyproteins, with the share of regions 

exclusively annotated by LAMPA varying from 6.2% to 100.0% (mean = 27.2%) of all 

recognised regions. Mean percentage of regions annotated in these proteins during the 

stages #1-#3 were 72.8%, 17.1% and 10.2%, respectively (Fig. 4). During QP- and AP-

Figure 4 | Contribution of different stages of LAMPA procedure to protein annotation. Contribution of three 
LAMPA stages to annotation of 431 proteins, including regions exclusively annotated by LAMPA, was measured 
by percentage of regions annotated in each protein. Total number of regions annotated in each protein was 
considered 100%, regardless of their actual number and share in the protein. The box-plots, lower and upper 
limits of the box delimit the first (25%) and third (75%) quartiles, midline limit of the box – median, whiskers 
extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box, 
data beyond that distance are represented by points. 
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specific stages, regions were identified in 322 proteins (10.8% of the whole dataset) and 

126 proteins (4.2%), respectively. 

3.6 Increase of hit statistical significance by LAMPA com-pared to HHsearch is 

modest but common 

LAMPA identified 507 clusters of hits on 431 proteins, HHsearch counterparts of which 

were removed by post-processing under the used thresholds (see 2.2; Fig. 3D). We used 

the top-scoring hits in these clusters to estimate the gain of statistical significance 

(Probability and E-value) by LAMPA compared to HHsearch and represent clusters in all 

analyses described below. We identified matching HHsearch hits for all 507 LAMPA hits 

(Table S2), with 437 hits (86.2%) having identical coordinates on query. In each pair of hits, 

Figure 5 | Gain of hit statistical significance by LAMPA compared to HHsearch. LAMPA hits to region 
queries, obtained during the QP-specific and AP-specific stages of LAMPA procedure, are compared with 
matching HHsearch hits to polyprotein queries, in respect to hit Probability (A) and E-value (B); and with 
matching HHsearch hits to putative domain queries (operational definition, see text for details), in respect 
to hit Probability (C) and E-value (D). Analysed HHsearch hits were not subject to post-processing. 
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LAMPA hit was characterised by higher Probability and lower E-value (Fig. 5A and 5B). 

Probability increase by LAMPA compared to HHsearch was in the range from 0.5% to 

37.6%, with mean 5.3% (Fig. 5A). Decimal logarithm of LAMPA to HHsearch E-values ratio 

ranged from -3.4 to -0.2 with mean -1.5 (Fig. 5B). Positive correlation between Probability 

and −logE-value was accompanied by E-value variation around two orders of magnitude 

for most Probabilities before and after they were elevated above the cut-off by LAMPA 

(Fig. S3). Likewise, for E-values around 10-1, Probability varied approximately ±5%, 

illustrating that choice of statistic in addition to significance cut-off may affect output. 

3.7 LAMPA-demarcated regions may approximate authentic domains for 

purpose of homology detection 

The LAMPA region queries may still be (much) larger than the actual domains, natural 

borders of which remain unknown. Because of this uncertainty, we reasoned that the gain 

of statistical significance by LAMPA compared to HHsearch might provide only a lower 

estimate for the actual difference between Probabilities and E-values of the respective 

hits obtained for the polyprotein and expected for its domains. To improve understanding 

about how close the obtained LAMPA Probabilities and E-values for protein regions may 

be to those of the actual domains, we adopted an operational definition of polyprotein 

domain in relation to homology hit and used it to approximate borders of the actual 

domains; in total 507 hits on 431 polyproteins (see above) were considered for this 

purpose. Operational domain was demarcated as LAMPA hit that was extended by 100 aa 

to the N- and C-terminus; if distance to the polyprotein terminus was less than 100 aa, 

extension was adjusted accordingly (which was used in 48 of 507 cases). The demarcated 

domain sizes ranged from 164 to 732 aa (mean=315 aa) that was close to dominant 

domain size in public databases and narrower compared to the range of 88 to 2172 aa 

(mean=479 aa) of region queries that produced the original LAMPA hits (Fig. 1). For each 

of 507 hits, we then compared Probability and E-value values, assigned by LAMPA, to 

those obtained by HHsearch for a matching hit in a separate analysis that used 

demarcated domains as queries and involved no hits post-processing (see 2.2; Table S2). 

We obtained data for all 507 hits, with 457 hits (90.1 %) having identical coordinates on 

query in LAMPA and HHsearch analyses. The difference between the two Probability 

values ranged from -1.8% to 4.6% with mean and median close to zero (both were equal -

0.2%); absolute value of the difference didn’t exceed 2% in 99.8% of cases (Fig. 5C). 

Decimal logarithm of the E-values ratio ranged from -1.3 to 1.8, mean 0.2 (Fig. 5D). These 

differences were evenly distributed and much smaller than those observed in comparison 

of LAMPA hits to region queries and HHsearch hits to polyprotein queries (Fig. 5A and 5B). 

Based on these results we concluded that sizes of queries used by LAMPA during iterative 
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stages may be close to those of the respective authentic domains for the purpose of 

statistical evaluation of homology and annotation transfer under the employed cut-off. 

Figure 6 | Relationship between Probability gain by LAMPA and query lengths. Difference between 
Probabilities of hit to region query (LAMPA stages #2 or #3) vs polyprotein query (HHsearch without hits post-
processing) (empty circle), is compared with difference between the respective approximated Probabilities for 
the matching hit in computational experiments (cross) at the Y axis, for 507 hits in total. These values are plotted 
against values of three characteristics of respective queries at the X axis: (A) polyprotein length (stage #1), (B) 
ratio of polyprotein to query region length (stage #1 vs stage #2/3), and (C) query region length (stage #2/3). 
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3.8 Increase of statistical significance of hits by LAMPA compared to HHsearch is 

proportional to respective decrease of query length 

We then asked how LAMPA-based increase of statistical significance in 507 hits of 431 

proteins in 504 pairs of polyprotein and Pfam profile depended on lengths of polyprotein 

(original query, varied between 1039 and 8572 aa) and its fragments (queries varied 

between 88 to 2172 aa at LAMPA stages #2 and #3) (Fig. 1). We observed steady but 

highly uneven increase of Probability gain for polyproteins in the size range between 1001 

and approximately 3000 aa which then levelled (Fig. 6A). That positive dependence was 

stronger and more common when Probability gain was plotted against relative length 

decrease in queries of LAMPA compared to HHsearch, which varied in the range from 1x 

to 45.3x, with 68.2% of the decreases of query length being in the 1-10x range (Fig. 6B). 

Accordingly, Probability gain fall steeply with increase of the LAMPA query length up to 

2172 aa; it was below 10% and 5% for LAMPA queries including more than 448 aa and 747 

aa, respectively (Fig. 6C). 

3.9 Estimation of hits Probability by LAMPA may be approximated in 

computational experiment 

Non-uniform dependence of Probability gain from query length (Fig. 6A, C) implied other 

characteristics be involved. Indeed, besides query length, target length and diversities of 

query and target are used by HHsearch for the calculation of λ and μ that affect hit score 

P-value (see 2.4). Accordingly, we analysed the relationship between estimates of hit 

statistical significance and possible lengths of the corresponding query and target profiles 

systematically using computational experiments. They used local alignment similarity 

score of HHsearch hit of full-length query-target pair for approximating hit Probability on 

queries of other observed and computationally generated sizes, assuming that hit score 

may not change with query size. This assumption proved to be accurate within a margin of 

error (see below). 

We used the HHsearch neural networks to generate EVD parameters, followed by 

calculation of Probability, as well as P-value, of hit to polyprotein region from local 

alignment similarity score of this hit in every full-length query-target pair for which hit 

Probability gain was observed (in total 507 hits; Figs. 3D and 6; for details see 

https://github.com/Gorbalenya-Lab/hh-suite-notebooks/tree/LAMPA). First we noted 

good agreement between gains of Probabilities obtained in computational experiments 

and LAMPA runs (Fig. 6). They are within of +0.7%/-0.4% deviation of Probability gain 

estimation by LAMPA for the 95 percentile of hit scores in the dataset (Fig. S4A). The 

modest difference between the two values is explained by respective deviation of the 

underlying similarity score of the pairwise HHsearch hit alignment for polyprotein, which 

was fixed in computational experiments, from region-specific score that is calculated for 
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actual query and target profiles by LAMPA. Thus, by default, the same hit alignment 

involving polyprotein and its part as queries might have slightly different scores and also 

coordinates, further contributing to difference between the respective Probabilities (and 

P-values, Fig. S4B) in computational experiments. 

3.10 P-value and Probability of HHsearch hits depend non-linearly on the lengths 

and diversities of query and tar-get profiles in computational experiments 

The increase of the hit Probability during QP- and AP-specific iterations (Fig. 6) is likely 

explained by the use of query length in the auto-calibration procedure of HHsearch (see 

2.4). We then conducted four computational experiments for three selected query-target 

pairs (Text S1.5) that were characterized by the largest Probability gain of LAMPA hit at 

stages #2 (37.6%) and #3 (25.8%), respectively, and associated with the largest decrease of 

query size (47 fold) (Fig. 7, Fig. S5 and Table S3). They also represent considerable ranges 

of hit scores (40.2, 41.1, and 67.2 for three pairs) and target diversities (6.7, 11.5, and 7.7). 

Forty one computationally designed lengths of each of three queries were tested (Fig. 1; 

Text S1.5). 

In the three query-target pairs, both P-value and Probability showed strong non-linear 

dependence on designed sizes of query and target (Fig. 7) (hereafter we use “designed” to 

distinguish computational experiment from LAMPA). Specifically, P-value changed steeply, 

Figure 7 | Relationship between hit statistical significance and profile lengths in computational experiments. 
HHsearch hit P-value (A-C) and Probability (D-F) were estimated for 41 designed lengths of query or target, each 
of which was equidistant from its immediate neighbour on base 10 logarithmic scale (see Text S1). The 41 pairs 
of values were plotted to reveal relationship between two characteristics. These plots used hit score values of 
three query-target pairs, which are specified at the bottom of the figure and whose respective hit statistics 
values at the #1 stage (HHsearch), and #2 or #3 stages (LAMPA) are also depicted. 
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with curves of designed queries and targets running in parallel relative to each other (Fig. 

7A-C). In the designed length range from 100 to 10000 aa, which encompasses most 

queries and targets of this study, P-value increased by approximately four orders of 

magnitude for queries of three pairs. This increase was limited to two orders of magnitude 

for the three selected queries illustrating LAMPA gain versus HHsearch. In contrast, 

dependence of Probability on length of designed queries and targets followed inverted 

logistic curve and differed between target and query as well as between the three pairs 

(Fig. 7D-F). Dependence of Probability on designed query size was most no-ticeable only 

below the 95% threshold, where it followed growth phase of logistic. The selected LAMPA 

and HHsearch queries were at different places of this growth phase in two query-target 

pairs (Fig. 7D,E) and outside the growth phase in third pair (Fig. 7F) which explained 

different Probability gains of LAMPA hit in these pairs. Hit score and target diversity 

contributed to variable Probability gain in three pairs (Text S1.5). 

Figure 8 | Summary statistic of annotation coverage by LAMPA and RefSeq experts. Comparison of the number 
of regions per protein (A) or percentage of protein length (protein coverage) (B) annotated by LAMPA (stages #1-
3) and RefSeq experts, based on analysis 2985 RNA virus proteins. Each protein is represented by a transparent 
grey dot; dot density is proportional to the number of proteins with identical characteristics. Black line, diagonal. 
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3.11 LAMPA can significantly expand RefSeq expert annotation of RNA virus 

polyproteins 

Finally, we compared annotations of the RNA virus polyproteins by LAMPA and HHsearch 

versus RefSeq experts (Fig. 8, Fig. S6). Concerning the number of annotated regions per 

polyprotein, LAMPA and HHsearch were as good as RefSeq for 38.8 and 41.4% of 

polyproteins, respectively, while RefSeq expert or LAMPA/HHsearch outperformed the 

other for 23.3/27.0% and 37.9/31.6% of polyproteins, respectively (Fig. 8A, Fig. S6A). 

Notably, LAMPA and HHsearch annotated regions in 298 and 291 out of 426 polyproteins 

with no RefSeq annotation and increased the number of annotated region(s) for further 

833 and 652 polyproteins. Increase in the number of annotated regions per protein by 

LAMPA but not HHsearch was statistically significant (PW=3.11e-08 and 0.752, 

respectively). LAMPA and HHsearch annotations covered larger share of polyprotein 

(mean region length was 312, 321 and 265 aa for LAMPA, HHsearch and RefSeq 

annotation, respectively). This coverage increase was observed for 78.7 and 77.5% 

proteins, respectively, (Fig. 8B, Fig. S6B) and was statistically significant (PW=1.07e-291 and 

3.81e-273). We note that the above numbers apply to annotation in the “Region” fields of 

RefSeq entries. Other fields may record non-redundant annotation which is particularly 

likely for RefSeq entries with zero regions annotated in the “Region” field. These entries 

are in minority in the dataset. In summary, LAMPA expands further HHsearch annotation 

that may already improve RefSeq annotation of RNA virus polyproteins. 

4 DISCUSSION 

In this report we present an iterative LAMPA pipeline for advanced homology detection in 

large multidomain proteins and proof-of-the-principle for LAMPA in its application to RNA 

virus polyproteins. Statistical apparatus of HHsearch, used in LAMPA, was trained on a 

dataset of structurally defined domains with the median size of 142 aa to ascertain high 

sensitivity and selectivity, although HHsearch is used for annotation of proteins, regardless 

of their domain composition and size. This expanded application of HHsearch is due to 

two factors: 1) in contrast to sequence diversity of query (profile) (see HHblits), domain 

composition of query received relatively little attention in relation to HHsearch sensitivity; 

2) considerable complexity and uncertainty of domain delineation in protein sequences. 

We have addressed both aspects in this study and offer a practical solution to the 

detection of distant homology in multidomain proteins using conventional profile-based 

tools in the LAMPA pipeline, which could be particularly useful in the on-going exploration 

of the Virosphere [2, 3, 23]. 
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Length along with diversity are the two characteristics of query and target that determine 

hits Probability and P-value in HHsearch profiles' auto-calibration procedure [13]. We 

employed this procedure in computational experiments of high accuracy to plot the 

dependence of hits Probability and P-value from designed query/target lengths of several 

query-target pairs over a large size range that was beyond those used for tuning the auto-

calibration procedure (12 to 1504 aa) and this study (1001 to 8572 aa) (Fig. 1). The 

produced plots revealed constrained statistic-specific shape of considerable variation for 

the two statistics characterizing a hit score in relation to query size (Fig. 7). Due to training 

of the auto-calibration procedure on the domain dataset, this variation informs about hit 

score statistics in application to single-domain proteins. When applied to multidomain 

proteins, like those used in this study, it illustrates how statistical significance of hit scores 

may be underappreciated depending on difference of sizes of the intact protein and its 

domains. This underappreciation is realized regardless of multidomain protein size, 

although it may be consistently considerable only for large proteins.  

In line with the formula 1 (see 2.4), the computational experiments revealed also complex 

dependencies of statistical significance of HHsearch hits on designed target length and 

profile diversities of query and target (Fig. 7, Fig. S5). These dependencies explained 

variable gains of hit statistical significance by LAMPA compared to HHsearch in different 

query-target pairs. They also provide theoretical foundation for further efforts of 

improving the homology recognition by LAMPA through enriching queries using HHblits 

and targeting several databases, as is discussed below.  

For queries including single domain or larger, false positive rate of LAMPA may not be 

different from that of HHsearch [7, 8], which is used for calculation of hit statistical 

significance. Our results were obtained with Probability cut-off of 95%, which was chosen 

to ascertain homology detection and suppress false positives [14]. The user may use E-

value instead of Probability or lower the cut-off that will trade confidence in homology 

detection for increasing polyprotein coverage. We expect LAMPA to outperform HHsearch 

at these lower cut-offs as well. Due to logistic dependence between Probability and query 

length (Fig. 7D-F), Probability gains with under 95% cut-offs could be bigger than reported 

here.  

We used TMHMM and HHsearch to functionally annotate polyproteins on structural 

grounds and by homology, respectively; they were used by LAMPA to delimit 

uncharacterized polyprotein regions that queried Pfam 31.0 further. (As discussed in Text 

S1.3, the use of HHsearch in the LAMPA framework was adjusted for analysis of RNA virus 

polyproteins). Once this iterative query-specific characterization at the QP-stage was 

exhausted, we used average protein domain size to delimit the remaining non-annotated 

regions during further database searches. This AP-stage has elements of arbitrariness 
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which were partially addressed ad hoc by using two alternative starting points for query 

delimitation.  

This aspect and the entire pipeline may be advanced further. At the stage #0, other 

programs in addition to TMHMM may assist with functional annotation, e.g. mapping 

disordered regions, or regions anomalously enriched with certain amino acid residues, or 

cleavage sites for particular proteases like it was demonstrated in our recent study [23]. In 

that study, HHsearch was used to scan several databases, and this provision is also 

available in the LAMPA 1.0.0 package. Also, iterative profile programs, e.g. PSI-BLAST or 

HHblits, could be incorporated in the LAMPA to enrich query and improve homology 

recognition by targeting proteins that are not part of curated profile databases. These 

improvements could increase relative share of the QP-stage in homology detection and 

region annotation. In theory, the LAMPA may identify all domains at the #1 and QP-stage, 

with the AP-stage generating no hits, either due to the lack of queries or homology. 

Notwithstanding future advances, the current LAMPA version may already complement 

HHblits, the current top homology search tool. Indeed, under the 95% Probability cut-off 

HHblits failed to annotate 195 of 507 regions that LAMPA but not HHsearch annotated in 

431 polyproteins of this study (Table S2, Text S1.4).   

The reported gain of hit statistical significance by LAMPA compared to HHsearch was 

modest but sufficient to elevate many hits above the Probability 95% cut-off. It improved 

homology detection and hit coverage in 14.4% of polyproteins which were enriched with 

sequences that share not more than 30% identity with others in the dataset. Thus, gain of 

hit statistical significance by LAMPA compared to HHsearch could be larger for viruses that 

prototype genera or higher rank taxa rather than species dominating our dataset (see Text 

S1.2).  

LAMPA annotation was most frequent for (+)ssRNA viruses, which correlates with their 

abundance and expanded diversity relative to dsRNA and (-)ssRNA viruses. Most newly 

detected homologs may already be known in other related viruses, which is evident from 

names and descriptions of hit Pfam profiles that often refer to viruses and their proteins 

(Table S2). However, they also include those not reported in literature, e.g. ZBD and 

MTase domains in pp1a (YP_009052476.1) of BPNV, python tobanivirus (Fig. 2; Table S2). 

The detection of the MTase domain, which is apparently conserved in the distantly related 

fish WBV (YP_803214.1) in this genome location, is particularly intriguing. These viruses 

and other nidoviruses with genomes > 20 kb are known to encode one or two MTases far 

downstream in the pp1b part of the pp1ab polyprotein [23, 34, 35] that were implicated in 

the 5’-end mRNA cap formation [36]. These and other functional assignments (Table S2) 

could be used to direct experimental research and in reconstruction of evolution of RNA 

viruses. 
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LAMPA facilitates homology detection and may be used to improve annotation coverage 

by other tools and experts in genomic projects, as well as in curated databases, including 

RefSeq. However, other factors besides detection of homology may affect quality of 

annotation [37, 38] and they were outside the scope of this study. 
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SUPPLEMENTARY INFORMATION  

Text S1.1 Virus protein dataset 

The RefSeq database was chosen to compile the query virus database for three reasons. 

First, it is one of the best representations of the known RNA virus genome diversity that is 

publicly available. Second, RefSeq maintains proper taxonomic representation of viruses 

that alleviates considerable biases of genome sequencing toward selected viruses of 

societal significance. Third, RefSeq curates annotation of genome records, which could be 

used as a standard to compare to [1]. 

Most viruses are represented by a single polyprotein in our query dataset, but large RNA 

viruses may encode several, either overlapping or not. Non-overlapping polyproteins are 

encoded in separate ORFs on single or multiple genome segments (see Table S1). In 

contrast, polyproteins of some viruses, notably those of nidoviruses and alphaviruses, are 

expressed from two ORFs using either ribosomal frame-shifting signal or read-through 

terminal codon [25]. Often, a RefSeq genome entry contains a “CDS” feature attributed to 

the combination of the two such ORFs, alongside a “CDS” feature attributed to the first 

ORF. A “CDS” feature attributed to the second ORF may also be included, even though it 

may not be expressed independently of the first ORF. These extra “CDS” features 

constitute a source of redundancy, as our query dataset was created by extracting protein 
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sequences ≥1000 aa from “translation” qualifiers of all “CDS” features of the selected 

RefSeq genome entries.   

Proteins of (+)ssRNA viruses accounted for 47.1% of the query dataset, length of the 

proteins ranged from 1001 to 8572 aa (polyprotein of a flavi-like Gamboa mosquito virus 

[39]), median length was 2168 aa. Proteins of (-)ssRNA viruses accounted for 18.2% of the 

dataset, length of the proteins ranged from 1003 to 4403 aa (L protein of Shayang Spider 

Virus 1 from the order Bunyavirales [40]), median length was 2122 aa. Proteins of dsRNA 

viruses accounted for 10.9% of the dataset, length of the proteins ranged from 1002 to 

7391 aa. Two dsRNA viruses with largest protein sizes, 6359 and 7391 aa, and possibly 

others with similar large sizes may in fact be (+)ssRNA viruses (polyproteins of Gentian 

Kobu-sho-associated virus [41, 42] and Ceratobasidium endornavirus D [43, 44]). Median 

length of the dsRNA virus proteins, included in the dataset, was 1274 aa. For the 

remaining 23.9% proteins of the dataset, genome type was not specified in the 

corresponding genome entries, while their lengths ranged from 1001 to 7421 aa, 

median=1963 aa.  

We used RefSeq annotation of the virus sequences as a standard in our study. Although it 

is useful, the RefSeq remains a project in progress, and its annotation is subject to 

frequent update and revision. Much of its annotation is based on profile analysis involving 

Pfam, CDD or other databases. In this respect, our findings using strict significance cut-offs 

are equally reliable and can be considered true to the extent we could transfer Pfam 

profiles descriptions to the identified homologous regions of query proteins. 

Text S1.2 Redundancy of the virus protein dataset in relation to comparison of 

LAMPA and HHsearch 

Majority of the 2985 polyproteins of the query dataset are encoded by viruses that 

prototype virus species, which is a main criterion for their selection by RefSeq team to 

address redundancy problem and ensure their relevance for research and applications. 

However, known species are distributed highly unevenly among virus families that creates 

a bias. To evaluate how similar polyproteins of these species are in the protein distance 

space, we have clustered 2985 sequences using MMseqs2 software (0.8 coverage and 30% 

identity; single-linkage clustering mode) in analysis that delineated 884 clusters (with 

number of sequences per cluster varying from 1 to 124; average and median number of 

sequences per cluster 3.4 and 11, respectively) (Table S1). Inspection of virus taxonomy of 

these clusters indicates that they correspond loosely to taxa or a subset of taxa of 

classified viruses at genus/subfamily rank, depending on virus family. We found that 431 

polyproteins, for which LAMPA outperformed HHsearch (Fig. 1, C dataset), represent a 

disproportionally large share of the total number of clusters (14.4% sequences found in 

26.1% clusters) and were enriched with polyproteins representing less populated clusters 



LArge Multidomain Protein Annotator 

249 

(231 clusters, average/median: 1.9/4.0 sequences per cluster). Thus, LAMPA 

outperformed HHsearch for annotation of a larger share of sequences in the clustered 

dataset than in the original dataset. This observation implies that the main observations 

and conclusions of our study were not undermined by selection of the RefSeq virus 

polyproteins as queries, without prior clustering.  

Text S1.3 The use of HHsearch in the LAMPA framework for analysis of RNA 

virus polyproteins 

The application of HHsearch to analysis of virus polyproteins in the LAMPA framework 

required non-default values for two parameters. The first parameter, “-norelaign”, was 

used to switch off maximum accuracy (MAC) realignment algorithm, the postprocessing 

step at which the hit alignment is improved and the hit's span can be also adjusted, while 

hit scores (E-value/Probability) remain intact [14]. Although this postprocessing may 

improve alignment, we observed hit degradation and even its complete loss due to MAC 

use. A solution to this problem was suggested (https://github.com/soedinglab/hh-

suite/issues/153). Second parameter, “-alt 10”, increased the maximal number of 

reported alternative alignments between query and the same target profile to ten. The 

default maximum of two alternative alignments was found to be problematic, as RNA virus 

polyproteins may include more than two paralogs.  

Also HHsearch may be prone to the overestimation of statistical significance of hits (false 

positives), if query size is at the low extreme of the size range of the training dataset. In 

the LAMPA framework, short queries smaller than domain may indeed be used at stage 

#2, if the query is flanked, from one or both sides, by hits that cover only a portion of the 

respective domain. These considerations prompted a limit on hit length (>50 aa by 

default) that also defined minimal length of query at stage #2. 

Text S1.4 The use of HHblits to evaluate LAMPA gain of RNA virus polyproteins 

annotation 

We used 431 polyproteins, which include 507 regions annotated by LAMPA but not 

HHsearch, as queries for HHblits to see whether this tool could annotate these regions.  

The polyprotein queries were initially enriched with homologs by running HHblits v.3 [8] 

against Uniclust30_2018_08 database [10] with 1, 2, or 3 search iterations and default 

other options (i.e. 0.001 for E-value cutoff for alignment extension and max. diversity 

threshold Neff=20, which stops further iterations). The enriched queries were then used 

for HHblits search in PfamA database with default options and only one search iteration 

(subsequent search iterations showed no significant improvement of hit score and 

coverage). Finally the obtained HHblits hits on PfamA profiles were mapped on 

corresponding LAMPA hits to 507 regions (Table S2). HHblits hit was considered as 
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matching, if it had Probability value above 95% and covered more than 70% of query 

region of respective LAMPA hit alignment. We observed that 195 of 507 regions were 

either not reported by HHblits at all (37) or were attributed with Probability value under 

the 95% cut-off (155) or had low query coverage (3). 

Text S1.5 Dependence of P-value and Probability of fixed HHsearch hit score 

from size and diversity in query-target pairs of LAMPA analysis 

We conducted several computational experiments using HHsearch neural networks. First, 

we assessed dependence of the Probability gain on query length, using different 

measures, in 507 query-target pairs from the hit list of LAMPA analysis of RNA virus 

polyproteins (Table S2). The obtained results were compared with those obtained in the 

LAMPA analysis and presented on Fig.6. Then, we selected three query-target pairs from 

the above list (Table S3) and conducted four in-depth computational experiments (for 

details see https://github.com/Gorbalenya-Lab/hh-suite-notebooks/tree/LAMPA). In first 

three experiments, diversities of query and target profiles were fixed at their respective 

real values (hereafter, the ‘real’ refers to characteristics of the full-length query or target 

profile). In the first experiment, we estimated P-value and Probability for computationally 

generated 41 different lengths of query, each of which was equidistant from its immediate 

neighbour on base 10 logarithmic scale in the query length space that ranged from 101 to 

105 aa, with the target length fixed at its real value. In complementary second experiment, 

we estimated values of two statistics for the 41 length variants of the target, as specified 

above, and with the query length fixed at its real value. Results of these two experiments 

for three selected query-target pairs (Table S3) were combined separately for P-value and 

Probability, respectively (Fig. 7). In the third experiment, we estimated Probability for all 

combinations of the 41 length variants of the query and target. Results of this experiment 

were visualised using contour plots that depict change of Probability in the query length vs 

target length space (Fig. S5A-C). In the fourth experiment, lengths of query and target 

profiles were fixed at their respective real values. Then, we estimated Probability for all 

combinations of computationally generated 43 diversities of query and target, each of 

which was equidistant from its immediate neighbour on linear scale in the diversity space 

that ranged from 1 to 15. Results of this experiment were visualised using contour plots 

that depict change of Probability in the query diversity vs target diversity space (Fig. S5D-

F). 

Several factors contributed to variable Probability gain by LAMPA in the three query-target 

pairs (Table S3). In the YP_004070193.2-PF14519.5 pair, it was limited to 3.4% because of 

high HHsearch hit score = 67.2 that defined Probability = 94% which was close to the 

LAMPA 95% cut-off (Figs. 7F and S5C). Likewise relatively low scores, 40.2 and 41.1, 

defined high Probability gains in pairs YP_009179227.1-PF08301.12 and YP_009388303.1-
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PF13238.5 (Figs. 7D,E and S5A,B). This gain was smaller in the second pair because of 

higher diversity of its target profile (PF13238.5 vs PF08301.12 – 11.5 and 6.1, respectively) 

(Fig. S5D,E). 

The dependence of Probability on lengths and diversities of the query and target profiles is 

complex and remarkably symmetrical (Fig. S5). The actual Probability values strongly 

depend on the external parameters (hit score, query and target lengths for Fig. S5D-F 

plots). Notably, it can show non-monotonous changes for a fixed query or target diversity 

over most of the range values. In the present study, query profiles were based on a single 

sequence (diversity = 1), with Probability estimation only increasing with further increase 

of the observed diversity in three target profiles (Fig. S5D-F). 

Text S1.6 Instructions regarding the usage of LAMPA R package 

The package is provided on GitHub: https://github.com/Gorbalenya-Lab/LAMPA. It can be 

installed using R commands library(devtools); install_github('Gorbalenya-Lab/LAMPA') and 

loaded using R command library(LAMPA). The package contains a single user-level 

function, that is called also LAMPA. To display detailed information about the usage of this 

function, use R command help(LAMPA). 

While we run the analysis of RNA virus polyproteins using HHmake and HHsearch 

programs from HH-suite 2.0.16 and script addss.pl from HH-suite 3.0.0 against 

pfamA_31.0, the package is expected to work with other versions of these HH-suite 

programs and scripts as well, provided that they have the same input and output data 

formats. Other databases compatible with the HH-suite programs can also be used. 

Running LAMPA based solely on HH-suite v.3.x is technically possible but may be affected 

by HHsearch v.3.x issue which leads to overuse of random access memory (RAM) during 

searches of large databases and could cause job crushed 

(https://github.com/soedinglab/hh-suite/issues/124). 

Single run of the LAMPA function conducts the annotation procedure for a single query 

sequence. To apply the function to multiple query sequences, user can employ R loop for 

iterating over query sequences and running the LAMPA function for each query sequence 

in succession [30]; the number of central processing units (CPUs) utilized in HHsearch 

searches can be regulated via the LAMPA argument cpu. Alternatively, user can employ R 

package doParallel to run the LAMPA function for multiple query sequences in parallel 

[45]; it is recommended to set value of the LAMPA argument cpu to 1 in this case. 
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Figure S1 | Composition of the analysed RNA virus polyprotein dataset. (A) Number of proteins belonging to 

different taxonomic groups. (B) Length of proteins from different taxonomic groups. Virus taxonomy for each 

protein were derived from the corresponding genome RefSeq entry; only the most senior taxonomic rank 

specified in the entry is shown for each protein. 
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Figure S2 | Target profiles that dominated LAMPA hit lists of RNA virus polyproteins. Fifty Pfam profiles that 

were most frequently hit by RNA virus polyproteins during (A) stage #1 and (B) stages #2-#3 of the LAMPA 

procedure. Pfam profiles, not hit at stage #1 (unique to LAMPA compared to conventional HHsearch), are 

highlighted with asterisks. 
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Figure S3 | Relationship between Probability and E-value for HHsearch hits. The plots show relationship 

between Probability and E-value for 507 hits that were elevated above 95% Probability cut-off by LAMPA at 

stages #2 and #3 (A) compared to stage #1 that is equivalent to HHsearch output (B). Probabilities and E-values 

of hits are inversely related, and this relationship is modulated by hits' secondary structure scores that are 

distributed in a wide range (from -3.6 to 18.8) and affect Probability but not E-value. Variation of Probability 

values decreases and E-values in logarithmic scale increases after hits were elevated above 95% Probability cut-

off. Both these trends are determined by the properties of hit score auto-calibration procedure; in particular by 

the observed dependence of Probability and P-,E-value on query profile length, see Figure 7. 
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Figure S4 | Statistic approximation error and its dependence on hit score accuracy of query in computational 

experiments. In computational experiments, hit statistics were calculated for each query, regardless of its length, 

using fixed hit score(s) obtained for respective intact polyprotein. The depicted plots show relationship between 

deltas of hit statistic (Y axis) and its score (X axis) calculated for polyprotein and its region, which were used as 

queries at stages #1 vs #2 and #3 of LAMPA. The delta of hit statistic, Probability (panel A) and P-value (panel B), 

is equal to error of statistic approximated in computational experiments. Hit score used to calculate Probability 

but not P-value is composite and includes secondary structure score. Box-and-whisker summary statistic for two 

variables: box, 25%-75% range, whiskers 2.5%-97.5% range. 
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Figure S5 | Relationship of hit Probability to query and target lengths and diversities in computational 

experiments. Presented are results of estimation of HHsearch hit Probability for different combinations of either 

query and target lengths (A-C) or query and target profile diversities (D-F), which were computationally 

generated. Diamond and circle labels in A-C panels indicate lengths of profiles used to detect the hit by HHsearch 

(without hits post-processing) and LAMPA (stage #2 or #3), respectively. Diamond label in D-F panels indicates 

real values of target and query diversities. Three query-target pairs used for panels A and D, B and E, and C and F 

are indicated at the bottom. 

  



LArge Multidomain Protein Annotator 

257 

 

Figure S6 | Summary statistic of annotation coverage by HHsearch and RefSeq experts. Comparison of the 

number of regions per protein (A) or percentage of protein length (protein coverage) (B) annotated by HHsearch 

(LAMPA stage #1) and RefSeq experts, based on analysis 2985 RNA virus proteins. Each protein is represented by 

a transparent grey dot; dot density is proportional to the number of proteins with identical characteristics. Black 

line, diagonal. 

Table S1 | RNA virus polyproteins used for testing LAMPA. 

Table is available from https://doi.org/10.1093/bioinformatics/btaa065 

Table S2 | Hits between RNA virus polyproteins and PfamA profiles identified during QP-specific and AP-

specific stages of LAMPA. 

Table is available from https://doi.org/10.1093/bioinformatics/btaa065 

Table S3 | Characteristics affecting estimation of statistical significance of similarity in three query-target pairs. 

Table is available from https://doi.org/10.1093/bioinformatics/btaa065 
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