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ABSTRACT 

Acute cardiovascular events, due to rupture or erosion of an atherosclerotic 

plaque, represent the major cause of morbidity and mortality in patients. 

Growing evidence suggests that plaque neovascularization is an important 

contributor to plaque growth and instability. The vessels’ immaturity, with 

profound structural and functional abnormalities, leads to recurrent intraplaque 

hemorrhage. 

This review discusses new insights of atherosclerotic neovascularization, 

including the effects of leaky neovessels on intraplaque hemorrhage, both in 

experimental models and humans. Furthermore, modalities for in vivo imaging 

and therapeutic interventions to target plaque angiogenesis will be discussed. 
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INTRODUCTION 

The majority of acute cardiovascular events in patients is caused by occlusive 

thrombosis formed by rupture or erosion of an atherosclerotic plaque.1 Despite 

improved insight into disease pathogenesis and therapeutic options, additional 

treatment strategies are required to block mechanisms involved in plaque 

destabilization. 

Advanced atherosclerotic lesions are characterized by large necrotic cores with 

thin fibrous caps, cholesterol deposits, inflammatory cells and calcifications.2 

Recent insights in the pathophysiology of atherosclerotic lesions have shed new 

light on the formation of unstable lesions. For instance, it has been shown that, 

of the total number of foam cells a significant portion is derived from smooth 

muscle cells (SMCs) rather than from macrophages3. Also the role of calcification 

is more clarified, it has been shown that extended calcification can stabilize 

atherosclerotic plaques4, whereas spotty micro-calcifications contribute to plaque 

destabilization.5-7 Furthermore, it is becoming more and more clear that plaque 

angiogenesis and intraplaque hemorrhage (IPH) are important contributors to 

unstable lesions.8, 9 Plaque angiogenesis is a physiological response to the 

increased oxygen demand in the plaque but can have adverse effects by 

facilitating IPH and influx of inflammatory mediator. 10 

This review is focused on plaque angiogenesis, the relation with inflammatory 

mediators, and the subsequent effects of IPH on plaque instability, both in 

experimental models and in humans. Moreover, options to target plaque 

angiogenesis for imaging and therapeutic purposes will be discussed. 
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ANGIOGENESIS-DRIVING PROCESSES 

Hypoxia  

The molecular mechanism regulating angiogenesis in atherosclerosis involves 

signaling pathways that are mainly driven by the lack of oxygen.11 Hypoxia 

occurs when oxygen supply is decreased and or oxygen demand is increased. 

The ability to sense and respond to changes in O2 concentration is a 

fundamental feature of all nucleated cells. Cell survival in a hypoxic environment 

leads to a general shut-down of energy-consuming transcription and translation, 

with one major exception — the hypoxia-inducible factor (HIF) pathway.12, 13  

Hypoxia promotes monocyte/ macrophage survival and oxLDL uptake by 

macrophages.14 It also enhances the expression of matrix metalloproteases by a 

variety of cells in the plaque contributing to the instability of the plaque.15 

Furthermore, due to the hypoxic state of macrophages ATP depletion occurs, 

causing cell death and expansion of the necrotic core leading to a feedback cycle 

between plaque expansion and hypoxia. Fong et al. has shown that exposure to 

hypoxia accelerates the plaque growth of ApoE KO mice fed with a high 

cholesterol diet.16 In contrast, when atherosclerosis prone mice were exposed to 

carbogen (95% O2, 5 % CO2) oxygenation, plaque growth was inhibited.12 

Sluimer et al. showed extensive hypoxia in the center of advanced human 

carotid atherosclerotic plaques.17 Pimonidazole, a hypoxia marker, was co-

localized with CD68 positive macrophages, HIF1-α and VEGF expression, 

suggesting the involvement of the HIF pathway in the regulation of human 

plaque angiogenesis and lesion progression.17 
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HIF is a heterodimeric protein composed of α and β subunits. The α chain 

confers oxygen regulation on the complex and its expression is hypoxia-

dependent and has three isoforms, HIF-1α, 2α and 3α of which only HIF-1α and 

HIF-1β are widely expressed in normal tissues.18-20 The beta chain (three 

isoforms) is constitutively expressed and works as an aryl receptor nuclear 

translocator. Under normoxic conditions, the synthesized HIF-1α is rapidly 

degraded and the co-activators are blocked by oxygen-dependent enzymes, the 

prolyl-hydroxylases domain (PHD) enzymes 21, 22. During hypoxia, PHD activity is 

reduced, allowing the dimerization of HIF-1α and HIF-1β.23, 24 This active 

complex binds to DNA starting the transcription of downstream genes involved 

in angiogenesis and inflammation.25 

HIF-1α mediates inflammation by promoting pro-inflammatory cytokines 

expression (stromal cell-derived factor 1, VEGF-A) and consequently 

inflammatory cell recruitment.26, 27 Arrup et al. have shown that HIF-1α 

expression also modulates the macrophage glycolytic pathway, by increasing 

glucose uptake and glucose transporter 1 mRNA expression, enhancing oxygen 

consumption. In addition, HIF-1α reduces the mRNA expression of the major 

cholesterol transporters28 and activates the lectin-like OxLDL receptor-1 

scavenger receptors that mediates oxLDL uptake in macrophages29, leading to 

the expansion of the foam cell population. Interestingly, hypoxia can also reduce 

macrophage migration, by mediating the expression of retention molecules that 

stimulate their accumulation and prevent egression from the plaque.30 Thus, 

hypoxia induced overexpression of HIF-1α not only regulates plaque 

angiogenesis, but also has additional effects stimulating the growth of 

atherosclerotic plaques. 
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Moreover, an extensive crosstalk between HIF and nuclear factor-kB (NF-κB), 

two important molecular players in atherosclerosis, has been reported. They 

have common activating stimuli and share regulators and targets.31, 32 Only the 

canonical NF-κB pathway is sensitive to hypoxia, while both the inhibitor of NF-

κB subunit alpha (IKKα) and the inhibitor of NF-κB subunit beta (IKKβ) can be 

hydroxylated by PHD.33, 34 Marsch et al. shows that PHD1 knockout mice display 

a protective cardiovascular metabolic phenotype with lower plasma cholesterol 

levels and glucose tolerance improvement.35 Furthermore, NF-κB has been 

shown to play a role in basal and stimulated HIF-1α mRNA expression. The p50 

and p65 NF-κB subunits can bind to the HIF-1α promoter in response to hypoxia 

and when these subunits are overexpressed, an increase in HIF-1α mRNA levels 

and promoter activity is observed.36 The full mechanism between HIF and NF-κB 

in hypoxia is not yet completely understood but these features highlight the 

complex and interrelated hypoxia and inflammatory signaling cascades in 

atherosclerosis. 

Endothelial Cell Sprouting 

Angiogenic sprouting involves the invasion of avascular areas by proliferating 

and migrating ECs. The mechanism of angiogenesis has been deeply studied and 

the process of neovessel formation has been described in detail.37-40 In a 

nascent sprout, three phenotypically distinct EC types can be recognized: tip, 

stalk and phalanx cells. Tip cells are motile and invasive, protrude filopodia and 

lead the way to the nascent sprout since they are located at the forefront of the 

vessel branches, sensing and responding to guidance cues in the 

microenvironment, while migrating toward an angiogenic stimulus. Stalk cells 

trail behind the tip cells and elongate the stalk of the sprout. These cells 
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proliferate, form junctions, lay down extracellular matrix and form a lumen. 

Phalanx cells are the most quiescent ECs, lining vessels once the new vessel 

branches have been consolidated.41 

The differentiation of tip versus stalk cell occurs via a Notch mediated lateral 

inhibition mechanism. VEGF-A and VEGF receptor 2 (VEGFR-2) signaling induces 

tip cells formation and delta-like canonical Notch ligand 4 (Dll4) upregulation. 

Expression of Dll4 in tip cells activates Notch in adjacent ECs, thereby 

decreasing the expression of VEGFR-2 and inducing stalk cell differentiation.42 

Interestingly, it was shown that Notch signaling promotes the progression of 

atherosclerosis in vivo.42 Blockade of Dll4–Notch signaling by anti-Dll4 antibody 

administration, suppresses atheroma progression in the aorta of LDLR KO mice 

that were fed high-cholesterol/high-fat diet for 24 weeks. Blockade of this 

angiogenesis related pathway leads to a reduction in the accumulation of 

macrophages in the aorta of the mice treated with neutralizing anti-Dll4 

antibody42, showing the tight interaction of these processes. 

VEGF-A, VEGF-C and their receptors VEGFR-2 and VEGFR-3 participate in the 

detachment process of ECs from the ECM and guide the behavioral switching of 

the ECs. To ensure optimal fitness of the tip cell leading the sprout, the EC with 

the highest responsiveness to VEGF will occupy the tip position. Chronic 

inflammatory cell infiltration in the atherosclerotic plaque activates ECs and 

enhances the expression of different cell adhesion molecules like vascular cell 

adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), 

which recruit monocytes and lymphocytes.43 

A stabilized and mature vascular plexus includes adoption of a quiescent 

endothelial phalanx phenotype, branch regression, basement membrane 
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deposition and coverage with pericytes that will stabilize the endothelial tubes 

and help regulating the capillary diameter and vessel permeability. Fusion of 

sprouting neovessels, which is necessary to form vascular networks, is 

controlled by bridging-macrophages.44 Macrophages accumulate at sites of 

vessel anastomosis and interact with filopodia of neighboring tip cells during 

fusion. It was shown in zebrafish embryos that macrophages can act as cellular 

chaperones for endothelial cell fusion by bridging tip cells from different vessel 

segments.45 

Although it is widely accepted that angiogenesis is mainly regulated by hypoxia, 

other factors like hemodynamic forces may also regulate angiogenesis. 

Hemodynamic forces 

Blood flow plays crucial roles in angiogenesis by generating frictional force that 

develops between flowing blood and the vascular endothelium.46 ECs covering 

the inner surface of blood vessels are constantly exposed to different types of 

shear stress. Shear stress is pulsatile in normal physiology, but can be 

oscillatory in pathologies such as atherosclerosis, affecting endothelial function 

and morphology. The EC response to shear stress is closely linked to the 

regulation of vascular tone, blood coagulation and fibrinolysis, angiogenesis, and 

vascular remodeling, and it plays an important role in maintaining the 

homoeostasis of the circulatory system.47 Shear stress induces collateral artery 

growth as well as capillary growth and it was shown that endoglin played a 

crucial role in this process.48 Furthermore, it is known that shear stress 

modulates the expression of thrombospondin 1 and its receptor CD36 during 

angiogenesis in vivo.49 Impairment of the EC response to shear stress leads to 
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the development of vascular diseases such as hypertension, thrombosis, 

aneurysms, and atherosclerosis.47 The mechanisms and sensors by which ECs 

initially recognize shear stress have yet to be confirmed, but the sensors most 

likely involved in angiogenesis are Piezo150, calcium51 and primary cilia52. 

ANGIOGENESIS IN THE ATHEROSCLEROTIC PLAQUE 

Pathological angiogenesis of the vessel wall is a consistent feature of 

atherosclerotic plaque development and progression of the disease53 however 

the source of plaque neovessels is not fully established. The general idea is that 

endothelial cells (ECs) grow from the existing adventitial vasa vasorum triggered 

by a gradient of VEGF, into the plaque.54 

Adventitial angiogenesis is thought to be the main source of neovessels. In 

addition, it has been suggested that angiogenesis may also occur from the 

luminal side. However, clear evidence for the extent of this phenomenon is 

lacking. 

Due to its important role in atherosclerotic plaques, vasa vasorum has been 

studied as a therapeutic target. Langheinrich et al. reported a significant 

decrease of lesion size in ApoE KO LDL KO mice treated with 3-Deazaadenosine, 

an anti-inflammatory and anti-proliferative drug. This was accompanied by a 

significant decrease of vasa vasorum neovascularization, although no effects on 

intraplaque angiogenesis were reported.55 

Descriptive and cross-sectional studies in humans suggest a clear association 

between the neovessel density and atherosclerotic progression and 

vulnerability.11 A large longitudinal atherosclerosis plaque biobank study 
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(AtheroExpress) demonstrated that plaque neovascularization but also IPH 

significantly relate to adverse cardiovascular outcome during clinical follow-up.54 

Intraplaque hemorrhage 

Neovessels in vulnerable plaques are immature, irregular and fragile due to the 

compromised structural integrity.56 In fact, they are characterized by 

discontinuous basement membrane and a low number of tight junctions between 

ECs.57 Moreover these premature vessels are relatively poor in pericytes 

coverage and are therefore immature and highly susceptible to leakage of 

circulating cells58, leading to intraplaque hemorrhage (IPH).  

In the oncological field, newly formed vessels have been reported to have the 

same features. Tumor vessels are heterogeneous59, and many are 

hyperpermeable60. In their walls, there are inter endothelial openings and trans 

endothelial channels, resulting in a wide range of pore sizes.61 The 

hyperpermeability of tumor vessels allows plasma to flow to the interstitial 

space.61 Moreover tumor vessels are organized in a chaotic fashion and do not 

follow the hierarchical branching pattern of normal vascular networks.62 Of 

interest is that compared to normal individuals, patients with acute coronary 

syndrome have red blood cells with higher amounts of cholesterol in the 

membranes. Consequently the leakage of these red blood cells my lead to an 

increased cholesterol deposition, atheroma growth and decreasing plaque 

stability. Thus, the cholesterol content in the red blood cell membrane could be 

a marker for the growth and vulnerability of the atherosclerotic plaque.63, 64 This 

is further illustrated in Figure 1. 
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Figure. 1. Vein graft lesions in hypercholesterolemic ApoE3*Leiden mice 28 days 
after surgery. (a) Vein graft lesions show extensive neovessels (*). (b) Red blood cells 
dispersed in the extracellular matrix outside the neovessels demonstrate intraplaque 
hemorrhage (arrow head) in a vein graft lesion. CD31 positive endothelial cells (red), 
TER119 positive red blood cells (green) (A) adventitia, (L) lumen. 

The key players in vessel maturation are VEGF its receptors and the members of 

the angiopoietin system. VEGF and its main receptors VEGFR-1 and VEGFR-2 

drive EC proliferation and tube formation as well as the attachment and 

detachment of pericytes during the maturation of neovessels.37 Angiopoietin-1 

(Ang-1) and angiopoietin-2 (Ang-2) are ligands of the endothelial receptor Tie-2, 

and both have a major role in the final maturation phase of neovascularization 

with opposite functions. HIF-1α and VEGF-A, induce Ang-2 to destabilize the 

interactions between pericytes and ECs, and thus allows vessels to grow. Ang-1 

together with platelet derived growth factor (PDGF) acts as a major stabilizing 

factor that increases the stability of the junctions between the EC, thus 

promoting vessel maturity and stability and reducing leakiness.65  The balance 

between Ang-1 and Ang-2 expression was explored in human plaques. A positive 

correlation was observed between Ang-2 expression and microvascular density 

within the plaque, as well as with the ratio Ang-2/Ang-1.66 Also, PDGF-BB and 

its receptor (PDGFR)-β are known to be important in vessel permeability, 
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fragility, and impaired perfusion43, because of their pivotal role in the 

establishment of functional blood vessels by recruiting and stabilizing 

perivascular cells. These findings suggest that the neovessels are subjected to 

regular leakage associated with extravasation of red blood cells, leucocytes and 

plasma lipids to the neighborhood.  

Red blood cells 

Extravasated red blood cells (RBCs) constitute the main cellular component of 

IPH, which with their hemoglobin content and cell membrane components, 

enriched in non-esterified cholesterol, participate in both the cholesterol 

accumulation and the oxidative process.67 Once trapped in the highly oxidative 

environment of the atherosclerotic plaques, RBCs tend to lyse quickly.68 The 

cytoplasm of RBCs is rich in hemoglobin, which can attract multiple monocytes 

and neutrophils to the plaque.58 

Cholesterol retention in the atherosclerotic plaque leads to cholesterol crystal 

formation. This can originate directly from free cholesterol or from cholesterol 

esters endocytosed by foam cells.  RBCs membrane have a high cholesterol 

content with a percentage of lipids up to 40% of the total weight of the cells.69 It 

has been suggested that RBC membranes are very important contributors to 

lipid deposition and lipid core expansion upon IPH. This is further illustrated by 

the presence of iron and glycophorin A, a characteristic protein of the RBC 

membrane, which co-localizes with cholesterol crystals within the plaques, 

suggesting that cholesterol crystals could originate from erythrocytes 

phagocytized by macrophages.  
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Inflammation 

Inflammation is a key factor in all stages of atherosclerosis progression. In the 

initial phase of atherosclerosis, oxidized low-density lipoproteins (oxLDL) 

accumulation in the aortic wall triggers the expression of adhesion molecules 

that facilitate the migration of monocytes into the aortic wall.10 Monocytes 

differentiate into macrophages that engulf oxLDL and convert into lipid filled 

foam cells. Accumulation of modified LDL by macrophages activates cytokine 

production that promote the influx and activation of other inflammatory cells and 

their retention in the plaque.  

Most inflammatory cells in the plaque, and especially macrophages, are 

metabolic very active cells that exhibit high oxygen consumption which leads to 

oxygen deprivation in the plaque.70 In addition, monocytes/macrophages release 

pro-angiogenic factors such as VEGF and by interacting with vascular smooth 

muscle cells (VSMC), macrophages induce unbalanced synthesis of the 

extracellular matrix (ECM) leading to secretion of VEGF by VSMC.71 Furthermore, 

in endarterectomy samples obtained during surgery an accumulation of mast 

cells was observed in neovessel-rich areas of atherosclerotic plaques.72 Whereas, 

in animal experiments it was demonstrated that mast cells situated near the 

newly formed vessels contained fibroblast growth factor (FGF), a potent pro-

angiogenic factor.73 In line with these reports, it was stated that vasa vasorum 

vessel density in atherosclerotic lesions of ApoE KO mice highly correlates with 

the occurrence of inflammatory cells foci.71, 74-76 

In advanced lesions, neovessels leakage constitutes the main entrance for 

inflammatory cells. The influx of RBCs facilitate the extravasation of circulating 

inflammatory cells. The influx of RBCs facilitate the extravasation of circulating 
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inflammatory cells. RBCs can change the forces on an interacting cell, by giving 

the ability to interact with the endothelium at higher shear stress, increasing the 

contact frequency and duration with the endothelium.77 RBCs increase the 

numbers of rolling and adhering monocytes by increasing the normal force 

and/or the frequency of collision of monocytes interacting with the endothelium. 

The increase in cell capture requires the physical presence of RBCs, indicating 

that RBC-induced mechanical forces may facilitate leukocyte-endothelial cell 

interactions in vivo.77 This invasion leads to reactive, inflammatory and apoptotic 

environment where the instability of the plaque is profoundly affected. Not only 

monocytes are increased, also neutrophils and mast cells were increased, that 

can release their granular content rich in serine proteases and matrix 

metalloproteases.67 These proteases digest components of elastic fibers (elastin) 

and of the basement membrane (collagen, laminin and fibronectin). This high 

proteolytic activity can ultimately lead to fibrous cap thinning and plaque 

erosion.78, 79  

Furthermore, the influx and lysis of RBCs drives a higher request of macrophage 

activity in order to phagocytose the RBC remainders. In combination with the 

hampered efferocytosis response in the atherosclerotic lesions causing an 

impaired clearance of these apoptotic cells by lesional macrophages this may 

explain why these macrophage accumulate in the atherosclerotic necrotic core, 

and may potentiate vascular inflammation.80, 81 Also, their ability to efferocytose, 

phagocytosis of dying/dead cells, is defective. This malfunctioning increases the 

inflammation state and reduces cholesterol efflux contributing to necrotic core 

expansion and ultimately, the increase of risk of plaque rupture.82 
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IMAGING OF ANGIOGENESIS  

The detection of patients with atherosclerotic plaques at risk is a major 

challenge for the cardiovascular research field. It has inspired the development 

of invasive and non-invasive imaging technologies to visualize the atheroma in 

detail. The significant investments in these imaging technologies are not only 

justified by the need to early diagnose patients with atherosclerosis but also by 

the development of drug programs.83  

The most prominent imaging technologies are already in used in clinical studies 

and their value to identify crucial characteristics of vulnerable plaques is 

undeniable.84 Plaque angiogenesis is one of these features and its detection in 

vivo can represent a step forward in diagnosis and follow up of atherosclerosis. 

The most advanced technique in humans to visualize angiogenesis is positron 

emission tomography, PET.85-87 This high sensitive tool uses 18F-

fluorodeoxyglucose (FDG), a glucose analogue tracer. After intravenous 

injection, 18F-FDG is taken up by cells that metabolize glucose, where it 

becomes trapped after phosphorylation. Due to the high glycolytic rate of 

endothelial cells, plaque neovascularization can be monitored by 18F-FDG 

uptake.84 However, PET images do not give structural information. This has to 

be assessed using PET with combined techniques such as computed tomography 

(CT), magnetic resonance imaging (MRI).88 Another disadvantage is the low 

resolution, as a result of this imaging of angiogenesis in small size animal 

models is still a challenge. 

Near-infrared fluorescence (NIRF) appears to be a highly versatile platform for in 

vivo molecular imaging due to their picomolar sensitivity and microscopic 
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resolution.89 Matter et al. developed a sensor for NIRF that targets the extra-

domain B of fibronectin, inserted into fibronectin during angiogenesis. In this 

study, blood vessels were visualized with a good target-to-background ratio.90 

NIRF can also be used for the identification of specific plaque features, such as 

MMP activity91 or flow patterns.92, 93 NIRF however does not provide any 

structural information on the plaque. This limitation can, in part, be overcome by 

multimodal imaging such as NIRF–optical coherence tomography (OCT) and 

others.94, 95  

OCT is an imaging technique also based on infrared light, which can be used to 

study atherosclerotic plaques with extreme spatial accuracy. OCT imaging 

presents a strong correlation to histology and specificity to distinguish plaque 

phenotypes. OCT has been used to identify patients with risk of plaque rupture 

by measuring calcified nodules, fibrous cap thickness, lipid pool extension and 

also neovascularization.96 However, contrary to PET and NIRF, OCT does not 

allow specific molecular targeting. 

No perfect technique is yet available but the combination of multimodal 

technologies seems to be a promising opportunity for imaging.94 Furthermore, 

the strong correlation between angiogenesis and plaque progression suggests a 

useful application of imaging technologies as a therapeutic approach for patients 

with atherosclerosis. 
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ANGIOGENESIS TARGETS 

VEGF, Ang2 and Endostatin 

In the last decade, there has been a substantial increase in compounds targeting 

different pathways to counteract angiogenic growth, mainly investigated in the 

oncological field. Interestingly, lately more emphasis is put on stabilizing 

neovessels rather than blockade of angiogenesis due to unwanted side effects.97, 

98 Several approaches have been investigated in order to block angiogenesis in 

the atherosclerotic plaques, such as the use of anti-angiogenic agents and 

blocking pro-angiogenic factors. 

Endostar is a novel modified recombinant human endostatin99 a broad-spectrum 

angiogenesis inhibitor that interferes with the pro-angiogenic action of growth 

factors such as basic fibroblast growth factor (bFGF/FGF-2) and VEGF. A study in  

ApoE KO mice study showed that prolonged treatment with endostatin reduced 

plaque growth.100 More recently, Endostar has been tested in a swine model.101 

The combination of hypercholesterolemic diet with balloon injury resulted in 

early atherosclerotic lesions. The use of Endostar in this model attenuates vasa 

vasorum neovascularization, vessel wall inflammation and the progression of 

atherosclerosis. 

A different therapeutic approach, besides the use of anti-angiogenic agents, 

could be the blockage of pro-angiogenic factors. Bevacizumab, a fully humanized 

anti-VEGF antibody is a well-known inhibitor of angiogenesis and is widely used 

in clinical oncology. Although Bevacizumab does not recognize murine VEGF102, 

it showed profound effects in a murine model by causing disruption of the 

endothelium and consequently accelerated atherosclerosis in ApoE KO mice.103 
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In a New Zealand rabbits model, Bevacizumab-eluting stent implantation in iliac 

arteries inhibits neovascularization without affecting re-endothelialization. Local 

gene delivery of VEGFR-1 in the iliac artery of a rabbit  in which an 

atherosclerotic plaque was induced by high-lipid diet in combination with balloon 

catheter injury, reduced lesion formation. This occurred most likely via an 

inhibitory effect on atherosclerotic plaque angiogenesis, which hints at the 

clinical utility of sFlt-1 in atherosclerosis therapy.104 

Apart from VEGF, another angiogenic target under study is Ang-2. Blockade of 

Ang-2 on experimental atherosclerosis in LDLR KO ApoB100/100 mice on high 

cholesterol diet was shown to result in delayed fatty streak formation and 

decreased plasma triglyceride levels. However, Ang-2 deletion did not prevent 

plaque progression or changes in plaque stability and did not affect adventitial 

neovessel density.105 

So far, the right anti-angiogenic target in atherosclerosis is yet to be found, but 

the potential of anti-angiogenic approaches in the tumor field, suggest that anti-

angiogenic treatments in atherosclerosis will be defined in the near future. Of 

note should be that targeting the vasa vasorum neovascularization is a different 

approach than blocking the intraplaque angiogenesis, despite the fact that the 

intraplaque angiogenic capillaries have their origin in the vasa vasorum. 

EC Metabolism 

In the field of (tumor) angiogenesis, it is well recognized that endothelial cell 

metabolism changes during hypoxia, switching to glycolysis-dependent ATP 

production 106. In atherosclerosis, plaque progression is associated with macro 

and micro endothelial dysfunction, which is attributed to EC metabolic 
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maladaptation.107 Therefore, targeting the endothelial glycolytic metabolism 

might be a promising therapeutic approach. To date, no treatments are available 

yet, however some targets have been described: tetrahydrobiopterin (BH4), 

NADPH oxidase 1 (NOX1) and NADPH oxidase 2 (NOX2) and 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3 (PFKFB3).107 

BH4, an endothelial NOS (eNOS) cofactor, is metabolic inactivated during 

endothelial dysfunction. Strategies to restore vascular BH4 availability is being 

tested in ongoing studies. In ApoE KO mice with reduced nitric oxide (NO) 

synthesis, supplementation with BH4 precursors reduces reactive oxygen species 

(ROS) production and fosters NO synthesis.108 However, clinical trials in patients 

with coronary heart disease and myocardial infarction have shown mixed results 

for BH4 supplementation.109 

NOX enzymes are another important source of ROS in atherosclerosis which 

strongly affects plaque angiogenesis. NOX use NADPH, another eNOS cofactor, 

for ROS production, compromising NO levels.110 In addition, NOX activate redox-

sensitive transcriptional factors such as NF-κB and HIF1α.111, 112 Based on those 

findings, NOX antagonists have been developed for the treatment of 

cardiovascular diseases and are currently in preclinical testing. 

PFKFB3, a key activator of glycolysis (the main pathway source for energy in 

EC), is highly expressed in proliferating ECs. Interestingly, genetic or 

pharmacological inhibition of PFKFB3 impairs the ability of ECs to sprout in vitro 

and to form vessels in vivo.113, 114 Pharmacological PFKFB3 blockade, leads to a 

partial and transient reduction of glycolysis, capable of reducing pathological 

angiogenesis in inflamed skin, colon and eye disease, without evoking systemic 

effects.115 In addition, overexpression of PFKFB3 overrules the pro-stalk cell 
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for ROS production, compromising NO levels.110 In addition, NOX activate redox-

sensitive transcriptional factors such as NF-κB and HIF1α.111, 112 Based on those 
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and to form vessels in vivo.113, 114 Pharmacological PFKFB3 blockade, leads to a 

partial and transient reduction of glycolysis, capable of reducing pathological 

angiogenesis in inflamed skin, colon and eye disease, without evoking systemic 

effects.115 In addition, overexpression of PFKFB3 overrules the pro-stalk cell 
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effect of Notch signaling, thereby making the stalk cell more competitive for the 

tip position.114 Altogether, these findings illustrate the pivotal role of glycolysis 

in angiogenesis and the therapeutic potential of blocking glycolysis in plaque 

angiogenesis inhibition. 

ANIMAL MODELS 

Among the different animal models used to study atherosclerosis, pigs and rats 

are rarely suitable for exploring plaque neovascularization in the atherosclerotic 

plaque because they seldom display plaque neovessels.43 In contrast, induced 

advanced atherosclerotic plaques in the thoracic descending aorta of New 

Zealand white rabbits show intra plaque angiogenesis, as detected using 

contrast-enhanced ultrasound.116 

Mice are a preferred model to study atherosclerosis since there are all kinds of 

transgenic strains available. Unfortunately most of the traditionally used strains, 

ApoE KO, LDLR KO and ApoE3*Leiden, do not develop extensive neovessels in 

their atherosclerotic plaques. Recently two models have been developed with 

atherosclerotic lesions that are more unstable and prone to rupture. 

One model is based on murine vein graft atherosclerosis. Human atherosclerotic 

lesions in saphenous vein bypass grafts are vulnerable and have a higher risk to 

disrupt than native atherosclerotic lesions.2, 117 The murine vein graft model is 

performed by the interposition of a caval vein from a donor mouse into the 

carotid artery of an atherosclerosis prone recipient mouse. Hypercholesterolemia 

in ApoE3*Leiden mice resulted in a significant increase in accelerated 

atherosclerosis in vein grafts with profound vein graft thickening within 4 weeks 
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after surgery. These lesions are rich in neovessels and are most likely formed 

through angiogenesis from the vasa vasora and consist of CD31 positive 

endothelial cells.91 In a substantial number of vein grafts, a considerable amount 

of RBCs could be found in the extracellular matrix, adjacent to the neovessels, 

suggesting leakiness and intraplaque hemorrhage (Figure. 1). Foam cell 

accumulation was even observed within seven days after vein bypass grafting, 

which illustrates the extreme fast initiation of this accelerated atherosclerosis 

118. Reducing inflammatory responses in this model could inhibit IPH, as well as 

erosions and plaque dissection thereby increasing plaque stability.119 

Another example of animal model with spontaneous plaque rupture is the ApoE 

KO Fbn1C1039G+/− mice model. A heterozygous mutation C1039G+/− in the 

Fbn1 gene results in the fragmentation of elastic fibers in the media of the 

vessel wall.43 The effect of increased arterial stiffness, due to progressive elastic 

fiber degeneration, on atherosclerosis was studied in this model. ApoE KO 

Fbn1C1039G+/− mice fed with a Western diet for 20 weeks, show sign of plaque 

destabilization, such as increased number of fibrous caps and enlargement of 

the necrotic core.120 The atherosclerotic plaques of ApoE KO Fbn1C1039G+/− 

mice contained highly leaky plaque neovessels and IPH, resulting in plaque 

rupture, myocardial infarction, stroke, and sudden death.121 

CONCLUSIONS 

In this review, we described the pathological processes associated with 

angiogenesis in atherosclerotic plaques and illustrate how plaque 

neovascularization and IPH are strongly correlated with atherosclerotic plaque 

progression, instability and rupture. The established impact of plaque 
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neovascularization on the evolution of atherothrombotic events, together with 

improved animal models and new imaging technologies, provide a new basis for

the development of anti-angiogenic strategies to prevent atherosclerotic plaque 

progression and instability.

Figure 2. Plaque angiogenesis. Once in the plaque macrophages engulf oxLDL and 

become lipid filled foam cells. Their accumulation activates cytokine production that 

promotes the influx of neutrophils, mast cells and monocytes. The high oxygen 

consumption of these inflammatory cells leads to hypoxia. HIF-1α and VEGF, together with 

an unbalanced presence of the destabilizing factor Ang2 bound to its receptor Tie2, trigger 

the formation of leaky neovessels. (Magnification) Intraplaque hemorrhage, with 

extravasation of red blood cells and inflammatory cells, is due to immature neovessels, 

lacking proper enveloping pericytes and poor tight junctions between endothelial cells. 

Macrophages accumulate cholesterol to the point of becoming foam cells by phagocytizing 

extravasated red blood cells.

-

-
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