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ABSTRACT  

Background: Phosphorylcholine (PC) is one of the main oxLDL epitopes and plays 

a central role in atherosclerosis, in particular with its atherogenic and 

proinflammatory effects. PC can be cleared by natural IgM antibodies and low 

levels of these natural antibodies have been associated with human vein graft  

(VG) failure. Although PC antibodies are recognized for their anti-inflammatory 

properties, its effect on intraplaque angiogenesis (IPA) and intraplaque 

hemorrhage (IPH), interdependent processes contributing to plaque rupture, are 

unknown.  

Therefore, we studied the effects of a new IgG phosphorylcholine antibody 

(PCmAB) in advanced atherosclerotic lesions of the hypercholesterolemic 

ApoE3*Leiden mouse VG model. 

Results and Conclusions: PCmAB was an effective treatment to improve plaque 

stability in advanced atherosclerotic murine lesions. PCmAb decreased pathological 

intimal thickening (by 22%) and increased lumen area (by 32%). Moreover, 

PCmAB treated lesions had higher collagen content (by 18%) and decreased 

macrophages presence (by 32%). 

Furthermore, PCmAB improved IPA and IPH. PCmAB treated lesions presented 

decreased neovessels (by 34%), enhanced neovessel maturity (by 31%) and 

decreased erythrocytes extravasation. These findings were further supported in 

vitro, by decreased endothelial cell (EC) metabolic activity, EC migration and 

neovessel sprouting in the PCmAB treated groups.  

Within areas of IPH in the lesion, CD163+ macrophages secret VEGFA, inducing a 

vicious cycle of angiogenesis and inflammation. PCmAB treated lesions presented 
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less CD163+ macrophages (by 23%) in the vessel. In vitro, we observed that 

PCmAB inhibited CD163 expression and VEGFA secretion in human macrophages. 

Therefore, PCmAB holds a promise as a new therapeutic approach to target 

cardiovascular diseases.  
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INTRODUCTION 

Inflammation, intraplaque angiogenesis (IPA) and intraplaque haemorrhage (IPH) 

are interdependent processes contributing to the development of atherosclerotic 

plaques and ultimately rupture of the plaque.1-3 Reduced oxygen availability or 

hypoxia in the plaque is a direct effect of increased lesion size and active 

inflammatory cells in the plaque. Triggered by hypoxia, endothelial cells (EC) 

proliferate and migrate from the adventitia and form neovessels that grow into 

the lesion to overcome the oxygen demand.1 However, these neovessels are 

frequently immature and highly susceptible to leakage, and are therefore the main 

source of IPH.4 IPH, defined as the extravasation of blood, is a source for 

hemoglobin (Hb) and other erythrocyte membrane components, such as free 

cholesterol and phospholipids to the plaques.4, 5 Intake of Hb by macrophages 

drives upregulation of the CD163 scavenger receptor and leads to a distinct 

macrophage phenotype, M(CD163+).6 These macrophages produce and secrete 

high levels of VEGFA via the HIF1a pathway, thereby promoting a vicious cycle of 

angiogenesis, IPH and inflammation.6 Moreover since Hb is a strong oxidizer, due 

to its high iron content, it increases the presence of oxidized phospholipids.7,8  

During oxidation of phosphatidylcholine lipid (the most abundant phospholipid in 

oxLDL9 and cell membranes10), phosphorylcholine (PC) headgroups are exposed. 

These PC epitopes, recognized as DAMPs11, trigger complex immunoinflammatory 

responses, induce toxic oxidative stress, apoptosis, EC activation12 and 

dysfunction13. Moreover, these PC epitopes also mediate the oxLDL uptake by 

macrophage scavenger receptors. PC contributes via all these processes to 

atherosclerosis. 
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Interestingly, PC epitopes can be cleared by IgM autoantibodies against PC, which 

are naturally produced and released by B cells.14, 15 These natural antibodies have 

been shown to control oxidative stress, inhibit macrophages oxLDL uptake thereby 

preventing foam cells formation.16-19 In ApoE-/- mice, immunization with anti-PC 

IgM reduced vein graft (VG) size and plaque inflammation.19 Moreover, low levels 

of anti-PC IgM antibodies were associated with VG failure in a large human 

cohort.20 

A newly constructed anti-PC IgG has shown to decrease inflammation in naïve 

atherosclerosis in mice.21 Therefore, we hypothesized that the new IgG humanized 

monoclonal antibody against PC (PCmAB) might modulate and normalize IPA and 

IPH as anti-PC IgM modulates the progression of vascular inflammation, stabilizing 

atherosclerotic lesions.  

We previously show that hypercholesterolemic ApoE3*Leiden VG lesions highly 

resemble the human atherosclerotic unstable plaques with pathological intimal 

thickening, severe inflammation, leaky neovessels and haemorrhage.22, 23 

Here, we studied the role of PCmAB on inflammation, IPA, and IPH in the 

ApoE3*Leiden VG lesions. Moreover, we investigated the isolated effect of PCmAB 

in in vitro angiogenesis assays and CD163+ macrophage cultures.  

MATERIAL AND METHODS 

Animals 

All animal experiments were performed in compliance with Dutch government 

guidelines and the Directive 2010/63/EU of the European Parliament.  Male 

ApoE3*Leiden mice (bred in our own colony), 10-16 weeks old, were fed with a 
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diet containing 1% cholesterol and 0.05% cholate (AB diets) to induce 

hypercholesterolemia for three weeks prior to surgery until sacrifice. All animals 

received food and water ad libitum. Mice were randomized based on their plasma 

cholesterol levels (Roche Diagnostics, kit 1489437) and body weight 

(supplemental figure 1). 

Vein Graft Surgery 

After three weeks on diet, the mice underwent the vein graft surgery, by means 

of a donor caval vein interposition in the carotid artery of recipient mice, as 

described before24. Mice were anesthetized intraperitoneally with 5 mg/kg of 

midazolam (Roche Diagnostics), 0.5 mg/kg of dexmedetomidine (Orion 

Corporation) and 0.05 mg/kg of fentanyl (Janssen Pharmaceutical). After the 

surgery, the anesthesia was antagonized with 2.5 mg/kg of atipamezol (Orion 

Corporation) and 0.5 mg/kg of fluminasenil (0.5 mg/kg, Fresenius Kabi). 0.1 

mg/kg of buprenorphine (MSD Animal Health) was given for pain relieve. 28 days 

after the surgery, animals were sacrificed via exsanguination after deep anesthesia 

(described above) followed by 3 minutes of in vivo perfusion-fixation with PBS and 

4% formaldehyde (100496, Sigma-Aldrich). The vein grafts were harvested and 

fixed in 4% formaldehyde.  

Treatment 

Mice were treated with intraperitoneal injections of a humanized IgG1 

phosphorylcholine monoclonal antibody (5 mg/kg PCmAB, Athera Biotechnologies, 

n=15) at day 7,14 and 21. As a negative control sterile 0.9% NaCl (Fresenius 

Kabis, n=15) was used.  
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Histology and Immunostainings in Vein Grafts 

Vein graft samples were embedded in paraffin and sequential cross sections (5 µm 

thick) were taken from the entire length of the cuffed artery. For each mouse, six 

(100 µm spaced) cross-sections were used for analysis.  

To assess vessel morphometry, vein graft cross-sections were stained with Masson 

Trichrome (Hematoxylin, Biebrich Scarlet-Acid Fuchsine and Aniline Blue). Using 

Qwin software (Leica), the following parameters were analyzed: area within the 

border of the adventitia (Vessel Area), area within the media, and area within the 

luminal border (Lumen Area). From this, Vessel Wall Area (subtraction of the 

Lumen Area from the Vessel Area) and Intimal Hyperplasia (subtraction of the 

Lumen Area from the media area) were calculated. Because lumen can 

accompanied vessel enlargement,  Lumen Area is expressed as a percentage of 

Vessel Area. 

To assess vessel morphology: the presence of Dissections, Fibrin, Foam cells, 

Chondrocytes and Calcification were scored in the Masson Trichrome stained 

sections. No presence was scored as 0, low number as 1, intermediate number as 

2, high number as 3. The relative amount of collagen, expressed as a percentage 

of the Vessel Wall Area (% Collagen) was quantified in Sirius Red stained sections. 

To further specify vessel histology: the relative content of vascular smooth muscle 

cells (% VSMCs) and macrophages (% Macrophages), was analyzed by 

immunohistochemistry for αSMA (1A4, Dako) and Mac-3 (553322, BD 

Pharmingen), respectively. Additionally, the relative expression of cadherin 

adhesion molecules, such as % VCAM-1 (ab134047, Abcam), % ICAM-1 

(ab25375, Abcam), and monocyte chemokines, such as % MCP-1 (sc-1784, Santa 
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Cruz) was assessed by immunohistochemistry. Immuno-positive areas were 

quantified with ImageJ software, and normalized for Vessel Wall Area. 

To assess IPA and IPH, a triple immunofluorescence staining was used, including 

CD31 (sc-1506-r, Santa Cruz) to detect neovessels, αSMA to evaluate vessel 

maturation (pericyte coverage), and the erythrocyte marker TER119 (116202, 

Biolegend) to rate endothelium leakage. CD31+ neovessels were manually counted 

(% Neovessels) and the percentage of neovessel CD31+αSMA- was quantified as 

% Immature Neovessels. Intraplaque Hemorrhage was regionally assessed using 

a scoring system accounting for the presence and the number of erythrocytes 

outside the neovessels. No presence was scored as 0, low number of erythrocytes 

outside the neovessels (1–10) was score as 1, intermediate number (11-30) as 2, 

high number (>30) as 3. 

For each antibody, isotype-matched antibodies were used as negative controls. 

Pictures were acquired with the Pannoramic SCAN II (3DHistech). 

Cell Culture 

For the isolation of human umbilical vein endothelial cells (HUVEC) anonymous 

umbilical cords were obtained in accordance with guidelines set out by the ‘Code 

for Proper Secondary Use of Human Tissue’ of the Dutch Federation of Biomedical 

Scientific Societies (Federa), and conform to the principles outlined in the 

Declaration of Helsinki. HUVEC were isolated and cultured as described by Welten 

et al.25  In brief, the vein in the umbilical cords was flushed with warm PBS and 

incubated with 0.75 mg/mL collagenase type II (LS004177, Worthington 

Biochemical Corporation) for 20 minutes at 37°C.  Detached EC were washed out 

of the vessel and left to grow in complete medium [EBM-2 medium (00190860, 
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Lonza) supplemented with EGM BulletKit  (CC-3124, Lonza) and 2% of FBS 

(10082139, ThermoFisher Scientific)] at 37°C in a 5% CO2 humidified incubator. 

Culture medium was refreshed every 2-3 days. Cells were passed using trypsin-

EDTA (T4049, Sigma-Aldrich) at 90-100% confluency. HUVEC were used up to 

passage three for proliferation and migration assays, and up to passage seven for 

western blot.  

THP1 cells (88081201, Merck) were seeded at a density of 106 cells per ml in 6-

well tissue culture plates and incubated with 100 nM of phorbol-12-myristate-13-

acetate (PMA, Sigma-Aldrich) for 24 hours in complete medium (RPMI with 10% 

Fetal Calf Serum) for differentiation.  

MTT Assay 

Cell metabolic activity as a marker for cell proliferation was measured by the 

reduction of (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(M5655, Sigma-Aldrich). HUVEC were seeded in 96-wells plate in complete 

medium and grown until 80% confluency. To cause cell cycle arrest, cells were 

incubated for 24 hours in EBM-2 medium supplemented with 0.2% FBS. PCmAB 

was added in a concentration  of 10 µg/ml and 100 µg/ml. After 18 hours, cells 

were incubated with MTT for 4 hours. A supernatant fraction was replaced by 

0.01N HCL-isopropanol (258148 and 563935, Sigma-Aldrich) and absorbance was 

measured at 570 nm by Cytation™ 5 Cell Imaging Multi-Mode Reader (BioTek 

Instruments).  

Migration Assay 

For migration assays, HUVEC were seeded in 12-wells plate in complete medium 

and grown until 80% confluence. To cause cell cycle arrest, cells were incubated 
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in EBM-2 medium supplemented with 0.2% FBS and 24 hours later, a scratch-

wound was made. PCmAB was added in a concentration range of 10 µg/ml and 

100 µg/ml. In the migration assay, HUVEC were stimulated with 5 µg/ml of oxLDL 

(L34357, ThermoFisher Scientific) to mimic PC presence. Three locations along 

the scratch-wound were marked per well and scratch-wound closure at these sites 

was imaged at time 0 and 16 hours by using Axiovert 40c Inverted & Phase 

Contrast Microscope (451207, Carl Zeiss). Average scratch-wound closure after 

16 hours was calculated by measuring cell coverage at 16 hours vs 0 hours using 

ImageJ. 

Aortic Ring Sprouting Assay 

The aortic ring assay was performed as described previously.26-28 Three 

ApoE3*Leiden mice, 4-8 weeks old, were anesthetized and the aorta was 

dissected. Each aorta was cut in 1 mm rings, and serum-starved in Gibco™ Opti-

MEM™ GlutaMAX (51985034, ThermoFisherScientific) overnight at 37°C and 5% 

CO2. On the next day, each ring was mounted in a well of a 96-well plate in 70 µl 

of 1.0 mg/ml acid-solubilized collagen type-I (11179179001, Roche Diagnostics) 

in DMEM (12634010, ThermoFisher Scientific). After collagen polymerization, 

Gibco™ Opti-MEM™ GlutaMAX supplemented with 2.5% FCS and 30 ng/ml VEGF 

(293-VE, R&D systems) was added with PCmAB (10 µg/ml and 100 µg/ml). The 

rings were cultured for 7 days and photographed by using Axiovert 40c 

microscope. The number of sprouts were counted manually. For 

immunohistochemistry, rings were formalin-fixed and permeabilized with 0.2% 

Triton X-100 (11332481001, Merck). Rings were stained with αSMA, CD31 and 

VE-Cadherin (AF1002, R&D Systems). Extended focus pictures were made with 

the Pannoramic SCAN II and quantified with Image J. 
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Protein Expression Analysis  

Differentiated THP-1 cells were incubated in HH enrich media (0.1 mg/ml of Hb:Hp 

(H0267 and SRP6507, Sigma Aldrich) in complete medium) over 6 days. At day 

7, 10 µg/ml and 100 µg/ml of PCmAB was added to the medium and incubated 

overnight.  

Cells were scraped and homogenized in modified RIPA buffer containing sodium-

orthovanadate and protease inhibitors. Proteins were separated by SDS-PAGE (4–

15%) and transferred to nitrocellulose. Blots were incubated with antibodies 

against CD163 (93498, Cell Signaling). A peroxidase conjugated secondary 

antibody was used (31462, 31400, ThermoFisher Scientific). Proteins of interest 

were imaged with SuperSignal™ West Pico PLUS Chemiluminescent Substrate 

(34580, ThermoFisher Scientific) and the ChemiDoc™ Touch Imaging using 

System (1708370, Bio-Rad Laboratories). β-actin (ab8220, Abcam) was used as 

internal control and blots were quantified with Image J. 

Cell supernatant was also collected and VEGFA was measured by a sandwich ELISA 

(DYC5079-2, R&D Systems, Minneapolis, MN, USA) according to the 

manufacturer’s instructions.  

Statistical Analysis 

All data is presented as mean ± standard error of the mean (SEM). Normality 

was examined using the Shapiro-Wilk normality test. Overall comparisons 

between groups were performed using 1-way ANOVA or 2-way ANOVA on 

parametric data and a Kruskal-Wallis test for nonparametric data using the 

statistics software GraphPad Prism 8.02. P-values less than 0.05 were regarded 

as statistically significant. 
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VE-Cadherin (AF1002, R&D Systems). Extended focus pictures were made with 

the Pannoramic SCAN II and quantified with Image J. 
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RESULTS 

PCmAB decreases vein graft thickening and increases lumen area 

PCmAB treatment did not affect bodyweight or cholesterol levels (supplemental 

figure 1). In both groups (CTRL: n=3, PCmAB: n=4) were excluded from further 

analysis due to fully occluded vein grafts as a result of thrombosis. PCmAB effects 

on vein graft morphometry and vessel wall remodeling were assessed using the 

Masson’s Trichrome staining (Figure 1A).  

 

Figure 1S. Cholesterol (A) levels and Weight (B) of hypercholesteremic ApoE3*L mice 

treated with 0.9% NaCl sterile solution (n=12) and 5 mg/kg of PCmAB (n=11). 

Passive immunization with PCmAB did not affect Vessel Area or lumen area or 

negative remodelling (Figure 1B) but decreased the Vessel Wall Area by 25% 

(p=0.0246, Figure 1C), which resulted in a 22% decrease in Intimal Hyperplasia 

(p=0.0398) in comparison to the CTRL group (Figure 1D). Moreover, the Lumen 

Area was significantly increased (by 32%) by PCmAB treatment in comparison 

with the CTRL group (p=0.0236, Figure 1E).  
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Figure 1. PCmAB decreases intimal hyperplasia and increases lumen area in vein 
graft atherosclerosis. Masson Trichrome staining representative vein grafts cross-sections 
(A) of hypercholesteraemic ApoE3*L mice treated with 0.9% NaCl sterile solution (n=12) 
and 5 mg/kg of PCmAB (n=11). Quantitative measurements of Vessel Area (B), Vessel Wall 
Area (C), Intimal Hyperplasia (D) and Lumen Area (E). Data presented as mean ± SEM. 
*p≤0.05 by t-test. 
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To assess PCmAB effects on plaque stability, we analysed stable and unstable 

plaque features22, 29, such as %VSMC, % Collagen, Fibrin, Foam Cells, 

Chondrocytes and Calcifications (Figure 2). Although, the % VSMC, the main 

producers of collagen, did not differ between the two groups, the % Collagen was 

increased by PCmAB treatment (by 18%) in comparison to the CTRL group 

(p=0.0404, Figure 2A,B). Furthermore, the presence and severity of Dissections, 

Fibrin, Foam Cells, Chondrocytes and Calcifications did not significantly change 

between the groups (Figure 2D). Nevertheless, a trend towards reduction was 

observed in Foam Cell score. 
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Figure 2. PCmAB improves plaque stability by increasing collagen content in vein 

graft atherosclerosis. Representative vein grafts cross sections (A) of Sirus Red Staining 

and αSMA of CTRL (n=12) and PCmAB group (n=11). Quantitative measurements of % 

Collagen (A) and % VSMCs (C). Data presented as mean ± SEM. *p≤0.05, **p≤0.01 by t-

test.  
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PCmAB decreases inflammation, ICAM-1 and VCAM-1 expression 

To investigate PCmAB effects on inflammation, we determined the relative 

presence of macrophages in the vessel wall (% Macrophages). PCmAB treatment 

significantly decreased (by 31%) the % Macrophages in comparison to the CTRL 

group (p=0.0333, Figure 3A and B). 

Next, we quantified the expression of adhesion molecules in the vein graft lesions 

such as ICAM-1 and VCAM-1, as well as MCP1, the most potent chemoattracting 

chemokine for monocytes. PCmAB treatment reduced ICAM-1 (by 29%, 

p=0.0104) and VCAM-1 (by 36%, p=0.0073) expression in comparison with the 

CTRL group (Figure 3C,D,E). However, the % MCP1 expressing cells did not vary 

between the two groups (Figure 3C and D).  

PCmAB decreases intraplaque angiogenesis and intraplaque hemorrhage 

To evaluate PCmAB effects on IPA, we measured the density of the neovessels in 

the vein grafts expressed as % Neovessels as well as the neovessels that lacked 

pericyte coverage (% Immature Neovessels) and we evaluated Intraplaque 

Haemorrhage in the VG lesions by scoring extravasated erythrocytes in a triple 

staining (Figure 4A).  

Quantification of the % Neovessels revealed a 34% decrease in the PCmAB group 

in comparison with the CTRL group (p=0.0006, Figure 4B).  

Quantification of % Immature vessels showed a 31% decrease in PCmAB-treated 

group in comparison with the CTRL group (p=0.0042, Figure 4C).  
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graft atherosclerosis. Representative vein grafts cross sections (A) of Sirus Red Staining 

and αSMA of CTRL (n=12) and PCmAB group (n=11). Quantitative measurements of % 

Collagen (A) and % VSMCs (C). Data presented as mean ± SEM. *p≤0.05, **p≤0.01 by t-
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Figure 3. PCmAB improves plaque inflammation by decreasing macrophage 

content and VCAM and ICAM expression. Quantification of % Macrophages (A), and 

VCAM-1 (C), ICAM-1 (D) and MCP1 (E) expression in the CTRL (n=12) and PCmAB group 

(n=11). Respective representative VG sections in (B) and (F) Data presented as mean ± 

SEM. *p≤0.05, **p≤0.01 by t-test. 

D

E

A

FC

B
PCMABCTRL

200 µm 200 µm

CTRL PCmAB
0

10

20

30
M

ac
ro

ph
ag

e 
 (%

)
(n

or
m

al
iz

ed
 to

Ve
ss

el
 W

al
l a

re
a) *

ICAM

MCP1MCP1

MERGEDMERGED

ICAM

VCAM VCAM

PCMABCTRL

CTRL PCmAB
0

5

10

15

20

IC
A

M
 (%

)
(n

or
m

al
iz

ed
 to

 V
es

se
l W

al
l a

re
a) *

CTRL PCmAB
0

10

20

30

40

M
C

P1
 (%

)
(n

or
m

al
iz

ed
 to

 V
es

se
l W

al
l a

re
a)

CTRL PCmAB
0

10

20

30

40

M
C

P1
 (%

)
(n

or
m

al
iz

ed
 to

 V
es

se
l W

al
l a

re
a)

│ PCMAB DECREASES INTRAPLAQUE ANGIOGENESIS AND INTRAPLAQUE HEMORRHAGE 
 
 

169 

  

Figure 4. PCmAB reduces plaque neovessels density, increases vessel maturity, 
reducing intraplaque haemorrhage. Quantitative measurements of % Neovessels (A) 
and % Immature Neovessels (B) and Intraplaque Hemorrhage (C) scoring. Representative 
vein grafts cross sections of CD31 (orange), αSMA (green), TER119 (red) and DAPI (blue) 
staining of CTRL and PCmAB group (E). Data presented as mean ± SEM. **p≤0.01, 
***p≤0.001 by T-test. 
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PCmAB treatment decreased Intraplaque Haemorrhage presence and severity as 

scored in Figure 4D. In the CTRL group, 92% (11/12) of mice presented 

extravasated erythrocytes, while in the PCmAB group was 46% (5 /11). Moreover, 

in the CTRL group, 54% Intraplaque Haemorrhage severity was scored as ~1 in 

54% (6/11) of the mice, as ~2 in 36% (4/11) and as ~3 in one mouse. In the 

PCmAB group, Intraplaque Hemorrhage severity was scored as ~1 in 90% (4/5) 

of mice presented and as ~2 in one mouse.  

PCmAB decreases EC metabolic activity and migration and sprouts 

formation 

Because the observed changes in plaque size and inflammation can reduce oxygen 

demand and consequently decrease IPA, we studied the PCmAB effects on EC 

behaviour and neovessel sprouting in vitro.  

HUVEC metabolic activity in the MTT assay was reduced by 22% by 10 µg/ml of 

PCmAB (p=0.0875) and by 28% by 100 µg/ml of PCmAB (p=0.0415), as shown 

in Figure 5A, whereas HUVEC migration (Figure 5B and B1) or the ability of wound 

closure was decreased by 54% and 33% when treated with 10 µg/ml (p=0.0395) 

and 100 µg/ml of PCmAB (p=0.155). In the presence of oxLDL. HUVEC migration 

increased by 52% when compared to CTRL group. Further treatment with PCmAB 

decreased HUVEC migration dose-dependently by 31% (10 µg/ml, p=0.0439) and 

73% (100 µg/ml, p=0.0001) when compared with oxLDL-CTRL group. In the 

aortic ring assay (Figure 5C and C1), the number of sprouts was decreased dose-

dependently by PCmAB in comparison with CTRL group, with a 50% decrease for 

the 100 µg/ml treated segments. 
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Figure 5. PCmAB reduces EC metabolic activity and migration in vitro and 

neovessel sprouting ex vivo. Quantification of PCmAB effects on the MMT assay (A), on 

the migration assay (B) and on the aortic ring assay (C). Representative images of the 

scratches (B) treated with increasing doses of PCmAB and with and without 5 µg/ml oxLDL, 
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(A) Data normalized to CTRL group (indicated as 1 by a dashed red line in the graph) and 

presented as mean ± SEM (n=3). *P<0.05, **P<0.01; by 1-way ANOVA (* (in red) are 

significances versus control). (B) Data presented as mean ± SEM (n=3). *P<0.05, 

***P<0.001; by 2-way ANOVA. (C) Data presented as mean ± SEM (n=3) by 1-way ANOVA. 
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PCmAB targets M(CD163) macrophages in vivo and in vitro by decreasing 

CD163 expression 

It has been shown that CD163+ macrophages not only promote leucocyte 

infiltration but also induce angiogenesis and vessel permeability by secreting 

VEGFA.6 Therefore, we also determined the %M(CD163) macrophages in the VG 

lesions. %M(CD163) was reduced by 23% in the PCmAB group in comparison to 

the CTRL group (p=0.0014, Figure 6A,B). 

Because PCmAB decreased the amount of extravasated erythrocytes in VG lesion 

(Figure 4D), we reproduced M(CD163+) in vitro to studied the effect of PCmAB on 

the upregulation of CD163 receptor in macrophages. Unstimulated THP1 cells 

already express CD163 receptor and treatment with PCmAB did not change CD163 

expression (Figure 6.CD). Stimulation with HH-enriched media increased CD163 

expression by 86% (p=0.0226) in comparison with the CTRL group. Under this 

condition treatment with PCmAB decreased CD163 expression by 50% (10 µg/ml, 

p=0.0130) and 44% (100 µg/ml, p=0.0314) in comparison with the HH group. 

M(CD163+) are active secretors of VEGFA, therefore we quantified VEGFA protein 

levels in macrophage medium. Stimulation with HH-enriched medium show a 

trend increased in VEGFA levels by 68% in comparison with the CTRL group. 

Treatment with both PCmAB concentrations decreased VEGFA levels in 

comparison with HH group (15% and 20%, respectively). 
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Figure 6. PCmAb targets M(Hb) macrophages in vivo and in vitro by decreasing 

CD163 expression. Quantification of CD163 expression in VG lesions (A) and 

representative cross sections of CD163 (red) and DAPI (blue) staining of CTRL and PCmAB 

group (B). Quantification of CD163 expression in THP-1 cells treated with increasing doses 

of PCmAB and with and without Hb:Hp (C).Quantification of VEFG levels in THP-1 cell 

supernatant (E). Data presented as mean ± SEM. **p≤0.01, ***p≤0.001 by t-test and by 

1-way ANOVA. 
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DISCUSSION  

In the present study, we provide evidence that in the hypercholesterolemia 

ApoE3*Leiden vein graft model PCmAB has strong effects 1) on inflammation by 

reducing macrophage content, 2) on IPA by decreasing the neovessel density and 

by improving their maturity, and 3) on IPH by decreasing erythrocytes 

extravasation. The anti-angiogenic capacity of PCmAB, was observed by a 

decrease in EC proliferation (or metabolic activity in the MTT assay), EC migration 

and neovessel sprouting. Moreover, the oxLDL induced HUVEC migration was also 

reduced in presence of PCmAB demonstrating that PCmAB, by neutralizing oxLDL-

PC epitopes, reduces EC angiogenic behavior.  Interestingly, PCmAB seems also 

to have a positive effect on IPH. PCmAB improved vessel maturation (by 

increasing pericyte coverage), which probably decreased the presence of 

erythrocytes in plaque. 

We also evaluated PCmAB effects on plaque morphometry and morphology. 

Although the size of the vessel was not affected by passive immunization with 

PCmAB, vessel wall thickening (intima + media) was decreased in a beneficial way 

upon treatment. Interestingly in human cohorts, increases in intima media 

thickening were significantly less common in subjects with higher baseline levels 

of natural anti-PC antibodies.30 Moreover, the size of the intima layer also changed 

when treated with PCmAB, displayed as less intimal hyperplasia. Lumen area was 

increased in PCmAB group, which is the most clinical relevant parameter since this 

directly improves blood flow. 

Additionally, PCmAB treated plaques present a more stable plaque phenotype as 

demonstrated by increased levels of collagen and decreased macrophage content. 

Also, a trend towards reduction in amount of foam cells was observed with PCmAB 
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treatment. These findings are in accordance to previous studies that reported that 

anti-PC antibodies bind to PC epitopes on oxidized phospholipids, inhibiting 

inflammatory signaling31 and blocking uptake of oxLDL and foam cell formation.31-

33 

Oxidized phospholipids are known to trigger ECs to undergo into inflammatory 

activation.34 Therefore, we assessed the expression of adhesion molecules such 

as ICAM-1 and VCAM-1, and the chemokine MCP-1, which represent important 

triggers to attract monocytes in early (expressed on the lumen surface and in 

VSMCs) and late lesion development (expresses on neovessels endothelium). We 

showed that PCmAB treatment decreases VCAM-1 and ICAM-1 levels in the vessel 

wall, which can be a direct cause for the lower macrophage content in the plaque. 

Moreover, since there is a direct relationship between entry of 

monocytes/macrophages and leakage of neovessels, a reduction in the amount of 

macrophages may be a direct result of reduced IPA in the plaque by PCmAB. 

Furthermore, PCmAB decreases the presence of M(CD163+) in VG lesions 

significantly. When we tested the effect of PCmAB on cultured macrophages 

stimulated with Hb:Hp complexes, PCmAB significantly decreased CD163 

expression. This suggests that PC epitopes may also be involved in the CD163 

scavenger activity, as it happens for other scavenger receptors, such as CD36.35, 

36 

According to Guo et al., CD163 macrophages perpetuate IPA and IPH through the 

secretion of VEGFA.6 In our in vitro setup, stimulation with Hb:Hp complexes 

increased macrophage VEGFA secretion levels which could be prevented by 

treatment with PCmAB. 

143846 Baganha BNW.indd   174143846 Baganha BNW.indd   174 04-05-20   14:4804-05-20   14:48



6

CHAPTER 6 │ 
 
 

174 

DISCUSSION  

In the present study, we provide evidence that in the hypercholesterolemia 

ApoE3*Leiden vein graft model PCmAB has strong effects 1) on inflammation by 

reducing macrophage content, 2) on IPA by decreasing the neovessel density and 

by improving their maturity, and 3) on IPH by decreasing erythrocytes 

extravasation. The anti-angiogenic capacity of PCmAB, was observed by a 

decrease in EC proliferation (or metabolic activity in the MTT assay), EC migration 

and neovessel sprouting. Moreover, the oxLDL induced HUVEC migration was also 

reduced in presence of PCmAB demonstrating that PCmAB, by neutralizing oxLDL-

PC epitopes, reduces EC angiogenic behavior.  Interestingly, PCmAB seems also 

to have a positive effect on IPH. PCmAB improved vessel maturation (by 

increasing pericyte coverage), which probably decreased the presence of 

erythrocytes in plaque. 

We also evaluated PCmAB effects on plaque morphometry and morphology. 

Although the size of the vessel was not affected by passive immunization with 

PCmAB, vessel wall thickening (intima + media) was decreased in a beneficial way 

upon treatment. Interestingly in human cohorts, increases in intima media 

thickening were significantly less common in subjects with higher baseline levels 

of natural anti-PC antibodies.30 Moreover, the size of the intima layer also changed 

when treated with PCmAB, displayed as less intimal hyperplasia. Lumen area was 

increased in PCmAB group, which is the most clinical relevant parameter since this 

directly improves blood flow. 

Additionally, PCmAB treated plaques present a more stable plaque phenotype as 

demonstrated by increased levels of collagen and decreased macrophage content. 

Also, a trend towards reduction in amount of foam cells was observed with PCmAB 

│ PCMAB DECREASES INTRAPLAQUE ANGIOGENESIS AND INTRAPLAQUE HEMORRHAGE 
 
 

175 

treatment. These findings are in accordance to previous studies that reported that 

anti-PC antibodies bind to PC epitopes on oxidized phospholipids, inhibiting 

inflammatory signaling31 and blocking uptake of oxLDL and foam cell formation.31-

33 

Oxidized phospholipids are known to trigger ECs to undergo into inflammatory 

activation.34 Therefore, we assessed the expression of adhesion molecules such 

as ICAM-1 and VCAM-1, and the chemokine MCP-1, which represent important 

triggers to attract monocytes in early (expressed on the lumen surface and in 

VSMCs) and late lesion development (expresses on neovessels endothelium). We 

showed that PCmAB treatment decreases VCAM-1 and ICAM-1 levels in the vessel 

wall, which can be a direct cause for the lower macrophage content in the plaque. 

Moreover, since there is a direct relationship between entry of 

monocytes/macrophages and leakage of neovessels, a reduction in the amount of 

macrophages may be a direct result of reduced IPA in the plaque by PCmAB. 

Furthermore, PCmAB decreases the presence of M(CD163+) in VG lesions 

significantly. When we tested the effect of PCmAB on cultured macrophages 

stimulated with Hb:Hp complexes, PCmAB significantly decreased CD163 

expression. This suggests that PC epitopes may also be involved in the CD163 

scavenger activity, as it happens for other scavenger receptors, such as CD36.35, 

36 

According to Guo et al., CD163 macrophages perpetuate IPA and IPH through the 

secretion of VEGFA.6 In our in vitro setup, stimulation with Hb:Hp complexes 

increased macrophage VEGFA secretion levels which could be prevented by 

treatment with PCmAB. 

143846 Baganha BNW.indd   175143846 Baganha BNW.indd   175 04-05-20   14:4804-05-20   14:48



CHAPTER 6 │ 
 
 

176 

Taken together, our findings reveal that PCmAB improves plaque stability by 

decreasing lesion size, inflammation, IPA and IPH. Added to that, PCmAB 

increases vessel maturation by improving pericyte coverage and decreases 

M(CD163) presence. In conclusion, our findings explain the beneficial PCmAB 

effects on advanced atherosclerotic lesions. 
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